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Abstract. In this paper, we show the existence of certain algebraic surfaces of

general type with irregularity one, and investigate the canonical mappings of these

surfaces. Such a surface has a pencil of non-hyperelliptic curves of genus 3 over an

elliptic curve, and is obtained as the minimal resolution of a relative quartic hypersurface

with at most rational double points as singularities, of the projective plane bundle over

an elliptic curve. We use some results on locally free sheaves over elliptic curves by

Atiyah and Oda to prove the existence.

1. Introduction. Let S be a minimal nonsingular projective surface defined over
C. S is said to be canonical if the rational mapping Φ\Ks\ defined by the canonical linear
system \KS\ is birational.

In this paper, we show for all values of pg(S)>2 the existence of minimal algebraic
surfaces of general type with Kς=3pg(S) and q(S)=l, and study their canonical
mappings. Note that the case pg(S)=\ was studied by Catanese and Ciliberto [7].

(I) (Castelnuovo-Horikawa's inequality, cf. [5, Theoreme 5.5], [12, Lemma 1.1]).
If S is a canonical surface, then

KΪ>3pg(S)-Ί.

(II) Castelnuovo obtained canonical surfaces with K^ = 3pg{S) — l (cf. [6]). Such
a surface S satisfies q(S) = 09 and with a few exceptions S is birational to a relative
quartic hypersurface of a P2-bundle over P1 which has at most rational double points
as singularities.

In general, a nonsingular relative quartic hypersurface in a P2-bundle over a
nonsingular curve C of genus b satisfies

Ki = 3pg(S) + 7(6-1), q(S) = b.

We may ask whether a canonical surface S satisfying these equalities is obtained as the
minimal resolution of a relative quartic hypersurface with at most rational double points,
of a />2-bundle over a nonsingular curve Cof genus b. Konno [15, Lemma 3.1, Theorem
3.2] proved that it is the case if b=\. Namely, if S is a canonical surface satisfying
Kς=3p(S) and q(S)=l, then S is the minimal resolution of a relative quartic
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hypersurface in a P2-boundle over an elliptic curve.

More precisely, S has a pencil / : S-> C=A\b(S) whose general fiber is a

non-hyperelliptic curve of genus 3. Hence, the direct image f*ωsιc of the relative dualiz-

ing sheaf ω s / c : = ω s ( χ ) / * ω c 1 is a locally free sheaf of rank 3 over C. If we let π :

W: = P(f*ωs/c)-+C to be the P2-bundle associated to / # ω s / c , Γ G P I C ( ^ ) a tautologi-

cal divisor with π^Θw(T)^f^ωs/c, and DePic(C) a divisor with $ c (D)^det f*ωs/c,

then there exists a member 5" e 14Γ—π*Z) | which has at most rational double points as

singularities, and S is the minimal resolution of Sf (cf. [15]).

Not all the irreducible relative quartic hypersurfaces in the P2-bundles over elliptic

curves which have at most rational double points as singularities have canonical surfaces

as the minimal resolutions of singularities. For example, we have the possibilities

pg(S)= 1, 2, 3, and S is not canonical in these cases.

In this paper, we study whether a complete linear system of ΘW(4T)® π * d e t £ v

has members which have at most rational double points as singularities for every locally

free sheaf E of rank three over an elliptic curve C, where π : W: = P(E)->C is the

/>2-bundle associated to Eand Γis a tautological divisor with π^Θw(T) ^ E. In particular,

we check for all values of pg(S) > 2 the existence of minimal algebraic surfaces of general

type satisfying Ks=3pg{S) and q{S)= 1. We then study their canonical mappings Φ\Ks\

including the cases pg(S)<3.

We obtain the following results on the existence of minimal algebraic surfaces with

Kj = 3pg(S) and q(S) = 1, using the results about vector bundles over an elliptic curve

C by Atiyah [4] and Oda [19].

(1) The case where f*ωs/c is isomorphic to the direct sum of three invertible

sheaves over C (§3.1): pg(S)>3 is necessary, and conversely, for every integer N>3,

there exists minimal algebraic surfaces of general type with pg(S) = N, K$= 3pg(S) and

q(S)=\. (See Theorem 3.1.)

(2) The case where f*ωs/c is isomorphic to the direct sum of an invertible sheaf

and an indecomposable locally free sheaf of rank 2 over C (§3.2): pg(S)>2 is necessary,

and conversely, for every integer N>2, there exist minimal algebraic surfaces of general

type with pg(S) = N, Ki = 3pg(S) and q(S)=l. (See Theorems 3.9 and 3.10.)

(3) The case where f*ωs/c is indecomposable (§3.3): pg(S)>2 is necessary, and

conversely, for every integer ^ ^ 2 , there exist minimal algebraic surfaces of general

type withpg(S) = N, K£ = 3pg(S) and q{S)=l. (See Theorem 3.19.)

As for the canonical mappings of the above surfaces, we obtain the following results:

(1) In the case where f*ωs/c is the direct sum of three invertible sheaves, if pg(S) > 6

holds, then Φ\ Ks t is always birational onto its image with the exception of only one

case f*ωs/c^L§3 where Lo is an invertible sheaf of degree 2 over C.

If pg(S) = 5 and if f*ωs/c is not some special locally free sheaf, then Φ\Ks\ is always

birational onto its image, too.

If pg(S) = 5 and f*ωs/c is some special locally free sheaf, or if pg(S) = 4, then Φ\Ks\

is birational onto its image in most cases. Although there is a possibility of the existence
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of a surface whose canonical mapping is not birational onto its image, we have not

obtained an example of such a surface.

If pg(S) = 3, then Φ\Ks\ is a generically finite mapping onto the projective plane

whose degree varies according to the isomorphism class of f*ωs/c. In most cases, the

degree of the canonical mapping is 6, 8 or 9.

(2) In the case where f*ωs/c is the direct sum of an invertible sheaf and an

indecomposable locally free sheaf of rank 2, if pg(S) > 5 holds, then Φ\ Ks | is always

birational onto its image.

If pg{S) = 4, then Φ\Ks\ *s birational onto its image in most cases. Although there

is a possibility of the existence of a surface whose canonical mapping is not birational

onto its image, we have not obtained an example of such a surface.

If pg(S) = 3, then Φ\Ks\ is a generically finite mapping onto the projective plane

whose degree varies according to the isomorphism class of f*ωs/c. In most cases, the

degree of the canonical mapping is 4, 8 or 9.

If pg(S) = 2, then | AΓS | is a linear pencil and the genus of a general member is 7.

(3) In the case where f*ωs/c is indecomposable, if pg(S)>5 holds, then Φ\Ks\ i s

always holomorphic and birational onto its image.

If pg(S) = 4, then Φ\Ks\ is birational onto its image in most cases. Although there

is a possibility of the existence of a surface whose canonical mapping is not birational

onto its image, we have not obtained an example of such a surface.

If pg(S) = 3, then Φ\ Ks | is a generically finite mapping of degree 8 onto the projective

plane in most cases.

If pg(S) = 2, then | AΓS | is a linear pencil and the genus of a general member is 7.

We obtain some examples of canonical surfaces whose canonical mappings are not

holomorphic. Such surfaces do not appear in the cases treated by Ashikaga [2] and

Konno [16].

This paper is a revised version of the author's thesis [22].
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2. Preliminaries. Let us mention some results which we need later.

THEOREM 2.1 (cf. Konno [15, Corollary 6.4]). If S is a canonical surface with

q(S)=l and Kj<(\0β)χ(Θs), then a general fiber of the Albanese mapping / :

S-> C: = Alb(S) is a nonsingular curve of genus 3.

THEOREM 2.2 (cf. Konno [15, Lemma 3.1, and Theorem 3.2]). Let f: S^C be

a relatively minimal non-hyper elliptic fibration of genus 3, where S is a nonsingular surface,
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and C is a nonsingular curve of genus b. Then

(*) Ki>3χ(Θs)+l0(b-l).

Let π : Wr: = P(f4tωs/c)^C be the P2-bundle over C defined by the locally free sheaf

f*ωs/c of rank 3, T a tautological divisor with n^COw(T)^f^s/c,
 and ψ'. S- - ^>W the

rational mapping induced by the natural sheaf homomorphism f*f*ωs/c^>ωs/c. V t n e

equality holds in (*), then S' = ψ(S) has at most rational double points as singularities,

and we have

where (/*ω s / c)
v is the Θc-module dual to f*ωs/c.

REMARK. The inequality stated in the first half of Theorem 2.2 was proved by

Horikawa [13], [14, Proposition 2.1] and Reid [20] in a different way. Konno [16,

Theorem 2.1] himself also gave another proof.

PROPOSITION 2.3. Let C be a nonsingular curve of genus b, and E a locally free

sheaf of rank 3 over C. Let π: W:=P(E) -» C be the P2-bundle over C associated to E,

T a tautological divisor with π%Θw(T) = E, and i)eDiv(C) a divisor on C such that

Θc(D) = dQtE. If\4T—π*D\ has an irreducible member S' with at most rational double

points as singularities, then the following equalities hold for the minimal resolution v: S-+S'

of singularities.

Λ:| = 3 d e g £ + 1 6 ( 6 - 1 ) ,

pg(S) = deg E + 3(b - 1 ) + dim H°(C, £ v ) ,

Furthermore, if we denote / : = π°v, then we have

PROOF. We have ωl = ω | , pg{S') =pq{S) and q(S') = q(S) by the hypothesis that Sf

has at most rational double points as singularities. Since ωs. ^ Θs> <g)Θw(9W{T-\-π*Kc)

by the adjunction formula, and since T3 — (degE)T2F=0, we have ω | = 3 d e g £ ' +

16(6-1).

By considering the cohomology long exact sequence induced by the exact sequence

0 -• ωw -+ Θw(T+π*Kc) -+ωs> ->0 ,

we obtain the equality for pg(S) and q(S).

Since S' has at most rational double points as singularities, v * ω s / c ^ ω s / c and

v*Θs = Cθs, hold. Since ωSΊC^Θw{T)®(!)w(9sl by the adjunction formula, we have

f*ωS/c = V * v * ω s Ί C ^ π^ωSΊC ^ n ^ Θ w { T ) ® Θ w Θ s ) .

Since we have the long exact sequence
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and since Rjπ*{Θw(-3T)®(!)wπ*detE)^(Rjπ:iιΘw(-3T))®(!)cdetE=0 for j=0, 1, we

obtain E=π^Θw{T)^πJiΘw(T)®(9wΘs), and hence f*ωs/c^E. q.e.d.

REMARK. By the last assertion of Proposition 2.3, we see that two different P2-

bundles do not contain the same surfaces.

THEOREM 2.4 (cf. Atiyah [4, Theorem 5, Theorem 7 and Corollary, Theorem 9],

Oda [19, Theorem 1.2]). Let C be an elliptic curve and Sc(r,d) (r,deZ) the set of

isomorphism classes of indecomposable locally free sheaves of rank r and degree d over C.

