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Abstract. For a symplectic map that is analytic near a fixed point, the Birkhoff
normal form is studied in connection with its integrability in the sense of Liouville. It
is proved that, when the fixed point is non-resonant or simply resonant, there exists an
analytic Birkhoff transformation if and only if the map is integrable.

1. Introduction. This paper is devoted to the study of normal forms for symplectic

maps near a fixed point. We consider local real analytic diffeomorphisms having the

origin z = 0 as a fixed point. We assume that they are symplectic, that is, they preserve

the standard symplectic structure ω o = Σ£ = 1 dxk/\dyk, where z = (xu ...9xn9yl9 ...,yn)

is the coordinate system of R2n. We denote by Symp(/?2π, 0) the set of germs of all

those local real analytic symplectic diffeomorphisms near the fixed point z = 0.

The normal form we are concerned with is the so-called Birkhoff normal form and

the normalizing transformation is called the Birkhoff transformation, named after G.

D. Birkhoff, who first developed this theory (cf. [2], [3]). Let /eSymp(/?2 w, 0) be a

map with semisimple linear part Df(0). Then, according to Moser [10], the map / is

in the Birkhoff normal form if it commutes with its linear part Df(ϋ) in the real symplectic

Jordan canonical form. If we ignore convergence, there always exists a Birkhoff

transformation and / is in the Birkhoff normal form if and only if the nonlinear part

Df(0) ~1ofis equal to the time-one map of the Hamiltonian flow with a time-independent

Hamiltonian H invariant under Df(0). This implies that the function H is a formal

power series integral of /. Therefore, when the fixed point is non-resonant or simply

resonant (see Section 2 for definitions), one can easily see that the given map is integrable

in the sense of Liouville [1] if there exists a convergent Birkhoff transformation together

with a convergent interpolating Hamiltonian H.

The aim of this paper is to prove the converse of this assertion. We have already

proved it in the non-resonance case [7]. In this paper we generalize it in the simple

resonance cases. It corresponds to the result for normalization of Hamiltonian functions

[8] and its proof has the same feature as that in [8]. However the result is not a direct
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consequence of [8], and in particular, we have a new problem to the effect that the
convergence of the interpolating Hamiltonian H does not follow from the convergence
of the Birkhoff transformation.

To overcome this difficulty, we interpolate the given map by the time-one map of
the Hamiltonian flow with a generally periodically time-dependent Hamiltonian that is
real analytic in both zeR2n and time / ε R. Due to a recent result by Kuksin and Pόschel
[9], this is possible under the condition that the linear part Df(0) can be written as the
time-one map of the Hamiltonian flow with a quadratic time-independent Hamiltonian.
We see that this condition is satisfied under fairly general assumptions on those
eigenvalues of Df(0) which can be easily checked (Proposition 1). Moreover, we say
that a map fe Symp(/?2π, 0) is in the Birkhoff normal form if it is the time-one map of
the Hamiltonian flow with generally periodically (of period 1) time-dependent
Hamiltonian in the Birkhoff normal form (as time-dependent functions), and we call a
normalizing transformation a Birkhoff transformation. Then it turns out that if / is in
the Birkhoff normal form in this sense, it is also in the Birkhoff normal form in Moser's
sense and the nonlinear part DfiO)'1 of becomes the time-one map of the Hamilto-
nian flow with some time-independent real analytic Hamiltonian (Proposition 2). In
particular, in the non-resonance case, the map / itself becomes the time-one map of a
time-independent Hamiltonian flow. Our main result (Theorem 1) claims that, in the
simple resonance case as well as in the non-resonance case, there exists a convergent
Birkhoff transformation and a convergent interpolating Hamiltonian if and only if /
is integrable. In the next section, we formulate it under more general setting where we
allow cases in which the linear part Df(0) is not semisimple, which has been studied in
[4] under Moser's definition.

To prove Theorem 1, the crucial observation is that the integrability of the given
map implies that of the interpolating time-dependent Hamiltonian system (Theorem 3)
and hence the proof of Theorem 1 is reduced to that of the corresponding theorem for
time-dependent Hamiltonian systems near an equilibrium (Theorem 2). We proved in
[8] the corresponding theorem in the case of time-independent systems. Theorem 1 and
Theorem 2 are analogs of this result for symplectic maps and for time-dependent
Hamiltonian systems.

This paper is organized as follows. In the next section, we will give necessary
definitions and state the results mentioned above. In Section 3, we will show that the
proof of Theorem 1 is reduced to that of Theorem 2. For this purpose, we will prove
an interpolation theorem mentioned above (Theorem 3). To prove Theorem 2, we will
work with the complex Birkhoff normal form instead of the real one and also will
extend the phase space so that the time-dependent Hamiltonian vector field can be
considered as a time-independent one in the extended phase space of dimension 2n + 2.
This extension of the phase space will be convenient to deal with the integrability of
the given vector field. In Section 4, we will introduce this extension and will reformulate
Theorem 2 as Theorem 4.4 concerning the normalization in the extended phase space.
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Theorem 4.4 will be proved in Sections 5-10. In Section 5, we will give a power series

expression for the normal form. By using it, we will prove Proposition 2 and show

that the original symplectic map is integrable if there exists a convergent Birkhoff

transformation in the non-resonance or simple resonance cases. In Section 6, we will

prove the existence of a formal normalizing transformation (Theorem 6.3 and Corollary

6.4). In Section 7, we will describe the basic idea on the proof of its convergence and

the proof will be carried out from Section 8 through Section 10. Finally, we will prove

Theorem 2 in Section 11 by imposing reality condition on the original Hamiltonian.

2. Statement of the results. In this section, we state the main results. We first

introduce symbols to be used throughout this paper: s/(R2n, 0) denotes the set of germs

of all functions of In variables, say z e C 2 n , that are real analytic in a neighbourhood of

the origin z = 0. stf(R2n + 1, S1) denotes the set of germs of all functions in (z, t)eC2n x C

that are real analytic in a neighbourhood of the real ί-axis {(z, t)eC2n+1 |z = 0, teR}

and are periodic in t with period 1. In addition to Symp(/?2π, 0) introduced in Section

1, Symp(/?2 w + 1, S1) denotes the set of germs of all local real analytic symplectic dif-

feomorphisms (R2n, 0)-+(R2n, 0) that depend on the parameter / (time) real analyti-

cally and periodically with period 1.

In the above, "real analytic" means that those analytic functions and maps are

real-valued if the domains of definition are restricted to R2n or R2n+1. For the sets of

germs of analytic functions or maps without real-analyticity assumption, we denote

them by the same symbols with R2n, R2n+ί replaced by C 2 π , C 2 n + 1 respectively, that

is, s/{C2n, 0), and so on. We consider them as s/(R2n, 0)czs/{C2n, 0), and so on.

Let XH denote the Hamiltonian vector field with Hamiltonian Hes/(C2n,0) or

He<$/(C2n+1, S1), which is given by the system of differential equations

± = JHκi J=(° '
dt z \-I 0

Here Hz is the vector of first derivatives of H with respect to z and / is the identity

matrix of degree n. Also expA^ denotes the time-one map of its flow, i.e.,

exp XH: z(0)ι—•z(l), where z(ί) is the solution of the above system. The Poisson bracket

of two functions F, G is defined by

{F, G} : = <FZ, ^ ( ^

where < , > denotes the Euclidean inner product, i.e., <z, z'y=Σln

=ίzkz'k with zfc, z'k
coordinates of z, z' respectively.

Now let us introduce necessary definitions to state the results. First, the integrability

in the sense of Liouville is defined as follows:

DEFINITION 1. (i) A symplectic map /eSymp(C 2 w , 0) is said to be integrable if
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it possesses n analytic integrals Gx(z),..., Gn(z)es^(C2n, 0) that are functionally

independent and Poisson commuting.

(ii) A Hamiltonian vector field XH with He J / ( C 2 W + \ S1) is said to be integrable

if it possesses n analytic integrals Gx(z9 ί ) , . . . , Gn(z, t)es/(C2n + 1, S1) such that for any

/ fixed they are functionally independent and Poisson commuting functions of z.

REMARK. Since Symp(/?2π, 0)c Symp(C2π, 0) and jtf(R2n+\ S^cz j / ( C 2 l I + 1 , S1),

this definition is valid also when /eSymp(l?211, 0) or HGs/(R2n+\ S1). In other words,

we allow their integrals to be complex-valued for real variables.

In the definition (i) above, a function G(z) e J / ( C 2 W , 0) is called an integral of f if

it is invariant under /, i.e., G° f=G. The functional independence of G^z),..., Gn(z)

means that their gradient vectors with respect to z are linearly independent on an open

and dense subset of a neighbourhood of the origin z = 0, and those n functions are said

to be Poisson commuting if {Gh Gj} = 0 for any i,j= 1,..., n. The meaning of the same

terminology used in (ii) is obvious.

To define Birkhoff normal forms for maps, let us give preliminary considera-

tions about interpolation of symplectic maps. Let Df(0) denote the linear part of

/eSymp(/?2π, 0) at the origin. It is symplectic and hence its eigenvalues occur in pairs

Λ*? K1 (£= 1> 9 n) (cf [!])• We assume that Df(0) = exp(JA) for some real symmetric

matrix A, in other words, the linear map z\-^Df(0)z is the time-one map

(2.1) Z)/(0)z = expJrH2(z) with H2(z) = ±- (Az, z>.

Then the theorem due to Kuksin and Pόschel mentioned in Section 1 claims that

f=QxpXH with some time-dependent Hamiltonian Hes/(R2n + 1, S1) of the form

(2.2) H=H(z, t) = H2(z) + H(z, t) H(z, ί) = O(|z | 3),

where O(\z\3)ej/(R2n+1, S1) denotes the terms of order > 3 with respect to z.

Since the set of all quadratic forms on R2n forms a semi-simple Lie algebra under

the Poisson bracket { , } (see [6], [11]), we have the Jordan decomposition

(2.3) H2 = S+N; {S,N} = 0,

where S, N are quadratic forms such that the matrices JSZZ and JNZZ are semisimple

and nilpotent, respectively. After a real linear symplectic coordinate transformation, we

may assume that the quadratic form H2 is in the normal form, which implies that the

linear vector field XHl is taken into the real Jordan canonical form. In the semisimple

(i.e., N=ϋ) case, the normal form is given as follows:

(2.4) H2(z) = S(z)= Σ ajPj<lj+ Σ ^ ("/ + "/)
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m

where

I zk+ι+j:=xp zn+k+ι+j=yj 0 = 1, , 2m).

In this case, the eigenvalues of the linear vector field XHl are ±μ} (j= 1,..., ri) with

(2.5) ' * - ' ' « " ' «•

where

k,l,m are nonnegative integers satisfying fc + /+2m = « .

For the original map /£Symp(/?2 π, 0), this implies that, if Z>/(0) is written in the

form (2.1), negative eigenvalues of Df(0) can only occur with even multiplicities (when

dj = (2r+ l)π for some j and r e Z ) . Also we note that λj= 1 corresponds to cij=O.

When can the linear part of the original map / be written in the form (2.1)? We

have the following result about this question.

PROPOSITION 1. The linear part offe Symp(/f2w, 0) can be written in the form (2.1)

if one of the following three conditions holds:

( i ) Df(0) has no negative eigenvalues;

(ii) Df(0) is the square of another symplectic matrix on R2n;

(iii) Df(Q) is semisimple and does not have negative eigenvalues of odd multiplicities.

