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Abstract. For a symplectic map that is analytic near a fixed point, the Birkhoff
normal form is studied in connection with its integrability in the sense of Liouville. It
is proved that, when the fixed point is non-resonant or simply resonant, there exists an
analytic Birkhoff transformation if and only if the map is integrable.

1. Introduction. This paperis devoted to the study of normal forms for symplectic
maps near a fixed point. We consider local real analytic diffeomorphisms having the
origin z=0 as a fixed point. We assume that they are symplectic, that is, they preserve
the standard symplectic structure wo=>Y ;_, dx; A dy,, Where z=(Xy, ..., Xp, V1, -+, V)
is the coordinate system of R2". We denote by Symp(R?", 0) the set of germs of all
those local real analytic symplectic diffeomorphisms near the fixed point z=0.

The normal form we are concerned with is the so-called Birkhoff normal form and
the normalizing transformation is called the Birkhoff transformation, named after G.
D. Birkhoff, who first developed this theory (cf. [2], [3]). Let feSymp(R?",0) be a
map with semisimple linear part Df(0). Then, according to Moser [10], the map f is
in the Birkhoff normal form if it commutes with its linear part Df(0)in the real symplectic
Jordan canonical form. If we ignore convergence, there always exists a Birkhoff
transformation and f is in the Birkhoff normal form if and only if the nonlinear part
Df(0)~ ! fisequal to the time-one map of the Hamiltonian flow with a time-independent
Hamiltonian H invariant under Df(0). This implies that the function H is a formal
power series integral of f. Therefore, when the fixed point is non-resonant or simply
resonant (see Section 2 for definitions), one can easily see that the given map is integrable
in the sense of Liouville [ 1] if there exists a convergent Birkhoff transformation together
with a convergent interpolating Hamiltonian H.

The aim of this paper is to prove the converse of this assertion. We have already
proved it in the non-resonance case [7]. In this paper we generalize it in the simple
resonance cases. It corresponds to the result for normalization of Hamiltonian functions
[8] and its proof has the same feature as that in [8]. However the result is not a direct
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consequence of [8], and in particular, we have a new problem to the effect that the
convergence of the interpolating Hamiltonian H does not follow from the convergence
of the Birkhoff transformation.

To overcome this difficulty, we interpolate the given map by the time-one map of
the Hamiltonian flow with a generally periodically time-dependent Hamiltonian that is
real analytic in both ze R?" and time ¢ € R. Due to a recent result by Kuksin and Pdschel
[91, this is possible under the condition that the linear part Df(0) can be written as the
time-one map of the Hamiltonian flow with a quadratic time-independent Hamiltonian.
We see that this condition is satisfied under fairly general assumptions on those
eigenvalues of Df(0) which can be easily checked (Proposition 1). Moreover, we say
that a map fe Symp(R?", 0) is in the Birkhoff normal form if it is the time-one map of
the Hamiltonian flow with generally periodically (of period 1) time-dependent
Hamiltonian in the Birkhoff normal form (as time-dependent functions), and we call a
normalizing transformation a Birkhoff transformation. Then it turns out that if f is in
the Birkhoff normal form in this sense, it is also in the Birkhoff normal form in Moser’s
sense and the nonlinear part Df(0) ! f becomes the time-one map of the Hamilto-
nian flow with some time-independent real analytic Hamiltonian (Proposition 2). In
particular, in the non-resonance case, the map f itself becomes the time-one map of a
time-independent Hamiltonian flow. Our main result (Theorem 1) claims that, in the
simple resonance case as well as in the non-resonance case, there exists a convergent
Birkhoff transformation and a convergent interpolating Hamiltonian if and only if f
is integrable. In the next section, we formulate it under more general setting where we
allow cases in which the linear part Df(0) is not semisimple, which has been studied in
[4] under Moser’s definition.

To prove Theorem 1, the crucial observation is that the integrability of the given
map implies that of the interpolating time-dependent Hamiltonian system (Theorem 3)
and hence the proof of Theorem 1 is reduced to that of the corresponding theorem for
time-dependent Hamiltonian systems near an equilibrium (Theorem 2). We proved in
[8] the corresponding theorem in the case of time-independent systems. Theorem 1 and
Theorem 2 are analogs of this result for symplectic maps and for time-dependent
Hamiltonian systems.

This paper is organized as follows. In the next section, we will give necessary
definitions and state the results mentioned above. In Section 3, we will show that the
proof of Theorem 1 is reduced to that of Theorem 2. For this purpose, we will prove
an interpolation theorem mentioned above (Theorem 3). To prove Theorem 2, we will
work with the complex Birkhoff normal form instead of the real one and also will
extend the phase space so that the time-dependent Hamiltonian vector field can be
considered as a time-independent one in the extended phase space of dimension 2r+ 2.
This extension of the phase space will be convenient to deal with the integrability of
the given vector field. In Section 4, we will introduce this extension and will reformulate
Theorem 2 as Theorem 4.4 concerning the normalization in the extended phase space.
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Theorem 4.4 will be proved in Sections 5-10. In Section 5, we will give a power series
expression for the normal form. By using it, we will prove Proposition 2 and show
that the original symplectic map is integrable if there exists a convergent Birkhoff
transformation in the non-resonance or simple resonance cases. In Section 6, we will
prove the existence of a formal normalizing transformation (Theorem 6.3 and Corollary
6.4). In Section 7, we will describe the basic idea on the proof of its convergence and
the proof will be carried out from Section 8 through Section 10. Finally, we will prove
Theorem 2 in Section 11 by imposing reality condition on the original Hamiltonian.

2. Statement of the results. In this section, we state the main results. We first
introduce symbols to be used throughout this paper: «/(R?", 0) denotes the set of germs
of all functions of 2n variables, say ze C?", that are real analytic in a neighbourhood of
the origin z=0. &/(R?"*1, §') denotes the set of germs of all functions in (z, t)e C*" x C
that are real analytic in a neighbourhood of the real r-axis {(z, t)e C***!|z=0, re R}
and are periodic in ¢ with period 1. In addition to Symp(R?", 0) introduced in Section
1, Symp(R?"*!, S') denotes the set of germs of all local real analytic symplectic dif-
feomorphisms (R?", 0)— (R?", 0) that depend on the parameter ¢ (time) real analyti-
cally and periodically with period 1.

In the above, “real analytic” means that those analytic functions and maps are
real-valued if the domains of definition are restricted to R2" or R2"*!. For the sets of
germs of analytic functions or maps without real-analyticity assumption, we denote
them by the same symbols with R?", R?"*! replaced by C*", C*"*! respectively, that
is, #(C?", 0), and so on. We consider them as «/(R?", 0)c «/(C?", 0), and so on.

Let Xy denote the Hamiltonian vector field with Hamiltonian He .«/(C?", 0) or
Heo/(C**1, §'), which is given by the system of differential equations

dt -1 0

Here H, is the vector of first derivatives of H with respect to z and [ is the identity
matrix of degree n. Also exp Xy denotes the time-one map of its flow, i.e.,
exp Xy : z(0)— z(1), where z(¢) is the solution of the above system. The Poisson bracket
of two functions F, G is defined by

{F, G}:=(F,, JG,) ( = ¥ (F.G, - Fykak)> :
k=1

where ( +, +) denotes the Euclidean inner product, i.e., <z, z") =Zf';1 z,z; wWith z,, z;
coordinates of z, z' respectively.

Now let us introduce necessary definitions to state the results. First, the integrability
in the sense of Liouville is defined as follows:

DEFINITION 1. (i) A symplectic map feSymp(C?", 0) is said to be integrable if
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it possesses n analytic integrals G,(2),..., G,(z)e #(C?",0) that are functionally
independent and Poisson commuting.

(i) A Hamiltonian vector field X with He o/(C*"*!, S') is said to be integrable
if it possesses n analytic integrals G,(z, t), ..., G,(z, t)e #(C*"*1, S') such that for any
t fixed they are functionally independent and Poisson commuting functions of z.

REMARK. Since Symp(R?", 0)cSymp(C?",0) and «(R*"*!, SY)c/(C?"*1, SY),
this definition is valid also when fe Symp(R?", 0) or He &/(R*"*!, S'). In other words,
we allow their integrals to be complex-valued for real variables.

In the definition (i) above, a function G(z)e «/(C?",0) is called an integral of f if
it is invariant under f i.e., Go f=G. The functional independence of G,(2), ..., G,(2)
means that their gradient vectors with respect to z are linearly independent on an open
and dense subset of a neighbourhood of the origin z=0, and those » functions are said
to be Poisson commuting if {G;, G;} =0 for any i, j=1, ..., n. The meaning of the same
terminology used in (ii) is obvious.

To define Birkhoff normal forms for maps, let us give preliminary considera-
tions about interpolation of symplectic maps. Let Df(0) denote the linear part of
feSymp(R?", 0) at the origin. It is symplectic and hence its eigenvalues occur in pairs
I Mg L k=1, ..., n) (cf. [1]). We assume that Df(0)=exp(JA) for some real symmetric
matrix A4, in other words, the linear map z+> Df(0)z is the time-one map

2.1 Df(0)z=exp Xy,(2) with H,(2) =% {Az,z) .

Then the theorem due to Kuksin and Pdschel mentioned in Section 1 claims that
f=exp Xy with some time-dependent Hamiltonian He «/(R?"*!, §') of the form

(22) H=H(z, t)=H,(2)+H(t); Hzt)=0(z]),

where O(| z|*)e #(R*"*1, S') denotes the terms of order >3 with respect to z.
Since the set of all quadratic forms on R?" forms a semi-simple Lie algebra under
the Poisson bracket { -, -} (see [6], [11]), we have the Jordan decomposition

2.3) H,=S+N; {S,N}=0,

where S, N are quadratic forms such that the matrices JS,, and JN,, are semisimple
and nilpotent, respectively. After a real linear symplectic coordinate transformation, we
may assume that the quadratic form H, is in the normal form, which implies that the
linear vector field X}, is taken into the real Jordan canonical form. In the semisimple
(i.e., N=0) case, the normal form is given as follows:

k 1
Qo) HE=S0= Y apat Y 2w +o]
j=1

i=1
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+ Z {cj(X2j-1V2j— 1+ X2j¥2;) +dj(X2j—1V2;—X2;¥25-1)}
j=1

where
zj=p1’zn+]=qj (j=1,...,k),
Z=(21, .45 224) 5 Zy4+j=Uj Zpn gk +j=Vj U=1...,D,
Zk+1+j=Xjs Zntk+1+;=Yj (U=1,...,2m).

In this case, the eigenvalues of the linear vector field Xy, are +pu; (j=1,..., n) with

{u,.:a,. G=1,....0), meay=bji (j=1,...,1),

2.5) . ..
#k+t+2j—1=cj+djl, ﬂk+t+2j=cj"djl U=1,...,m),

where

k, I, m are nonnegative integers satisfying k+/+2m=n.

For the original map feSymp(R?",0), this implies that, if Df(0) is written in the
form (2.1), negative eigenvalues of Df(0) can only occur with even multiplicities (when
d;=(2r+ 1)n for some j and re Z). Also we note that 4;=1 corresponds to a;=0.

When can the linear part of the original map f be written in the form (2.1)? We
have the following result about this question.

PROPOSITION 1. The linear part of f € Symp(R?", 0) can be written in the form (2.1)
if one of the following three conditions holds:

(i) Df(0) has no negative eigenvalues,

(ii) Df(0) is the square of another symplectic matrix on R?",

(iii) D f(0) is semisimple and does not have negative eigenvalues of odd multiplicities.