(1) If(r, d)=l, and if we fix any isogeny φ: C->C of degree r, we have a bίjection

Denote G = kerφ, and let Tσ be the translation by aeG on C. Then we get

φ*φ*L0* θ T*L0.
σeG

(2) For any reN, there exists a unique Fre$c(r, 0) such that H°(C, F r ) / 0 . Fr is a

successive extension of Θc, and Fr^Sr~i(F2) holds. Furthermore, dimH\C, Fr) = 1

(/ = 0, 1). We have the following bijective mapping for meZ\

{LoePic(C)\degLo = m}BLo\-+ Fr®ΘcLoε£c{r,rm).

REMARK. Although not necessary in this paper, we have the following in general:

If (r, d) = h, then Sc{rjh, d/h) BF' I—• F ®FheSc(r, d) is a bijective mapping.

We use the following lemma in §3.2 and §3.3:

LEMMA 2.5. Let C be an elliptic curve, μ: Y=P(F2) -> C the ruled surface associated

to F2, and C'^Y the unique section of' μ with μ^Θγ(C') ̂  F2. For any point peC and for

any positive integer i, we have Bs| iC+ Γp\ = {y0}, where Γp\ = μ~ι(p) and yo: = C nΓp.

Furthermore, general members of \ iC + Γp | are nonsingular at y0, and all the members

which are nonsingular have the same tangent at y0. If i and j are positive integers with

ί Φj, then a nonsingular member of \ iC + Γp \ and a nonsingular member of\jC + Γp \ have

different tangents at y0.

PROOF. We have Bs | iC + Γp \ c C u Γp. Since dim lm{H°{ Y, Θγ(iC + Γp)) -• H°(ΓP,

ΘΓp(ίC))} = i, and since dim H°(Γp, ΘΓp(iC)) = i+ 1, there exists at most one base point

onV p . On the other hand, since dimH°{Γp, Θγ(ίC+ Γp)) = i+ 1 Φi = dimH°(Y, Θγ{{i-

\)C + Γp)), C is not a fixed component of | iC + ΓP\. Furthermore, since (iC + Γp)C = 1

and Nc/Y ^ Θc, only yo = C'n Γp is the base point of | iC + Γp \ lying on C". Hence, we

obtain Bs| ίC + Γp\ = {y0}. Since (C + Γp)C = l9 general members of \iC' + Γp\ are

nonsingular at y0.

Let M e I iC + Γp\ be a nonsingular member. If we consider the cohomology long

exact sequence induced by the exact sequence of sheaves
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0 -> Θγ -> ΘY(M) -> ΘM(M) -> 0 ,

we get dimH°(M, ΘM{M)) = i+\, and dimIm{J7°(Y, ΘY(M))^H°(M, ΘM(M))} = L The

subsystem of the complete linear system of M\M corresponding to the image of

H°(Y, ΘY(M))-+H°(M, ΘM(M)) may be regarded as the complete linear system of

M\M— y0, and its dimension is / — I . On the other hand, since degω M = (/C/ + Γp)((/—

2)C' + Γp) = 2i—2, the genus of M is equal to /. Since M\M-2y0~KM by the adjunc-

tion formula, the complete linear system of M\M — 2y0 is also (/— l)-dimensional. Hence,

y0 is the base point of the complete linear system of M\M— y0, and the intersection

multiplicity of any nonsingular member M' e \ iC + Γp | with M at y0 is at least two,

i.e., M and M' have the same tangent.

The last assertion can be proved in the same way as above. q.e.d.

The following lemma is trivial:

LEMMA 2.6. Let X be a complete variety, and D an effective divisor on X. Assume

dimX>2, and ά\m\D\>2. If DίnD2ΦBs\D\ for any distinct members Du D2e\D\,

then \D\ is not composite with a pencil In particular, \D\ is not composite with a pencil

if one of the following holds:

(i) Bs\D\ = 0 andDn>0,

(ii) Bs IDI = 0 and the dimension of any component of Bs | D \ is less than dim X— 2.

3. Existence and birationality. By Theorems 2.1 and 2.2, to classify canonical

surfaces with Ks=3pg(S) and q(S)=\, we need to have a necessary and sufficient

condition for the complete linear system |4Γ— π*Z)|, on the P2-bundle W=P(E)

associated to a locally free sheaf E of rank 3 over an elliptic curve C, to have irreducible

members with at most rational double points as singularities, where T is a tautological

divisor on JFwith π*Θw(T)^E, and Z)eDiv(C) satisfies ΘC(D) ̂ de t E. We should then

choose those members whose minimal resolutions are canonical.

Locally free sheaves of rank 3 over an elliptic curve C are expressed uniquely up

to order as direct sums of indecomposable locally free sheaves (cf. [4]). Hence we should

consider the following three cases:

(1) E is the direct sum of three invertible sheaves.

(2) E is the direct sum of an invertible sheaf and an indecomposable locally free

sheaf of rank 2.

(3) E is indecomposable.

DEFINITION. Let π: W^> C be the P2-bundle over an elliptic curve C associated

to a locally free sheaf E of rank 3, T a tautological divisor with π^Θw(T)^E, and

DeDiv(C) a divisor with ΘC(D)^detE. We say that E satisfies the condition (A) if

|4Γ—π*Z)| has a member S' satisfying the following conditions:

( i ) S' has at most rational double points as singularities,

(ii) The minimal resolution S of S' is of general type,
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(iii) S satisfies X | = 3pg(S) and q{S) = 1.

REMARK. We only have to consider the locally free sheaves E with //°(C, Ev) = 0

by Proposition 2.3. If E satisfies the condition (A), then χ(Θs) = degE>0. Furthermore,

by Fujita [8, (1.2) Proposition], we only have to consider locally free sheaves such that

any quotient locally free sheaf has nonnegative degree.

3.1. The case where E is a direct sum of three invertible sheaves. Let Lo, L1,

L2 be invertible sheaves over an elliptic curve C such that E^L0@Lί@L2, and

denote d{: = degZ^ (/ = 0, 1, 2). Furthermore, let π: W-> C be the /^-bundle associated

to E, and Γ a tautological divisor with π^Θw(T)^E. In §3.1, we prove the existence of

a surface S of general type with K$ = 3pg(S), q(S) = 1 and pg(S) = N for any integer N> 3

by obtaining such a locally free sheaf E of rank three satisfying the condition (A)

(Theorem 3.1). We then study the canonical mapping of the surfaces thus obtained.

The results about the canonical mappings are stated in Corollaries 3.3 and 3.4, and

Propositions 3.5, 3.7 and 3.8.

3.1.1. Existences. We may assume do<d1<d2. We only have to consider the

case do>0, dγ>0 and d2>0 by the remark immediately before §3.1.

THEOREM 3.1. Let π: W=P{E)^C be the P1-bundle over an elliptic curve C

associated to E^L0@Lί®L2, Ta tautological divisor with π^Θw(T)^E, andDeDiv(C)

satisfies Θc(D)^detE. Denote di: = dQgLi (i = 0, 1,2), and suppose 0<do<dl<d2 and

d2>0. Then the locally free sheaf E satisfies the condition (A) if and only if the following

(1), (2) and (3) hold.

(1) One of the following (i), (ii) and (iii) holds:

( i ) do + d2<3du

(ii) L 0 ® L 2 = Lf3,
(iii) do = dι and at least one ofLf2, Lo ® LuLf2 andLf3 (x) Lf1 is isomorphic

to L2.

(2) One of the following (i), (ii) and (iii) holds:

( i )

(ii)

(iii) 2d0 = dx=d2 and L2 ^ L®2.

(3) IfdQ = dι=d2 = \ holds, then one ofL0, LUL2 is not isomorphic to the others.

PROOF. We can choose XiGH°(W, Θw(T)®π*L^1) (/ = 0, 1,2) which give ho-

mogeneous coordinates on each fiber of π. Then any ΨeH°(W, ΘW(4T)® πJ(:detiϊ'v) =

H°(C, S4E®detEv) can be written as

In the same way as in the proof of Claim III in [3], we can show that E does not

satisfy the condition (A) when one of (1) and (2) does not hold. If (3) does not hold,
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then Bs | AT— π*D | consists of a fiber of π.
From now on, we assume that (1), (2) and (3) hold.
(I) Let us look at the case where 3do>dί+d2 or L®3^Lι®L2. (If, moreover,

do = dι and L®3 = L1®L2 hold, we may assume Lf3^L0®L2.)
Clearly, | 4 Γ - π * D | has no base point if and only if 3dQ — dι-d2φ\. If 3d0 —

d1-d2 = l and — do + 3dι—d2>2, then Bs |4Γ-π*D| consists of one point. Assume
3 d o - d 1 - d 2 = - d o + 3 d 1 - d 2 = l a n d - d o - d 1 + 3 d 2 > 2 . I f L ® 3 ® L l

L^ι®L®3® L2\ then Bs|4Γ-π*Z)| consists of two points. If L®3®L^
LQ1 ®Lf3 ® L2

ι, then Bs|4Γ— π*D| is a line contained in some fiber of π. Next
assume 3d0 — dγ— d2= — do + 3dί— d2= —do — dί + 3d2 = 1, i.e., do = d1=d2=l. If Lo,

Lx and L2 are pairwise different, Bs|4Γ—π*/)| consists of three points. If two of Lo,
Lγ and L2 are isomorphic, then Bs | AT— π*Z) | consists of a point and a line contained
in some fiber of π. We can show that a general member of | AT—π*D | is nonsingular
at any point of Bs|4Γ— π*D| in any case above by considering the local equation.
Clearly, \AT— π*D| is not composite with a pencil in any case above by Lemma 2.6.
Hence a general member of \AT— π*D\ is irreducible and nonsingular by Bertini's
theorem.

(II) Let us look at the case where 3do<d1+d2 or (3do = d 1 + d 2 and L®3£
Lι®L2). We have Z o cBs|4Γ—π*D|, where Z o is a curve defined by Xί = X2 = 0.

If -do + 3d1-d2>2, or Lf3^L0®L2, then we have Bs|47-π*Z>|=Z 0 . If
— do + 3dι—d2 = \ and - d o - d ί + 3d2>2, then Bs|4Γ—π*Z)| consists of Z o and a
point. If -do + 3dί-d2= -do-d1 + 3d2 = l and LQ1 ®Lf3®L2

1£LQ1 ®L^ ®
Lf 3, then Bs|4Γ—π*7)| consists of Z o and two points. If —d0 + 3d1—d2= — d0 — dγ +
3d2 = \ and Lό1 ®Lf3 ®L2

1^Lό1 ®L®3 ®L2\ then Bs|4Γ-π*Z)| consists of Z o

and a line contained in some fiber of π. If —do + 3dι—d2 = 0 and L®3^kL0®L2, then
we must have 2do = 2d1=d2, and Bs |4Γ-π*D| = Z o u Z 1 , where Z x is the curve
defined by X0 = X2 = 0.

We can show that a general member of \AT— π*Z)| is nonsingular at the base
points which are not contained in Z o when ZίηtBs\4T—π*D\ holds by considering
the local equations. Hence it is sufficient to look at the multiplicity of a general member
of \4T-π*D\ at Z o when Zx <£Bs|4Γ-π*Z>|, or at Z o uZi when Zγa\AT-%*D\.