For the proof of this proposition under conditions (i) or (ii), we refer to [9,

Appendix]. Suppose that /eSymp(/?2 n, 0) satisfies the condition (iii). Then the eigen-

values λp λjx of Df(0) are given by

λj = eμj ( 7 = 1 Λ) for μ. given by (2.5).

We note that the real Jordan canonical form of Df(0) is equal to exp XHl with H2 given

by (2.4). Let C be a real symplectic matrix which takes Df(0) into exp XHr Then we have

Df(0) = Co exp XH2 oC-'= exp XH2θC->,

which proves Proposition 1 under the condition (iii).

We omit writing down all normal forms, which was studied by Williamson [12].

See [1, Appendix] or [5] for the complete list. The semisimple part of the normal form

is different from (2.3) when H2 is not semisimple. On the other hand, if we consider
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the complex Jordan canonical form instead of the real one, the corresponding normal

form of H2 reduces to simpler forms. For example, the normal form of the semisimple

part of H2 is given by

(2.6) S(z) = t ttΛ (μfc = log4)

for the non-semisimple case as well as for the semisimple case. Correspondingly, the

vector field Xs and its time-one map exp Xs are in diagonal form.

Associated with the semisimple part S of the quadratic form H2 in the normal

form, we define the Birkhoff normal forms for functions and maps as follows:

DEFINITION 2. (i) A function He^(R2n+1, S1) of the form (2.2) with (2.3) is

said to be in the Birkhoff normal form if H2 is in the normal form and if H is invariant

under the flow of Xs, that is,

(2.7) {H,S} + ^-=0.
t

More generally, an arbitrary function Gss/(R2n+1, S1) is said to be in the Birkhoff

normal form if the identity (2.7) holds with H replaced by G.

(ii) A map feSymp(R2n, 0) satisfying (2.1) with H2 in the normal form is said

to be in the Birkhoff normal form if / = exp XH with Hes/(R2n + \ S1) of the form (2.2)

in the Birkhoff normal form.

(iii) A function G e <tf{C2n+\ S1) and a map fe Symρ(C2π, 0) satisfying (2.1) are

said to be in the complex Birkhoff normal form if they satisfy the above definitions (i)

and (ii) respectively, with H2 replaced by the complex normal form (and hence S is

given by (2.6)).

We observe that this definition gives rise to the same form as the Birkhoff normal

form defined by Moser [10]. Namely, we have:

PROPOSITION 2. Letf=expXH with Hes/(R2n+\ S1) of the form (2.2) with (2.3)

in the Birkhoff normal form. Let A be the semisimple part ofDf(0)9 i.e., Λ = exp Xs. Then

f commutes with A, i.e., f oA = Aof and can be written in the form

f= A o exp XA (= exp Xή ° A) with H=H(z) = H(z9 0) - S(z).

Here H(z) is a real analytic integral of f that is invariant under A.

This proposition will be proved in Section 5. To discuss the convergence of Birkhoff

transformations, we give the definition of a non-resonant or simply resonant fixed point

(and an equilibrium point). For a map /=exp XH with H of the form (2.2), we consider

its fixed point z = 0 as the equilibrium point of XHl and recall that the eigenvalues λj

of D/(0) are given by λj = eμj. Let us consider the condition
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(2.8) Σkjμj = O for μo = 2πi and (k0, kl9..., kn)eZn + 1 .
j=o

This is equivalent to the condition

(2.9) Π # = l for (*!,..., fcJeZ" μ, = ^ ) .

Let Hest{R2n + \ S1) be of the form (2.2) and let /=expA r

HeSymp(/?2 '\ 0).

DEFINITION 3. (i) The equilibrium point z = 0 of XH is said to be non-resonant

if the condition (2.8) holds only for ko = kί = = kn = 0.

(ii) The equilibrium point z = 0 of XH is said to be simply resonant if either of

the following three conditions holds after changing the indices ofμl9...,μn if necessary:

(1) μjμo e Q\{0} and the condition (2.8) holds only for k2 = = kn = 0;

(2) μ i / μ 2 e β \ { 0 } and the condition (2.8) holds only for ko = k3 = = kn = 0;

(3) μχ = 0 and the condition (2.8) holds only for ko = k2 = = kn = 0.

(iii) The fixed point z = 0 of / is said to be non-resonant or simply resonant if it

is non-resonant or simply resonant respectively as an equilibrium point of XH.

In the non-resonance case, the complex Birkhoff normal form becomes a power

series with constant coefficients in n variables x^y^, ..., *„)>„ alone. In the simple

resonance case, it becomes a function of n + 1 variables with coefficients that are periodic

functions in t. We will present them in Section 5.

Our main results are as follows:

THEOREM 1. Let /eSymp(/?2 π, 0) satisfy the condition (2.1) and assume that its

fixed point z = 0 is non-resonant or simply resonant. Then, there exists a real analytic

Birkhoff transformation φeSymp(/?2w, 0) such that f': = φ~1ofoφ is in the Birkhoff

normal form, if and only if f is integrable. Furthermore, for any integral Ges/(C2n, 0)

of f, the function Goφ is invariant under Λ = QxpXs as well as / ' .

This theorem is already proved in the non-resonance case (cf. [7]), where we did

not need the interpolation idea because of the special form of the Birkhoff normal form

(see the end of Section 3 for more details). In this paper, we will prove Theorem 1 as

a corollary to the following:

THEOREM 2. Let Hes/(R2n+1, S1) be of the form (2.2) and assume that the

equilibrium point z = 0 of XH is non-resonant or simply resonant. Then, there exists a real

analytic transformation z = φ(ζ, t)eSyπφ(R2n + 1, S1) such that the Hamίltonian of the

transformed system is in the Birkhoff normal form, if and only if the vector field XH is

integrable. Furthermore, for any integral G(z,t)ejtf(C2n+1, S1) of XH, the function

G(φ(ζ, t), t) is in the Birkhoff normal form.

In the proof of these theorems, the proof of the "only if" part is straightforward.
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As we will show in Section 3, we can represent an integrable symplectic map as the

time-one map of the flow of an integrable time-dependent Hamiltonian system.

Therefore, the proof of Theorem 1 is reduced to that of Theorem 2. We will prove

Theorem 2 in the simple resonance case only, because the proof in the non-resonance

case can be carried out along the same line and its technical complexity is smaller than

that in the simple resonance case.

3. Reduction to the time-dependent Hamiltonian case. The aim of this section is

to derive Theorem 1 from Theorem 2. To this end, we will prove the following:

THEOREM 3. Let feSymp(R2n, 0) be an integrable map satisfying (2.1). Then it is

the time-one map of an integrable vector field XH with Hes/(R2n+1, S1) of the form

(3.1) i/(z,ί) = l < Λ z , z > + O ( | z | 3 ) .

PROOF. AS we mentioned in Section 1, / can be written as the time-one map

f = exρXH with Hes/(R2n+ί, S1) of the form (3.1) even without assuming the

integrability of / . This is the assertion of a theorem by Kuksin and Pόschel [9]. Our

purpose is to prove that the vector field XH is necessarily integrable provided that / is

integrable.

Let Gk — Gk(z) e stf(C2n, 0) (k = 1,...,«) be n analytic integrals of / = exp XH which

are functionally independent and Poisson commuting. We assume that those Gk as well

as the map / are defined to be analytic in a neighbourhood U (c= C2n) of the origin

z = 0. In the following, let φ(t;zo,to) be the solution of the vector field XH through

(z0, ί 0 ) e C 2 n x C Further, let Uδ<^C2n be the ̂ -neighbourhood of the origin, and set

Vκ: = {te C\ I /1 <K] for any constant K>0. Since the origin z = 0 is an equilibrium of

XH, for an arbitrary number K> 0 we can choose a small number <5 > 0 so that if z 0 e Uδ

and toeVκ, then φ(t; z0, to)e Unf-\U) for all te Vκ.
Let us define functions Gk(z, t) on UδxVκ by

(3.2) Gk(z, t): = Gk(φ(0; z, t)) for (z, t)eUδxVκ.

Let us take (z0, ί0) eUδxVκ arbitrarily and fix it. Then, by the uniqueness of solutions,

we have

Gk(φ(t; z0, to\ t) = Gk(z0, t0) for teVκ.

This implies that Gk are invariant under the flow of XH. Furthermore, by the invariance

of Gk under / we have

Gk(z, t +1) = Gk(φ(0; z, t +1)) = Gk(f o φ(0; z, t +1)) = Gk(φ(l; z, t +1)) .

Here we note φ(l; z, t+ l) = φ(0; z, t) in view of the periodicity of the vector field XH

with respect to t. Hence we have proved the relation
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Gk(z,t+l) = Gk(z,t) for ( z , ί ) 6 ί / a x F I . 1 .

By the analytic dependence of solutions on the initial conditions, Gk are analytic in

(z, t)eUxVκ and periodic in t with period 1. By the analytic continuation using the

relation above, Gk can be extended to a neighbourhood of the whole real t axis

{(z, t)eC2n+1 \z = 0,teR}. Clearly they are integrals of XH and hence we have proved

that the existence of the integrals Gk(z) of / leads to that of the integrals Gk of XH

which are analytic in a neighbourhood of the real t axis in the complex (z, t) space.

For each / fixed, we define a symplectic map Φ as

Φ: z I—• 0(0; z, t).

By the definition (3.2), we have

(3.3) ψ- -ψ
d d

where Φz is the Jacobian matrix of Φ with respect to z and ιΦz denotes its transpose.

Hence the functional independence of Gί9 ...,Gn implies that of όl9 ...,Gn. Fur-

thermore, from (3.3) as well as the symplectic character of Φ, it follows that

and therefore Gl9..., Gn are Poisson commuting. Hence the vector field XH is

integrable. Π

Using Theorem 3, we now deduce Theorem 1 from Theorem 2.

PROOF OF THEOREM 1. Assume that fe Symp(R2n, 0) is integrable. Then it follows

from Theorem 3 that / = expXH with an integrable Hamiltonian Hes/(R2n+1, S1). Let

z = z(t) be the solution of XH through z(0) = zo at t = 0. Then / is given by

/ : z ( 0 ) h — z ( l ) .

Since the Hamiltonian H satisfies the assumption of Theorem 2 under that of

Theorem 1, it follows from Theorem 2 that there exists a tansformation z = φ(ζ9t)e

Symp(R2n+1, S1) which takes the vector field XH into the new vector field XH. with

H' = H'(ζ,t) in the Birkhoff normal form. Let ζ(t) be the solution of XH, through

ζ(0) = ψo 1(z0) at / = 0, where φ0 = φ( , 0). Noting that z(ί) = φ(ζ(ή91) and the periodicity

of φ in ί, one can see that / is transformed by φ0 into

which is equal to the time-one map expXH>. Hence φ^* o/o φ0 is the Birkhoff normal

form.

Conversely, assume that / is in the Birkhoff normal form, that is, / = exp XH with
+1, S1) in the Birkhoff normal form. Then XH is integrable by Theorem 2
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and therefore there exist n integrals Gk(z, t) of XH (k= 1, . . . , ή) which are functionally

independent and Poisson commuting. By Definition 1 and the periodicity of Gk{z, t) in

t, the functions Gk(z, 0) are integrals of / and they are functionally independent and

Poisson commuting. Hence / is integrable.

