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Abstract. We consider Whittaker model for generalized principal series rep-
resentations of the real sympletic group of degree 2. We obtain an integral formula
for the radial part of the vector of with an extreme K-type in the Whittaker model.

Introduction. In our previous papers [O], [M-O], we investigated Whittaker
functions of the large discrete series representations, and of the principal series rep-
resentations of the real symplectic group Sp(2; R) of rank 2, respectively.

In this paper we shall obtain explicit integral formulae for the radial part of the
Whittaker functions on G=Sp(2; R), belonging to the principal series representations
associated with the Jacobi parabolic subgroup P, of G.

Let (m, H,) be an irreducible admissible representation. Denote by N a maximal
unipotent subgroup of G. For a continuous character n: N— C* of N, let C,*(N\G)
be the space of complex-valued C*-functions f on G satisfying

flng)=n(n)- f(g)  forany neN, geG.

Consider C,*(N\G) as a (g, K)-module via the right regular action of G. Then the
intertwining space

Homg x(H,, C;*(N\G))

is the space of algebraic Whittaker vectors. When = is a principal series representation
with a generic parameter u of af, the dimension of the above space is known and equals
the order of the (little) Weyl group, i.e. 8 in our case (cf. Kostant [Kos, §57]). Here a
is the dual of the complexification of the Lie algebra a of A.

Choose a K-type (t, V,), 1€ K, which occurs with multiplicity one in H,, and let
it V., H, be an injective K-homomorphism which is unique up to nonzero scalar
multiple. Then we call the elements of the image of the restriction map

Hom ,(H,, C;°(N\G))— Homg(V,, C*(N\G))~C,*(N\G)®x V¥,

Whittaker functions with K-type 1* belonging to the representation .
Now consider the standard maximal parabolic subgroup P, of G associated to
the long simple root. In this paper we call this parabolic subgroup the Jacobi
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parabolic subgroup. Let 7 be a generalized principal series representation induced from
P, ie.

7I=Indgl(0'1 e ®1y,)

with o, a discrete series representation of M, v, a complex-valued linear form on
the Lie algebra a, of 4,, where P, =M AN, is the Langlands decomposition. Let
T be the “corner” K-type in m. Then the radial part of the Whittaker functions
with K-type t* belonging to = is a solution of a holonomic system of rank 4 on 4.

This is a situation completely similar to the case of the large discrete series rep-
resentations and their minimal K-types, discussed in [O]. Therefore, applying the
method of [O], we can obtain an integral expression for these Whittaker functions. It
is the main result of this paper.

Now let us explain the contents of this paper. In §1, we recall some notation which
were used in [O]. In §2, we recall the definition of the principal series represen-
tations of G which are induced from a maximal parabolic subgroup and their de-
composition into K-types. We recall some structure of the unipotent radical N of
a minimal parabolic subgroup and the definition of generic characters # of it in §3.
Definitions of the Whittaker functions and Schmid operators are given in §4. We
obtain a fundamental formula which is used for the computation of the radial part
of the Schmid operators in §5. In §6, we give an expression of the Casimir element
acting on C,°(N\G)®x V¥ and also determine the eigenvalue of the element on the
space of the principal series representation under consideration. In §7, the action of
the shift operator on the minimal K-type vector is explicitly computed and we obtain
explicit formulae of the differential equations for Whittaker functions in Propositions
7.1 and 7.3. Finally in §8, we obtain integral representations of the radial parts of the
Whittaker functions with minimal K-type, Theorems 8.1 and 8.2.

The observation to start this paper, namely, that the “shape” of the K-types of
Ind,?l(o'@e” ® ly,) is the same as that of the large discrete series, is due to the first
named author.

We thank Kyo Nishiyama and Takahiro Hayata for various comments on the
previous papers.

1. Notation. We use the same notation as in the previous paper [O]. The
symplectic group of degree 2 is given by

G=Sp(2;R)={geSL4(R)|'ng=J:< 01 k)}
— 12

Here ‘g denotes the transpose of g and 1, the unit matrix of size 2. A maximal compact
subgroup K of G is given by

A B
K={( C A)eSp(Z; R)[A,BeMz(R)},
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which is isomorphic to the unitary group U(2) of size 2.
The Lie algebra of G is given by

g=sp(2; R)={XeM4(R){JX+‘XJ=O} s
and that of K

4 B
u(2):f={X=< T A>

We have the associated Cartan decomposition g=f@® p.
An R-basis of u(2) is given by

10 1 0 0 1 01
-1 , -1 , Y= , Y=/-1 .
) vl 5 ) i)
Let u(2)c=u(2)®gC. Then a basis of u(2)¢ is given by
Z=<1 0>’ H,=<1 0 )
01 0 —1

X=%(Y——1/—1Y’)=<O 1), X’=%(—Y—./—1Y’)=<? g).