For the proof of this proposition under conditions (i) or (i), we refer to [9,
Appendix]. Suppose that f'e Symp(R?", 0) satisfies the condition (iii). Then the eigen-
values 1, 47 of Df(0) are given by

7
Ai=e" (j=1,...,n) for pu; given by (2.5).
We note that the real Jordan canonical form of Df(0) is equal to exp Xy, with H, given
by (2.4). Let C be a real symplectic matrix which takes Df(0) into exp Xy,. Then we have
Df(0)=CoexpXy,oC™'=exp Xy,.c-1»

which proves Proposition 1 under the condition (iii).

We omit writing down all normal forms, which was studied by Williamson [12].
See [1, Appendix] or [5] for the complete list. The semisimple part of the normal form
is different from (2.3) when H, is not semisimple. On the other hand, if we consider
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the complex Jordan canonical form instead of the real one, the corresponding normal
form of H, reduces to simpler forms. For example, the normal form of the semisimple
part of H, is given by

6 St~ 3 mn (w=loghy

for the non-semisimple case as well as for the semisimple case. Correspondingly, the
vector field X and its time-one map exp X are in diagonal form.

Associated with the semisimple part S of the quadratic form H, in the normal
form, we define the Birkhoff normal forms for functions and maps as follows:

DEerINITION 2. (i) A function He #(R?*"*!, S1) of the form (2.2) with (2.3) is
said to be in the Birkhoff normal form if H, is in the normal form and if H is invariant
under the flow of Xj, that is,

OH
@2.7) (H, S}+—-=0.

More generally, an arbitrary function Ge #(R?"*', §) is said to be in the Birkhoff
normal form if the identity (2.7) holds with H replaced by G.

(ii) A map feSymp(R?", 0) satisfying (2.1) with H, in the normal form is said
to be in the Birkhoff normal form if f =exp Xy with He o/(R*"*!, S*) of the form (2.2)
in the Birkhoff normal form.

(i) A function Ge #(C?***!, S') and a map fe Symp(C?", 0) satisfying (2.1) are
said to be in the complex Birkhoff normal form if they satisfy the above definitions (i)
and (ii) respectively, with H, replaced by the complex normal form (and hence S is
given by (2.6)).

We observe that this definition gives rise to the same form as the Birkhoff normal
form defined by Moser [10]. Namely, we have:

PROPOSITION 2. Let f=exp Xy with He /(R**1, S) of the form (2.2) with (2.3)
in the Birkhoff normal form. Let A be the semisimple part of Df(0), i.e., A=exp Xs. Then
f commutes with A, i.e., foA=Acf, and can be written in the form

f=Aocexp Xy (=exp Xz o A) with H= H(z)= H(z, 0)— S(z) .
Here H(z) is a real analytic integral of f that is invariant under A.

This proposition will be proved in Section 5. To discuss the convergence of Birkhoff
transformations, we give the definition of a non-resonant or simply resonant fixed point
(and an equilibrium point). For a map f=exp Xy with H of the form (2.2), we consider
its fixed point z=0 as the equilibrium point of X}, and recall that the eigenvalues 4;
of Df(0) are given by A;=e". Let us consider the condition
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(2.8) Y k=0  for po=2mi and (ko,ky,...,k)eZ"*?!.
j=0
This is equivalent to the condition
2.9) I1 Mi=1 for (ky,....k)eZ" (A;=e").
ji=1

Let He o/(R?"*1, S') be of the form (2.2) and let f=exp Xy e Symp(R?", 0).

DeFmNITION 3. (i) The equilibrium point z=0 of X} is said to be non-resonant

if the condition (2.8) holds only for kg=k,=--- =k,=0.
(ii) The equilibrium point z=0 of X} is said to be simply resonant if either of
the following three conditions holds after changing the indices of y,, ..., u, if necessary:
(1)  p1/uoe @\{0} and the condition (2.8) holds only for k,=- - - =k,=0;
(2) p1/u, € @\ {0} and the condition (2.8) holds only for kg=ky=---=k,=0;
(3) p,=0 and the condition (2.8) holds only for kg=k,="--- =k,=0.

(iii) The fixed point z=0 of f is said to be non-resonant or simply resonant if it
is non-resonant or simply resonant respectively as an equilibrium point of X.

In the non-resonance case, the complex Birkhoff normal form becomes a power
series with constant coefficients in n variables x,y,,..., x,y, alone. In the simple
resonance case, it becomes a function of n+ 1 variables with coefficients that are periodic
functions in ¢. We will present them in Section 5.

Our main results are as follows:

THEOREM 1. Let feSymp(R?",0) satisfy the condition (2.1) and assume that its
fixed point z=0 is non-resonant or simply resonant. Then, there exists a real analytic
Birkhoff transformation ¢ € Symp(R?",0) such that f':=¢ o foq is in the Birkhoff
normal form, if and only if f is integrable. Furthermore, for any integral G e o/(C*",0)
of f, the function G o ¢ is invariant under A=exp X as well as f'.

This theorem is already proved in the non-resonance case (cf. [7]), where we did
not need the interpolation idea because of the special form of the Birkhoff normal form
(see the end of Section 3 for more details). In this paper, we will prove Theorem 1 as
a corollary to the following:

THEOREM 2. Let He A(R**1, SY) be of the form (2.2) and assume that the
equilibrium point z=0 of Xy is non-resonant or simply resonant. Then, there exists a real
analytic transformation z=@({, t)e Symp(R?"**, ') such that the Hamiltonian of the
transformed system is in the Birkhoff normal form, if and only if the vector field Xy is
integrable. Furthermore, for any integral G(z,t)e A(C*"*1, SY) of Xy, the function
G(@(, 1), t) is in the Birkhoff normal form.

In the proof of these theorems, the proof of the “only if” part is straightforward.
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As we will show in Section 3, we can represent an integrable symplectic map as the
time-one map of the flow of an integrable time-dependent Hamiltonian system.
Therefore, the proof of Theorem 1 is reduced to that of Theorem 2. We will prove
Theorem 2 in the simple resonance case only, because the proof in the non-resonance
case can be carried out along the same line and its technical complexity is smaller than
that in the simple resonance case.

3. Reduction to the time-dependent Hamiltonian case. The aim of this section is
to derive Theorem 1 from Theorem 2. To this end, we will prove the following:

THEOREM 3. Let feSymp(R?", 0) be an integrable map satisfying (2.1). Then it is
the time-one map of an integrable vector field Xy with He o/(R*"*, S1) of the form

3.1) H(, t)=%<Az, H+0(z3).

PrOOF. As we mentioned in Section 1, f can be written as the time-one map
f=expXy with He 4 (R?*"*!, S') of the form (3.1) even without assuming the
integrability of f. This is the assertion of a theorem by Kuksin and Pdschel [9]. Our
purpose is to prove that the vector field X is necessarily integrable provided that f is
integrable.

Let G,=G,(2)e L(C?",0) (k=1, ..., n) be n analytic integrals of f =exp X which
are functionally independent and Poisson commuting. We assume that those G, as well
as the map f are defined to be analytic in a neighbourhood U (= C?") of the origin
z=0. In the following, let ¢(t; z,, t,) be the solution of the vector field X through
(2o, to)€ C?" x C. Further, let Us;c C?" be the §-neighbourhood of the origin, and set
Vg:={teC||t|<K} for any constant K>0. Since the origin z=0 is an equilibrium of
Xy, for an arbitrary number K>0 we can choose a small number 4 >0 so that if z,e U,
and t,€ Vg, then ¢(t; zo, to)e Un f~1(U) for all te V.

Let us define functions G,(z, t) on U x Vi by

(3.2) Gz, 1):=Gy(¢p(0; z,t))  for (z,t)eUsx Vy.

Let us take (zq, to) € U; x Vi arbitrarily and fix it. Then, by the uniqueness of solutions,
we have

ék(¢(t; Zos to)s 1)=G(zo, to) for teVyg.

This implies that G, are invariant under the flow of X, Furthermore, by the invariance
of G, under f we have

Gz, t+1)=Gy(B(0; 2, t + 1)) = G(f © D(0; z, t+ 1)) = G(P(1; 2, t + 1)) .

Here we note ¢(1; z, t + 1)=¢(0; z, t) in view of the periodicity of the vector field X
with respect to ¢. Hence we have proved the relation
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Gz, t+1)=Cylz,t)  for (z,0)eUsx Ve_, .

By the analytic dependence of solutions on the initial conditions, G, are analytic in

(z,t)e U x Vi and periodic in ¢ with period 1. By the analytic continuation using the

relation above, G, can be extended to a neighbourhood of the whole real 7 axis

{(z, t)e C*"*'|z=0, te R}. Clearly they are integrals of Xy and hence we have proved

that the existence of the integrals G,(z) of f leads to that of the integrals G, of X

which are analytic in a neighbourhood of the real 7 axis in the complex (z, t) space.
For each ¢ fixed, we define a symplectic map @ as

D:z+— P0; z¢t).
By the definition (3.2), we have

3.3) Gk _ig, 90
oz 0z

where @, is the Jacobian matrix of @ with respect to z and ‘@, denotes its transpose.
Hence the functional independence of G, ..., G, implies that of G, ..., G, Fur-
thermore, from (3.3) as well as the symplectic character of @, it follows that

{Gia é,l} = {Gia G.i}

and therefore G,,..., G, are Poisson commuting. Hence the vector field Xj is
integrable. O

Using Theorem 3, we now deduce Theorem 1 from Theorem 2.

PrOOF OF THEOREM 1. Assume that fe Symp(R?", 0) is integrable. Then it follows
from Theorem 3 that f=exp X with an integrable Hamiltonian He &/(R?"*!, S1). Let
z=2(t) be the solution of Xy through z(0)=z, at t=0. Then f is given by

f:2(0) —z(1).

Since the Hamiltonian H satisfies the assumption of Theorem 2 under that of
Theorem 1, it follows from Theorem 2 that there exists a tansformation z=¢((, t)e
Symp(R?*"*1, S§1) which takes the vector field Xy into the new vector field Xy with
H'=H'({,t) in the Birkhoff normal form. Let {(¢) be the solution of Xy through
L0)= g Y(z,) at t=0, where @, = ¢( -, 0). Noting that z(t) = @({(¢), t) and the periodicity
of ¢ in ¢, one can see that f is transformed by ¢, into

@6 o f o001 {(0) (1),

which is equal to the time-one map exp Xp.. Hence g ! o f o @, is the Birkhoff normal
form.

Conversely, assume that f is in the Birkhoff normal form, that is, f=exp X with
Heo/(R*™*!, S") in the Birkhoff normal form. Then Xy is integrable by Theorem 2
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and therefore there exist n integrals Gy(z, t) of Xy (k=1, ..., n) which are functionally
independent and Poisson commuting. By Definition 1 and the periodicity of G(z, t) in
t, the functions Gy(z, 0) are integrals of f and they are functionally independent and
Poisson commuting. Hence f is integrable.

To prove the final assertion, let f'e Symp(R?", 0) be in the Birkhoff normal form
and Ge/(C*, 0) its integral. According to Definition 2, we write f=exp X, with
He o/(R*"*',S") in the Birkhoff normal form. By the preceding arguments,
G(z, t):=G(¢(0; z, t)) is an integral of Xy. Then it follows from Theorem 2 that G is in
the Birkhoff normal form and hence we have {G, S} +G,=0, that is,

d .
— G(exp tXg(z), t)=0,
7 (exp tXs(2), t)

where exp tXg denotes the flow of the linear vector field X5. Consequently we have
G(Az,1)=G(z,0) for A=expXs, or equivalently G(Az, 0)=G(z,0) because of the
periodicity of G in ¢. This implies that G(Az)=G(z), which proves the final assertion of
Theorem 1. O

REMARK. In the previous paper [7], we proved Theorem 1 in the non-resonance
case without the interpolation idea. For an integrable symplectic map f'€ Symp(C?", 0)
near a non-resonant fixed point, we proved the existence of a convergent Birkhoff
transformation ¢ € Symp(C?", 0) so that the transformed map f':=¢ 'of o f: (x, y)—
(x’, y") is written in the form

(3.9 xy=x,expH, , yi=y.exp(—H,) with 1,=x.y, (k=1,...,n),

where H is a power series in n variables t, with constant coefficients. When H is
convergent, we called maps of the form (3.4) to be in the Birkhoff normal form. This
is clearly the time-one map of the time-independent vector field X and therefore is in
the complex Birkhoff normal form in the sense of Definition 2 (iii). The convergence
of ¢ implies that of the Hamiltonian H in the expression (3.4) for f’ (we omitted its
proof in [7]). Indeed, the n power series exp H,,_are convergent since f” is convergent.
This implies the convergence of H,, and hence that of H itself. The proof of Theorem 1
follows from the arguments above by imposing the reality condition on the original
map f (see [7] and also Section 11 of this paper).