Let us look at the case where 2do>d2 or (L®2^L2 and J 0<(i 1). (When L®2^L2,
if we assume dί=d2 and L®2^tLι, further, interchange Li and L2 and regard this case
as the case L®2qkL2. Hence, we may assume Lf2^Lt when L®2^L2 and d1=d2.) In
this case, we have ZιψBs\ΛT"π*D\. Since we have H°(C, L®2®L2

1)Φ0 and
7/°(C, L? 2 ®LΓ 1 )^0, a general member of | 4 Γ - π * D | is nonsingular at Z o except in
the case where 2do — dι=2do — d2 = l and L1^L2 hold. In this case, we can show that
any general member of \AT— π*D\ has a rational double point of type A1 on Z o by
considering the local equation.

Let us look at the case where 2do<d2 or (2do = d2, dQ)<dι and L®2$L2). In this
case, the coefficients of X$ and X$Xί are 0, and Zι ψBs\AT-π*D\ holds. If2do = du
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then we have L®2^LX by the assumption of the theorem, and the coefficient of XQX2

is a constant. Hence a general member is nonsingular at Zo. Assume dι<2d0 holds,
and that ΨeH°(W, ΘW(4T)®π*det£v) is general. Let peC be one of the points
with I/ΌI(/0 = O f°r 0^Άoi G ^°(C L^2®^1), and ί a local coordinate around p.
Furthermore, let qeWbe a point with t = Xί=X2 = 09 and denote xί:=Xι/Xo and
x 2: = Z2/Z0. Then Ψ can be written as

= X2(ί + ̂ l l*l+^02*2+ * * 0 + ̂ 20*1 +^30*1 +^40*ί" ,

around q. The equation ^ = 0 gives a rational double point of type At at q except in
the casethe case

1 f , and

In this case, ψ20 = c't holds around # for some constant c' eC, and the equation *F = 0
gives a rational double point of type A2 at q. If 2do = 2d1=d2, we can show that a
general member of | AT— π*D | has at most rational double points of tyep Aί on Z o u Z x

in the same way as above.
Let SΊ and S2 be general members of |4Γ— π*Z)|, and F a general fiber of π.

Furthermore, denote qi: = Zir\F for z = 0, 1. We can show that the intersection
multiplicity of S^p and S2\F at q0 in F is at most two. When Z1cBs\4T—π*D\, we
can also show that the intersection multiplicity of S^p and *S2|F at qx in F is at most
two. Since Ŝ  |F and S2 \F are quartic curves, they have other intersection points. Therefore,
we see that 14Γ—π*Z) | is not composite with a pencil by Lemma 2.6. Hence a general
member of \4T— π*D\ is irreducible and nonsingular by Bertini's theorem. q.e.d.

3.1.2. The canonical mappings. In this section, we consider the canonical
mappings of those surfaces whose existences were shown in §3.1.1.

LEMMA 3.2. Let Lo, Lι, L2 be invertible sheaves over an elliptic curve C, and
denote dt: = degLf, (z = 0, 1, 2). Assume that Lo, Lu L2 satisfy the conditions of Theorem
3.1. Ifπ: W\=P{E)-+C is the P2-bundle over C associated to E\=L0®Lι®L2, and
T is a tautological divisor such that π^Θw(T)^E, then Φ ) Γ | is birational onto its image
when one of the following holds.

( i ) do + d^d2>l.

(ii) (do,dl9d2) = (l,2,3).
(iii) (rf0, dl9 d2) = (2, 2, 2) and one of Lo, Lu L2 is not isomorphic to the others.
(iv) (do,dud2) = (l2,2)andL1£L2.

PROOF. If F is a general fiber of π, we have H\W, Θw(T-F)) = 0. Hence the
restriction mapping H°(W, ΘW(T))^>H°(F, &F(T)) is surjective, and the restriction of
Φ\ Γ | to F gives an isomorphism of F onto its image.

Let XiEH^W, Θw(T)®π*L;1) (/ = 0, 1, 2) be as in the proof of Theorem 3.1. Any
ΨeH°(W, ΘW{T)) can be written as
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1 + ^ 2 * 2 , ΦieH^QL,) (1 = 0,1,2).

We can easily prove that there exists a Zariski open subset of W such that the restric-

tion of Φ | Γ | on it gives an isomorphism onto the image under the assumption of the

lemma. q.e.d.

COROLLARY 3.3. The canonical mapping of any surface S, whose existence is

guaranteed by Theorem 3.1 and the condition (A), is a birational morphism if one of the

following holds.

( i ) do + dί+d2>Ί anddo>2,

(ii) (d0, du d2) = (2, 2, 2), and one of Lo, Lu L2 is not isomorphic to the others.

PROOF. Let the notation be as in Proposition 2.3. Since ωs=Θs{T), and since

H\W, ωw) = 0, for z = 0, 1, we have H°(W, ΘW{T))^H°{S\ ωs). Since S' has at most

rational double points as singularities, we have Φ\Ks\
 = Ψ°Φ\τ\> where ψ:S-+S'

is a minimal resolution. Clearly, S' has nonempty intersection with the Zariski open

subset of W appearing in the proof of Lemma 3.2, and hence the birationality follows

from Lemma 3.2. Since d0>2, we have Bs | T\ = 0 , and hence Bs | AΓS | = 0" holds.

q.e.d.

COROLLARY 3.4. The canonical mapping of any surface S, whose existence is

guaranteed by Theorem 3.1 and the condition (A), is birational onto its image but is not

a morphism, and its image is non-normal, if one of the following holds:

( i ) (dθ9dl9d2) = (l9295)9

( i i) (dθ9dί9d2) = (l9294)9

(iii) {dθ9dl9d2) = {l9293)9

(iv) (dO9dl9d2) = {l9292)andL1£L2.

PROOF. We can show the birationality of Φ\κs\
 a s ^n the proof of Corollary 3.3.

In the rest of the proof, we use our notation in Theorem 3.1. By considering Bs | T\

and Bs 14T—π*D |, we see that | Ks\ has only one base point q0. The restriction of | T\

to the fiber Fo containing q0 may be regarded as a subsystem of the complete linear

system of Θp2(\) consisting of all lines going through q0. Each line of this system

intersects the fiber $F of S at four points, one of which is q0. Hence we have

deg(Φ|Ks | |j^) = 3, and the canonical image of S is non-normal by Zariski's main

theorem. q.e.d.

PROPOSITION 3.5. In the notation of Lemma 3.2, assume d( = 2 (/ = 0, 1,2) and

L0^Lι =L2. Then the canonical mapping of a general member of \ 4T—π*D | is a mor-

phism of degree 2 onto the image, where DeΌiw(C) satisfies Θc(D)^detE.

PROOF. If we denote v: = Φ]Lo]: C-tP1, we have L 0 ^v*£V(l) , and hence

E^v*(ΘPi(\)®3). Therefore, if we denote π 0 : Wo: = P(Θpi{\)®3)-^P\ we have the

following commutative diagram:
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W —

Λ
c —

- w0J"
- Pι

Let To be a tautological divisor with π0*ΘWo(T0) ̂  Θpι(\)®3. We have v*Γ0 - Γ, and both
#°(W, ^^(Γ)) and H°(WΌ, ΘWo{T0)) are 6-dimensional. Hence, we get Φ | Γ | = Φ | Γo |ov.
Since Φ\ Γ o ( : PF0 c_» P 5 is an embedding we have deg Φ( Γ ( = 2.

Since dim|4Γ-π*Z)| = dim|4Γo-π£Z>ol, and since Bs |Γ | = 0 , the canonical
mapping of a general member of |4Γ— π*Z>| is a morphism of degree 2 onto the
image. q.e.d.

REMARK. WO in the proof of Proposition 3.5 is isomorphic to P2xPι. Let
Se\ 4T—π*D | be a nonsingular member. If So is the image of Sin Wo, and if r: W0^P2

is a natural projection, we see that Kjo = - 7 holds, and that r |S o : SO -> P 2 is a birational
morphism by easy calculations. Hence, r\So is the blowing-up at sixteen points of
P2, and maps each fiber of So -+P1 onto a plane quartic curve birationally. Therefore,
the surfaces in Proposition 3.5 are obtained in another way as follows:

Let Bu B2, B3, B^P1 be nonsingular quartic curves intersecting each other at
sixteen points Al9..., A16 transversally. Let ξ: X^P2 be the blowing-up at Aί9...,
A!6, and Sj the proper transform of Bj (j = 1, 2, 3, 4), and denote δi: = ξ~ 1(Af). We have
Σ * = i ^ j ^ 1 6 ^ * ^ - 4 Σ / = i ^ ' w h e r e ^ c = / > 2 i s a line. Let A: S-^Z be a double cover-
ing branched along Σ , 4 = i ^ T h e n Ks~h*(5ξ*H-Σl=i%) h o l d s > a n d w e h a v e ^s2 =

18. On the other hand, we have pg(S) = dimH°(X, Θxiδξ^H-^^^^dimlδξ^H-
Σί= i î I + l Since dim | 5ξ*H— Σff x <̂  I is equal to the dimension of the subsystem of
I 5HI which consists of all the quintic curves going through Au ..., Aί6, we obtain
dim|5ξ*//-Σ ι

1 f 1 ^Ί = dim|5i/|-15 = 5 by using the Caylay-Bacharach theorem (cf.,
e.g., [10]), and hence pg(S) = 6. Since

Ws) = y (»{ fΓ- 2 JΓ <ί) ̂  *//- Σ ^ + 2Z( 2̂) = 6 ,

we have #(S) = 1.

LEMMA 3.6. Let Lθ9 Ll9 L2 be invertίble sheaves over an elliptic curve C,

π: W\= P(E) ->C be P1-bundle associated to the locally free sheaf E: = L0@Lίφ L 2,

and Ta tautological divisor with π^Θw(T)^E, and denote d{: = degLI (z' = 0, 1, 2). If Lθ9

Lx and L2 satisfy one of the following (i) and (ii), then d e g Φ ) Γ ( = 2 holds:

( i ) {dO9dl9d2) = (l9292)andL§2^L1^L2.

(ii) (dO9dl9d2) = (l9l92).

PROOF. In the case (i), let peC be a point with L0^Θc(p). There exists a point
qeπ~\p) with Bs|7Ί = {<?}. Denote E'\ = Gc@Lγ ®Lγ and F : = (LX © L J ® ^ . We
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have the following commutative diagram as a special case of Maruyama [17, Chapter 1]:

W -^-> W —*U Wo

W > C > Pι

71 Φ I L , I

where π': W':=P(E')-»C is the P2-boundle associated to E\ φ: W^W is the
blowing-up at q ( = P(ΘP(p))), φ'\ W-+W is the blowing-up along P(F'\ and
π o : W0-*Pι is the P2-bundle associated to E0: = GPi®ΘPι(\)®0Pι{\). Let T be a
tautological divisor of W with πJ9w{T')^E\ and T the proper transform of Γby φ.
We have φ\T)~T. If To is a tautological divisor of Wo satisfying πo*ΘWo(To)^Eo, then
we have Φ*T0~Γ, and dim| Γ'| = dim| Γ o |=4. Hence we have Φ | Γ Ί = Φ | Γ o | oφ. We
can show that Φ( Γ o | is a birational morphism onto the image in a way similar to Lemma
3.2. Therefore we have degΦ|Γ | = degΦ|Γ Ί = degΦ = 2.