To prove the final assertion, let /eSymp(/?2 n, 0) be in the Birkhoff normal form

and Gejtf(C2n, 0) its integral. According to Definition 2, we write f=expXH with

Hes/(R2n+1, S1) in the Birkhoff normal form. By the preceding arguments,

G(z, t): = G(φ(0; z, t)) is an integral of XH. Then it follows from Theorem 2 that G is in

the Birkhoff normal form and hence we have {G, S) + Gt = 0, that is,

4
at

where exp tXs denotes the flow of the linear vector field Xs. Consequently we have

G(Λz, l) = G(z, 0) for Λ = expXs, or equivalently G(Λz, 0) = G(z, 0) because of the

periodicity of G in t. This implies that G(Λz) = G(z), which proves the final assertion of

Theorem 1. •

REMARK. In the previous paper [7], we proved Theorem 1 in the non-resonance

case without the interpolation idea. For an integrable symplectic map fe Symp(C2w, 0)

near a non-resonant fixed point, we proved the existence of a convergent Birkhoff

transformation φ e Symp(C2π, 0) so that the transformed map / ' : = φ " 1 of o / : (x, y) ι—•

(x\ y') is written in the form

(3.4) xί = xkexpHτk, ^=j> k exp(-// T k ) with τk = xkyk (fc=l, . . . , / i ) ,

where H is a power series in n variables τk with constant coefficients. When H is

convergent, we called maps of the form (3.4) to be in the Birkhoff normal form. This

is clearly the time-one map of the time-independent vector field XH and therefore is in

the complex Birkhoff normal form in the sense of Definition 2 (iii). The convergence

of φ implies that of the Hamiltonian H in the expression (3.4) for / ' (we omitted its

proof in [7]). Indeed, the n power series exp//τk are convergent since / ' is convergent.

This implies the convergence of Hτk and hence that of H itself. The proof of Theorem 1

follows from the arguments above by imposing the reality condition on the original

map / (see [7] and also Section 11 of this paper).

4. Reformulation of Theorem 2 in the extended phase space. For time-independent

Hamiltonian systems, we have proved the result corresponding to Theorem 2 [8]. In

order to proceed in the same way as in [8], we will mainly work with the complex

Birkhoff normal form and also consider the time-dependent Hamiltonian as the

time-independent one by extending the phase space to the In + 2 dimensional one.

The aim of this section is to reformulate Theorem 2 as a theorem about

normalization in the extended complex phase space. Again, let HE<p/(C2n + 1, S1) be a



INTEGRABLE SYMPLECTIC MAPS 83

time-dependent Hamiltonian of the form

(4.1) H(z91) = H2(z) + O(\ z |3) H2(z) = S(z) + N(z) with S(z) = £ μkxkyk ,
fc=l

where S and N respectively are the semisimple and nilpotent parts of H2, satisfying the

relation {S, N} = 0. Setting t = xn+ίi we define a function H as

(4-2) H(z9xn + uyn + ί ) : = H(z9xn + 1)+yn+ί .

This is a function of 2n + 2 variables z = (x9y)9 xn+l9 yn+ί and the corresponding

Hamiltonian vector field Xg is given by

(4.3) z = JHz9 xH + 1 = l9 yn + ί=-HXn+ί,

where the dot ( ) denotes the differentiation with respect to t, and J is the In x In

symplectic matrix given in Section 2. We call the (x, y9 xn+ l9yn + ^-space the extended

phase space and its symplectic structure is given by £ j £ \ dxk A dyk. The function H is

called the extended Hamiltonian (function) ofH, and Xg is called the extended Hamiltonian

vector field oϊXH. The Poisson bracket of any two functions F, G on the extended phase

space is defined by

where {F9 G] = <FZ, JGZ}. Also we define

n + 1; S(z)= X μkxkyk,

and introduce the following:

DEFINITION 4.1. A function G = G(z, xn+1, yn + i) is said to be in the normal form

if the following identity holds:

(4.4) [ G , S ] Ξ E O .

Then we have:

LEMMA 4.2. Let G = G(z, t)es#{C2n + \ S1) and h(yn + 1) an arbitrary function of

yn+1. Then:

(i) A function of the form G(z, xn+1) + h(yn + 1) is in the normal form if and only if

G{z, t) is in the complex Birkhoff normal form. In particular, the extended Hamiltonian

His in the normal form if and only ifH= H(z, t) is in the complex Birkhoff normal form.

(ii) G(z, xn + 1) is an integral of Xs if and only if G(z, t) is an integral of XH.

PROOF. By the definition of the Poisson bracket [ , ], we have
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By the definition of the complex Birkhoff normal form, the first identity implies the

assertion (i) and the second one implies (ii). •

The assertion (ii) above implies that the extended vector field Xg is integrable if

XH is integrable.

To find a normalizing transformation, we restrict ourselves to symplectic

transformations of the form

(4.5) Φ:{ζ,ξm+1,ηm+1)\-^(z,x.+ 1,y. + 1); ζ = (ξ,η), z = ( x , y ) ε C " x C"

with

(4.6) z = φ(ζ,ξn+1), xn+1 = ξn + 1+m{meZ), yn+ί=ηn+ί + ψ(ζ, ξn+1),

where all components of the vector function φ as well as φ belong to s/(C2n+1, S1).

We denote by £f the set of all such symplectic transformations. Then we have:

LEMMA 4.3. (i) ίf forms a group under composition of transformations.

(ii) For any function Hestf(C2n+1, S1), the time-one map expA^ in the extended

phase space belongs to 9*.

(iii) Let φ be a transformation of the form (4.5) with (4.6) satisfying dQt(dx/dξ)Φθ.

Then φ is symplectic (i.e., φe9) if and only if φeSymp(C 2 π + 1, S1) and

ψ(ζ,ξn + ί)=dv{X'η'Xn + ί) for some ,

where v — v(x9 η, t) is the generating function of φ eSymp(C2 π + Λ , S1).

(iv) Let He^(C2n+\ S1) be a function of the form (4.1) and H its extended

Hamiltonian. Further let φeSf satisfy the condition dQt(dx/dξ)¥:0. Then the vector field

XH is transformed by φeSymp(C 2 π + 1 , S1) into the Hamiltonian vector field XH, with

(4.7)

and Hoφ is the extended Hamiltonian of H'.

REMARK. The assertion (iii) implies that the transformation φ e ^ is determined

by φ uniquely under the condition dQt(dx/dξ)φO. In other words, φeSymp(C 2 ; ι + 1, S1)

can be extended uniquely to a symplectic transformation

PROOF. First we prove that φ 6 s/(R 2 n + 1 , S1) if φ is symplectic. We note that the

symplectic property of φ means the identity

π + l n+1

X dxkΛdyk= X dξkΛdηk.
fc=l k = l

By the special form of φ, this implies that Σn

k = 1dxkΛdyk = Σl=ίdξkΛ dηk for any ξn + 1

fixed, which proves φGSymp(C 2 π + 1 , S1). From this fact and the periodicity of φ and

φ in t, one can easily prove the assertion (i). Also the assertion (ii) can be easily proved.
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To prove (iii), note that under the assumption det(5x/5<^)#0 the symplectic trans-

formation φ is expressed in terms of a generating function v = v(x, η, t)εs/(C2n+1, S1)

as follows:

Also,

(4.8)

because of the form

dv

dη '

in terms of the generating

(4.6), φ is

dv
} dx '

function

dv

"dj' y~

expressed

_

dv

"dx'

as

δv dv

r/π + 1 ' > π + 1 dxn + 1

Clearly we have yn +1 = ηn + A + dv/dxn + 1 . The converse assertion of (iii) can also be easily

proved by constructing the generating function v from v. Hence (iii) is proved. For the

proof of (iv), it is easy to see that Ho φ is written as

Roφ{ζ, ξn+u ηn + ί) = H'(ζ, ξn + 1) + ηn+1

with Hf given by (4.7). We note that the vector field Xβoφ is given by (4.3) with H

replaced by H'. Therefore ζ = (ξ, η) satisfies the Hamiltonian system with the Hamiltonian

H'. Since z, xn+1 are independent of ηn+1, this implies the assertion (iv). •

We consider the complex Birkhoff normalization of time-dependent Hamiltonians.

In view of Lemma 4.2 and Lemma 4.3, the equivalence between the integrability and

the convergence of Birkhoff transformation is formulated as the following theorem on

the normalization in the extended phase space.

THEOREM 4.4. Let Hes/(C2n + 1, S1) be a function of the form (4.1) such that the

origin z = 0 is a non-resonant or simply resonant equilibrium ofXH. Let H be the extended

Hamiltonian of H. Then, there exists an analytic symplectic transformation φe£f such

that the new extended Hamiltonian Roφ is in the normal form, if and only if XH is

integrable.

The aim of Sections 5-10 is to prove this theorem.

5. Power series expansion of the normal form. We note that analytic functions

f(z, t)es/(C2n+1, S1) can be expanded as absolutely convergent power series in

z = (x, y)eC2n at the origin whose coefficients are absolutely convergent Fourier series

in / = ;*;„+! e C with period 1. For convenience of notation, instead of jtf(R2n + 1, S1) we

denote by 9 the vector space over C of all such convergent series in z and t. Further,

we denote by & the direct sum of 9 and the one-dimensional vector space spanning

by yn+1. Namely & is the vector space consisting of all those series g = g(x, y,xn+ί9yn+ί)
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of the form

In this section, we express the normal form as such a series. It will lead to the proof

of Proposition 2 and that of the "only if" part of Theorem 4.4.

Let us write fsέP as

(5.1) f=Σcaβ(t)xayβ; caβ(t)= Σ dk

aβe
2πikt (dk

aβeQ,
<x,β keZ

where xa = xa

x

l -xj , yβ =y[' -yβ\ α = ( α l 5 . . . , α j , β = (βl9..., j8J with nonnegative

integers αi9 ft.

PROPOSITION 5.1. 4̂ normal form feέP is written as

(5.2) / = /(M)= Σ c^e-^-^xY (caβeC).
<μ,α-/3>e2πίZ

PROOF. By the expression (5.1), we have

(5.3) [/, S] = Σ KA « " β>ca

7 d
a,β\keZ

where ' = d\dt and μ = ( μ l 5 . . . , μπ). Therefore the identity [/, £ ] = () holds if and only

if the Fourier coefficients of caβ(t) satisfy the condition

dk

β = 0 if <μ, α —/?> + 2πikφ0 .

This implies that caβ(t) = 0 if <μ, α — /?> £ 2πiZ and further that a normal form / e 9 can

be written as

/ = Σ dk

aβe-<»>"-β><xyβ,
<μ,a-β>e2πiZ

where k is the integer determined by <μ, oc — β} + 2πik = O. By setting dk

β = caβeC, this

can be written as (5.2). •

Using Proposition 5.1, one can prove Proposition 2 stated in Section 2.

PROOF OF PROPOSITION 2. Let f=expXH with Hejtf(C2n+1, S1) in the complex

Birkhoff normal form. Then, by Lemma 4.2, H and S commute in the extended phase

space and consequently their time-one maps commute. By the special form of H and

S, this implies that f = expXH and Λ = expXs commute in the original phase space.

Let φ*: ζ\->z = φ*(ζ) be the flow of the vector field Xs with *Sί(z)=Σk = 1μΛ> ;jt It

is linear symplectic but not periodic in t and therefore does not belong to

Symp(C2n + 1, S1). It is given by
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(5.4) <p'(ζ)=diag(e"^1,..., e""'ξn, e'^'η,,..., e~^n)

and can be represented in terms of a generating function:

Λ = WXk, ξk = Wηk for W= W(x, η , t ) = t <?~"k'**>7* •
k=l

By this transformation, the vector field XH is taken into another vector field Xκ with

the Hamiltonian

K(ζ, t) : = H{φ\ζ\ 0 + WJx9 η9 t) = H(ζ, O)-S(ζ).