4. Reformulation of Theorem 2 in the extended phase space. For time-independent
Hamiltonian systems, we have proved the result corresponding to Theorem 2 [8]. In
order to proceed in the same way as in [8], we will mainly work with the complex
Birkhoff normal form and also consider the time-dependent Hamiltonian as the
time-independent one by extending the phase space to the 2n+2 dimensional one.

The aim of this section is to reformulate Theorem 2 as a theorem about
normalization in the extended complex phase space. Again, let He o/(C?"*1, S*) be a
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time-dependent Hamiltonian of the form
4.1 H(z, )=Hy()+ 0(z°); Hy()=S(@)+N@z)  with SE)= Y. mx,
k=1

where S and N respectively are the semisimple and nilpotent parts of H,, satisfying the
relation {S, N}=0. Setting 1=x, ., we define a function H as

4.2) H(z, Xyt 15 Yos ) = H(Z, X4 1)+ Vo1 -

This is a function of 2n+2 variables z=(x, y), X,+1, V,+1 and the corresponding
Hamiltonian vector field X is given by

(4.3) i=JH,, Xp41=1, Ypr1=—-H

Xn+1?

where the dot () denotes the differentiation with respect to ¢, and J is the 2nx2n
symplectic matrix given in Section 2. We call the (x, y, x,. 1, Y.+ 1)-Space the extended
phase space and its symplectic structure is given by Z::i dx, A dy,. The function H is
called the extended Hamiltonian (function) of H, and X is called the extended Hamiltonian
vector field of Xy. The Poisson bracket of any two functions F, G on the extended phase
space is defined by

[F,G]:={F,G}+F, G
where {F, G}=(F,, JG,). Also we define

F,

Yn+1

G

Yn+t Xn+1?

Sz, Yn+1):=8@+yns1; S@2)= kz,l X Vx5

and introduce the following:

DErFINITION 4.1. A function G=G(z, X,+ 1, Yu+1) 18 said to be in the normal form
if the following identity holds:

4.4 [G,§]=0.
Then we have:

LemMa 4.2. Let G=G(z,t)e #(C*"**, S") and h(y,,,) an arbitrary function of
Yn+1- Then:

(i) A function of the form G(z, X, 4 1)+ M Y,+1) is in the normal form if and only if
G(z, t) is in the complex Birkhoff normal form. In particular, the extended Hamiltonian
H is in the normal form if and only if H= H(z, t) is in the complex Birkhoff normal form.

(i) G(z, x,+,) is an integral of Xg if and only if G(z, t) is an integral of Xy.

Proor. By the definition of the Poisson bracket [ -, * ], we have

[G+h 81={G,S}+G, .., [G H]I={G H}+G

Xn+1*
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By the definition of the complex Birkhoff normal form, the first identity implies the
assertion (i) and the second one implies (ii). d

The assertion (ii) above implies that the extended vector field X3 is integrable if
Xy is integrable.

To find a normalizing transformation, we restrict ourselves to symplectic
transformations of the form

(45) ¢:(Cs€n+1?"n+1)l_'(z3xn+1ayn+1); C=(€,?[), z:(x’y)eC"xC”
with
(46) Z=(P(C9§n+l), xn+1=én+1+m(mez)a yn+1=’1n+1+!/l(C:€n+1),

where all components of the vector function ¢ as well as Y belong to «/(C?"*1, §1).
We denote by & the set of all such symplectic transformations. Then we have:

LemMMA 4.3. (i) & forms a group under composition of transformations.

(ii) For any function He o/(C*"*1, S'), the time-one map exp Xy in the extended
phase space belongs to & .

(iii) Let ¢ be a transformation of the form (4.5) with (4.6) satisfying det(0x/d&)+#0.
Then ¢ is symplectic (i.e., € &) if and only if ¢ € Symp(C***1, S') and

av(x, M, Xp+ 1)

for some ve L(C*"*1, S,
0%y 41

!//(Ca {n + 1) =
where v=u(x, n, t) is the generating function of ¢ € Symp(C*"*!, S1).
(iv) Let He4(C*™*1, SY) be a function of the form (4.1) and H its extended
Hamiltonian. Further let ¢ € & satisfy the condition det(0x/0E)#0. Then the vector field
Xy is transformed by @ e Symp(C?*"*1, S1) into the Hamiltonian vector field Xy with

4.7) H'(,t)=H(o(, 1), )+ (1),
and Ho ¢ is the extended Hamiltonian of H'.

ReMARK. The assertion (iii) implies that the transformation ¢ € & is determined
by ¢ uniquely under the condition det(0x/d¢)#0. In other words, ¢ € Symp(C?"*1, §1)
can be extended uniquely to a symplectic transformation ¢ € &.

Proor. First we prove that g e #/(R?*"*1, §?) if ¢ is symplectic. We note that the
symplectic property of ¢ means the identity

n+1 n+1

Z dxi A dy, = Z ac A dny .
k=1 k=1

By the special form of ¢, this implies that )} _, dx, Ady, =1 _, dé, Adn, for any &, ,
fixed, which proves ¢ e Symp(C?"*!, §'). From this fact and the periodicity of ¢ and
¥ in ¢, one can easily prove the assertion (i). Also the assertion (ii) can be easily proved.
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To prove (iii), note that under the assumption det(0x/0&)#0 the symplectic trans-
formation ¢ is expressed in terms of a generating function v=uv(x, n, )e #(C*"*!, S?)
as follows:

o _ Oy
B o’ Y Ox
Also, because of the form (4.6), ¢ is expressed as
0v b 0b 0v
4.8 =, y=—, &y =——— Vpi1=
(4.8) ¢ on y o (S et Yn+1 %01

in terms of the generating function

ﬁ(x’ s Xn+ 15 Mn+ 1)=U(X, n, xn+1)+(xn+1'—m)nn+1 .

Clearly we have y, ., =1,+1 +0v/0x, ;. The converse assertion of (iii) can also be easily
proved by constructing the generating function 4 from ». Hence (iii) is proved. For the
proof of (iv), it is easy to see that Ho ¢ is written as

ﬁ°¢(C, Cnt s M 1) =H'((, Cpi 1) Hlpst

with H' given by (4.7). We note that the vector field Xj., is given by (4.3) with H
replaced by H'. Therefore { = (&, n) satisfies the Hamiltonian system with the Hamiltonian
H'. Since z, x,,, are independent of 7, ;, this implies the assertion (iv). O

We consider the complex Birkhoff normalization of time-dependent Hamiltonians.
In view of Lemma 4.2 and Lemma 4.3, the equivalence between the integrability and
the convergence of Birkhoff transformation is formulated as the following theorem on
the normalization in the extended phase space.

THEOREM 4.4. Let He o/(C*"*1, S') be a function of the form (4.1) such that the
origin z=0 is a non-resonant or simply resonant equilibrium of Xy. Let H be the extended
Hamiltonian of H. Then, there exists an analytic symplectic transformation ¢ € & such
that the new extended Hamiltonian Ho ¢ is in the normal form, if and only if Xy is
integrable.

The aim of Sections 5-10 is to prove this theorem.

5. Power series expansion of the normal form. We note that analytic functions
fz,t)eL(C*"*1, S!) can be expanded as absolutely convergent power series in
z=(x, y)e C?" at the origin whose coefficients are absolutely convergent Fourier series
in t=x,. , € C with period 1. For convenience of notation, instead of &/(R*"**, S') we
denote by £ the vector space over C of all such convergent series in z and ¢. Further,
we denote by 2 the direct sum of 2 and the one-dimensional vector space spanning
by y,.+1- Namely 2 is the vector space consisting of all those series g=g(x, y, Xp+ 15 Vu+1)
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of the form

g=f(x’y,xn+1)+cyn+l; fe'qs CGC~

In this section, we express the normal form as such a series. It will lead to the proof
of Proposition 2 and that of the “only if*’ part of Theorem 4.4.
Let us write feZ as

(5.1 =2 cOxYP; )= ) dige®™™  (dyeC),
a,p keZ

where x*=x4t---x& yP=ypbt-. b g=(a,,...,q,), B=(B;, ..., B,) With nonnegative
integers a;, f;.

PROPOSITION 5.1. A normal form fe P is written as

(52) f=fla= Y cge ™ PN (c,e0).

{(m,a—p)e2niZ

PrOOF. By the expression (5.1), we have

(5.3) s, 81= %((#, 0= BDCap(t) + Capltxy?

- z( S by a—PB +zm-k)em)xayﬂ,
a,p \keZ

where '=d/dt and u=(u,, ..., u,). Therefore the identity [ f, S§]=0 holds if and only
if the Fourier coefficients of c,4(t) satisfy the condition

dig=0 if {u,a—p>+2nik#0.

This implies that c,4(t)=0 if {4, a— B) ¢ 2niZ and further that a normal form fe 2 can
be written as
f= Y dbemamienys,
{(u,a—pYe2niZ

where k is the integer determined by <{u, x— B) +2nik =0. By setting diz=c,z€ C, this
can be written as (5.2). O

Using Proposition 5.1, one can prove Proposition 2 stated in Section 2.

PROOF OF PROPOSITION 2. Let f=exp X, with He &/(C?"**, S') in the complex
Birkhoff normal form. Then, by Lemma 4.2, H and S commute in the extended phase
space and consequently their time-one maps commute. By the special form of H and
S, this implies that f =exp Xy and A=exp X commute in the original phase space.

Let ¢': {>z=¢'({) be the flow of the vector field X5 with S(z)=Y;_, Xy It
is linear symplectic but not periodic in ¢ and therefore does not belong to
Symp(C?"*1, §1). It is given by
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(5.4 o'(¢)=diage"¢,, ..., e* ¢, e M, ..., e y,)

and can be represented in terms of a generating function:

yk= ka b ék= Wylk for W= W(xs "9 t)= kzl e“ﬂkka,’k .

By this transformation, the vector field X}, is taken into another vector field X with
the Hamiltonian

K(, 1):=H(e'(), )+ Wi(x,n,t)=H({, 0)—S() .

Here the second equality follows from (5.4) and Proposition 5.1. The function K is
independent of t and is invariant under the linear map exp X : {+ A{. Moreover we have

expXy=¢'oexpXyo{p°}™".
Since ¢°=id and ¢! =exp Xs=4, this leads to
f=expXy=Aoexp Xy.

In view of this expression, the commuting relation foA=Aof is equivalent to
exp Xy o A=A o-exp Xg. Furthermore, since K is an integral of the vector field Xy, it is
invariant under exp Xy as well as under A. Using this invariance we have

K(f(2))=K(A - exp X(2)) = K(2) .