In the case (ii), if we assume LoqkLu then the statement can be proved in a way
similar to that in the case (i).

Assume LQ^L^ in the case (ii). If peC is the point with (9c(p) = L0, then there
exists a line Zczπ~ι(p) with Bs | T\ = Z. We obtain the same commutative diagram as
above, and in this case, φ: W-> W is the blowing-up along Z. We can show that
degΦ|Γ j = 2 by the same argument as in the case (i). q.e.d

PROPOSITION 3.7. Let the notation and the assumption be as in Lemma 3.6. Then
the minimal resolution of a general member Se 14T— π*Z) | is canonical.

PROOF. First, we consider the case E^L0®Lί®Lί9 (LoeSc{\, 1), Lι^L®2).
There is nothing to prove if Φ\Ks\ is birational onto its image. Thus suppose Φ\Ks\ is
not birational. Hence Φ\Ks\ gives an unramified two-to-one covering

3

where Fi: = π~1(pi) with PiβC (/ = 0, 1,2, 3) the ramification points of Φ\Lι\ C^P1,
and So is the image. Let Co <= W be a curve which is the base locus of ΘW(T) (x) π*LJ~x.
Fix a point # e iS\(C0 u \J f= 0 Ft) and let ^' e W be the other point which is mapped to
Φ|r|(#) by the two-to-one map Φ\Ύ\.

Since dim//°(JF, (9W(T)® π*L0"
1) = 3, we obtain X oei/°(^, ^ ( Γ ) ® π * L o 1 )

such that Z o vanishes at q and #' and that the divisor (Xo) is irreducible. Similarly,
since dim//0(JF, Θw(T)®π*L;1) = 2, we obtain Xί9 X2eH°(W, ^ g π * ^ 1 ) such
that Xί vanishes at q and q', and that X2 does not vanish at q and #'. Furthermore,
the divisors {Xx) and (X2) are irreducible. A global section ΨeH°(W, ΘW{AT)®
π*det Ev) defining S satisfies Ψ(q') = ψo4.(q')X2(q')4' by our choice of Xo, Xl9 X2, where
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ι̂ 04 is as in the previous section. Hence q' is not contained in S if and only if ψoΛ

holds. Since S is general, we are done.

Next, we consider the case E^L0@Lι ®L2, (Lo, LxeSc{\, 1), L2eSc{\, 2)).

Let Se 14Γ— π*Z) | be a general member. Except when the following (i) and (ii) are

satisfied, if we assume degΦ ) X s | = 2, then a fiber of S-+C which has a multiple

component and another fiber which has no multiple component are mapped onto the

same curve isomorphically, which is absurd.

(i) L?2^Lf2^L2.
(ii) L®2, L f 2 ^ L 2 , L0®L^L2 and LoφLv

In the cases (i) and (ii), we can show that S is a canonical surface in the same way

as in the case E^L0@Lι ®L2, [LoeSc(\, 1), L^L^2). q.e.d

REMARK. In the situation of Proposition 3.7, we have a possibility that there exist

special members, with at most rational double points as singularities, of |4Γ— π*Z>|

whose canonical mapping is of degree 2.

PROPOSITION 3.8. Let Lo, Lλ and L2 be invertible sheaves over an elliptic curve C

satisfying degLt = l (z = 0, 1, 2) and the condition (3) of Theorem 3.1, π: W:=P(E)-+C

the P1-bundle associated to E:=LoφL1® L2, T a tautological divisor with π^Θw(T) ^ E,

D GDiv(C) a divisor with (9C(D)^det E, and Se \ 4T—π*D \ a general member. We have

the following about Φ\κs\'

( i ) If L®2^LX®L2, Lf2£L2®L0 and Lf2£L0®Lu then Φ{Ks{ gives a

covering of degree 9 onto P2.

(ii) If only one of L^2^Lγ®L2, Lf2^L2®L0 and Lf2^L0®L1 holds, then

I Ks I has one isolated base point, and Φ\Ks\ &ves a covering of degree 8 over P2.

(iii) If all of L^^L^L^ L f 2 ^ L 2 ® L 0 and Lf2^L0®L1 hold, then \KS\

has three isolated base points, and Φ\κs\ gives a covering of degree 6 over P2.

PROOF. First we assume that Lo, Lγ, L2 are pairwise non-isomorphic. Let the

notation be as in Theorem 3.1. If qteW (i=0,1,2) is the point defined by

i/fI = .¥τ ( ι ) = .¥τ2(ι) = 0, where φiEH0^, Li)\{0}, and τ is the cyclic permutation (012),

then we have Bs | T\ = {q0, qu q2).

In the case (i), we have Bs| Γ lnBs^Γ— π*D\ = 0. Hence Φ\Ks\ ̂ s a surjective

morphism onto P2. Since K$=9 and the degree of P2 is 1, we are done in the case (i).

Next, we consider the case (ii). We only have to consider the case L®2^Lι®L2

by renumbering Lo, Lx and L2 if necessary. In this case, all the members of 14T—π*D \

go through q0. Since Se\4T— π*D| is general, it does not contain qγ and q2. Hence

we obtain Bs|AΓs| = { 0̂}. Let φ: W^> W be the blowing-up at q0, and T a proper

transform of T by φ. It is easy to see that Bs | Γ| = 0 holds, and hence q0 is the simple

base point of |A^S|. Denote ξ: = φ\§, where S is a proper transform of S by φ, and

E ^ξ-'iq^czS. If I V\ is the variable part of\ξ*Ks\, then we have \ξ*Ks\ = \ V\+E.

Therefore, we obtain
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Similarly, since qi (i = 0, 1, 2) is the simple base point oΐ \KS\ in the case (iii), we

have degΦ|K s | = ̂ ! - 3 = 6.

The proof is essentially the same when L0£L1^L2, L1$L2^L0, or L2$L0^

Lγ. q.e.d.

3.2. E is the direct sum of an invertible sheaf and an indecomposable locally free

sheaf of rank 2. We denote E=EoφL, where Eo is an indecomposable locally free

sheaf of rank 2 with deg E0 = :e, and L is an invertible sheaf over an elliptic curve C

with degL =: d. We only have to consider the case e>0, d>0 and (e, d)^(0, 0) by the

remark immediately before §3.1.

We prove the existence of a surface S with K$ = 3pg(S), q(S)=l and pg(S) = N for

any integer N>2 in §3.2.1 (Theorem 3.9) when e is even, and in §3.2.2 (Theorem 3.10)

when e is odd. (When e is even, however, the case pg(S) = 2 does not occur.) In §3.2.3,

we study the canonical mapping of the surfaces obtained in §3.2.1 and §3.2.2. The

results about the canonical mappings are stated in Corollary 3.13, and Propositions

3.14,3.17, 3.18 and 3.30.

Let π: W: = P2(E)^C be the P2-bundle associated to E, and T a tautological

divisor with π^Θw(T)^E. lip: X-+ Wis the blowing-up along C1 :=P{E/E0)a W, then

Xis a P1-bundle σ: X-> Y:=P{E0). Let μ: Y-+ C be the ruling, and denote Yγ\=p*T

and Y^ :=p~ί(Cί). If CoeDiv(Γ) is a tautological divisor with μ*&γ(C0)^E0, then we

have Y^Yn + σ*^, and σ ^ Γ ^ C V C ^ Θ μ U . Let YoeΌiw{X) be a divisor with

OΛYo) = <!>x(Yi)®σ*μ*L-1, and let ZoeH°(X, (9X{YO)\ Z^eH^X, ΘX{YJ) be global

sections with (Zo)= Yo and (Za0)= Y^. Then Z o and Z^ give homogeneous coordinates

of each fiber of the P1 -bundle σ.

We study the complete linear system of the invertible sheaf Θx(4Y1)®σ*μ*detEv

^p*(<V(4Γ)®π*det£ v) over X.

be written as

Ψ= Σ ΨjZo~jZi , ΦjeH°(Y, Θγ{jC0)®μ*(^®(4"7)®det^v)), (j = 0, . . . , 4).
7 = 0

3.2.1. Existence in the case where e is even. Denote e = 2e0. There exist

o), and Lιe^c(l, d—e0), with E0^L0®F2, L ^ L 0 ® L l 9 hence we have

THEOREM 3.9. Lei ί/ze conditions and notation be as above. Then the locally free

sheaf E satisfies the condition (A) if and only if one of the following (1), (2) and (3) holds:

(1) e = d>0 and L0^Lu

(2) d<e<4d,

(3) e = 4d>0 and
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PROOF. We deal with different cases. Let DeΌiv(C) satisfy ΘC{D)^detE.
( i ) The case where (e = d and L0^L^ or (e<d). Since we have

H°(Y, Θγ(4C0)®μ*detEv)^H°(QF5®L0®Lϊ1) = 0,

by Theorem 2.4, Ψ is divisible by Zo. Hence, the image of (Ψ) in W is reducible.
(ii) The case where (L0 = £i), (d<e<3d\ or (L0®Lf 3^ΘC).
Let us look at the complete linear system of L®4(χ)detisv. Since we have

deg(L®4(x)det£v) = 3rf-e>0, it does not have base points when 3d—eΦ\. If3d-e =
1 holds, we have Γ: = Y^ n(μ°σ)"\q)cBs14ί^-σ*μ*£>|, where geC satisfies L®4®
det Ev ^Θc(q). We easily check that Γ is a ( - l)-curve on S" : = (Ψ).

Let us look at |4C0-μ*Z>|. Clearly, Bs|4C o-μ*2)| = 0 holds when
deg(L0(x)L^1) = e — d>2. When e — d=l, a general member of |4C0 —μ*D| is non-
singular by Lemma 2.5. Thus a general member of \AY1—σ*μ*D\ is nonsingular
at the base point Yor\σ~1(yo), where y0 is the base point of \4C0—μ*D\. If e — d=0,
since we assume L 0 ^ L 1 ? we have H°(Y, ίPy(4C0)(x)μ*det£'v) = C Thus we have
σ"1(C)n ΓoCzBsμΓi-σ^*/)!, where C is a section of μ with μ*Θγ(C)^F2. The
divisor (^3) on Y defined by general ψ3 intersects C at e0 points transversally. Let
p be one of these intersection points, (ί, u) a local coordinate around p so that t = 0
and w = 0 are the local equations for C and (ι/f3) around /?, respectively, and denote
z0 : = ZO/Zao, Ψ can be written as

near />0: = σ~ί(p) n 70. This is an equation defining a rational double point of type A3.
We have to consider the case E^L®{F2®(9C) with L G ^ C ( 1 , 1). (This is the case

where 3d—e= 1 and e — d= 1 above hold at the same time.) In this case, φi is contained
in H°(Y,Θy(iC')®μ*L). We have Bs|/C' + Γ 0 | = {j0} by Lemma 2.5, and hence
Bs|47 1-σ*μ*Z)| = σ"1(>y0)u{(μoσ)~1(^)n Y^}. We only have to prove that it is
nonsingular along σ " 1 ^ ) . Since all the nonsingular members of |4C' + Γ 0 | have the
same tangent at y0 by Lemma 2.5, we can choose a local coordinate (ί, u) around y0

so that t = 0 is the local equation of Γo and that u = 0 gives the tangent line of nonsingular
members of | AC + Γ01 at y0. If we denote z : = Z0/ZQO, then Ψ can be written as

t, u))z

+ (a3t + b3u + ϊ3(ί, u))z + (*4M + ϊ4(ί, w))

near σ ' ^ o K I Ό o . w h e r e βή ^ C (i = 0, 1, 2, 3,y= 1, 2, 3, 4), and i/ί, M), (/= 1, 2, 3, 4)
is the sum of all the monomials with respect to t and u with degree at least two. Since
Ψ is general, we may assume aoφ0 and 6 4 #0. If we fix au a2 and a3, then Z?l9 ί?2 ^

nd
b3 are uniquely determined. On the other hand, a0 and bA can be chosen independently
of them. Hence the two equations dΨ/dt = 0 and dΨ/du = 0 do not have the same
solutions, and (Ψ) is nonsingular along σ " 1 ^ ) -

Clearly, | AYγ — σ*μ*D | is not composite with a pencil when e>d by Lemma 2.6.
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If e = d holds, let Sγ and *S2 be two distinct general members of 14Yί — σ*μ*/) |, and F

a general fiber of μoσ, and denote q:=Fnσ~1(C')n Yo. We can easily check that the

intersection multiplicity of SΊ | F and S2\F at q is four. Hence S ^ and S2\F have other

intersection points, and we see that \4Yί — σ*μ*Z> | is not composite with a pencil even

in the case e = d by Lemma 2.6. Therefore, a general member of 141^— σ*μ*/)| is

irreducible.