Here the second equality follows from (5.4) and Proposition 5.1. The function K is

independent of t and is invariant under the linear map exp Xs: ζ ι-> Λζ. Moreover we have

Since φ° = id and φ1=expXs = A, this leads to

In view of this expression, the commuting relation foΛ = Λof is equivalent to

expXκo A = AoexpXκ. Furthermore, since K is an integral of the vector field Xκ, it is

invariant under expA^ as well as under A. Using this invariance we have

K(f(z)) = K(A o exp Xκ(z)) = K{z).

Finally, let feSymp(R2n, 0) be in the (real) Birkhoff normal form, i.e., f(z) = expXH{z)

with H in the Birkhoff normal form. Then one can find a linear (complex) symplectic

transformation z=Cζ, such that H(Cζ) is in the complex Birkhoίf normal form. The

arguments above imply that C'1 ° / ° C=exp XHoC = A° exp Xκ, which gives the desired

expression for / with H(z) = K(C~1z) as well as its invariance under / and CAC'1.

This completes the proof of Proposition 2.

Next, let us investigate normal forms when the equilibrium point z = 0 is

non-resonant or simply resonant. It will lead to the proof of the "only if" part of

Theorem 4.4.

In the non-resonance case, in view of Definition 3 (i) and Proposition 5.1, a normal

form feέ? is a power series in n products xxyu . . . , x,,yn with constant coefficients.

Therefore, if H is in the normal form, xxyl9..., x̂ y,, are n integrals of XH which are

functionally independent and Poisson commuting.

In the simple resonance case, we divide our discussions into three cases, namely,

cases (l)-(3) of Definition 3 (ii).

In the case (1), we may put

μ! = (peN,qeZ\{0}, p and \q\ are relatively prime)
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and a normal form feέ? can be written as

where Z+ is the set of nonnegative integers. Therefore the normal form feέP is a power

series with constant coefficients in n + 2 variables Xχyl9..., xnyn and e~2πιqtxξ, e2πιqty[.

For technical reasons, we set

Tl = Xi Vi

j ; _ g-2πiqtχp _ ^ ^ 2 π ί ^ ί y P f/ = v

Here we note that the following relation holds:

(5.6) τn+ίτn + 2

In the case (2), we may put

q
- = ± — (p,qeNare relatively prime)

P

and the normal form can be written as

This is a power series with constant coefficients in n + 2 variables Xχyί9..., xnyn,

x?vq, y[uq, where

, , {(X2>yi) i f

(M, ι;) = <

C (jμ2, JC 2 ) i f

In this case, we set

(5.7)

and the following relation holds:

In the case (3), the normal form can be written as

αi,<X2, . . , α n , / ϊ i e Z +

which is a power series with constant coefficients in n + 1 variables xί9yι, x2y2,..., xnyn
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In this case, we set τ 0 , τί9..., τn+ ί as follows:

(5.8) τo=yn+l9 τ1=x1, τk = xkyk (k = 2,...,«), τH + 1=y1 .

In the cases (2) and (3) above, the normal forms are independent of t and the

same as those of time-independent Hamiltonian functions in the simple resonance cases

[8]. The proof of Theorem 4.4 in these cases can be carried out along the same line as

in the case (1) with more repetition of the arguments in [8]. Hence we omit it and will

concentrate on the case (1) from now on.

Then, the extended Hamiltonian H is in the normal form if and only if it is a power

series with constant coefficients in n + 3 variables τ 0 , τί9 ..., τn+2 with the relation (5.6).

Recall that the identity [H, *S] = 0 holds for the normal form H. This also implies that

S is an integral of Xg and therefore H—S=H—S is an integral of Xg which is

independent of yn + 1. Then, in view of Lemma 4.2, H—S, τ 2 , . . . , τn are n integrals of

XH which are functionally independent and Poisson commuting functions of z in general

for each t fixed. Here we note that they are functionally dependent only if H— S is a

function of τ 2 , . . . , τn only. However, in this case also, XH is integrable. Thus we have

proved that, in the non-resonance and simple resonance cases, the vector field XH with

//in the Birkhoff normal form is integrable. This proves the "only if" part of Theorem

4.4.

Finally, for later use, let us consider the Poisson bracket of any two functions in

the normal form. It vanishes identically in the non-resonance case, but does not vanish

in general in the simple resonance case. To compute it, let f = f(z,xn + ί,yn+ί) be a

function in the normal form in the simple resonance case. Using the relation (5.6), we

can write it uniquely in the form

(5.9) /(z, x π + 1 , yn + 1) = f1(τ9 τ n + 1 ) + /2(τ, τn + 2) τ = (τ0, τl9..., τn),

where /J(τ, τn+i) are power series in τ 0 , . . . , τn and τn+i (i= 1, 2). If f2 does not vanish

identically, then by eliminating τn + 2 from /2(τ, τn+2) using the relation (5.6), one can

consider / as a Laurent series in n + 2 variables τ 0 , τ 1 ? . . . , τn + 1. Then, we obtain the

following formula.

LEMMA 5.2. Let /, g be in the normal form and consider them as Laurent series in

τ 0 , τl9..., τn + ί given by (5.5). Then

L0 ULn+l ULn+l Ui

with

(5.11) ίτo,τn+1']=pμ1τn+1 .

PROOF. Since / and g are functions in τ 0 , τl9..., τ n + 1 , we have
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Here [τ/5 τj']=0 except for (iJ) = (09 n+l) or (n+1,0). Hence we obtain the desired

formula (5.10) with (5.11).

6. Construction of a formal normalizing transformation. We will obtain a

normalizing transformation φ described in Theorem 4.4 as the limit of an iteration
process. The aim of this section is to construct this process and prove the existence of
φ as a formal transformation.

We begin by proving some lemmas. For the vector space 0* and 9 introduced in
Section 5, let us consider the linear maps

where S, N and H2 are quadratic forms defined by (4.1). By Definition 4.1, a series
fe & is in the normal form if and only if fe Ker ad S. Let 0>m denote the vector space
over C of all homogeneous polynomials in z = (x, y) of degree m with coefficients being
Fourier series of t with period 1. Also we define the vector space &m in the same way
as defining 9 from &. Let us define linear maps adm5, adm7V and adm/72 by restriction

The following lemma will play an important role in the construction of the normalizing
transformation.

LEMMA 6.1.

( i ) ^ m = Keradm50Imadm iS, ^ = Ker ad 501m ad 5.
(ϋ) The restriction ofa,dmH2 to ImadmS is an invertible map from ImadmS onto

itself.
(iii) Iff,ge Ker ad S, then [/, g\ e Ker ad S.
(iv) If fe Ker ad S and g e Im ad S, then [/, g~] e Im ad S.

PROOF. If we write fe0> in the form (5.1), we see from (5.3) that

J/eKerad m 5 Γ if and only if dk

aβ = 0 for <μ, oc-β) + 2πikΦ0 ,

1 fe Im adm S if and only if dk

aβ = 0 for <μ, α - β) + 2πik = 0 .

This implies the assertion (i). To prove the assertion (ii), let fe0>m and ^elmadm5 r

satisfy the equation

ΐf,Sl=g with g= Σ ( Σ ek

aβe
2πikt)xayβ (ek

aβeQ.
\<x\ + \ β \ = m \ k e Z J

From (5.3), this equation is solved uniquely for a formal series / as
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/= Σ ( Σ c2πikt )χ*yβ

| | \ z ' <μ, α-β} + 2πik J
where Z' is the set of integers satisfying the condition <μ, oc — β} + 2πikΦ0. Since the
absolute value |<μ, α — β} + 2πik\ is bounded away from zero (for α, β fixed), the
coefficients of / are absolutely convergent Fourier series of t and therefore / is
holomorphic and belongs to Imadm5. This implies that adm5 is an invertible map from
Imadm5 onto itself. Furthermore, we note that admS and admiV commute because
[5, TV] = {S, N} = 0. Hence we have

which implies that adm//2 *s a m a P from Imadm4S to itself. Since admΛf is nilpotent,
there exists a positive integer meN such that (admJ/V)m^0 and (admΛΓ)n = 0 for any
integer n>m. This implies that

= {/-(adm SΓ\admN)+ • • • +(-(admS)-1(admJV)Γ}(adm5Γ1,

which gives an expression for the inverse map of admif21 Imadm.S. Thus we have proved
the assertion (ii). Furthermore, one can prove (iii) using the Jacobi identity. Also, the
assumption of (iv) implies [/, £] = 0 and # = [/*, S] for some he&>, and therefore we
have [/, g] = [[/, A], 5], proving the assertion (iv). •

Associated with the decomposition (i) of Lemma 6.1, we introduce projection
operators PN and PR as follows:

PN: ^ - ^ K e r a d S , PR:

Then any series fe& is represented by

The relation f=PNf implies that / is in the normal form. We call P^/and P Λ /the
normal form part of / and the remainder part of / respectively.

Since we define the normalizing transformation by an iteration process, we have
to consider normal forms up to finite order. We consider series belonging to 0* modulo
constants and write the power series expansion of / = / ( z , t)e^ with respect to z as
follows:

(6.1) / = / ° + / 1 + ; /°#const.,

where fd (d=0, 1,...) are homogeneous polynomials in z = (x, y) of degree s + d with
coefficients being Fourier series in t with period 1. Here s is the degree of the polynomial
f°. Here and in what follows, we often use t instead of xn+ x or ξn+x for the convenience
of notation. We call f° the lowest order part of / . For the Hamiltonian H, we consider
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H2=yn+1 + H2(z) as its lowest order part and denote it by Ft0.

DEFINITION 6.2. (i) A function fe& is said to be in the normal form up to order

s + d(s = dcgf°) if / ° + + / d is in the normal form.

(ii) The extended Hamiltonian H=yn+1 + H(z, xn+1) is said to be in the normal

form up to order so + d (so = 2) if He0* is in the normal form up to order so + d. The

lowest order part of His defined as H ° = H2 and we write /Jin the form (6.1), that is,

(6.2) H=H° + Hx+> H° = H2, Hd = Hd.

Now in order to define the iteration process, we consider symplectic transformations

which are time-one maps of the Hamiltonian vector fields with Hamiltonians of the form

(6.3) W(z,xn+uyn + ί):=W(z,xn+1)+yn+1 with Wes/(R2n + \ S1).

By Lemma 4.3 (ii), the time-one map φ = exp A> belongs to Zf. Therefore any composite

of those time-one maps belongs to £f. The iteration procedure is described as follows:

THEOREM 6.3. Let H=H(z, t)ejtf(C2n+\ S1) be a function of the form (4.1) and

assume that H is holomorphic in a domain Ω=UxR, where Ucz C2n is a neighbourhood

of the origin z = 0 and RczC is a strip domain of the form

R = {teC\ | I m / | < r } , r > 0 a constant.

Assume that its extended Hamiltonian H is in the normal form up to order s0 + d— 1

(,so = 2, d>0). Then there exists a unique function W{z, t)es/(C2n+\ S1) such that

(i) W has the form

(6.4)

where Wι= Wι(z, t)ejtf(C2n+1, S1) are homogeneous polynomials of degree I in z whose

coefficients are holomorphic Fourier series ofteR with period 1;

(ii) for the transformation φ = expAr^ with W of the form (6.3), Roφ is in the

normal form up to order so + 2d—l.