Finally, let /e Symp(R?", 0) be in the (real) Birkhoff normal form, i.e., f(z)=exp X(2)
with H in the Birkhoff normal form. Then one can find a linear (complex) symplectic
transformation z= C{, such that H(C{) is in the complex Birkhoff normal form. The
arguments above imply that C™!o f o C=exp Xy.c =4 o exp X, which gives the desired
expression for f with H(z)=K(C~'z) as well as its invariance under f and CAC™!.
This completes the proof of Proposition 2.

Next, let us investigate normal forms when the equilibrium point z=0 is
non-resonant or simply resonant. It will lead to the proof of the “only if” part of
Theorem 4.4.

In the non-resonance case, in view of Definition 3 (i) and Proposition 5.1, a normal
form feZ is a power series in n products x,y,, ..., Xy, with constant coefficients.
Therefore, if H is in the normal form, x,y,, ..., x,», are n integrals of Xy which are
functionally independent and Poisson commuting.

In the simple resonance case, we divide our discussions into three cases, namely,
cases (1)—(3) of Definition 3 (ii).

In the case (1), we may put
_ 2mig

U=

(peN, ge Z\{0}, p and |q| are relatively prime)
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and a normal form feZ can be written as

f= Z caﬂe‘m(dl—ﬁx)tx;uyfx(xzyz)az. . '(X,.y,.)"" ,
ay—p1epZ

where Z, is the set of nonnegative integers. Therefore the normal form fe 2 is a power

series with constant coefficients in n+2 variables x, y,, ..., X, ), and e~ 2"4'x? ¢2"4

For technical reasons, we set

To=Vn+1> T1=Vne1+UiXV1>, T=X k=2,...,n),
(5.5) {o Yn+1 1=Vne1 T H1X1)1 =XV ( )

Tasr =€ 2MxP 1, ,=e?yP (t=xp+1).
Here we note that the following relation holds:

T,—7T0 \
(56) Tn+lrn+2=< ! 0) .
Uy

In the case (2), we may put

H_ ii (p, g€ N are relatively prime)
p

Uz

and the normal form can be written as

f= Z cmﬁx;‘yflx;zygz(x3y3)as' ' '(xnyn)a" .
i@y —B1) +pu2(a2-p2)=0

This is a power series with constant coefficients in n+2 variables x,y,,
xPv4, yPul, where
(x2,y2)  if puy=qu,,
(u, v)= ,
, (2, %)  if puy=—qu,.
In this case, we set
(5.7) {To=yn+1 s TI=HX Y1 —HaX2Ya, Ta=U1X1Y1HHaX2)Y5,

w=xy k=3,...,n), T, =x{v7, 1,.,=ylul,

and the following relation holds:

T,+7, VP 1,—17 \?
T"HT"”:( 12# 2)( 22# 1> '
1 2

In the case (3), the normal form can be written as

f= ) CapXPYE (X2 12)% - - - (X0

1,82, ...,0n,B1€Z +

which is a power series with constant coefficients in n+ 1 variables x,, y,, x,¥,,

t

V.

""xny)n

oo XpVne
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In this case, we set 74, Ty, ..., T,+1 as follows:

(5.8) T0=Vn+1> T1=X1, G=XY (Kk=2,...,n), t,0.,=);.

In the cases (2) and (3) above, the normal forms are independent of ¢ and the
same as those of time-independent Hamiltonian functions in the simple resonance cases
[8]. The proof of Theorem 4.4 in these cases can be carried out along the same line as
in the case (1) with more repetition of the arguments in [8]. Hence we omit it and will
concentrate on the case (1) from now on.

Then, the extended Hamiltonian H is in the normal form if and only if it is a power
series with constant coefficients in n+ 3 variables 1y, 74, . .., T,+, With the relation (5.6).
Recall that the identity [H, §]1=0 holds for the normal form A. This also implies that
S is an integral of X; and therefore H—S=H—S is an integral of Xz which is
independent of y,, . Then, in view of Lemma 4.2, H—S, 7,, ..., 1, are n integrals of
Xy which are functionally independent and Poisson commuting functions of z in general
for each ¢ fixed. Here we note that they are functionally dependent only if H— S is a
function of ,, ..., 7, only. However, in this case also, X} is integrable. Thus we have
proved that, in the non-resonance and simple resonance cases, the vector field X with
H in the Birkhoff normal form is integrable. This proves the “only if”” part of Theorem
44.

Finally, for later use, let us consider the Poisson bracket of any two functions in
the normal form. It vanishes identically in the non-resonance case, but does not vanish
in general in the simple resonance case. To compute it, let f= f(z, x,,,, V.+1) be @
function in the normal form in the simple resonance case. Using the relation (5.6), we
can write it uniquely in the form

(59) f(Z,X,.+1,y,.+1)=f1(T, ‘C"+1)+f2(1.', Tn+2); T=(To,T1,---»Tn),

where f;(z, 1,4;) are power series in 1, ..., 7, and t,; (i=1, 2). If £, does not vanish
identically, then by eliminating t,,, from f,(t, 7, ,) using the relation (5.6), one can
consider f as a Laurent series in n+2 variables 7y, 74, ..., 7,4 ;. Then, we obtain the
following formula.

LEMMA 5.2. Let f, g be in the normal form and consider them as Laurent series in
Tos Tis + -+ 5 Tus1 given by (5.5). Then

of dg of 89)
5.10 L g]= - > Tn
(5.10) LS. 4] (610 5t i u.. Ot (705 Tas1]
with
(5'11) [705 rn+1] =pﬂlrn+1 .

Proor. Since f and g are functions in g, Ty, ..., T,+1, W€ have
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n+1 6 a
[fag]—_— Z —f—_g[rbrj]'
i,j=0 0t; Ot;

J

Here [1;, 7;]1=0 except for (i,j)=(0,n+1) or (n+1,0). Hence we obtain the desired
formula (5.10) with (5.11).

6. Construction of a formal normalizing transformation. We will obtain a
normalizing transformation ¢ described in Theorem 4.4 as the limit of an iteration
process. The aim of this section is to construct this process and prove the existence of
¢ as a formal transformation.

We begin by proving some lemmas. For the vector space 2 and 2 introduced in
Section 5, let us consider the linear maps

adS: ?3f+—[f,8]e®?, adN: ?>5f+—[f,N]le?, adH,=adS+adN,

where S, N and H, are quadratic forms defined by (4.1). By Definition 4.1, a series
f€2 is in the normal form if and only if feKeradS. Let 2,, denote the vector space
over C of all homogeneous polynomials in z=(x, y) of degree m with coefficients being
Fourier series of ¢ with period 1. Also we define the vector space 2, in the same way
as defining 2 from 2. Let us define linear maps ad,, S, ad,, N and ad,, H, by restriction

ad,S:=adS|2,,, ad,N:=adN|%,, ad,H,:=adH,|?,.

The following lemma will play an important role in the construction of the normalizing
transformation.
LemmA 6.1.
(i) 2,=Kerad,S®Imad,S, Z=Kerad S@®ImadS.
(ii) The restriction of ad,, H, to Imad,, S is an invertible map from Imad,,S onto
itself.
(iii) If f,geKeradS, then [f,gleKeradS.
(iv) If feKeradS and gelmadS, then [ f, gleImadS.
Proor. If we write fe2 in the form (5.1), we see from (5.3) that
{ feKerad, S ifand only if d%=0 for {u,a—p>+2nik#0,
felmad, S ifand only if d%=0 for {u, a—pB)+2nik=0.

This implies the assertion (i). To prove the assertion (ii), let fe#,, and gelmad,, S
satisfy the equation

[f.81=g  with 9= |Za| <Zei‘a82""">X°‘y“ (esp€C).
al+ =m

keZ

From (5.3), this equation is solved uniquely for a formal series f as
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- €ap Znikt) a8

d |al+§|=m(k§zt Gra—py+omk - )7

where Z' is the set of integers satisfying the condition {u, a— B) +2nik #0. Since the
absolute value |{u, x—p)>+2nik| is bounded away from zero (for a, B fixed), the
coefficients of f are absolutely convergent Fourier series of ¢ and therefore f is
holomorphic and belongs to Im ad,, S. This implies that ad,, S is an invertible map from
Imad,,S onto itself. Furthermore, we note that ad,,S and ad,, N commute because
[S, N]={S, N}=0. Hence we have

ad,,N(Imad,,S)=ad,,S(Imad,,N)cImad,,S,

which implies that ad,, H, is a map from Imad,,S to itself. Since ad,, N is nilpotent,
there exists a positive integer me N such that (ad,,N)"#0 and (ad, N)"=0 for any
integer n>m. This implies that

(ad,, H,) *=(ad,S+ad,N)~!
={I—(ad,, S)"*(ad,,N)+ - - - +(—(ad,,S)"*(ad,, N))"}(ad,, S) !,

which gives an expression for the inverse map of ad,, H, | Imad,,S. Thus we have proved
the assertion (ii). Furthermore, one can prove (iii) using the Jacobi identity. Also, the
assumption of (iv) implies [f, §]=0 and g=[h, S] for some he 2, and therefore we
have [f, g1=[Lf, k], S], proving the assertion (iv). O

Associated with the decomposition (i) of Lemma 6.1, we introduce projection
operators Py and Py as follows:

Py: ? > KeradS, Pp:#?->ImadS.
Then any series fe 2 is represented by

f=PNf+PRf-

The relation f= P, f implies that f is in the normal form. We call Pyf and Pgf the
normal form part of f and the remainder part of f respectively.

Since we define the normalizing transformation by an iteration process, we have
to consider normal forms up to finite order. We consider series belonging to £ modulo
constants and write the power series expansion of f= f(z, t)e# with respect to z as
follows:

6.1) f=f+f*+---; fO#const.,

where f? (d=0, 1, ...) are homogeneous polynomials in z=(x, y) of degree s+d with
coefficients being Fourier series in ¢ with period 1. Here s is the degree of the polynomial
f°. Here and in what follows, we often use ¢ instead of x, , ; or £, , for the convenience
of notation. We call f° the lowest order part of f. For the Hamiltonian A, we consider
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H,=y,.,+H,(2) as its lowest order part and denote it by H°.

DEFINITION 6.2. (i) A function fe £ is said to be in the normal form up to order
s+d(s=deg f)if fO+ ...+ f%is in the normal form.

(ii) The extended Hamiltonian H=y,,, + H(z, X, ) is said to be in the normal
form up to order sy+d (so=2) if HeZ is in the normal form up to order s,+d. The
lowest order part of His defined as H° = H, and we write A in the form (6.1), that is,

62) A=B+H'4...; A°=H,, Hi=H'

Now in order to define the iteration process, we consider symplectic transformations
which are time-one maps of the Hamiltonian vector fields with Hamiltonians of the form

(63) W(Z, xn+1’yn+1):=W(Z> xn+1)+yn+l with WE'M(RZ'H—l’ Sl)

By Lemma 4.3 (ii), the time-one map ¢ =exp X belongs to &. Therefore any composite
of those time-one maps belongs to &. The iteration procedure is described as follows:

THEOREM 6.3. Let H=H(z, t)e 4(C*"*1, S) be a function of the form (4.1) and

assume that H is holomorphic in a domain Q= U x R, where U< C*" is a neighbourhood
of the origin z=0 and Rc C is a strip domain of the form

R={teC||Imt|<r}, r>0 a constant .

Assume that its extended Hamiltonian H is in the normal form up to order sy+d—1
(5o=2, d>0). Then there exists a unique function W(z, t)e A (C*"*1, S1) such that
(i) W has the form

(64) W= Wd+2+-~-+W2d+1; PNW=0,

where W'=W'(z, t)e o(C*"*1, S') are homogeneous polynomials of degree | in z whose
coefficients are holomorphic Fourier series of te R with period 1;

(i) for the transformation ¢ =exp Xy with W of the form (6.3), Ho ¢ is in the
normal form up to order sq+2d—1.