It is easily seen that Y^ \s., consists of 3d— e pieces of (— l)-curves, where S": =(Ψ).

Hence the image of Y^ n S" in W is a finite set of nonsingular points of S' : = p{S").

(iii) The case where [e = 3d and Lo ® L®3 £ 0C), (3rf< e < 4rf), or (Lo ® Lf 2 ^ 0C).

*F is divisible by Z^, i.e., the image of (*F) in W contains C x. In this case, we have

to consider the complete linear system of ίPΛ:(371)(χ)σ*(^y(Co)(χ)μ*det£IV). Any

Ψ: = Ψ/Z^ can be written as

Let us look at $ y (C 0 )®μ*(L® 3 ® d e t ^ ) . If 4d-e>4, then base points do not

exist. If Ad—e = 2, then there exists a unique isolated base point on C". If 4J— e = 0,

then we have | C'\ = {C}. In each case, we easily see that a general (Ψ) is nonsingular

over the base points of $ y ( C 0 ) ® μ * ( L ® 3 ® d e t £ v ) .

Let us look at ^ y (4C o )®μ*(det£ ' v )^^y(4C / )®μ*(Lo®^Γ 1 ) Since deg(L0®

Llι) = e-d>2 hold, we have B s | 4 C o - μ * i ) | = 0 .

In the same way as in the proof of (ii), we can show that | 3 ^ + σ * ( C 0 —μ*Z))| is

not composite with a pencil.

By what we have seen so far, a general member of 13 Yγ + σ *(C0 — μ *Z>) | is irreducible

and nonsingular. It is easy to see that the intersection of the member with Y^ is

irreducible, and hence its image by p is nonsingular.

(iv) The case where {e = 4d and L0®Lf2£Θc) or {4d<e). (Ψ) has lY^ as a

component, and the image of (Ψ) in W contains C1 as a singular curve.

3.2.2. Existence in the case where e is odd. Denote e =: 2e0 + 1 (> 1). If we fix

any F2Λ eSc{2, 1), then there exist Loe<fc(l, e0) andLj e<fc(l, rf—e0) with E0^L0(g)F2Λ

and L^L0(S)L1. Let J ^ (/c=l, 2, 3) be the invertible sheaves with J ^ ^ $ c , and

THEOREM 3.10. Let the conditions and notation be as above. Then the locally free

sheaf E satisfies the condition (A) if and only if one of the following (1) and (2) holds:

(1) e = d>0 anddetF2Λ ® L 0 ® L 1 ~ 1 is isomorphic to one of (9c and Jfk (fe=l, 2, 3).

(2) d<e<4d.

We use the following result on symmetric products by Ashikaga [1] to prove this

theorem. Since [1] is unpublished, we give the proof for the readers' convenience.
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LEMMA 3.11 (cf. [1]). IfJf* (k = 1, 2, 3) are the three nontrίvial line bundles satisfying
ι^(9c, and if F2Λ is an indecomposable locally free sheaf of rank 2 and degree 1 on

an elliptic curve C, then the following hold for any nonnegative integer m:

(1) S*m(F2Λ) * (β^m+1)®(^®jr\ J®(detF2 i l)®2 1"

( / 3 \Θ(m+l)\

Θ$m®[ Θ JfΛ ® ( d e t F 2 1 ) ® ( 2 m + 1 ) .
\fc=l / /

PROOF. First, we show the statement for S2(F2Λ). We have

F2Λ®F2Λ ^ (

by the Clebsch-Gordan formula [4, p. 438], and Atiyah's result [4, Theorem 14]. Hence
we obtain an isomorphism

To complete the proof, it is sufficient to show the following (i), (ii) and (iii):
( i ) S4(F2.i) = ( ^ c 2 θ ^ i Θ ^ 2 θ ^ 3 ) ® ( d e t F 2 i l ) ® 2 .
(ii) (1) of the lemma is true under the assumption that the lemma is true for all

the even integers less than or equal to 4m — 2.
(iii) (2) of the lemma is true under the assumption that the lemma is true for all

the even integers less than or equal to Am.
We show only (iii) here, (i) and (ii) can be shown in the same way.
We have

S*m(F2Λ)®S\F2Λ)

= S4m + \F2Λ)®((detF2Λ)®S*m(F2Λ))®((detF2^

for m > 0 by the Clebsch-Gordan formula. On the other hand, we have

by the induction assumption, and furthermore, we have

Hence we have

by the Krull-Schmidt theorem. q.e.d.
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PROOF OF THEOREM 3.10. Let Ψ and D be as in the previous section.
( i ) The case where (e<d), or (e = d and detF 2 t l ®L 0 ®L ] ~

1 is isomorphic to
none of Θc and Jfk (fc=l, 2, 3)). Using Lemma 3.11, we can show that (Ψ) has Yo as
a component in the same way as in the proof of (i) of Theorem 3.9.

(ii) The case where (det F2Λ®L0®Lϊ1 is isomorphic to one of Θc and Jίk

(k = 1, 2, 3)), (d<e<3d), or (Lo® I f 3 £detF 2 i l ) .
We can show that E satisfies the condition (A) when e — d>2 holds in the same

way as in the proof of (ii) of Theorem 3.9. We only have to prove that a general
member of 14YX — σ*μ*Z) | is nonsingular at the base points dominating the base points
of 0 r(4C o)®μ*det£ v when e-d=0,l.

For that purpose, we need to study the structure of Y more precisely. We can show
that dimH°(Y, $y(4C0)®μ*(det££)®2) = 2 by using Lemma 3.11, and that this linear
pencil has no base point. Let ζ: Y^P1 be the corresponding fibration. The in-
vertible sheaves ^ : = <^(2C0)®μ%/Γk®det^) (k=l, 2, 3) satisfy Jίk®

2^Θγ{4C0)®
μ*(det££)®2, and H°(Y, Jik)^Cby Lemma 3.11, hence ζ has three multiple fibers 2&k

(k = 1, 2, 3) with J^ satisfying Jϊk^Θγ{^k).
Next, we study the complete linear system of Θγ(4C0)®μ*((detEv

0)®2 ® JTk). We
obtain H°(Y, ΘY{4CO)®μ*((det^)®2^))^Cby Lemma 3.11. Since

0y(4Co) ® μ*((detEv

of
 2 ® Jfk)^ Jίm ® Jίχ2{k) (k = 1, 2, 3)

where τ is a cyclic permutation, each of these three complete linear systems consists
only of ^τ(k) + ^τ2ik).

If e-d= 1, there exists a point pe C with det£ v ^(det^o)®2 ® μ*@c(p\ and we
have Bs\4C0-μ*D\aΓ\ = μ~\p). Let pkeC be a point with
and denote Γk\ = μ~\pk) (fc=l,2,3). Then we have Γk + &τ

(k=l, 2, 3). Since p, pγ, p2, p3 are pairwise distinct, and since ^l9 &2 and #"3 intersect
Γ at distinct points, we obtain Bs 14C0 — μ*D \ = 0.

If e — d=0, then det^. i ®^>o®^Γ1 is isomorphic to one of Θc and Jίk (fc=l, 2,
3) by assumption. If det,F24 ® L O ® L 1 " 1 ^ ^ C , then Bs|4Co-μ*Z>| = 0 holds. If
d e t ^ ^ ® ^ ® ! , ! " 1 ^ ^ , we have \4C0-μ*D\ = {&c(k) + #τ2{k)}. We can easily show
that a general member of 141^— σ*μ*Z)| is nonsingular along σ~1(J^(fc)u J^2(fc))n 70.

In the same way as in the proof of Theorem 3.9, we can show that 14Yt — σ*μ*Z) |
is not composite with a pencil in each case above, and hence a general member of
\4Y1 — σ*μ*D\ is irreducible and nonsingular.

As in the case of (ii) with e even, we can show that (Ψ) n Y^ is a disjoint union of
3d — e pieces of (— l)-curves.

(iii) The case where (e = 3d>0 and L 0 ®Lf 3 ^detF 2 > 1 ), or (3d<e<4d). Using
Lemma 3.11, we can show that a general member of 13 Yx + σ*(C0 — μ*D) | is irreducible
and nonsingular in the same way as in the proof of (iii) of Theorem 3.9.

(iv) The case where 4d<e. The images of all the members of |47 1 -σ*μ*Z)| in
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W have non-isolated singularity for the same reason as in the case (iv) with e even.

q.e.d.

REMARK. (1) We can prove Theorem 3.10 above by using an isogeny φ: C-+C

with deg φ = 2 of elliptic curves as in §3.3.4 below where we use an isogeny of degree 3.

(2) The existence of the linear pencil ζ: Y^P1 and the multiple fibers 2J^

(k= 1, 2, 3) above was proved by Suwa [21, §4]. What we mentioned in the proof of

Theorem 3.10 is a re-interpretation of Suwa's result by means of Lemma 3.11 due to

Ashikaga.

3.2.3. The canonical mapping. In this section, we study the canonical mappings

of those surfaces whose existence was shown in §§3.9-3.10. Let Eo and L be as above

satisfying the conditions of Theorem 3.9 when e is even, and Theorem 3.10 when e is odd.

LEMMA 3.12. If μ: Y:= P(E0) -• C is the ruled surface associated to Eo e <?c(2, 4),

and Co is a section of μ with μ^Θγ(C0)^E0, then Φ\Co\ is birational onto its image.

PROOF. Let δeDiv(C) be a divisor satisfying L0^Θc(δ\ and C a section of μ

with I C0-μ*δ\ = {C'}, where Lo is an invertible sheaf with E0^L0®F2.