Clearly this implies the following:

COROLLARY 6.4. For the extended Hamiltonian HofHe s/(C2n +ί, S^in the form

(4.1), there exists a unique sequence of symplectic transformations φv (v = 0, 1,...) such

that

(i) φv = expXtf, W being a function described in Theorem 6.3 with d=2v;

(ii) for the transformation φiv): = φ0o oφvi ffoφ(v) is in the normal form up to

order ι

REMARKS, (i) In the above, we need neither the assumption of integrability nor

that of non-resonance or simple resonance.

(ii) Obviously 0 : = limv_oo(/)(v) is a formal symplectic transformation such that
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H° φ is in the normal form.

PROOF OF THEOREM 6.3. By assumption, we can write H in the form

H=h + H; h = PNh, H=O(\z\s°+d).

Let Wbe a polynomial of the form (6.3) with (6.4). Then the time-one map φ: = exp A>:

(C, ξn+1, ηn + i)^(z, x n + i , yn+i) can be written as (see [7, p. 423])

φ:

This implies that

(6.5) Hoφ(ζ,ξn+uηn+ί)

where the argument of h is (C, ξn+19 ηn+x) and that of W, // is (ζ, ξn+1). Since A is in the

normal form, it follows from Lemma 6.1 (iv) that PN\_K MΠ = 0 under the assumption

PNW=0. Therefore Roφ is in the normal form up to order so + 2d— 1 if and only if

W satisfies the equation

(6.6) [A, Wl=-PRH+O(\ζΓ+2d).

Writing H in the form (6.2) and comparing the homogeneous parts of degree s0 + /

{d<l<2d-\\ we have

(6.7) [Λ°, Wι + 2^=-PRHι- lΣ\h\ Wι + 2~^ (/=rf,..., 2d-l),
v = l

where hv = ̂ v , Hv = Hv. By Lemma 6.1 (ii) and (iv), this equation can be solved uniquely

for Wι+2eImadι+2S, provided that PNJVd+2= =PNWι+1=0. It follows from the

proof of Lemma 6.1 (ii) that the coefficients of the terms ξaηβ in Wι + 2 are holomorphic

Fourier series of tsR. By induction this implies the unique existence of a polynomial

W of the form (6.4) satisfying (6.6). •

7. Idea of the convergence proof. The essential part of the proof of Theorem 4.4

is the proof of convergence for the transformation φ obtained by Theorem 6.3. We

now formulate it in the following theorem:

THEOREM 7.1. Let Hes/(C2n+1, S1) be a function of the form (4.1) such that z = 0

is a non-resonant or simply resonant equilibrium point ofXH. Assume that the system XH

is integrable. Then the sequence {φiv)} described in Corollary 6.4 converges uniformly to

an analytic symplectic transformation φe6f.

The aim of this section is to describe our idea of proving this theorem. A key point

of the proof is that φ = limv_+ o oφ ( v ) takes n additional integrals of Xβ as well as H into
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the normal form. This fact is a consequence of the following:

LEMMA 7.2. Let G = G(z, t)es/(C2n + 1, S1) be an integral of XH and assume that

H is in the normal form up to order s0 -f d, where s0 = deg H2 = 2 and d> 0. Then

s: = deg G° > 1 and G is in the normal form up to order s + d.

PROOF. Since G(z, xn+ί) is an integral of Xs by Lemma 4.2, we have the identity

[G, /Γ| = 0. Writing G and H in the form (6.1) and (6.2), the comparison of the

homogeneous parts of degree s + l (0<l<d) in this identity gives

(7.1) Σ [(?', # ' ] = <>.
i + j = l

For 1=0, this reads [G°, # ° ] = 0, which implies that G° is in the normal form. If

degG° = 0, G°(z,xn + 1) is a function of xn + ί only and the relation [G°, /7°] = 0 means

dG°/δxn + ί=0. Then G° is a constant, which contradicts (6.1). Therefore we have

degG°> 1. From the identity (7.1) for /= 1, 2 , . . . , d, we can prove inductively that

G 1 , G2,..., Gd are in the normal form by using Lemma 6.1 (see the proof of Proposition

3.2 of [8]). D

Suppose that the vector field XH is integrable with n functionally independent

integrals Gk(z, t)ejtf(C2n + 1, S1) (k= 1,...,«), which we write in the expansion in terms

of homogeneous polynomials (6.1). For technical reasons, we need the functional

independence of the lowest order parts G$,..., G°, which does not follow directly from

that of G l 5 . . . , Gn in general. However, we have:

LEMMA 7.3. Let Hesf(C2n+\ S1) be a function of the form (4.1) such that z = 0

is a non-resonant or simply resonant equilibrium point of XH. Let Gx{z, £ ) , . . . , Gn(z, t)e

jtf(C2n + 1, S1) be n integrals of XH that are functionally independent functions of z for

any t fixed. Then there exist n integrals of XH in the form

(7.2) Gfa t): = Pk(Gί(z, t),..., Gn(z, t))e^(C2n + 1, S1) (k= 1, . . . , n),

where Pk are polynomials ofGu...,Gn with complex constant coefficients, such that the

lowest order parts of G'u ..., G'n are functionally independent polynomials of z for any t

fixed. Furthermore, if Glf ...,Gn are Poisson commuting, those G[,..., G'n are also

Poisson commuting.

PROOF. By assumption, Gx(z, 0 ) , . . . , Gn(z, 0) are functionally independent func-

tions of z. Then, using Ziglin's lemma [13, Lemma 2.1], we can determine the poly-

nomials Pk with complex coefficients so that P^G^z, 0 ) , . . . , Gn(z, 0)) (k= 1, . . . , n) are

functionally independent (see [7, Appendix] for the proof). Let us define the functions

G'k by (7.2), which are integrals of XH. Since the lowest order part of H is in the normal

form under the assumption, it follows from Lemma 7.2 that the lowest order parts of

Gk are in the normal form and their degrees are greater than or equal to 1. Recall that

the normal forms in the simple resonance case are power series with constant coefficients
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in the variables τ 0 τ B + l J τ π + 2 . Therefore, the coefficients of any term xayβ in the

lowest order part of Gk are either identically zero or nonzero everywhere. This implies

that the lowest order parts of Gk(z9 t) are determined independently of t and are

functionally independent functions of z for any t fixed. The same assertion holds also

in the non-resonance case. The final assertion is obvious. •

Now, writing Gk for Gk obtained by Lemma 7.3 under the assumption of Theorem

7.1, we may assume that Gl9..., Gnes/(C2n + 1, S1) are Poisson commuting integrals

of XH such that their lowest order parts G°, ...,G° are functionally independent

polynomials of z for each t fixed. For the convenience of notation, we set H— Go and

assume that it is in the normal form up to order so + d— 1 (^0 = 2). Then it follows

from Lemma 7.2 that those « + l functions Gk are in the normal form up to order

sk + d— 1, where sk are the degrees of the lowest order parts Gk. Let us write them in

the form

(7.3) Gk{z, x n + 1 , y n + 1 ) = gk(z9 x n + l 9 y n + 1 ) + Gk(z, x n + 1 ) , (fc = 0 , 1 , . . . , « )

with gk being in the normal form and Gk(z9 xn+ί) = O(\ z \Sk+d). Although we write n+1

functions Go, ...,Gn in this manner, they (and gk) are actually independent of yn+1

except for Go (and g0). Let φ be the symplectic transformation described in Theorem

6.3. Similarly as in the proof of Theorem 6.3, we have

(7.4) Gkoφ(ζ9ξn+uηn +

where the arguments of functions gk9 W9 Gk are (ζ, ξn+l9 ηn+i). Those functions as well

as the terms O(\ζ\Sk+2d) are independent of ηn+ι except for g0. By Theorem 6.3 and

Lemma 7.2, Gkoφ are in the normal form up to order sk + 2d—l and therefore W

satisfies n + 1 equations:

(7.5) lgk,Wl=-PRGk + O(\ζ\s«+2d) (fc = 0 , l , . . . , n ) .

Here we note that Gk° = 0k

0 (fc = 0 , 1 , . . . , n). Since go=ηH+1 + H2(Q and gf,...,g% are

independent of ηn+ ί9 the functional independence of g°,..., g® is equivalent to that of

^o? gu - - - >9n as functions of ζ and ηn+1 for each t = ξn+1 fixed. Recall that g%9 g%9..., g°

can be considered as rational functions of τ 0 , τl9..., τn+1 by eliminating τn+2 using

the relation (5.6). Here and in what follows, τk are those given by (5.5) with xi9 yt

replaced by ξi9 η^ Then their functional independence implies that

( 7 . 6 )

n+1)

2n+1on an open and dense subset of C2n+1 for each t fixed. Furthermore, recall that G{ and

Gj are Poisson commuting for all i,j=0, 1,...,«. Then comparing the lowest order

parts of the identity [_Gi9 Gj^ = 09 we see that the Poisson bracket [_gf9gj~\ vanishes

identically. By Lemma 5.2, this leads to
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MJ?L_J?LM.o fo,aπ y-αi.......
dτ0 dτn + 1 dτn+ί dτ0

This implies that, for the vector g° = (gS, 0?,. , 0°), dg°/dτ0 and dg°/dτn+1 are linearly

dependent. Notice that at least one of these two vectors does not vanish because of the

condition (7.6). Then, since dg$/dτo = dg$/dτn+1=0, we may assume that either

dg°/dτoφ0 or dg°/dτn+1φ0 after changing the indices of Gl9...,GH if necessary.

Corresponding to these two cases, the functional independence (7.6) implies that either

of the conditions

(7.7) % o Q ^ Q ) dgl
d e t # 0 a n d φ Q

d(τ0,..., τn) dτ0

or

(7.8) det ^ ' — g-0) # 0 and - ^ # 0
d(τu...,τn + ί) dτn + 1

holds for any / fixed.

Setting ξn+1 = /, let us rewrite the equations (7.5) as

Σ " ^ fy, ^(C, 0 ] = - ^ G f ( ζ , 0 + O(| ζ | S ί + 2 d) (ι = 0, 1,..., ri).
0 OTj = 0

Here, in order to take derivatives dgjdτj9 gt are considered as Laurent polynomials in

τ 0 , τl9..., τ n + 1 , where τ^ are given by (5.5) with xt, yt replaced by ξi9 η^

The equation (7.9) can be considered as a system of n + 1 equations for n + 2

quantities [τ 0, W~\,..., [ τ π + 1 , fΓ]. However, we can reduce (7.9) to n equations for

[τ 1 ? W\ . . . , [τπ, PΓ], depending on which of the conditions (7.7) and (7.8) holds. Those

equations will be given in Lemma 7.4 below. To state it, we introduce a Laurent

polynomial αι7(τ) as follows:

ψ.ψ.-ψ.ψ) in the case (7.7);
(7.10)

/ ήn /In. ήn On. \

in the case (7.8),
τn+1 dτj dτi dτn +

(i = 0, . . . , n- l ,y=0, l , .

where

(7.11) ^ τ ) = μ f 2 ( τ 1 - τ 0 ) 2 τ n + 1 .