Clearly this implies the following:

COROLLARY 6.4. For the extended Hamiltonian H of He o/(C*"*1, S') in the form
(4.1), there exists a unique sequence of symplectic transformations ¢, (v=0, 1, ...) such
that

(i) ¢,=exp X, W being a function described in Theorem 6.3 with d=2";

(@ii) for the transformation ¢ :=¢yo o, Hop™ is in the normal form up to
order so+2""1—1 (s=2).

REMARKS. (i) In the above, we need neither the assumption of integrability nor
that of non-resonance or simple resonance.
(ii) Obviously ¢:=lim,, @™ is a formal symplectic transformation such that
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Ho ¢ is in the normal form.
PROOF OF THEOREM 6.3. By assumption, we can write H in the form
H=h+H; h=Pyh, H=0(z|*"9).

Let W be a polynomial of the form (6.3) with (6.4). Then the time-one map ¢ : =exp X:
(€, &+ 15 Mns 1) (2, X4 1, Ya+ 1) Can be written as (see [7, p. 423])

z={+IWYL, &)+ O( L],
¢ [xn+1=€n+1+l )
Yn+1=MNn+1— W{,,H(Ca fn+1)+0(|C|2d+l)-

This implies that

(6.5) Ho(l, &uirs s )=h+[h, W1+ H+0((]**29),

where the argument of & is ({, &, 41, 7.+ 1) and that of W, His ((, £, ,). Since A is in the
normal form, it follows from Lemma 6.1 (iv) that Py[h, W]=0 under the assumption
PyW=0. Therefore Ho ¢ is in the normal form up to order s,+2d—1 if and only if
W satisfies the equation

(6.6) [h, W1=—PrH+0( (]**).

Writing A in the form (6.2) and comparing the homogeneous parts of degree s,+/
(d<l<2d—-1), we have

1—d
6.7) (R, W)= —PH'- Y [, W2 (I=d,...,2d—1),
v=1

where #*= A", H*= H". By Lemma 6.1 (ii) and (iv), this equation can be solved uniquely
for W'*2elmad,, ,S, provided that PyW?*2=... = PyW'*1 =0. It follows from the
proof of Lemma 6.1 (ii) that the coefficients of the terms £*n# in W'*2 are holomorphic
Fourier series of e R. By induction this implies the unique existence of a polynomial
W of the form (6.4) satisfying (6.6). O

7. Idea of the convergence proof. The essential part of the proof of Theorem 4.4
is the proof of convergence for the transformation ¢ obtained by Theorem 6.3. We
now formulate it in the following theorem:

THEOREM 7.1. Let He 4(C*"*!, S') be a function of the form (4.1) such that z=0
is a non-resonant or simply resonant equilibrium point of Xy. Assume that the system Xy
is integrable. Then the sequence {¢™} described in Corollary 6.4 converges uniformly to
an analytic symplectic transformation ¢€ <.

The aim of this section is to describe our idea of proving this theorem. A key point
of the proof is that ¢ =lim,_, , ™ takes n additional integrals of X as well as H into
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the normal form. This fact is a consequence of the following:

LEMMA 7.2. Let G=G(z,t)e L(C**1, S*) be an integral of Xy and assume that
H is in the normal form up to order sy+d, where s,=deg H,=2 and d=0. Then
s:=degG°>1 and G is in the normal form up to order s+d.

ProoF. Since G(z, X, ) is an integral of Xz by Lemma 4.2, we have the identity
[G, H]=0. Writing G and H in the form (6.1) and (6.2), the comparison of the
homogeneous parts of degree s+/ (0 </<d) in this identity gives

.1 Y [G' A1=0.
i+j=1

For /=0, this reads [G°, H°]=0, which implies that G° is in the normal form. If
deg G°=0, Gz, x, ) is a function of x,,, only and the relation [G°, H°]=0 means
0G°/0x,,,=0. Then G° is a constant, which contradicts (6.1). Therefore we have
deg G°>1. From the identity (7.1) for I=1,2,...,d, we can prove inductively that
G!, G2, ..., G%arein the normal form by using Lemma 6.1 (see the proof of Proposition
3.2 of [8]). 0

Suppose that the vector field X}, is integrable with n functionally independent
integrals G,(z, t)e L(C?"*1, SY) (k=1, ..., n), which we write in the expansion in terms
of homogeneous polynomials (6.1). For technical reasons, we need the functional
independence of the lowest order parts GJ, ..., G?, which does not follow directly from
that of G, ..., G, in general. However, we have:

LEMMA 7.3. Let He (C?"*!, S') be a function of the form (4.1) such that z=0
is a non-resonant or simply resonant equilibrium point of Xy. Let Gy(z,t), ..., G(2,t)€
S(C?"*1, SY) be n integrals of Xy that are functionally independent functions of z for
any t fixed. Then there exist n integrals of Xy in the form

(12)  Gifz, t):=P(Gy(z,t), ..., Gz, t)eL(C**1,SY)  (k=1,...,n),

where P, are polynomials of G4, ..., G, with complex constant coefficients, such that the
lowest order parts of G, ..., G, are functionally independent polynomials of z for any t
fixed. Furthermore, if G,,...,G, are Poisson commuting, those G, ..., G, are also
Poisson commuting.

ProOOF. By assumption, G,(z,0), ..., G,(z, 0) are functionally independent func-
tions of z. Then, using Ziglin’s lemma [13, Lemma 2.1], we can determine the poly-
nomials P, with complex coefficients so that P(G,(z,0), ..., Gz, 0)) (k=1,...,n) are
functionally independent (see [7, Appendix] for the proof). Let us define the functions
G, by (7.2), which are integrals of X,. Since the lowest order part of H is in the normal
form under the assumption, it follows from Lemma 7.2 that the lowest order parts of
G; are in the normal form and their degrees are greater than or equal to 1. Recall that
the normal forms in the simple resonance case are power series with constant coefficients
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in the variables o, ..., 7,1, T,+2. Therefore, the coefficients of any term x%y? in the
lowest order part of G are either identically zero or nonzero everywhere. This implies
that the lowest order parts of Gy(z,t) are determined independently of ¢ and are
functionally independent functions of z for any ¢ fixed. The same assertion holds also
in the non-resonance case. The final assertion is obvious. O

Now, writing G, for G, obtained by Lemma 7.3 under the assumption of Theorem
7.1, we may assume that Gy, ..., G,e Z(C*"*', ) are Poisson commuting integrals
of Xy such that their lowest order parts GY,..., G? are functionally independent
polynomials of z for each 7 fixed. For the convenience of notation, we set H=G, and
assume that it is in the normal form up to order so+d—1 (so=2). Then it follows
from Lemma 7.2 that those n+1 functions G, are in the normal form up to order
sy +d—1, where s, are the degrees of the lowest order parts G2. Let us write them in
the form

(73) Gk(z,x,,+1,y,,+1)=gk(z, xn+13yn+1)+ék(za xn+1)’ (k=09 la--‘an)

with g, being in the normal form and G,(z, x, ., ;)= O( z|**?). Although we write n+1
functions G, ..., G, in this manner, they (and g,) are actually independent of y,., ,
except for G, (and g,). Let ¢ be the symplectic transformation described in Theorem
6.3. Similarly as in the proof of Theorem 6.3, we have

(7'4) Gk°¢(C5 én+19 nn+1)=gk+[gk5 W]+Gk+0(|cls"+2d) (k=0a 1’-“’”),

where the arguments of functions g;, W, G, are ({, &, 1, .+ ). Those functions as well
as the terms O(| |**2%) are independent of 7, , except for g,. By Theorem 6.3 and
Lemma 7.2, G, ¢ are in the normal form up to order s,+2d—1 and therefore W
satisfies n+ 1 equations:

(7.5) [g:, W]= —PrG,+0O( %)  (k=0,1,...,n).

Here we note that G =g? (k=0, 1, ..., n). Since g3 =1n,.,+H,({) and ¢?, ..., g? are
independent of 7, ,, the functional independence of g?, ..., g? is equivalent to that of
93,9, ..., g0 asfunctions of { and 17, , foreach t=¢,, , fixed. Recall that gQ, g2, ..., g°
can be considered as rational functions of 74, 74, ..., 7,4+, by eliminating 7,,, using
the relation (5.6). Here and in what follows, 7, are those given by (5.5) with x;, y;
replaced by &;, ;. Then their functional independence implies that

0 0
(1.6) rank<M> =n+1

6(10a e rn+1)

on an open and dense subset of C>"** for each ¢ fixed. Furthermore, recall that G; and
G; are Poisson commuting for all /, j=0, 1, ..., n. Then comparing the lowest order
parts of the identity [G;, G;]1=0, we see that the Poisson bracket [g?, g1 vanishes
identically. By Lemma 5.2, this leads to
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og° 0og)  0g° dg}
0t 0Tpy1  OTneq 07

=0 for all i,j=0,1,...,n.

This implies that, for the vector g°=(g3, g2, ..., ), d9°/dt, and 8g°/d, . , are linearly
dependent. Notice that at least one of these two vectors does not vanish because of the
condition (7.6). Then, since dgd/dt,=093/01,.,=0, we may assume that either
0g92/0ty#0 or dgP/ot,,;#0 after changing the indices of G,..., G, if necessary.
Corresponding to these two cases, the functional independence (7.6) implies that either
of the conditions

0 o) 0
1.7 det 200> 00) Lo ang Y 4
O0(Tgy - .- s Tp) Jt,
or
0 1) a 0
(7.8) det 290 -09n) Lo ang 9 4y
6(‘:1,...,1,,“) Tn+1

holds for any ¢ fixed.
Setting &,,, =t, let us rewrite the equations (7.5) as
n+1 ag " . .
(79)l Z —'[Tja W(Cs t)]=_PRGi(Ca t)+0(lC|s'+2d) (l=0’ 1,'“,”)'
j=0 0t
Here, in order to take derivatives dg,;/0t;, g; are considered as Laurent polynomials in
To» T1» - - - » Tu+ 1, Where 7; are given by (5.5) with x;, y; replaced by ¢;, n;.

The equation (7.9) can be considered as a system of n+1 equations for n+2
quantities [z, W1, ..., [t,+1, W]. However, we can reduce (7.9) to n equations for
[z, W1, ..., [t,, W], depending on which of the conditions (7.7) and (7.8) holds. Those
equations will be given in Lemma 7.4 below. To state it, we introduce a Laurent
polynomial a;;() as follows:

P(r)( %9n 0: _ %9 ai) in the case (7.7) ;
0ty Ot; 0Ot; Ot
(7. 10) a,-j(T) = a a a a
P(r)( Gr 0 5%« _%: ) in the case (7.8),
0Tpyy OT;  OT; 0,4y
i=0,...,n—1,j=0,1,...,n+1)
where
(7.11) P(R)=p1 11— T0)*Tps 1 -

Here we note that a;;(t) can be considered as polynomials of 1o, ..., 7,.,. Indeed, after
writing go, ..., g, as the sum of polynomials of the form (5.9), their differentiations
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with respect to 7y, ..., 7,4, are calculated according to the following formula:

%:D,i+ ag':izbw (i=0,1),
(7.12)
9 _p =2...m, -0 _p O
ot; ' 0Tps1 A Y n
with
(1.13) 0Ths2 — _ PH1T+s ) 0Th+2 _ PH1Tn+1 i 0Th+2 __ Tn+2 _
0o 71— %o oty 71— %o 0Ths1 Tn+1

Here D, (i=0, ..., n+2) denotes the derivative with respect to t; when 1, ..., 7, , are
considered as independent variables. Then it follows from (7.11) that a;(r) are
polynomials in 7o, ..., T,4 -
Also, if we consider a;;(t) as polynomials in {=(¢, #), they can be written as
aij(7)=ai3‘+ai§‘+ SR

where afj are homogeneous polynomials of degree m; + d in { with coefficients dependent
on &,,,=t Here
s,+s;+p in the case (7.7);

(7.14) m;= { P ] 7.7
S,+s;+2 in the case (7.8),

and we note

dg? ag? dg0 0g?
P(T)< 9. 09 09, 0g
oty 0t; 0t; Oty

J

0 0 0 0
P(t)< 09, 997 09, Ogi
0Tpey OT;  0Tj 0T,y

) in the case (7.7) ;

ad(r)=

) in the case (7.8) .
J

Now we describe the reduction of the equation (7.9) together with summary about
the simultaneous normalization of n+1 functions G, ..., G,.