Let qu q2 e Y\C be any pair of points contained in different fibers of μ, and Γx

the fiber of μ containing qγ. Since Bs | Co — Tx | consists of one point on C by Lemma

2.5, there exists a member Q of | Co — Γί | with q2φC'o. Then Cf

0-\-Γί contains q1 but

not q2. Hence | Co | separates qx and q2, and Φ| C o | is birational onto its image, q.e.d.

PROPOSITION 3.13. Any surface whose existence is guaranteed by Theorems 3.9

and 3.10 and the condition (A) is canonical ife + d>5.If(e,d)φ(4, 1), then the canonical

mapping is a morphism. If(e, d) = (4, 1), then \ Ks | has a unique isolated base point, and

its canonical image is non-normal.

PROOF. We use the same notation as in §§3.2.1-3.2.2. We only have to prove

that Φ| Γ ( is birational onto the image to show the birationality of the canonical mapping.

We can show that the restriction of Φ | Γ ( to a general fiber F of π gives an iso-

morphism of F onto its image as in the proof of Lemma 3.2.

If Φ\Yί\ is birational onto its image, then Φ | Γ | is also birational onto its image.

Therefore, we consider Φ\γx\.

Any ΨeH°{X, Θx(Yλ)) can be written as

Ψ = ψ0Z0 + ψ(»Zoΰ, ψoeH°(C9L), φ^eH°(Y,Θγ(C0)).

Hence it is easy to see that Φ\Ύι\ is birational onto its image if one of d > 3 , e>6

and (e,d) = (5,2) holds. Similarly, in the cases (e, d) = (4, 2), (4, 1), Φ\Yί\ is birational

by Lemma 3.12. If (e, d) = (3, 2), then we have Bs | Y1 \ = 0. Since Yf = 5 and the degree

of the image of X cannot be 1, Φ\Yl ( is a birational morphism.

If e>3 and J > 2 , then Bs| Yί \ = 0 by the equation above. The statement in the

case (e, d) = (4, 1) is proved in the same way as in the proof of Corollary 3.4. q.e.d.



280 T. TAKAHASHI

PROPOSITION 3.14. Let π: W\=P(E)-• Cbe the P2-bundle associated to a locally
free sheaf E: = E0@L, (£0 e <ίc(2, 2), Le£c{\. 1)), T a tautological divisor with
π*Θw(T)^E, and Loe$c(\, 1), LγeSc(\, 0) the invertible sheaves satisfying E0^L0®
F2 and L^LO®LV We have the following for a general Se\AT— π^D\:

( i )
(ii)
(iii) degΦ | X s |=4, ifL^

PROOF. Let p e C be a point with L ̂  Θc(p), and q e Y a point with Bs | Co | = {q}.
(See Lemma 2.5.) Bs\Yι\ = {(μoσ)~1(p)nYO0}u{σ~1(q)nY0} is proved in the same

way as in the proof of Corollary 3.13.
Let C be a section of μ with Θγ(C')^Θγ(Co)(g)μ*Lo \ /?oeC a P o i n t w i t n

L o ® ^ Γ 1 = C;c(/?o)» ^ ' e 7 the intersection point of μ~1{p0) with C", and / e C a
point with L®4® d e t ^ ^Θc(pf). We have already seen that B s l ^ - σ * / / * / ) ^
{σ-\q')(\ Y0}u{(μoσy1{pf)n Yj holds in Theorem 3.9.

q coincides with q' if and only if L 0 ^ L 0 ® L f x , hence L ^ ^ . /? coincides with
p' if and only if L^L® 4 ® det^ v . This is equivalent to Lf2^Θc.

Hence, if L®2£ΘC holds, the complete linear system of the canonical divisor of
a general member of 14^— σ*μ*Z)| has no base point, and we obtain degΦ|X s | = 9.

If Lf 2^Θc and Lx ̂ Θ c holds, then we have qφq' and/? =/?'. Hence the canonical
system of a general member of |4Γ— π*Z)| has one isolated base point. We have the
following elementary transformation (cf. [17]):

W

W W

where π': PΓ' -• C is the P2-bundle associated to a locally free sheaf E' :=EO(&ΘC of
rank 3 over C, 0 is the blowing-up at the isolated base point of \4T—π*D\9 and φ' is
the blowing-up along the line P(E0®GcΘp)^ W. Let T be a tautological divisor with
κ'*®w(T') = E'. The complete linear system | T\ on Wis mapped to the complete linear
system | T \ by this elementary transformation. Furthermore, if 5is the proper transform
of a general member S by φ, and if we denote S': = φ'(S), then we have 5" ~4Γ' by the
assumption Lf2^ Θc. Since Bs | T \ = 0 , the complete linear system of ΘW{T) ® c v , Θs>
on 5" has no base point. Since Φ\K§\ factors as

Φ]κ^.S^S'^Φ^μ')c^P\ (n:=pβ(S)-l),

we have
Finally, we consider the case (iii), i.e., the case E^L®(F2@ΘC). We see that

Bs I T\ = Bs 14Γ— π*D | holds, and it is a line contained in a fiber π~ ι{p)a W.
We have the same elementary transformation as in the case (ii). (We use the

same notation as above.) In this case, Bs | T \ consists of one point contained in
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π'~ι(p), and the image S' in W of the proper transform of a general member

Se\4T-π*D\ goes through this point. Let T'o be the image of P(E/L)^W in W.

Regarding Co, C and μ~1(p) as divisors on P(E/L) or T'o in view of Y^P{E/L)^T'O,

we have ΘT'Q{T0)^ΘTQ{C0) (^ΘT'o(C + μ~1{p))). Since the restriction of S to P(E/L) is

linearly equivalent to 4C+ μ~ι(p), the restriction of S' to ΓQ is the sum of a divisor G

which is linearly equivalent to 4C" +μ~ 1(p) and 3μ~ x(p). G goes through g = /ί" !(]?)nC',

and since S is generic, G is nonsingular at #. Co also goes through </ and is nonsingular

at q, and Co and G have different tangents by Lemma 2.5.

Let v: W-+W be the blowing-up at q, let T and S be the proper transforms of

T and 5", respectively, and denote 3\ = v~1(q). Since v*! 7 '^/^-*?, we can prove

v*S'~S+A$ by the above result. Although | T\ has one isolated base point, S does

not go through the point. Hence we have

= T'2S'-4i3=4T3-4 = 4.

q.e.d.

We treat the case (e, d) = (l, 1) in Proposition 3.30 in the next section.

In the case (e, d) = (3, 1), we have the following:

LEMMA 3.15. Let π: W:=P(E)-^C be the P2-bundle associated to a locally free

sheaf E\=L®(F2Λ®L), (Le<ίc(l, 1)), and T a tautological divisor with π^Θw(T) = E.

Then Φ\T\ is a triple covering of Wover P3.

PROOF. Let μ: Y:=P(L®F2,i)-»C be the ruled surface associated to L®F2Λ,

and Co a section of μ with μ^Θγ(C0)^L®F2Λ. Then the restriction mapping

H°{ Y, ΘY{CO)) -»H°(Γ, ΘΓ(C0)) is surjective for any fiber Γ of μ, and we have Bs | Co | =

0.
Consider the pull-back \Yί\ of \T\ to X. Since Bs | Co | = 0 , we have Bs | Y1 \ =

Yaon(μoσy1(p), where peC is the point with L^Θc{p). This curve is contracted

to a point q by p: X-> W, and we have Bs | T\ = {q}.

Let π ' : W'\=P{E')^C be the P2-bundle associated to the locally free sheaf

E' \=E0® Θc, and T a tautological divisor with π'^Θw{T) ^ E ' . We obtain an elementary

transformation

W

W W

as before, where φ is the blowing-up at q. The image under φ' of the proper trans-

form of T by φ is linearly equivalent to T. Clearly B s | Γ ' | = 0 , and hence,

deg Φ, τi = deg Φ, T Ί = ( Γ ) 3 = 3 holds.
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LEMMA 3.16. Let μ: Y-> C be the ruled surface associated to a locally free sheaf
EoeSc(2, 3), and Co a section of μ with μ^Θγ(C0)^E0. Then Φl4.Co_μ*D] is a birational
morphism onto its image for any divisor DeΌiv(C) of degree 4.

PROOF. It is known that Y is isomorphic to the symmetric product of C of degree
2 (cf. [7]). Let η: CxC^> Y be the quotient morphism. Cx{p} and {p} x C are
mapped by η to the same curve Cp on 7for any point/? e C. Since (C x {/?} + {/?} x C)2 = 2
and deg η = 2, this curve Cp is a section of μ with self-intersection number 1.

14C0 — μ*D I contains a member of the form Y*= ι CPi, (pteC, i= 1, 2, 3, 4). Since

1~^ΌUiCp) = \Jΐ=i{(Cχ{Pi})v({Pi}χC)}> t h e r e e x i s t P ° i n t s PieC s u c h t h a t

Uf=i Cn does not contain q for any point qe Y. Hence we have Bs|4C0 — μ*D\ = 0.
Let q, q* e Y be distinct points which are not contained in the image under η of

the diagonal of Cx C, and denote q = (p,p') for /?,/?'eC in view of the above. Then
Cp and Cp, are two distinct sections of μ. Since CpCp = 1, at least one of Cp and Cp,
does not go through q*. We may assume that Cp does not go through #*.
14C0 — π *Z> — Cp I contains a member of the form £ t

3

= χ Cp., (/?,- e C, i = 1, 2, 3), and there
exists points pteC ( ι=l, 2, 3) such that Xf= 1Cp. does not go through q'. Hence the
complete linear system 14C0 —μ*Z> | separates q and q'. q.e.d.

Proposition 3.17. In the notation of Lemma 3.15, if DeDiv(C) is a divisor with
Θc(D)^detE, then a general member Se \ 4T—π*D | is a canonical surface.

PROOF. By the proof of Theorem 3.10, we know that Bs |4Γ-π*/) | = 0 holds
when L ^ d e t E 2 U and that Bs14Γ-π*Z>| = Cί :=P(E/E0)a PFholds when L^det^ 2 i l .

Since degΦ ( Γ | = 3 by Lemma 3.15, we have degΦ[1Cs| = l, 2 or 3.
First, we consider the case L^άtiF2Λ.
Assume degΦ|X s ) = 2. Bs | T\ consists of one point qe W, and S does not contain

q. Let φ: W^> W be the blowing-up at q and Ta W the proper transform of T by φ,
and denote S>: = φ~ί(q). The proper transform S of S is linearly equivalent to
AT+AS — 0*π*Z). If φ': W-+ W is as in the proof of Lemma 3.15, then we have
S' : = φ'(S)~4T. We may identify as S = S, and Φ\Ks\ ^s factored as

Since Φ]*TΊ(ΦιτΊ(S'))~6Γ, there exists a divisor Qe\2T'\ with *jV'|(*|r|(5")) = 'Sf/ + C.
Since degΦ j Γ Ί = 3 and degΦ| K s |=2 hold, Q is birationally equivalent to Φ\Ks\(S). On
the other hand, Q is birationally equivalent to a ruled surface over C. Thus S' is
birationally equivalent to a double covering of a ruled surface over C, which is absurd.