00

A, Be M,(R);'A=—A4, 'B=B} .

Via the isomorphism ¥, > u(2)¢, the preimage of the above basis of u(2). is given by

Z=(=v =D\ = ;o H'=(=J-D| ;
N |
0 1 ‘ l 1
-10 , 1
Y= ’ o1 )0 U= —1 '
-10 ~1

A compact Cartan subalgebra b of g is given by b=R(\/:T Z)+R(\/—»1H .

Put Hy=1/2(Z+H'), H,=1/2(Z— H'). We consider a root space decomposition
of g with respect to b. For a linear form §: b— C, we write ;= p(,/— 1H;)e C. For each
Beb*=Hom(h, C), set g;={Xeg.=9@rC|[H, X]1=p(H)X, "Heb}. Then the roots of
(g, h) are given by

Z={B=(/315 ﬁZ)?/:(O’ O)Igﬂ?éo}:\/ _l{i(za 0)9 i(oa 2)9 i(la 1)5 i(l’ _1)} .

We write root vectors X, in g, which are given in Table 1 of [O, p. 265]. Then
fc=bc+CXy 1)+ CX_y ) Set
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P+ :CX(2.0)+CX(1,1)+CX(0,2) > P- =CXf(2,0)+CX—(1,1)+CX—(O,z) >

then gc=f.®p., ®p_. For each root f=(B,, B,), we put ||B =/ B1|*+| B, |*. The set
{e- IBI(Xs+X_p), c*\/=1IBI(X;—X_p), Be Z,"} forms an orthonormal basis of p=pg
with respect to the Killing form for some constant ¢. Here X, ={(2, 0), (1, 1), (0, 2)} is
the set of non-compact positive roots. Also we denote X" ={(1, — 1)} the set of compact
positive roots.

{Restricted roots and the Iwasawa decomposition.) We choose a maximal abelian
subalgebra a of p. Set

then these form a basis of a.

Let {e;=(1, 0), e,=(0, 1)} be a standard basis of the 2-dimensional Euclidean plane
R*. Then the root system ¥ of (g, a) is ¥={+2e,, +2e,, +e, +e,} with a positive root
system ¥, ={2e,, 2e,, e, +e,,e,—e,}. Then n=) _, g, is a nilradical of a minimal
parabolic subalgebra. We choose generators E, of g, (xe ¥ ,) as in [O, p. 266]. In g,
the Iwasawa decomposition of the root vectors {X,; f€ X} are given as follows, which
is obtained by direct computation.

Lemma 1.1 ([O, Lemma 1.1]).
Xooy=Hi+H +2/—1E,.,; X_y0=—Hi+H, -2/ —1E,,,;
Xo=2 X+2E, o +2/=1E, +0,;
Xr-y==2"X+2'E, ,—2/~1E, ..,;
Xon=Hy+H,+2/—1E,,; X _5=—Hy+H,~2/—1E,,,.
{The Jacobi parabolic subgroup.)

DerINITION 1.2. We call the standard maximal parabolic subgroup P, corre-
sponding to the long simple root of ¥, the Jacobi parabolic subgroup of G.

The Langlands decomposition P, =M 4N, of P, is given by
0

(“ b)eSL(Z;R),se{il} ,
c d

A, ={diag(t, 1,71, 1)|teR.,},

and the unipotent radical
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1 = * %
01| = O

N, =
! 0010
0 0 x 1

Here diag(a,, a,, a;, a,) denotes the diagonal matrix whose (i, i)-components are given
by a;. The unipotent radical N, is the 3-dimensional Heisenberg group.

2. Generalized principal series associated with the Jacobi parabolic subgroup.
In this section we review some results on the K-types of the principal series representa-
tions associated with the maximal parabolic subgroup P,. Let us start with the defini-
tion of these representations.

A discrete series representation ¢ of the semisimple part M, ~{+1} x SL(2; R) of
P, is given as a pair (¢, &), where ¢: {41} — C* is a character, and ¢ is a discrete series
representation of SL(2; R). For an element v, eaf, let exp(v,): 4; - C* be a character
of 4,, and we can define a representation ¢ ® v, of P, by

o ®vy(p)=a(m,)a;’, for py=mjan,eP =M;A,N,.

Then the representation 7n(P,; g; v,) of the principal series associated with the Jacobi
group P, is defined as the induced representation Indf (o ® (v, +pp,). Here pp =
(1/2){(e; —e,) +2e; +(e; +e5)} =2e;.