LEMMA 7.4. Under the assumptions of Theorem 7.1, let Go=H and let Gz, t)
(k=1,...,n) be Poisson commuting integrals of Xy such that their lowest order parts
G?, ..., G? are functionally independent functions of z for each t fixed. Suppose that G,
is in the normal form up to order so+d—1. Then, for the transformation ¢=exp Xy
described in Theorem 6.3, the functions G- ¢ (k=0, 1, ..., n) are in the normal form up
to order s, +2d— 1. Furthermore, each homogeneous polynomial W'*? (I=d, ...,2d—1)
satisfies the following system of equations:

n

(7.15) Y ad@[t;, WA =Fi( 1)  (=0,1,...,n—1),

j=1
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where
[ 1-d v . a v . n 1-d
) P(‘C)< %; PrGlV— In PRG{_”>— >y ¥ ay[t, W]
v=0 ato ato j=1 v=1
1 in the case (7.7),
Fig 1):=

1-d a v . a v " n l—-d _
z P(T)(a gi PRG,I,—V— p In PRGil-v>_ Z z aivj['rj, Wl+2 v]

v=0 Tn+1 Tn+1 j=1v=1

in the case (7.8) .

Moreover, in both cases (71.7) and (7.8), we have

(7.16) p(r):=det(@(D)i=o,....n-1;j=1,....n %0
and D,W'* 2 :=[1,, W'*?] are expressed in the form

1
(1.17) b, =TS o1 mi=d, ..., 2d—1)

p)
with

*k-1)
a((l)l F(l) 08,,
(7.18) gi((, t)=det :
PAPEEEE Fooy - ar?—l,n

REMARK. The formula (7.17) shows that the numerator gi({, t) is divisible by p(z).
It will play a key role in getting the estimate for W.

Proor. We already proved the first assertion. To prove the second assertion in
the case (7.7), we multiply (7.9); and (7.9), by P(z)dg,/0t, and P(t)dg;/0t, respectively
and take their difference. Then we have n equations

(7.19); "il aij(T)[Tj, W] =P(T)( %6: PRén_ Zg" PRGE>

i=1 0tq To

) 0g;
+P(T)(ag" O(ICI"”")—a—g' 0(|CI‘"”")) (=0,1,...,n-1).

To To

Here, using Lemma 5.2 and the identity [G,, G;]1=0, we have
G G (=0 0.1 = ~(90 61+ (G g1+ 16 G =00 L1 +473).

1~ to

Therefore, a; ,+1(t)[Ty+1, WI1=0((|™*29*2) with m;=s,+s;+p and the second part
of the right-hand side of (7.19); has the same order estimate. Hence the system of
equations (7.19)¢—(7.19),_, can be written as
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1200 ¥ a0, Wi=PE) (Zi PaGy- Pkéi) +O(7 ™ +?)
[}

j=1 To
i=0,1,...,n—1).

Comparing the homogeneous parts of degree m;+/+2 in these equations, we obtain
the system of equations (7.15) which is satisfied by the function W'*2, Since the condition
(7.7) implies (7.16), we have p(t)#0 on an open and dense subset Q of C>" x R, where
Rc C is the neibourhood of the real t-axis given in Theorem 6.3. Therefore, we have
the expression (7.17) with (7.18) for every ({, t)e Q. By the analyticity of the functions
D W'*2 4! and p, the same expression holds for every ({, t)e C*" x R. This completes
the proof in the case (7.7). The proof in the case (7.8) is the same as above and we
obtain the equations (7.20) with dg,/d7, replaced by dg;/0t, ., (i=0, 1, ..., n). This leads
to the assertions in the case (7.8). O

8. Estimate for W. In order to estimate the transformation ¢ =exp Xy described
in Theorem 6.3, the basic task is to estimate the function W. In this section, we will
estimate W (not W) with respect to an appropriate norm. The idea is to make use of
the formula (7.17) to estimate D, W=[r,, W], which will lead to the estimate for W itself.

First of all, we will determine the domains in which all functions are to be considered.
To this end, for appropriate positive constants d,, ..., d,,4+ to be determined in Lemma
8.1 below, we introduce the following complex domains of C?"*1:

{Q,:={(C, 1)eC*x C||{|1<éir (i=1,...,2n),|Imt|<83,417}
4,:={()eC"xC|[{i|=6r (i=1,...,2n),[In?[<b5,.7} .
We note that for any holomorphic function in a neibourhood of ,, the maximum of
its absolute value on @, can be attained at a point on 4,. This can be easily seen by the

repeated use of the maximum principle for holomorphic functions of one variable. From
this fact, we can prove the following lemma.

(8.1)

LEMMA 8.1. Let s be the degree of the polynomial p(t) given by (7.16), where p(t)
is considered as a polynomial of {, ..., (,, with coefficients being periodic functions of
t. Then there exist constants 6; (i=1, ..., 2n+1) such that 0<;<1 and

(8.2 |p()|zcir® on 4,,

where r is a small positive constant given arbitrarily and c¢,>0 is a constant which is
independent of r.

Proor. This lemma corresponds to Lemma 4.1 of [7], in which the constants J,
can be chosen in such a way that §,=9;,, for i=1, ..., n because p(r) is a polynomial
of &;n; only. This is not the case here and moreover, p(r) depends on ¢. However, one
can easily see that, choosing the constant J,,,, >0 sufficiently small, its proof works
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also for the case here with trivial modifications (see the proof of Lemma 4.1 of [7]).
|

Using the constants d4, ..., §,,4 given above, we define the complex domains €,
and 4, by (8.1). Let A(Q,) be the space of functions in ({, t) that are holomorphic in
Q. . with some ¢>0 and are periodic in ¢ with period 1. Then a function fe A(®,) can
be written as

f=fotfi+tfot -,

where f; are homogeneous polynomials of degree jin (4, ..., {5, with coefficients being
Fourier series in ¢ that are holomorphic in |Im¢t|<d,,,,(r+¢). In view of Cauchy’s
estimate, the series fe 4(Q,) has a majorant which is a convergent power series in
{45 .-.5,, with positive constant coefficients. This is because f is holomorphic in
Q,,.>Q,. Therefore, we can define

| flei= max [fGof, (f]l,:= golfjlr for fed(Q,).

@ ne
Furthermore, we introduce the space
A4,(Q2):={feAR)|f(,1)=0 for j=0,1,...,m—1}
and define

11,

IS Ml == = for fed, ().

Now let G, =G (¢, t) (k=0,1, ..., n) be functions that are in the normal form up
to order s, +d—1. We write those G, in the form (7.3) with (z, x,,, y,+) replaced by
(¢, ¢s+15Mw+1) and assume that Go—1n,+4, G4, ..., G, belong to A(R2,), where we set
&,+1 =1 Then it follows from Theorem 6.3 that W'*2 e A(Q,) and hence D, W'*2 e A(Q,).
Let us consider the maximum ||D,W'*2|,=|D,W'*?|,. Since it can be attained at a
point on 4, = Q,, the following estimate follows from the identity (7.17) and the inequality
8.2):

NGl 1 e o

min T c
(C,’)Edrlp( )

Using this formula, we will derive the estimate for | D W |, for W=W4*2+ ... + w241
First we prove:

8.3) 1D 2|, <

LEMMA 8.2. The function W satisfies

n—1
IDW' 2, <cy ¥ |Fllym,  (k=1,...,n;1=d,...,2d—1),
i=0
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where c, is a positive constant that is independent of r, and m; are the constants given by

(7.14).

Proor. We note that the degree of the polynomial F} is m;+/+2 (in both cases
(7.7) and (7.8)). The proof is based on the estimate (8.3) and the expansion of the
determinant g}({, t) with respect to the (k—1)-th column consisting of F}((, t). It is the
same as that of Lemma 4.2 of [7], so it is omitted. |

To proceed further, it is convenient to introduce some notation. Let f'be the power
series in {,, ..., {,, with constant coefficients which is defined by

j':= Zﬁrfleakx | caﬂ(t) |fa’1ﬁ fOl' f= Zﬁcaﬂ(t)ianﬂ ’

where
R={teC|0<Rer<1,|Im¢?|<8y,r}.
Let f be one of the following three vector functions:
J=9:=go—Mn+1:915--->9n) »
(8.4) f=4:=(od1, .-, 4 with gi=g,—g?,
f=9°:=(g8 —M+1, 95>, 92) -
For this vector function f=(f,, fi,.-., f,), let us define a constant [|3f]||, by

n — n  n+2 —_—
@8.5) Nofil,:=e>av ZOIIDc,ﬁII,,si—z+pe“""‘" ZO ) ) 1D, fills,si~p -
i,j= i=0 j=n+

Here each element f; is in the normal form and belongs to A4,(®,) for #,,, fixed, and
therefore the quantity ||0f]|, is well defined. One can easily see that

(8.6) 16g°ll, <cs for some constant ¢;>0.

Finally, we introduce the quantity
8.7 NG, := _Zo 1Gilly,s-2 -

Then, introducing a constant
(8.8) ¢, =max(c,, 1 +2¢,¢3),
we can estimate || D, W ||, as follows.

LemMma 8.3. Assume that

1
(8.9 callogll, < 5
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Then the function W((, t) satisfies
(8.10) DI, <2c,llGll,  (k=1,...,n).

Proor. We can actually prove a better estimte than (8.10) with G; replaced by
G, in the definition (8.7) of [|G||. More precisely, we can prove

n 2d—-1

a-1 .
@&.11) IDWI,<UV; Us=c, }. (callogl), Vi= Y IZd 1PRGills 502 »
1=0 i=0 I=

from which (8.10) follows in view of (8.9) and the relation | PxG{|l,  ,—»< IIé\,j lr,s;—2
We can prove (8.11) by an inductive argument in the same way as in the proof of
Lemma 5.3 of [8], so we only give its outline below. We set

e>™arD_ g, s, for j=0,1,...,n,
u.tj-={ 1D 3l / (i=0,1,...,n)
pe“""'"IID,,g.’II,s, , for j=n+l,n+2
and
l+2 ”PRG “r si—2°
Then we can write [|0gll,=Y;_, Y. OZ"”uf ; and consider U as the sum of
‘monomials’

w:=(const.) H ul*
where i,, j,, /, and m run over all integers satisfying 0<i,<n, 0<j,<n+2, 1</,<d-1
and 1<m<d—1. We define the degree of w as A:=)"_ /. Also V is the sum of
monomials v}*? (/=d, ..., 2d—1) whose degree we define as /+2, and we define the
degree of the monomial wv’+2 as A+/+2. For our purpose, it suffices to prove

(8.12) || D,W'*2|,<the sum of monomials of degree [+2 in UV (I=d,...,2d—1).

In the following, we only consider the case (7.7) since the proof is the same in the case
(7.8). In Lemma 8.2, we note that the function F}({, t) can be written as F/({, t)= A} + B},
where

ZP()(

Since |1, |,<e?7"r?, we can deduce from (7.11)~(7.14) that
1—d
”Al “r ,mi — Z {(ul 0 +u1 n+2)vl+2 v+(u" 0+ un "+2)Ul+2 v} .