Assume degΦ j K s | = 3. Let ^oG^'XQ be a point such that Φ\r\(Φ\τ'\(<lo)) consists
of three distinct points q0, qu q2. Since the restriction of Φ\τ\ to any fiber of π is an
isomorphism onto its image, q0, qu q2 are contained in distinct fibers of π'. Let the
notation be as in Theorem 3.10. Since dim H°(X, Θx( Yγ) ®σ*μ*L~1) = 2, we may choose
ZOGH°(X, ΘxiYj)® σ*μ*L~1) in such a way that Zo(qo) = 0 and that the divisor (Zo)
is irreducible. Let ΨGH°(X, ^x(471)(χ)σ*μ*det£'v) be the global section defining the
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proper transform S of S by p. Since | T\ does not separate q0, qγ and q2, we have
Zo(q1) = Zo(q2) = 0. Hence we have Ψ(qi) = φ4.(qi)ZQO(qi)

4r, where φ4 is as in the previous

section. On the other hand, since ψ4eH°(Y, # y(4C 0)®μ*det£ v), we have ψάqJΦO
for a general S by Lemma 3.16, a contradiction.

Next, we consider the case LηkdetF2Λ

Since Bs| T\ = Cί n π " 1 ^ ) , if we let the notation to be as above, we have
5~4T+3£-φ*π*D, and S'~4T'-π*(p'), where S' = φ'(S)c: W\ and p'eC is the
point with ^ c ί / O ^ d e t i ^ . Hence, the invertible sheaf (9W{S') cannot be the pull-back
of any invertible sheaf over P3, and we have degΦ ) X s | Φ3.

We can prove that Φ\Ks\ does not give rise to a double covering onto its image as
in the case L ^ d e t F 2 1 . Therefore, S is canonical in this case, too. q.e.d.

In the case (e, d) = (2, 2), we have the following:

PROPOSITION 3.18. Let π: W-> C be the P2-bundle associated to E with Eo e $c{2, 2)
and LeSc{\, 2), T a tautological divisor with π^Θw(T)^E, and DGΌW(C) the divisor
with Θc(D)^detE. Then the minimal resolution S of a general member Sf e\4T— π*D\
is canonical.

PROOF. Let the notation be as above, and yoe Y as in Lemma 2.5. We have
Bs I Yί \ = {q0}, where q0 : = σ~1(y0)n Yo. If we identify q0 with p(q0) so that qoe W, then
we have Bs | T\ = {q0}. Again by Lemma 2.5, general members of | Co | have the same
tangent y0. Hence if we let ζί: Wγ->W to be the blowing-up at q0, and T the proper
transform of Γ, then the complete linear system | T \ has one base point q'o. If we let
Cz' W2^> Wί to be the blowing-up at q'o, and T" the proper transform of Tr, then we
have Bs | T" \ = 0, dim | T" | = dim| Γ| = 3 and (Γ")3 = Γ 3 - 2 = 2, and Φ , r Ί : Y'^-P3 is
the double covering. Hence, the canonical mapping of S has degree one or two.

Since Bs|4Γ— π*D\ = C and since Sf has a rational double point of type A3 at
q0 G C by the proof of Theorem 3.9, we have S\ ~4T + 2£γ -ζfπ*D, where Sγ: = Cϊ ^q^
and S[ is the proper transform of S' by ζi Sί has a rational double point of type Ax.
On the other hand, if we regard Yo as a divisor of W, since the support of the intersec-
tion of S' with Yo is C, this rational double point does not coincide with q'o. Hence
the proper transform S'2 oϊS[ by ζ2 satisfies S'2 ~4T" + 6£2 + 2δ[ -ζξ ζfπ*D, where S2 is
the exceptional divisor of ζ2, and $[ is the proper transform of Sγ by ζ2. Since
6̂ 2 + 2$ί + ζ*ζ*π*D, we see that S2 cannot be the pull-back of any effective divisor of
P3 by Φ\T"\. Therefore, S is canonical. q.e.d.

3.3. E is indecomposable. Let E be an indecomposable locally free sheaf of rank
3 over an elliptic curve C. Denote d\ = degE. We prove the following theorem in
§§3.3.1-3.3.4. We consider the case dφQ (mod3) and dΦl, 2 in §3.3.1, the case d=0
(mod3) and dφ3 in §3.3.2, the case d=3 in §3.3.3, and the case d=2 in §3.3.4. We
omit the case d= 1 because it was investigated by Catanese and Ciliberto [7]. In §3.3.5,
we study the canonical mappings of the surfaces obtained in §§3.3.1-3.3.4. The results
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about the canonical mappings are stated in Propositions 3.28, 3.29 and 3.30.

We only have to consider the case d>0 by the remark immediately before §3.1.

THEOREM 3.19. Let π: W\ = P(E) -> C be the P2-bundle associated to Ee£c(3, d\

and T a tautological divisor with π^Θw(T)^E. Then the locally free sheaf E satisfies the

condition (A) if and only if d>\.

REMARK. In this case, | AT— π*D | turns out not to have base points except in the

case d= 3, where D e Div(C) satisfies ΘCΦ) = E. Hence its general members are irreducible

and nonsingular by Bertini's theorem and Lemma 2.6. In particular, it suffices to show

the following lemma when d>4 (§§3.3.1-3.3.2).

LEMMA 3.20. Let the notation be as in Theorem 3.19. Then the restriction mapping

H°(W, Θw(4T)®π*detEs/)^H°(F, ΘF(4T)) is surjective for any fiber F ofπ when d>4.

3.3.1. The proof when deg£>4 is not divisible by 3. Suppose d: =

(mod 3). By Theorem 2.4, if we choose and fix any isogeny φ: C-> C of degree 3, there

exists an invertible sheaf Lo of degree d over C such that φ^L0^E. Furthermore, if we

denote G:=kerφ = {0, σ, 2σ} and Lί: = Tι^σL0 ( Ϊ = 1 , 2 ) where Tiσ is the translation by

iσeG, then we have E\ = φ*E^@2

i = QLt.

Let π: W:=P(E)^C and ft: ί¥: = P{E)->C be the P2-bundles associated to E

and E, respectively. Let T and f be tautological divisors on W and ίV, respectively,

such that n^Θw(T)^E and π^Θ^^^E. Consider the following diagram:
Φ

W > W

C > C
ψ

If we denote Φ: W-> W, then T~Φ*T.

Denote Jί = ΘW(4T—F) ® π* det Ew, where F is any fiber of π. It suffices to show

that H1(W,Λr) = 0 holds.

The proof of the following is immediate:

LEMMA 3.21. // {Θc, Jt, Jί®2} is the kernel ker φ * of the isogeny φ * : Pic°(C) ->

Pic°(C) corresponding to φ: C-^C, then we have φ^Θc^Θc® Jί® Jί®2.

By Lemma 3.21, we get H\W, Φ*^)^ ® 2

=0H\W, JT ®^®1). Since the action

of G on WΊs fixed point free, we have H\W, Jf) = H\W, Φ*JTf (cf., e.g., [11, p. 202,

Corollaire]). On the other hand, if we denote F0 + Fί+F2: = Φ*F, and qi: = π(Fi)

(i = 0, 1, 2), then we have Φ*jr^Θtf{4T-γ2

=0Fi)®π*άQiEs/, and
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Since d>A, this cohomology group vanishes, and hence Hι{W, «yΓ) = 0. Therefore,
Lemma 3.20 in the case dφO (mod3) is proved. q.e.d.

3.3.2. The proof when deg£V3 is divisible by 3. If we denote do = d/3, there
exists an invertible sheaf L of degree d0 such that E^L®F3.

Denote p: = π(F) for any fiber F of π. Since S\F3) ^ S4(S2(F2)) ̂  F9 ® F5 0 Θc by
[4, Theorem 9] and [9, p. 156], we have an isomorphism

H\W,Θw(AT-F)®π*detEv)^ ® H\C, F^i + ί®L®Θc(-p)),
i = O

which vanishes if d0 > 2. q.e.d.

3.3.3. The proof when deg E=3 holds. There exists an invertible sheaf L eSc(\, 1)
with E^ L ® F3 for Ee <?c(3, 3). Letp0 G C be a point satisfying L ̂  $c(/?0)

 L e t π : w ^ c

be the P2-bundle associated to E and Ta tautological divisor with π^Θw(T)^E. Denote

LEMMA 3.22. Let the notation be as above, To a relative hyperplane with To ~ T—Fo,

and C0<=Γ0 the section of μ: = π\To: T0->C with μ^To(Co)^F2. Then we have

Bs I AT- 3F0 I = {<70} where qo: = ConFo.

PROOF. In the same way as in the proof of §3.3.2, we can show that there is no
base point of \4T—3FO\ on any fiber except Fo. Furthermore, the base points of
I AT- 3F0 I exist only on the line TonFo^P\ since 3Γ0 + Te | AT- 3F0 |.

Since S3{F3)^F3®FΊ (cf. [4, Theorem 9], [9, p. 156]), the restriction mapping

H°{W9 ΘW(AT-3FO))->H°(TO, Θo

is surjective, where Γo: =F0 n To, and the statement follows from Lemma 2.5. q.e.d.

The restriction of a general member S of | AT— 3F0 | to To is nonsingular by Lemmas
2.5 and 3.22. Hence S is irreducible and nonsingular by Lemma 2.6. q.e.d.

3.3.4. The proof when degi?=2 holds. Let the notation be an in §3.3.1, and
denote %: = {Φ*Se\AT-π*D\\Se\AT-π*D|}.

G acts on H°(W, ΘW(AT)®π*det£v). Let H°{W, Θ#(AT)®π*det£v)G be the
subspace which consists of all the members which are invariant under this action.

LEMMA 3.23. In the above notation, we have

PROOF. Since we have Φ^Θ^^π^φ^Θ^ by the base change theorem (cf., e.g.,
Mumford [18]), if we denote Jί : = Θw(AT)®π*detEv, then we obtain isomorphisms

ΐ = 0
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The eigenspace H°(W, Φ*Jff of T* for the eigenvalue 1 corresponds to H°(W, Jί\ and

is the image of the injection H\W, Jί) c * H°(ίV, Φ*JT). q.e.d.

We describe the action of G on H°(W, Φ*Jί) to study Bs^r.

We choose and fix QφX^H^W, Θtf{T)®π*L;1) (i = 0, 1,2) so that XX = T*XO

and X2 = T$σX0 hold. Then any ΨeH°(ίV, Φ*Jf) can be written as

ψ= X φaβγ:
a,β,y>0

y= Σ
tx,β,y>0

Since we have

we get ΨGH°{W, Θw(4T)(g) π * d e t £ v ) G if and only if T*ψaβy = \l/ya^oί9 β, y>0, α

7 = 4).

Let Λ: C^Pic°(C) be defined by Λ(.y): = Γ ; L 0 ® L Q : for yeQ where Γy is the

translation by y on C. Then it is a group homomorphism by the theorem of square

(cf., e.g., [18]). Since Lt = Lo®Λ(iσ\ (/=1,2) and Λ(3σ) = yl(0) = ^ , we have iso-

morphisms

Lt ^ LjX 3 (x) L^j )1 (x) Lτ2(Q = L^ ® Lt2(ί ) = Lτ(f) ® Lt2(^ = Lf ® Lτ(i) ® Lτ2(f)

for z = 0, 1, 2, where τ is the cyclic permutation (123). Hence we have

°(C, Lo)

C, L2) .