Here we note that αfJ (τ) can be considered as polynomials of τ 0 , . . . , τ π + 2 . Indeed, after

writing g0,..., gn as the sum of polynomials of the form (5.9), their differentiations
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with respect to τ 0 , . . . , τ n + 1 are calculated according to the following formula:

(7.12)

with

d

) | dZn + 2 D
dτ,

( i - O , l ) ,

d

Sτn+1

Tn+1^ dτ + 1

dτ,n + 2 pμ1τn+1
ιn + 2

dτ0 τn+ί

Here Z)τ. ( / = 0 , . . . , n + 2) denotes the derivative with respect to τf when τ 0 , . . . , τn+2 are

considered as independent variables. Then it follows from (7.11) that a^r) are

polynomials in τ 0 , . . . , τ π + 2 .

Also, if we consider a^τ) as polynomials in ζ=(ξ, η), they can be written as

where α^ are homogeneous polynomials of degree mj + rfin ζ with coefficients dependent

on ξn+ί = t. Here

(7.14)

and we note

sn + s j +/? in the case (7.7)

sn + st + 2 in the case (7.8),

P(τ)

P(τ)

dτ0

dg?

IS Sg9

τj dτ0

dg! dg?

Ln+1 dτ
n+1

in the case (7.7)

in the case (7.8).

Now we describe the reduction of the equation (7.9) together with summary about

the simultaneous normalization of n +1 functions Go,..., Gn.

LEMMA 7.4. Under the assumptions of Theorem 7.1, let G0 = H and let Gk(z,t)

(k= 1,...,«) be Poisson commuting integrals of XH such that their lowest order parts

(7°,. . ., Gw

0 are functionally independent functions of z for each t fixed. Suppose that Go

is in the normal form up to order so + d— 1. Then, for the transformation φ = QxpX^

described in Theorem 6.3, the functions Gkoφ (fc = 0,1,...,«) are in the normal form up

to order sk + 2d— 1. Furthermore, each homogeneous polynomial Wι+2 (l=d,..., Id— 1)

satisfies the following system of equations:

(7.15) (i = 0,1 π — 1 ) ,
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v = 0

l-d

v = 0

dτ0 dτ0

in the case (7.7),

r)- Σ
j=l v = l

rR^i )— JL

in the case (7.8).

Moreover, in both cases (7.7) and (7.8), we have

(7.16) ^(τ):=det(αP.(τ)) ί = 0,...,w_1 ; j.= 1,...,

and DkW
ι + 2: = [τfc, Wι+22 are expressed in the form

(7.17) /

with

(7.18)

Σ
v = l

(fc-1)

REMARK. The formula (7.17) shows that the numerator qι

k(ζ91) is divisible by p{τ).

It will play a key role in getting the estimate for W.

PROOF. We already proved the first assertion. To prove the second assertion in

the case (7.7), we multiply (7.9)f and (7.9)π by P(τ)dgjdτo and P(τ)dgi/dτ0 respectively

and take their difference. Then we have n equations

Here, using Lemma 5.2 and the identity [Gn, G f] = 0, we have

Therefore, β ι > + i(τ)[τw + 1, W"] = O(\ζ\mi + 2d+2) with ^ = ̂  + ̂ +7? and the second part

of the right-hand side of (7.19),. has the same order estimate. Hence the system of

equations (7.19)O-(7.19)Π_1 can be written as
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(7.20)

(i = 0, 1 Λ — 1 ) .

Comparing the homogeneous parts of degree wf + / + 2 in these equations, we obtain

the system of equations (7.15) which is satisfied by the function Wι+2. Since the condition

(7.7) implies (7.16), we have /?(τ)#0 on an open and dense subset Ω of C2n x R, where

RcC is the neibourhood of the real /-axis given in Theorem 6.3. Therefore, we have

the expression (7.17) with (7.18) for every (£, t)eΩ. By the analyticity of the functions

DkJVι+2, q[ and p, the same expression holds for every (ζ, t)eC2n x R. This completes

the proof in the case (7.7). The proof in the case (7.8) is the same as above and we

obtain the equations (7.20) with dgjdτo replaced by dgjdτn+1 (i = 0, 1,...,«). This leads

to the assertions in the case (7.8). •

8. Estimate for W. In order to estimate the transformation φ = exp A> described

in Theorem 6.3, the basic task is to estimate the function W. In this section, we will

estimate W (not W) with respect to an appropriate norm. The idea is to make use of

the formula (7.17) to estimate DkW= [τk, W\ which will lead to the estimate for Witself.

First of all, we will determine the domains in which all functions are to be considered.

To this end, for appropriate positive constants δu . . . , δ2n+x to be determined in Lemma

8.1 below, we introduce the following complex domains of C2n + ί:

r: = {(ζ,t)eC2nxC\\ζi\<δir(i=\,...,2n),\lmt\<δ2n + 1r},
(8 1)

[ ^ { ( C O C ^ C l l C ^ V (i=l,...,2n),\Imt\<δ2n+ίr}.
We note that for any holomorphic function in a neibourhood of Ωr, the maximum of

its absolute value on Ωr can be attained at a point on Δr. This can be easily seen by the

repeated use of the maximum principle for holomorphic functions of one variable. From

this fact, we can prove the following lemma.

LEMMA 8.1. Let s be the degree of the polynomial p(τ) given by (7.16), where p(τ)

is considered as a polynomial of ζu . . . , ζ2n with coefficients being periodic functions of

t. Then there exist constants <5f (i= 1, . . . , 2n+1) such that 0<(5 i< 1 and

(8.2) l/>(τ)|>C lr
s on Δr,

where r is a small positive constant given arbitrarily and cλ>0 is a constant which is

independent of r.

PROOF. This lemma corresponds to Lemma 4.1 of [7], in which the constants δk

can be chosen in such a way that δi = δi+n for /= 1,. . . , n because p(τ) is a polynomial

of ξir\i only. This is not the case here and moreover, p(τ) depends on t. However, one

can easily see that, choosing the constant <5 2 n + 1>0 sufficiently small, its proof works
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also for the case here with trivial modifications (see the proof of Lemma 4.1 of [7]).

•
Using the constants δί9..., δ2n+1 given above, we define the complex domains Ωr

and Λr by (8.1). Let A(Ωr) be the space of functions in (ζ, t) that are holomorphic in
Ωr+ε with some ε>0 and are periodic in / with period 1. Then a function fGA(Ωr) can
be written as

/ = / o + / i + / 2 + >

where fi are homogeneous polynomials of degree j in ζl9..., ζ2n with coefficients being
Fourier series in / that are holomorphic in \Imt\<δ2n+ι{r + ε). In view of Cauchy's
estimate, the series feA(Ωr) has a majorant which is a convergent power series in
Cu-'Άin with positive constant coefficients. This is because / is holomorphic in
Ωr+ε=>Ωr. Therefore, we can define

| / | Γ : = max | / ( £ ί ) | , | | / | | r : = £ \fj\r for feA(Ωr).
(ζ,t)eΩr j = o

Furthermore, we introduce the space

AJΩr): = {feA(Ωr) \ ftf, ί) = 0 for y = 0,1, . . . , m-1}

and define

l l / l l r . » : = ^ r for feAJQ,).

Now let Gk = Gk(ζ, t) (fc = 0,1, . . . , ή) be functions that are in the normal form up
to order sk + d— 1. We write those Gk in the form (7.3) with (z, xn+1, yn+i) replaced by
(ζ,ξn + 1,ηn+1) and assume that Go — ηn+1, Gu . . . , Gn belong to A(Ωr), where we set
ξn+1 = t. Then it follows from Theorem 6.3 that Wι + 2e A(Ωr) and hence DkW

ι + 2e A(Ωr).
Let us consider the maximum \\DkW

ι + 2\\r = \DkW
ι + 2\r. Since it can be attained at a

point on Δr c Ωr, the following estimate follows from the identity (7.17) and the inequality
(8.2):

(8.3) \\DkW
ι + 2\\f<

 H i ζ f j l ' < - Π(ζ, t)\\ra .
(rmnjp(τ)\ c±

Using this formula, we will derive the estimate for ||Z)k^|| rfor W= Wd+2+- + W2d+1

First we prove:

LEMMA 8.2. The function W satisfies

\\DkW
ι + 2\\r<c2

nΣ \\Fli\\r,mi ( f c = l , . . . , n ; J = d , . . . , 2 d - l ) ,
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where c2 is a positive constant that is independent ofr, and mt are the constants given by

(7.14).

PROOF. We note that the degree of the polynomial F\ is #*; + /+2 (in both cases

(7.7) and (7.8)). The proof is based on the estimate (8.3) and the expansion of the

determinant qι

k(ζ, t) with respect to the (k— l)-th column consisting of F\(ζ91). It is the

same as that of Lemma 4.2 of [7], so it is omitted. •

To proceed further, it is convenient to introduce some notation. Let/be the power

series in ζl9..., ζ2n with constant coefficients which is defined by

/ : = Σ max I caβ(t) \ξ*ηβ for / = £ caβ{t)ξ*η* ,

where

R = {teC\θ<Ret<l,\Imt\<δ2n+1r} .

Let / be one of the following three vector functions:

/ = 0 ' . = (0o--*7,. + i>0i>- >0n)>

(8.4) / = 0 = ( 0 o , 0 i , .- >0W) with Qi = Qi-Q* ,

For this vector function / = ( / 0 , fu . ., /„), let us define a constant | | | 3/ | | | r by

(8.5) |||3/Ί||Γ: = e2 l " Σ WKfilU-i+pe4^ Σ "£' II^ΛIIr.̂ -,.
ij 0 i Oj +l

Here each element ft is in the normal form and belongs to As.(Ωr) for ηn+1 fixed, and

therefore the quantity | | |θ/ | | | Γ is well defined. One can easily see that

(8.6) Il |d0 o | | | r<c 3 for some constant c 3 > 0 .

Finally, we introduce the quantity

(8.7) | | |<?|| | r:= Σ \\&ι\\r..t-2 •
i = 0

Then, introducing a constant

(8.8) c4: = max(c2, 1 + 2c2c3),

we can estimate ||/)kfFΊ|Γ
 a s follows.

LEMMA 8.3. Assume that

(8.9) \
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Then the function W(ζ, t) satisfies

(8.10) \\DkW

PROOF. We can actually prove a better estimte than (8.10) with Gt replaced by

Gi in the definition (8.7) of \\\G\\\. More precisely, we can prove

(8.11) \\DkW\\r<UV; ί/: = c4 Σ foPfllL)1* V:= Σ Σ 11^/11^,-2.
1 = 0 i=0 l=d

from which (8.10) follows in view of (8.9) and the relation | |i )

Λ(5/| | r > s._2< | |G/ | | r > s ._ 2 .

We can prove (8.11) by an inductive argument in the same way as in the proof of

Lemma 5.3 of [8], so we only give its outline below. We set

^5/11^,-2 f o r 7 = 0 , 1 , . . . , « ,

\\Dτj8i\\r,Si-p f ° Γ 7 = Λ + l , i

and

ulj' =

Then we can write \\\dg\\\r =
'monomials'

,,* + 2 I

: = (const.)

llr.sι-2

v = l

a n d consider U as the sum of

fc jv,
where iv,jv9 lv and m run over all integers satisfying 0 < / v < « , 0<y v<H + 2, l<lv<d— 1

and \<m<d— 1. We define the degree of w as Λ: = Σ 7 = i ^ Also K is the sum of

monomials v\ + 1 (l=d9..., 2d— 1) whose degree we define as /+2, and we define the

degree of the monomial wv{+2 as A + /+2. For our purpose, it suffices to prove

(8.12) / + 2| Γ < t h e sum of monomials of degree 1 + 2 in UV (l=d,..., 2d-l).