G’ v_ agn P Gl v Bl_ i lid v Wl+2—v
3 R s i aij[Tjs 1.

10 j=1v=1

In view of (8.6), this implies that

n—1
(8.13) Y. A}l m < the sum of monomials of degree [+2 in (c; + || 84,V .

i=0
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In the case /=d, we have B{=0. Hence, by Lemma 8.2 and (8.8), the assertion (8.13)
implies that (8.12) holds for /=d, since ¥ contains monomials of degree >d+2 only.
To estimate B/, using (7.11)—(7.14) we can similarly prove
e2n|q|'||a,-“j o < , Y {ufj(u,‘,fo Ful o)t ul (ulbo+ul, )}
+u=v

A u A I
+E;j ) (un,0fin+ 2+ Uy i 2tlo)
Atu=v

where ¢, =1 and ¢,=- - - =¢,=0. This implies that

n—1 n
Y. Y lla}ill,m < the sum of monomials of degree v in 2c,||4ll,+ o412 -
i=0 j=1

Suppose that (8.12) holds for /=d, ..., k—1 (<2d—2). Then the estimate above implies
that

n—1
Y. || B¥|l, m, < the sum of monomials of degree k+2in (2c |4l + llogIIHUV .

i=0

(8.14)

Here we note that

d+1

(2¢5110g1l, + 110G IIH)U =2c5(c4llogll,) +(cq * +2c¢5) _22 (callogln,)’
j=
and that ¥ contains monomials of degree >d+2 only. From Lemma 8.2, we have
n—1
1D 21, <5 3 (NAF i+ 11 BEllrm)
i=0

and therefore, in view of (8.8), the estimates (8.13) and (8.14) yield the inequality (8.12)
with [=k. This completes the induction to prove (8.11). |

Now we derive estimates for W and its derivatives by using Lemma 8.3. To this
end, we note that for a series fe€ 2 its normal form part Pyf is given by

1 1
(8'16) PNf(&a l’], t)=J~ e J‘ f(eZﬂ:ioé’ e—21|:i9", t+P01)d01 o .den .
0 V]

Here e2™%¢ and e~ 2" are n-dimensional vectors defined by

(8 17) e2ni0§:=(62uiq0161, e2m‘0162’ e, eZniOnén) ,

—2mif,

e 'I:=(e—2m'q61111’ e—21ri92112’ _“’e—zm,.

M) >
(the k (=2)-th component of 2™ (resp. e~ 2") is e>™%¢, (resp. e~ ™%,))

where i=./—1, 6;€ R and g, p are integers such that u, =2rig/p and p>0. We set



104 H. ITO
0= min §;, cs=2c,max(2z,p).
1<i<2n+1
Then we have:

LemMA 8.4. Let 0<p<r. Under the assumption of Lemma 8.3, the following holds:
(1) Wl <cs HIGIII,,

(i) (W l,<

p—= 5( _ ) “|G||| (i=1,'-"2n+15 C2n+1=t)5

(i) (W, ll,< UGl Gj=1,..., 20+ 1, {ppry=1).

= S 2( )2
Proor. Let({, t)eQ, and {=(¢, n) be taken arbitrarily and fixed. Using the notation
(8.17), we define the function
WH2(0):= W' (e e~ 2% t+p0,), 0=(0,,...,0,)e[0,1]".

Here we note that (e2™¢, e~ 2%, t+pf,)eQ, and W'*2(0)=W'*%(, t). Then by the
mean value theorem we have

Tl+2
26,
In view of (8.16) and by the condition PyW'*2=0, this lead to

| W+2(0)— W+ (0)|< Y, max

k=106€[0,1]"

<2n Y IIW'* 2, ol +pl [ 2, 1],
k=2

| W2, )| =| W 3(0)| <max(2m, p) Y, | D',
k=1

by integration from 0 to 1 with respect to 6, ..., 0,. By Lemma 8.3, this implies the
desired estimate (i). The estimates (ii) and (iii) follow easily by using Cauchy’s integral
formula (see the proof of Lemma 4.4 of [7]). O

9. Estimates for one iteration step. We continue to consider the iteration step
described in Lemma 7.4. In this section, we will give the estimates for G, o ¢. They will
be summarized in Lemmas 9.3-9.4 below.

We begin with estimates for domains transformed by ¢=expXy. Let
¢, &4 1, Ma+1) be the solution of the vector field Xy through ({, &,41, 1,4 1) at t=0.
Let D, be the domain in C?"*2 defined by

Dr:=9rx{”n+1ecll’7n+ll<r} .
We introduce a constant
ce=2ncs0"2

and prove:
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LemMA 9.1. Let Go—1,+1, Gy, ..., G, belong to A(Q,) and let 0<o<p<r with
p—o=r—p. Assume that c,|||0§||,<1/2 and
csr—p)2lIGII,<1.

Then, for any ({, &, + 1, Na+1) € D, the solution @', &, 4 1, Nn+1) exists and is contained in
D, for all te R satisfying | t| <2. Moreover, the time-one map ¢ =exp Xy is a holomorphic
transformation from D, into D,,.

ProoF. By Setting ¢t(C9 én+ 15 Mn+ l) = (Z(t), Xn+ l(t)’ Yn+ l(t))’ we have xn+ 1= 1 and
hence x,, ,(t)=t+¢&,,,. This implies that (z(¢), y, ,(¢)) is the solution of the system

O.n i=IWAz,t+ 85415 Vnir=—Wilz,t+8,44).
By assumption and Lemma 8.4, we have an estimate
Cs
o(r—p)
Let ({, &,+1, M+ 1)€ D, and let D be its neighbourhood defined by
lze—= Ll <o(r—p) (k=1,...,2n), |Im(x,s;—&,41)|<d(p—0),

| Vns1—Mns1l<p—o0.

A 1
(92) “Wzk”S |I|G|”r<aé("_p) (k=1’-~~92n+1,22n+1=t)'

Then, in view of the estimate (9.2) the fundamental theorem for differential equations
implies that the solution (z(t), ¥, +(t)) of (9.1) is a holomorphic function of ¢ and ({, #)
as far as | t| <&(p —o0)/(2n) " 18(r — p) = 2n. Hence, for the solution of the original vector
field X for te R, we have proved the desired assertion. O

Next we will estimate the difference between ¢ =¢ ! =exp Xy and its linearization
at (C: €n+ 15 Mn+ 1)- We set

(& St 15 Mas 1) =D, St 15 Mt 1)

and write ¢'((, &, ,) for the z-coordinate of ¢*({, &,+ 1, .+ 1), that is, ¢' for the flow of
Xy. Then, considering the integral equation corresponding to X, we have

[ 1
€I=C+j JWz((pt(C, €n+1)9 én+1 +t)dt=C+JWC(C, §n+1)+R1(C, €n+ 1) ’

0

(9.3) ) €;+1=£n+1+1 P

1
’1:‘+1=”"+1_J W.§"+1((pl(C9 €n+l), én+1 +t)dt
0

L =’7n+1_W§n+1(Cs én+1)+R2(Ca €n+1),

where RY({, &,4,) and R*((, &,.,) are a 2n-dimensional vector function and a scalar
function given respectively by
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RI(C, §n+ 1)=J J{ Wz((pt(c’ én+1), én+1+t)— Wz(Ca cn+ 1)}dt )
0

1
RZ(C, Cnr1)= _j {W§n+ 1(‘Pt(Ca Cnt1)s Cnrr H)— W.g,,H(C, (S 1)}dt .
0

In the following, our estimates will be for functions on @, and not for functions
on D,. From this viewpoint, although the function g, depends on 7, ;, we define

|g0|r:=‘g0—nn+1ir7 |golr:=lgoh—r’n+1|r9

and the norm |-|, will be used only for functions on Q,. Also, for a vector function
=1, ..., [ wWith f, € A(Q,), we define the norms

| flyi= max | fil,, |fl,:= max Il fell -
1<k<m <

Furthermore, for later use we introduce constants 7, x, r’ in addition to r, p in such a
way that

r<k<t<e<p<r with
1
r—p=p—0=a—t=z—x=x——r’<=?(r-—r’)).

Then, in view of Lemma 8.4 and Lemma 9.1, R! and R? are estimated as follows:

Cg0

0.4 |R1|,$2]WZI‘,S

) UG, , 1R*|.<2|W, Gll, -

s (_)

We now turn to the estimate for G, o ¢. By the periodicity of G, with respect to ¢z with
period 1, we can write

Geo @ Cur1s M D=9l Eur 1o Mar D+ Gl Guvr)  (k=0,1,...,m).
From (9.3), we can estimate {'—{ as follows:
0=kl Wl < 5 G
Let J,, be the constant defined by
5o { 1 k=0,
0 k#0.
Then, using Taylor’s theorem and Cauchy’s estimate, we have

09

9L Cnv 1o Mas 1) =9uE, Envrs 'In+1)+< aC

5C, >+5k0('7r’1+1_’7n+1)+RI?(C, ¢n+1)9
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with
1 2n 82 4 G 3
05 IR=~ O [Z8 | pogpeont. by poyer. 10WIGH
2 wj=1] 0L0G; |, 6%(r—p) (r—p)

Therefore, it follows from (9.3) that

0
(96) gk(C’5 én+1a '17,:+1)=gk+[gk9 W]+<'aick', R1>"'5k0R2+R3 (k=0a 1’ "'5”)’

where the arguments for the functions on the right-hand sides are ({, &4 1, 1,4 1)-
Similarly we have

(9'7) ék(c,’ én+ l)zék(C, £n+ 1)+R:(Ca én+ 1) (k:Oa 1, ey n)
with
& | oG ; |Gl IIGI
©-8) | R¢l.< g —gL<on| =k | W,],<cqr 2
¢ ,-; g |, s PT (r—pp

Let G,=G,>¢, and let g; and G; be its normal form part and its remainder part
respectively. Then, by (9.6) and (9.7) together with (7.5) it can be written as

Gl &nt 15 M+ ) =91 Enr 1 '7n+1)+GAIIc(£, Env1)

with

9l Cnt 15 Mus ) =90s Env 1 ﬂn+1)+P1%d_1ék(C, $nt1)
9.9 . 0

Gl/c(Ca £n+l)=<-ang9 R1>+6k0R2+Rk3+RI?+RkS )
where

Rksz[gk’ W]+Gk(C, Ent 1)_P13d_lGAk(Ca Env1)

and the arguments for the functions on the right-hand sides of (9.9) are ({, &, 4 1, N4+ 1)-

In order to estimate ||G’||,, we need to estimate the majorants é;. For this purpose,
we will use the following:

LEMMA 9.2. For fe A,(R2,), we have

@ =Tt G nfu,'s'”f)h<’_'>'",

2n
S
r r

ProOF. The assertion (i) corresponds to Lemma 6.2 of [8], where || f, is estimated
from above by | f|.{1—(p/r)} 2" . Since | f|.=|F ., we deduce the estimate (i) by
Cauchy’s estimate and by the relation 1—(p/r)<1—(x/7). The estimate (ii) is a direct
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consequence of Schwarz’ lemma for functions beginning with terms of order m.  [J

Recall that Gy((, &,.,) consists of terms of order >s,+2d as power series in {.
Then we have the following estimates from (9.4) and Lemma 9.2 (ii).