Let { ^ ^ ^ j c z i / ^ L o ) be a basis, and denote ^ : = Γ σ % e i / ° ( C , L x ) , Uji^

H°{Q L2) ( 7 = 1 , 2). We can choose a basis of # ° ( 1 ^ , ^ ^ ( 4 Γ ) ® π * d e t i ? ) G consisting of

the following for 7 = 1, 2:

Ψ2j'.= SjXo X1X2 + tjXoX1X2 + ujXQX\ X2 ,

* 3j = : ^ j ^ 0 ^ 1 "I" 0 1 2 ~̂~ W j ^ 0 ^ 2 »

r 4j I = 5j J L O ^ 2 ~f~ tj^O^l ~̂~ w j ^ l ^ 2 ?

y 5 i : = ^ ^ 2 ^ 2

2 + f ^ o 1 * ! + w ^ o 2 ^ i 2

LEMMA 3.24. Pf̂  c«« choose the basis {sί, s2} ofH°(C, Lo) so that Sj(p)tj(p)Uj(p) φ 0

holds for anyp e C and for at least one ofj = 1 , 2 . Furthermore, we have Sj(p)Sj(p f)Sj(p ") φ 0,

where p': = TJj>) andp": - T2σ(p).

PROOF. TO avoid confusion in this proof, we denote by (q) the divisor on C

determined by q e C. There exist distinct pointsp ί 9 p2 e C with Lo ^ Θci^iPi)) = ®άΆPiϊ)

by Abel's theorem. If we denote p'i\ = T_σ(pi) and PΪ'> = T_2σ(pi) (/=1,2), we have
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{PuPuPΪ}{P2,P2>P2} 0

Let su s2eH°(C, Lo) be the global sections defining the divisors 2(/?1), 2(/?2)

respectively, and denote tj: = T*sp and uj: = Tζσsj (/=1,2). Then one of sί and s2

satisfies the condition of the lemma for any point. q.e.d.

We choose a basis {sί9 s2}aH°(C, Lo) as in Lemma 3.24, fix any point pe C, and

denotep': = Tσ(p) and/?": = T2σ{p). We assume thatye {1, 2} satisfies Sj(p)Sj(p')Sj(p") φ0.

Let us restrict Ψtj (i = 1, . . . , 5, j= 1, 2) to π " 1 ^ ) * a n d study if they have common

solutions on it. Note Ψ2j = X0X1X2(sjX0 + tjX1+ujX2).

The following lemma is trivial.

LEMMA 3.25. Ifwefixje{\, 2} satisfying ^ - ( ^ ( p >,-(/> " ) ^ 0 , then ^ = 0, Ψίj = 0

and Ψij = 0 do not have common solutions for any i = 0, 1,2.

In view of Lemma 3.25, we consider only the solutions satisfying XoXiX2φ0

in the rest of our argument. Denote Ψ0j\=sjX0-\~tjX1-\-ujX2.

LEMMA 3.26. If we fix je{1,2} with Sj(p)Sj(p')Sj{p")Φ0, then {p,{l:a:b)) is a

common solution of *FI7 = 0 (ί = 0, 1, 3, 4, 5) if any only if a, b are cube roots of 1, and

PROOF. Since we have Ψυ + Ψ3j + ΨAj = ΨOj(X% + X\ + Xl\ we may exclude Ψυ

from our consideration. We have

^ 0 ^ 0 j ~ XQ(^3j "I" -^4j) "I" ̂ 1 ^ 2 ^ 5 j = ^j(^0 "" X\ )\Xθ ~~^2)

If Xf = Xo holds, since we have X$ΨOj-Ψ4rj = sjXo(X$-X2

3) and since Sj(p)Φ0 and

Zo^O, we obtain X^ = XQ. Similarly, if we assume X%=X$, we have Xf = X$. Hence,

the common solutions are of the form (/>, (1: a: b)) where a and έ are one of 1, ω, and

ω 2 , and ω is a cube root of 1. If (/?, (1:1:1)) is a common solution, we obtain

Sj(p) + tj(p) + Uj{p) = O by substituting (p9 (1:1:1)) into ΪP0 = 0 (ι = 0, 1, 3, 4, 5). We can

obtain the same result in the other cases. q.e.d.

PROPOSITION 3.27. °U has no base point. Hence a general member of°U is irreducible

and nonsingular by Bertinfs theorem and Lemma 2.6.

PROOF. Assume (p, (1 :a\b))eBs%. Let g: C^>Pι be defined by the complete

linear system of Lo. Denote p': = Tσ(p) and p": = T2σ(p).

First assume that g(p) = g(p') holds. If s'eH°(C, Lo) is a global section defining

the divisorp+p\ then Λ '(/?)H-α.s '(/>')-hfe'(/?'')^0. This contradicts Lemma 3.26. We can

obtain the same results when g{p') = g{p") or g(p") = g(p) holds.

Next, assume that g(p), g(p') and g{p") are pairwise distinct. Let ξθ9 ξ^ be global

sections of ΘPi(\) defining g{p), g(p'), respectively. Then any ξeH°{P1, ΘPx{\)) is written

as ξ = Aξo + Bξaΰ (A, BeC), and clearly there exist A, Be Csuch that s: =g*ξeH°(C, Lo)

satisfies s(p) + as(p') + bx(p")φθ. This contradicts Lemma 3.26. q.e.d.
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Let Se°U be irreducible and nonsingular. We have S\ = Φ(S)e\4T-π*D\, and
Φ\§\ S-+S is the restriction of the action of G on W. Since this action has no fixed
point, S is irreducible and nonsingular as well. q.e.d.

REMARK. Instead of our argument in §3.3.1, we can use the above argument also
in the case d>4 and dφO (mod3).

3.3.5. The canonical mapping. In this section, we study the canonical mappings
of those surfaces whose existence was shown in §§3.3.1-3.3.4.

PROPOSITION 3.28. Let π: W:=P(E)-+C be the P2-boundle associated to
\ T a tautological divisor with π^Θw(T)^E, and DeΌiv(C) satisfy

= detE. Then a genral member of\4T— π*D\ is canonical when d>4.

PROOF. Since dim H\W, ΘW(T-F)) = O, for any fiber F of π, the restriction
mapping H\W, ΘW(T))-+H°(F, ΘF{T)) is surjective when d>4.

We first show that Φ\T\ is birational onto the image when d>5, hence a general
member of 14T— π*D | is canonical. We can prove this in the same way as in the proof
of Lemma 3.12 when d>Ί in view of what we just saw above, and when d=6 in view
of Lemma 3.22. If d=5, then since 5 = Γ3 = degΦ|Γ|degΦ,Γ,(P^) and degΦ,Γ,(PF)>2,
we see that Φ|T ( is birational onto the image.

In the case where d=4, since Bs| T\ = 0, and since Γ 3 = 4 > 0 , we see that Φ| r )

gives a 4-fold covering of PFonto P3. Hence, Φ\Ks\ *s a morphism, and the degree of
Φ]Ks] is 1, 2, 3 or 4 for general Se\4T-π*D\.

Since K£ = T2S=\2 holds, if degΦ | X s ) =4, then S" : = Φ{Ksl(S)^P3 is a cubic
surface. Hence, we have ΦfT\S"~3T, which is absurd since S~4T— π*D.

If degΦ|K s ) = 3, we have Φ|*Γ(S"'~4Γas above. Therefore, there exist fibers Fu F2,
F3, FA of π satisfying Φj*T\S" = S + Fι+F2 + F3 + F4. Φ ( Γ | is a birational morphism of
F1uF2uF3uF4r onto its image, since degΦ )T | = 4 and degΦ ) X s |=degΦ| K s | | s = 3. This
means that the image is not irreducible, a contradiction.

Finally, we show that the case degΦ|£s( = 2 does not occur. Let p,p'eC be two
distinct general points. Furthermore, denote Fp : = π~1(p) and Fp, \=π~1(pf), and let Tp

and Tp. be the relative hyperplanes of W satisfying T~Tp + Fp~Tp,+Fp.. Since p,p'
and S are generic, SnTpnFp,. SnTp,nFp and SnTpnTp, all consist of four distinct
points set-theoretically. Since any fiber of π is mapped onto its image in P3 by Φ m , if
deg Φ| Ks i = 2, then some point of S n Tp n Fp> and some point of 5 n Tp. n Fp are mapped
to the same point by Φ\T\ Hence if we fix any point qeSnTpnFp> and any point
q'eSn Tp'ΓiFp, we only have to find a member of | T\ containing q but not q'.

It is well-known that W is isomorphic to the symmetric product of C of degree 3
(cf. e.g., [7]). We can show that the image of (Cx Cx {p})u(Cx {p} x C)u({/?} x Cx
C ) c C x C x C i n Wis a relative hyperplane with self-intersection number one in the
same way as in the proof of Lemma 3.16. Therefore, for a general point of W, there
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exist three distinct relative hyperplanes with self-intersection number one containing

the point.

Since p,p' and S are general, there exist two distinct relative hyperplanes Tp and

Tp distinct from Tp and containing q. If F'p and Fp are fibers of π satisfying

T~ Tr

p + F'p~ Tp + Fp, respectively, then one of Tp + Fp and Tp + Fp does not contain q'.

Hence Φ\Ks\
 ι s a birational morphism onto its image. q.e.d.

Next, we investigate the canonical mapping in the case pg(S) = d=3. We use the

notation of §3.3.3.

PROPOSITION 3.29. Let the notation be as in §3.3.3. Then the canonical mapping of

a nonsingular member Se\4T—3F0 | has degree 8.

PROOF. In the same way as in the proof of Lemma 3.22, we can show that

BsI T\ = Bs\4T—3F0\ = {q0}. Hence, the canonical system of S has one base point. If

v: W-> PFis the blowing-up at q0, the complete linear system of the proper transform

Γof Γby v has one base point by Lemma 2.5. On the other hand, the proper transform

S of S by v does not go through the base point of | T\ by Lemma 2.5. Hence, if we

denote S\ = v~ι{q0\ we have degΦ, X s | = degΦ|K-, = Γ 2 (4f +3<?-3F 0) = 8. q.e.d.

Finally, we study the canonical mapping in the c&sepg(S) = 2. In §3.2.2, we proved

the existence of a surface S with Kj = 3pg(S), q(S) = 1 and pg(S) = 2, but did not study

the canonical mapping Φ\Ks\ in the case E^E0@L, (Eoe$c(2, 1), LeSc{\ 1)). On the

other hand, we showed the existence of a surface S with the same invariants in the case

EeSc(3, 2). We obtain the following result in these two cases:

PROPOSITION 3.30. Let E be one of the following:
( i ) E: = Eo®LwithEoeSc{2, \\Le£c{\, 1).
(ii) £e<ίc(3,2).

In the same notation as in Proposition 3.28, the canonical mapping of the minimal

resolution of a general member Se | AT— π*/) | gives a linear pencil whose general fibers

are irreducible nonsingular curves of genus 7.

PROOF. Since H°(S, ωs) is 2-dimensional, | AΓS | is a linear pencil. Furthermore, we

have g(Z) = (\/2)T(2T)(4T-π*D)+ 1 =1 for a general member of Z of | Ks |. q.e.d.
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