In the following, we only consider the case (7.7) since the proof is the same in the case

(7.8). In Lemma 8.2, we note that the function F\(ζ91) can be written as F/(£ i) = A\ + Bι

h

where

τ0 oτ0 / ./=i v =i

Since \τn + ι \r<e2π^rrp

9 we can deduce from (7.11)-(7.14) that

\\A!\\r,mi< Σ {Kθ + < + 2W + 2 - V + K θ + < M + 2)^ + 2-V}
v = 0

In view of (8.6), this implies that

n-ί

(8.13) X M/IUmf<the sum of monomials of degree 1 + 2 in (c3 + \\\dg\\\r)V.
i = 0
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In the case l=d, we have B\ = 0. Hence, by Lemma 8.2 and (8.8), the assertion (8.13)
implies that (8.12) holds for l=d, since V contains monomials of degree >d+2 only.

To estimate B\9 using (7.11)—(7.14) we can similarly prove

λ + μ = v

+ ε7 Σ K θ < n + 2 + < Λ + 2<θ) Jλ + μ = v

where εγ = 1 and ε2 = =εn = 0. This implies that

n— 1 n

Σ Σ II au IIr.rrn ^ t h e s u m of m o n o m i a l s of degree v in 2 c 3 | | | δ ^ | | | r + III dg ||| * .
i 0 j l

Suppose that (8.12) holds for l=d,..., k— 1 (<2d — 2). Then the estimate above implies
that

(8.14) *Σ ||^|| r 5 m i<thesumofmonomialsofdegree/c + 2in (2c3\\\dg\\\r+\\\dg\\\ϊ)UV.
i = O

Here we note that

d+l

L) + (c4 1 + 2c3) Σ

and that K contains monomials of degree >d+2 only. From Lemma 8.2, we have

and therefore, in view of (8.8), the estimates (8.13) and (8.14) yield the inequality (8.12)
with \ — k. This completes the induction to prove (8.11). •

Now we derive estimates for W and its derivatives by using Lemma 8.3. To this
end, we note that for a series fe& its normal form part PNf is given by

(8.16) PNf(ξ, η, t)= [ : [f(e™ξ9 e~2πiθη, t+pθjdθ,- -dθn .
Jo Jo

Here e2πiβζ and e~2πiβη are «-dimensional vectors denned by

(8.17)

e-™»η: = {e-™^ηi, e~2^η2,..., e" 2 π ί%n),

(the k (>2)-th component of e2πiβξ (resp. e~2πiβη) is e2πiβkξk (resp. e-2*w*ηk))

where i=yf^Ί, θ}eR and q, p are integers such that μ1=2πiq/p and p>0. We set
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δ = min δt, c5 = 2c4 max(2π, /?).
1 < i < 2/i + 1

Then we have:

LEMMA 8.4. Let 0<p<r. Under the assumption of Lemma 8.3, the following holds:

( i )

(ii) Wζi\\p<--^-\\\G\\\r

(in)

PROOF. Let (ζ, t) e Ωr and ζ = (ξ, η) be taken arbitrarily and fixed. Using the notation

(8.17), we define the function

Wι + 2(θ):=JVι+2(e2πiθξ, e~2πiθη, t+pθj , θ = (θl9..., 0M)e[O, 1]".

Here we note that (e2πiθξ, e~2iti\ t+pθJeΩ, and Wι+2(0)= Wι+\ζ, t). Then by the

mean value theorem we have

n ()Wl + 2 n

I Wι + 2{Θ)-Wι + 2(O)\< Σ m a x — • <2π Σ \lWι + 2,τk-]
k=lθe[O,l]n dθk k = 2

In view of (8.16) and by the condition PNWl + 2 = 09 this lead to

by integration from 0 to 1 with respect to θί9..., θn. By Lemma 8.3, this implies the

desired estimate (i). The estimates (ii) and (iii) follow easily by using Cauchy's integral

formula (see the proof of Lemma 4.4 of [7]). •

9. Estimates for one iteration step. We continue to consider the iteration step

described in Lemma 7.4. In this section, we will give the estimates for Gk o φ. They will

be summarized in Lemmas 9.3-9.4 below.

We begin with estimates for domains transformed by φ = expA>. Let

φ*(ζ, ξn + 1, ηn+1) be the solution of the vector field A> through (ζ, ξn+l9 ηn + 1) at t = 0.

Let Dr be the domain in C2n + 2 defined by

Dr: = Ωrx{ηn+1eC\\ηn+1\<ή.

We introduce a constant

c6 = 2nc5δ~2

and prove:
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LEMMA 9.1. Let G0 — ηn + 1, Gl9...,GH belong to A(Ωr) and let 0<σ<p<r with

p — σ = r — p. Assume that c 4 | | |3^| | | r<l/2 and

cβ{r-p)-2\\\G\\\r<\.

Then, for any (ζ, ξn + 1,ηn + 1)eDσ the solution φ\ζ9 ξn+1,ηn+1) exists and is contained in

Dp for allteR satisfying 111 < 2 . Moreover, the time-one map φ = expXw is a holomorphic

transformation from Dσ into Dp.

PROOF. By setting φ\ζ, ξn+i9 ιyn+1) = (z(ί), xn+i(t)> yn+i(t)), we have xH+ί = 1 and

hence xn+1(t) = t + ξn+ί. This implies that (z(t)9yn + ί(t)) is the solution of the system

(9.1) z = JWJίz9t + ξH+1)9 yn + 1 = -Wt(

By assumption and Lemma 8.4, we have an estimate

(9.2) | | ^ z J | < ^ - ^ | | | G | | | r < - L ( 5 ( r - p ) (*= 1,..., 2*+ 1, z2n+ί = t)
δ(r — p) In

Let (C, ξn+1,ηn+1)eDσ and let D be its neighbourhood defined by

\zk-ζk\<δ(r-p) ( * = 1 , . . . , 2 Λ ) , \lm(xn+1-ξn + ί)\<δ(p-σ),

Then, in view of the estimate (9.2) the fundamental theorem for differential equations

implies that the solution (z(ί), yn+ x(ί)) of (9.1) is a holomorphic function of / and (ζ, η)

as far as | t\<δ(p — σ)l(2n)~ιδ(r — p) = 2n. Hence, for the solution of the original vector

field Xψ for teR, we have proved the desired assertion. •

Next we will estimate the difference between φ = φx =expXψ and its linearization

zt(ζ,ξn + ί,ηn + 1 ) . We set

and write φ\ζ9 ξn + 1) for the z-coordinate of φ\ζ9 ξn+ί, ηn + i), that is, φ* for the flow of

Xw. Then, considering the integral equation corresponding to Xw, we have

(9.3)

where Rx{ζ, ζn+ί) and R2{ζ, ξn+i) are a 2n-dimensional vector function and a scalar

function given respectively by
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R\ζ,ζn+ί) = J{Wz(φ'(ζ,ξn+ι),ξn+ί+ή-Wz(ζ,ξn+1)}dt,
Jo

R2(ζ, ξκ + 1)= - Γ {Wξn+1(φ'(ζ, ξn+1), ξn+1 + ή- Wξn + ι(ζ, ξn+1)}dt.
Jo

In the following, our estimates will be for functions on Ωr and not for functions

on Dr. From this viewpoint, although the function g0 depends on ηn+1, we define

I 0 0 Ir = I 0 0 - Άn + 1 \r , I 0 0 \r ' = I 0 0 ~ Άn + 1 \r ,

and the norm | | r will be used only for functions on Ωr. Also, for a vector function

/=(/i> >/m) w i t n /fce^(^r)? we define the norms

: = max | / k | r , | | / | | r : = max

Furthermore, for later use we introduce constants τ, K, r' in addition to r, p in such a

way that

with

r — p = p — σ — σ — τ — τ — κ — κ — r'\ = — (r — r)\.

Then, in view of Lemma 8.4 and Lemma 9.1, R1 and R2 are estimated as follows:

(9.4) | ^ i | τ < 2 | ^ z | p < - ^ | | | G | | | r , | R2 \τ<2\ W,n+1| P < - ^ —

We now turn to the estimate for Gkoφ. By the periodicity of Gk with respect to / with

period 1, we can write

Gkoφ(ζ, ξn + 1, ηn + 1) = gk(ζ', ξn+u η^ + 1) + Gk(ζ', ξn+1) (k = 0,1,..., n ) .

From (9.3), we can estimate ζ' — ζ as follows:

\C-ζ\τ<\Wz\p<
 C δ

'"-Irir-p)

Let δk0 be the constant defined by

: = 0 ,

.0 kΦO.

Then, using Taylor's theorem and Cauchy's estimate, we have
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with

(9.5) \Rk

i\τ<^- Σ
2 ίj=i dζ.dζj

Therefore, it follows from (9.3) that

(9.6) gtjίζ',ξn+l9ηί+1)

where the arguments for the functions on the right-hand sides are (ζ, ξn+1,ηn

Similarly we have

(9.7)

with

(9.8)

Gk{ζ',ξn+X) =

\R*\τ<
dG.

\ζ'-ζ\τ<2n

(ζ,ξn+1) (k = O,U...,n

dGk

dζ (r-p)2

Gk(ζ,ξn + ι,ηn + 1) = gk(ζ,ξn+1,ηn+1) + Gk(ζ,ξn+1)

yfclΛ? Sπ+1? rln+l)~9k\S> > Sπ+1? Ίn-\

Let Ĝ  = Gfcoφ? and let g'k and G'k be its normal form part and its remainder part
respectively. Then, by (9.6) and (9.7) together with (7.5) it can be written as

with

(9.9)

where

and the arguments for the functions on the right-hand sides of (9.9) are (ζ, ξn+ι,ηn+1).

In order to estimate |||G'|||r., we need to estimate the majorants G'k. For this purpose,
we will use the following:

Rϊ = [g* W\ + Gk(ζ, ξn+1)-Ptd-ιG£, ξ

LEMMA 9.2. For feAm(Ωτ), we have

„ i/i.
(i)

1 —
2w , (ϋ)

l/lτ
p \2n \κ

PROOF. The assertion (i) corresponds to Lemma 6.2 of [8], where | |/ | |κ is estimated
from above by |/|τ{l —(p/r)}"2""1. Since | |/ | |κ = | / | κ , we deduce the estimate (i) by
Cauchy's estimate and by the relation 1 — (p/r)< 1 —(κ/τ). The estimate (ii) is a direct
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consequence of Schwarz' lemma for functions beginning with terms of order m. •

Recall that Gk(ζ, ξn+i) consists of terms of order >sk + 2d as power series in ζ.

Then we have the following estimates from (9.4) and Lemma 9.2 (ii).