1 7\ S+ 2d ~ A 7\ sx+2d
“<agk R1> IR, _ (’_) S%‘ CGnglrmGz'le:z (L) ,
r r

~ S R2t r\Skt2d .S Hémr r \Skt2d
I O -

2n 2n+1 _
A ()
r r

By introducing the symbol
lglly:= % Ndills.s.-2
k=0

<2 ' %Gk
¢

r

and a constant ¢, satisfying

’

r sk‘z
(9.10) <_> <c,  (k=0,1,...,n),

the estimates above lead to
<

i agk Ri
e - 3 2n+2
= r,Sse—2 r2(1~—£)

r

n ~ ced G , 7’ \so+2d
3 16s0R2, ., <-ce0 . NG (—) .
k=0 n

2n+1
r<1—£> K
r

Also, applying Lemma 9.2 (i), we derive from (9.5) and (9.8) that

$ RS, < 2berllglLIGI? el GII2

, IRl gy S—— 0720
o 4(1_—&)2”4 kgo kllr,sie—2 r2<1_£_ 2n+2
r r

As for the estimate for |R}||,, we note that

1IR3 <1030 P+ 1Gells

K

2 cscllgll NG, (,-' >Sk+2d

with

1Lge W1l <

t [ 0g 5W oG, oW ow
Z ( Ik Ik >+5k0
j= 66 af']} nj aéj a€n+1

K
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Then, recalling that R consists of terms of order > s, +2d, we are led to the following
estimate by means of Cauchy’s estimate and Lemma 8.4:

~ cscqllgll, ced s (7 VP4
IRZ N -2 < o + 8 +ert NG| — .

2n+2 2n+1
o r2<1—£> 2nr<1—£>
. r r

In the above, we note that there exists a constant 4 >0, depending on g but independent
of r, such that

M=

I

k

ligll, < Ar?

since §,—1,+, and g, begin with terms of order 2 and s, respectively. Furthermore, we

note that
1_£=L(1_L)<1, r_r
r 5 r kK 4r'+r

Then, from (9.9) and all the estimates obtained above, one can easily prove the estimate
for || G'||,- described in the following lemma.

LemMMA 9.3. In addition to the assumption of Lemma 7.4, assume that Go—1,, 1,
Gy, ..., G, belong to A(Q,) and satisfy
. 1 oA
.11) llglll,<A4r?, C4II|59|||,<? and cg(r—p) ?lIGll,<1.

Let 0<r'<r. Then ¢ =exp Xy is a holomorphic transformation from D, into D,, where
o=r—Q2/5(r—r') and p=r—(1/5(r—r’). Furthermore, the remainder parts G‘," of
G : =Gy o ¢ satisfy the following estimate:

< Srl 2d+1
A, A Gll, 4r'+r )
©12) Gl <csa+ DG, |— Nl

+

r\2n+4 r\2n+2 |’
r2<1_r_> r(l_r_>

r r

where cg=cg(r/r’, n) is a positive constant that increases with r/r’ and n.
REMARK. The constant cg can be given explicitly as cg=2c2c, * 52"+,

As for the new normal form parts, we have to estimate ||g’|l,- and [|dg’[l,.. Similarly
to what we had above, we can prove:

LEMMA 9.4. Under the assumption of Lemma 9.3, we have

r\2 r\d
() |||g'|||,,s<'—) {n|g|||,+méu|,(’—> }
r r
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P . . €1Co G,
(i1) log Il < liogll, + 5771 N
rr’(l———)
r
where
2p axlalr’ |~ 6nlaly
(9.13) co=co(r)=| ———+n—1 )e?mlalr y pp6mlalr
n|q|

PROOF. Since the new normal form parts g, are given by (9.9), we have
lgill, <Gl + 1 PZ* Gilly < 1Gell + 1 Gl -

Application of Schwarz’ lemma to §, and 5,: leads to the estimate (i). To get the
estimate for_[|dg'll,, we need to estimate ||D,JA(P,%"‘IGA,‘)llr.‘sk_2 (j=1,...,n) and
||D,j(P,$"‘lGA,,)||,,‘Sk_p (j=n+1, n+2) according to the definition (8.5) of ||of]l,. We
recall that any power series f in the normal form can be written in the form (5.9).
Then we have

1 1 1 1
an= _Drof=—<_—a—f“l‘+_ af2>’ Drj = af (j=2,---,n)-
B\ Xy Oyy  yy 0xy J axi
1 0 0 1 0 of,
Dr,.+1f= <x1 fi —)1 /i >, Dz,.”f: <)’1 /2 — X 2 )
Pln+1 0x, 0y, JATEY) 0y, 0x,

Assume that f=f. Then | f|l,=|fil,+ /5], Also recall that for any holomorphic
function in Q,. the maximum of its absolute value is attained at a point on 4,.. Then
using Cauchy’s integral formula, we deduce from the above formulas that

p . IS £,
n|ql6? ri(r—r’) 8’ (r—r")
2e2mlalr S

p5p+l(rl)p—1 r—r'

“D1:o.f”r’_|_||Dr,<f“r’s ’ “Dzjf‘“r’S (j:29"‘5”)’

”D‘ty.+1f“r'+ IIDr,.+2f|lr’S

Let P2*"'G be the n-dimensional vector whose components are P3G,

(i=1,...,n). Then, using the above formulas and definition (8.5), one can prove
x 2pe?™alr p—1 . 2eMN G|
AP O, <c ( + e -,
”l ( N )”' 7 71;|q|52 52 5p+1 r,(r_r,)
which leads to the estimate (ii) with (9.13). O

10. The convergence proof. We will finally prove the convergence of the iteration

process described in Corollary 6.4. It will complete the proof of Theorem 7.1 and hence
that of Theorem 4.4.



INTEGRABLE SYMPLECTIC MAPS 111

Let us consider the estimates obtained in the preceding section. To consider the
v-th iteration step (v=0, 1, ...), we set

_ _ +1 A _ A Ar _ Alv+1 _
gk_gI£V)’ g,:—g,ﬁv )9 Gk_GIEv)7 Gllc‘GI£v )’ ¢_¢v

and
r=r,, r=r,y,, d=2".
The v-th iteration step consists of taking G : =g+ G{" into G@'*V:=g* V4 G+ D

by the transformation ¢,. Also we replace the symbols ||G||,, llgll,. 184, by |IIG‘V)||I,V,
llg®,.. 118G Ill,, respectively. Then, by Lemma 9.3 we have

1
¢v: Qo\, - va; O-v=rv_?(rv_rv+1) 5 pv=rv_?(rv_rv+ 1)

and (9.12) gives the estimate for [|G®* V||, . in terms of [|G™]|,..

Our purpose is to prove that, with an appropriate choice of the sequence {r,}, the
sequence of transformations ¢, is well-defined and their composite ¢ :=dgo oo
¢, is uniformly convergent. To this end, we define the sequence {r,} by

,«v=f_°.<1+ ! ) (v=0,1,2,...).
2 v+1

Then we have

1 Fyy1 1
r, (v+2)?

and hence

ry

(10.1)

S{;— for v=0,1,2,....

rysq

This implies that the constant ¢, in (9.10) can be taken independently of the iteration
step. Also, since r,<r,, the constant cy=cy(r,,;) defined by (9.13) can be taken
independently of the iteration step and is assumed to satisfy the following inequality
by choosing r, suitably small:

(10.2) cg(rv)<2<—2p—+n—l> v=1,2,...).
nlq|

Let 4, be a constant satisfying the condition
lig®ll,, < Aor?,

where A, can be taken independently of r,. Moreover we set

3
c10=c8y<Ao+Z> with y=max(1,37%).
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The iteration procedure with this sequence {r,} will be justified by proving the three
conditions given by (9.11) at each step. Instead of those conditions, we will prove that
IG™I,, satisfies the condition

NG,

r 2n+4
2 v+1
rv l—r—
v

for all v>0. By the definitions of constants c¢ and ¢, ,, this condition is clearly stronger
than the third one in (9.11). Moreover, it also implies the first and the second conditions
of (9.11), as is shown by the following lemma.

(10.3) 106, <1l; &=

LeMMA 10.1. Let ry>0 be small enough to satisfy (10.2). Assume that the condition
(10.3) holds for v=0, 1, ..., m. Then

1

(1) ng‘“’lll,v<<Ao+7>r3 for v=0,1,...,m+1;
1

(ii) callogll,, <—  for v=0,1,....m+1.

In the above, the assertion (i) implies that the constant 4= A(g) in the first condition
of (9.11) can be chosen as 4 = A, +(1/2) independently of the iteration step. This lemma
is a direct consequence of Lemma 9.4. The proof is the same as that of Lemma 7.1 of
[8] and is omitted. Furthermore, by Lemma 9.3 one can prove that

Ev+1 < CSV(Bv + j'v) s

4 2 3 2(2n+4) Jamta 1 2v+14q
c=010<?> <?> s iv=(v+2) (2n )<1—5—(vm

This implies that ce, < 1 for all v>0 if r,> 0 is chosen sufficiently small, and in particular
that there exists an integer N>0 such that

ce,<(4c)”127**N  for v>N.

where

For the proof, we refer to [8]. Thus we have justified the iteration procedure and see
that [|G™][, —0 as v— oo. Also it is easy to see that ¢ =¢oo¢, - - $, converges
uniformly to a symplectic transformation which is analytic in the domain @, , (see [7],
[8]). This completes the proof of Theorem 7.1 and hence that of Theorem 4.4.

11. Proof of Theorem 2. We will finally prove Theorem 2 using Theorem 4.4.
We will give the proof only in the semisimple case. In the non-semisimple case, we leave
its proof to the reader (see [8]).

First we see that the real quadratic form (2.4) is taken into H,(0)=S(2)=)_; _ , il
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by the following (complex) linear symplectic transformation:
z=Cl; z=Y(pu x40y, (='(¢nNeCxC"
with

pjzéj’ qj=’1j (j=1a""k),

1 ] 1 , .
u'=—(ék+j+”1k+j) s U'=—("k+j+l£k+j) U=L....0,

J \/5‘ J ﬁ
1 1
xzj—1=7—2—(ér+2j—1+fr+2j)a ,sz—1=f

i i

X2j= (—£r+2j—1+€r+2j)9 )’2j=‘—(’lr+2j—1“’7r+2j)
< 2

r=k+1;j=1,...,m).

(Mys2j-1FM425) 5

2

Then ze R?" if and only if
¢, neR (j=1,...,k),
ék+j=—i7_,k+j (.]:1,’1)5

fr+2j=~f_r+2j—1a Ne+2j=NMr+2j-1 U=L....,m.

If a function f({, 1)e L(C?>"**, S*) is written as f((, 1)=), , c,s(t)E*n”, we say that f
satisfies the reality condition if the following relation holds:

(1.1 fCG0=AT 1 for T=C"'C,

where f is the power series in { defined by
f(C: t)=2‘;éa,ﬁ(t)ém"p s

with Z,4(t) being Fourier series of ¢ obtained from ¢, 4(t) with coefficients replaced by
their complex conjugates. The condition (11.1) is equivalent to the requirement that
f(C™ 1z, 1) is a real analytic function of z.

Let H((, t)e L(C?"*1, S!) be the Hamiltonian in Theorem 4.4 which is obtained
from a real analytic function as in Theorem 2 by the transformation z= C{. Then H((, ?)
clearly satisfies the reality condition. Also we say that a symplectic transformation
¢ € &, which is of the form (4.5) and (4.6), satisfies the reality condition if the following
relation holds:

QB(TC, €n+ 1)= T(p({, €n+ 1) s

where the meaning of @ is the same as that of f. Then, in the same way as in Section
7 of [7] one can prove that the function W({, t) and the transformation ¢ =exp X in
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Theorem 6.3 satisfy the reality condition. This implies that ¢ =lim,_, , ¢ obtained by
Theorem 7.1, as well as the normal form Ho¢—n,, ,, satisfies the reality condition.
(Here the meaning of the “bar” of His: H=H+y, .) Since ¢ has the form (4.5) with
(4.6), we obtain a time-dependent real analytic symplectic transformation Cog@oC™?,
which is the desired real analytic transformation in Theorem 2. This completes the proof
of Theorem 2.
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