/ r\sk + 2d 2

' 1 —

v2« + 2 .

r2\χ_P_\ V*

δk0\R:δk0

λ_P_\2n \κ

lliσill.
•^^fcO

I P
r\ 1

2n+l

sk + 2d

By introducing the symbol

and a constant cΊ satisfying

r : = ^ ||gk||rSk_;

(9.10)

the estimates above lead to

n

Σ

Sk-2

— ) <cΊ

2
< —

r',sk-2 r*li-JL*""^κ

>kO
k=o n r(\-£-

2n+l

Also, applying Lemma 9.2 (i), we derive from (9.5) and (9.8) that

£ . . £ * „ ^ c6 C 7 | | |G|| |2

2n

As for the estimate for ||i?t ||κ, we note that

with

» (dgk dW δgk

j=i\δξj dηj δηj δξj

δW

%n+ί
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Then, recalling that Rk consists of terms of order >sk + 2d, we are led to the following

estimate by means of Cauchy's estimate and Lemma 8.4:

Σ \\Rli',sk-2<
k = 0

c6δ

r2 1--ϋ
2n + 2

2nr[ 1 -
2/ι+l

III G i l l /-
2ά+\

In the above, we note that there exists a constant A > 0, depending on g but independent

of r, such that

since §0 — ηn + ι and gk begin with terms of order 2 and sk respectively. Furthermore, we

note that

r 5 K 4r'

Then, from (9.9) and all the estimates obtained above, one can easily prove the estimate

for HIG'HIr' described in the following lemma.

LEMMA 9.3. In addition to the assumption of Lemma 7.4, assume that G0 — ηn + ί,

G 1 ? . . . , Gn belong to A(Ωr) and satisfy

(9.11) y and

Let 0<r' <r. Then φ = QxpXψ is a holomorphic transformation from Dσ into Dp, where

σ = r — (2/5)(r — r/) and p = r—(\/5)(r — rr). Furthermore, the remainder parts Gk of

Gk: = Gkoφ satisfy the following estimate:

\\\G\\\r

Sr'

4r'
'\2n

(9.12)

where c8 = c8(r/r', n) is a positive constant that increases with r/r' and n.

REMARK. The constant c 8 can be given explicitly as c8 = 2c\cΊ 5 2 n + 4 .

As for the new normal form parts, we have to estimate | | |0'| | | r ' and | | | ^ Ί | | r , . Similarly

to what we had above, we can prove:

LEMMA 9.4. Under the assumption of Lemma 9.3, we have

(i)
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(ϋ)
CΊC7 C 9

where

(9.13)

PROOF. Since the new normal form parts gk are given by (9.9), we have

Application of Schwarz' lemma to gk and Gk leads to the estimate (i). To get the

estimate for | | | ^ H r ' , we need to estimate \\Dτ(Pjqd~ίGk)\\r> > S k_ 2 0 = 1 , . . . , ή) and

W^Pi'-^L ^-p t/ = w + l , n + 2) according to the definition (8.5) of | | |5/ | | | r . We

recall that any power series / in the normal form can be written in the form (5.9).

Then we have

Assume that / = / Then | | / | | Γ = HΛL+ | |/ 2 | |Γ Also recall that for any holomorphic

function in Ωr, the maximum of its absolute value is attained at a point on Λr>. Then

using Cauchy's integral formula, we deduce from the above formulas that

(/=2, . . . , *) ,
n\q\δ r\r — r) δ r(r — i

„ . 2e2π'«"" | |/ | | Γ

Let Pχd~1G be the ^-dimensional vector whose components are Pχd

(/= 1,...,«). Then, using the above formulas and definition (8.5), one can prove

92π\q\rf „ _ i >y 6π\q\r' '

π\q\δ2 δ2 δp+1 J r'{r-r') '

which leads to the estimate (ii) with (9.13). •

10. The convergence proof. We will finally prove the convergence of the iteration

process described in Corollary 6.4. It will complete the proof of Theorem 7.1 and hence

that of Theorem 4.4.
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Let us consider the estimates obtained in the preceding section. To consider the

v-th iteration step (v = 0, 1,...), we set

9u = 9Ϊ\ 9k = 9{u+1\ Gk = G£\ G'k = G£ + 1\ φ = φv

and

r = rv, r' = rv+l9 d=2v.

The v-th iteration step consists of taking G^: = g{

k

v) + G(

k

v) into G{

k

v + υ : = g(

k

v + υ + G{

k

v + υ

by the transformation φv. Also we replace the symbols | | |G | | | r , |||^|||Γ, | | | ^ | | | r by | | | G ( v ) | | | Γ v ,

Ill0(v)lllrv, ll|S0(v)lllrv respectively. Then, by Lemma 9.3 we have

φv: Ωσv^ΩPv; σv = rv--— ( r v - r v + 1 ) , pv = rv-—{rv-rv+1)

and (9.12) gives the estimate for | | |G ( v + 1 ) | | | Γ v + 1 in terms of | | |(7 ( v ) | | | r v.

Our purpose is to prove that, with an appropriate choice of the sequence {rv}, the

sequence of transformations φv is well-defined and their composite φ{v): = φ0 o φx o o

φv is uniformly convergent. To this end, we define the sequence {rv} by

Then we have

rv (v + 2)2

and hence

(10.1) - ^ - < — for v = 0, 1,2,....

This implies that the constant cΊ in (9.10) can be taken independently of the iteration

step. Also, since r v < r 0 , the constant c9 = cg(rv + 1) defined by (9.13) can be taken

independently of the iteration step and is assumed to satisfy the following inequality

by choosing r0 suitably small:

(10.2) c9!
n\q\

Let Ao be a constant satisfying the condition

where Ao can be taken independently of rv. Moreover we set

o + y ) with y = max(l, δ3'p).
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The iteration procedure with this sequence {rv} will be justified by proving the three

conditions given by (9.11) at each step. Instead of those conditions, we will prove that

| | |G ( v ) | | |Γ v satisfies the condition

(10.3) c l o ε v < l ; ε v = - ' " ^ " ^

for all v>0. By the definitions of constants c6 and c 1 0 , this condition is clearly stronger

than the third one in (9.11). Moreover, it also implies the first and the second conditions

of (9.11), as is shown by the following lemma.

LEMMA 10.1. Let ro>0be small enough to satisfy (10.2). Assume that the condition

(10.3) holds for v = 0, 1, . . . , m. Then

( i ) I l l 0 ( v 1 l r v < ( ^ o + y \ v

2 for v = 0 , l , . .

(ii) C 4 | | | ^ ( v ) | | | r < i _ for v = 0, l , . .

In the above, the assertion (i) implies that the constant A = A(g) in the first condition

of (9.11) can be chosen as A = Ao + (1/2) independently of the iteration step. This lemma

is a direct consequence of Lemma 9.4. The proof is the same as that of Lemma 7.1 of

[8] and is omitted. Furthermore, by Lemma 9.3 one can prove that

where

This implies that cεv < 1 for all v > 0 if r0 > 0 is chosen sufficiently small, and in particular

that there exists an integer N>0 such that

2-v+N for v>

For the proof, we refer to [8]. Thus we have justified the iteration procedure and see

that | | |G ( v ) | | | r v-»0 as v->oo. Also it is easy to see that φ{v) = φ0°Φi ° * *' Φv converges

uniformly to a symplectic transformation which is analytic in the domain Ωro/2 (see [7],

[8]). This completes the proof of Theorem 7.1 and hence that of Theorem 4.4.

11. Proof of Theorem 2. We will finally prove Theorem 2 using Theorem 4.4.

We will give the proof only in the semisimple case. In the non-semisimple case, we leave

its proof to the reader (see [8]).

ratic form (24) is taken into H(ζ) = S(z) = Σk=1First we see that the real quadratic form (2.4) is taken into H2(ζ) = S(z) = Σ"
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by the following (complex) linear symplectic transformation:

z = Cζ; z = XV,u^q,v,y), ζ = \ξ, η)eCn x

with

(η
k+j

rlr + 2j- 1 + rlr + 2j) >

Then zeR2n if and only if

,ηjeR t / = l , ...,fc),

ξk+j=-iήk+j ( 7 = 1 , . . . , / ) ,

Sr + 2 j = C r + 2 j - l » rlr + 2j = ήr + 2j- 0 = 1 , . . . , m).

If a function /(ζ, 0 e j / ( C 2 " + 1 , 51) is written as /(£ 0 = Σ« i ^
c

satisfies the reality condition if the following relation holds:

(11.1) f(ζ,t)=J(Tζ,ή for T=C~1C9

where / is the power series in ζ defined by

>̂ we say that /

with cΛβ{t) being Fourier series of t obtained from ca β(t) with coefficients replaced by

their complex conjugates. The condition (11.1) is equivalent to the requirement that

f(C~1z, t) is a real analytic function of z.

Let H(ζ, t)e^(C2n + 1, S1) be the Hamiltonian in Theorem 4.4 which is obtained

from a real analytic function as in Theorem 2 by the transformation z = Cζ. Then H(ζ, t)

clearly satisfies the reality condition. Also we say that a symplectic transformation

φe£f, which is of the form (4.5) and (4.6), satisfies the reality condition if the following

relation holds:

φ(Tζ,ξn+1)=Tφ(ζ,ξn + 1),

where the meaning of φ is the same as that of/ Then, in the same way as in Section

7 of [7] one can prove that the function W(ζ, t) and the transformation 0 = exp Xψ in
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Theorem 6.3 satisfy the reality condition. This implies that φ = \imy^aoφ
{v) obtained by

Theorem 7.1, as well as the normal form Hoφ — ηn + 1, satisfies the reality condition.

(Here the meaning of the "bar" of His: H=H+yn+1.) Since φ has the form (4.5) with

(4.6), we obtain a time-dependent real analytic symplectic transformation CΌφoC"" 1,

which is the desired real analytic transformation in Theorem 2. This completes the proof

of Theorem 2.

REFERENCES

[ 1 ] V. I. ARNOL'D, Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Math. 60,

Berlin-Heidelberg-New York, Springer-Verlag, 1989.

[ 2 ] G. D. BIRKHOFF, Surface transformations and their dynamical applications, Acta Math. 43 (1920), 1-119.

[ 3 ] G. D. BIRKHOFF, Dynamical Systems, Amer. Math. Soc. Colloqium Publ. 1927, revised edition 1966.

[ 4 ] T. J. BRIDGES AND R. H. CUSHMAN, Unipotent normal forms for symplectic maps, Phisica D 65 (1993),

211-241.

[ 5 ] D. M. GALIN, Versal deformations of linear hamiltonian systems, Amer. Math. Soc. Transl. Ser 2 118

(1982), 1-12.

[ 6 ] J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, 2nd printing. Graduate

Texts in Math. 9, Berlin-Heidelberg-New York, Springer-Verlag, 1972.

[ 7 ] H. Iτo, Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv. 64

(1989), 412-461.

[ 8 ] H. Iτo, Integrability of Hamiltonian systems and Birkhoff normal forms in the simple resonance case,

Math. Ann. 292 (1992), 411-444.

[ 9 ] S. B. KUKSIN, AND J. POSCHEL, On the inclusion of analytic symplectic maps in analytic Hamiltonian

flows and its applications, in Seminar on Dynamical Systems (S. Kuksin, V. Lazutkin, J. Poschel,

eds.), Birkhauser, (1994), 96-116.

[10] J. MOSER, Lectures on Hamiltonian systems, Mem. Amer. Math. Soc. 81, (1968).

[11] J. C. VAN DER MEER, The Hamiltonian Hopf Bifurcation, Lecture Notes in Math. 1160, Berlin-

Heidelberg-New York, Springer-Verlag, (1985).

[12] J. WILLIAMSON, On the normal forms of linear canonical transformations in dynamics, Amer. J. Math.

59 (1937), 599-617.

[13] S. L. ZIGLIN, Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics I,

Functional Anal. Appl. 16 (1983), 181-189.

DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY

OH-OKAYAMA, MEGURO-KU, TOKYO, 152

JAPAN