In order to formulate some results on the K-types of the above representations,
we have to recall the parameterization of the discrete series of SL(2; R). The weight
lattice of SL(2; R) is identified with Z. Then the Harish-Chandra parameters of the
discrete series representations of SL(2; R) consist of Z\ {0}.

For a given Harish-Chandra parameter me Z\ {0}, its Blattner parameter k is
given by k=m+1, if m>0, k=m—1, if m<0. We denote by D, the discrete series
representation with Blattner parameter k, if k>0 (k>2, in fact). Similarly we set D,
to be contragradient discrete series representation for D,", k>2. Hence the Blattner
parameter of D, is equal to —k.

{K-types of the principal series representation.) We describe the K-types of the
principal series representation n(P,; a; v,) associated with P,, 6= (e, D). The irreducible
finite-dimensional representations of the Lie algebra f,~gl(2, C) are parameterized by
the set {A=(1, 4,)€Z®*|A,>4,, i.e. 4 is dominant}. We denote (t,, V;) the rep-
resentation associated with A in the above set. Let d=4, —4,, then the dimension of
V,is d+1. Let y,,, =diag(—1,1, —1, 1) in M,.

ProposiTION 2.1. Let 7n(P,; 0;v,) be the principal series representation of G
associated with P, o= (¢, Dif) and v, € af ¢. Then for a dominant integral weight A= (1, 1,)
the irreducible representation 1, of K occurs in n(Py; o; v) with multiplicity
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#{meZ|m=k(mod2), m-sgn(Di)—k=>0,
(=1 "=y, ), max(dy, ) <m <2y} .

Here we set sgn(D;)= +1 and sgn(D; )= — 1. In particular,

(1) ife(yse,)=(—1)* and c=(e, Dy ), then each of 1, (l€ Z, I=k (mod 2), I< —k)
or tq iy (leZ, I=k (mod 2), [> —k) occurs in n(Py; o; vy) with multiplicity one;

(i) ife(yse,)=—(—1ando=(e, Dy), theneachof vy, 1,(l€ Z,1< —k)ort ;)
(leZ, I=k (mod 2), I> —k) occurs in n(Py; o; v,) with multiplicity one.

Proor. Consider the restriction of 6 =(g, Dif) to KnM,:

Olkar,= 2 [0:0]o.
we(KnM)»

Here [o:w] is the multiplicity of @ in ¢|gny,. Since KnM,~{+1}xSO(2), any
we(KnM,)" is specified by its value w(y,.,) at y,, =diag(—1,1, —1,1) and the
restriction @|sp(,). We define a character y,, (me Z) of SO(2) by

Xm(ve) =€xp(y/ —1m0) ,

where r,e SO(2) is the rotation with angle 0. Then the K-type theorem for D;f implies
that the multiplicity of w=(w(y,.,), x.) is given by

[o'co]—{l s if m=k(mod2), m-sgn(Df)—k=0, 0(yse)=8(72¢,) 5
' 0, otherwise .

The Frobenius reciprocity implies that the multiplicity of 7, € Kin n(P; o; v,) is given by

[r(Py; 05 V1) Ty = Z [G'KnM‘:w]'[TlKan:w]
we(KnM )

(cf. Knapp [Kn, Chap. 8, Prop. 8.4, p. 207] or Vogan [V, Chap. 4, formula (4.1.15),

p. 1457]).
Since the irreducible decomposition of 7(;, 1,k IS given by

Taanlkom,= @ (D27 1),

A2Sm< Ay
together with the above formula of [ : w], we have the former part of the proposition.
To show the statement on the multiplicity one of the latter part, note that (— 1)™=(—1)*
and that (— 1) * %" ™=¢(y,, ) are equivalent to (—1)*' =(—1)*2 - (—1)* - &(y,,,). Then the
rest of the proof is elementary. q.ed.

3. Characters of the unipotent radical. Put N=exp(n). Then N is written as

1 ng ny  n,
0 1 S
N= . 2 2 Rg, Ny, Ny, N3ER
{ 1 0 ‘ |
2

ng 1
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The commutator group [N, N] of N is given by

ny Ny
1, 0
n
[N,N]= 2 n,n,eR
|
Hence a unitary character # of N is written as
l no nl nZ
1,
0 1 ny N3

0 . | exp{2n./ — 1(cony + c3n3)}
)—no 1 ‘

for some real numbers ¢y, c;€ R.
We denote by the same letter 5, the derivative of

n:n—C.
Since n/[n, n]=RE,, _,,® RE,,,, 1 is determined by the purely imaginary numbers
’7e,—e2='7(Ee,—e2) and '72ez=’7(E222) .

Here n,,_,,=2n,/—1¢, and n,,,=2n,/—lc;.

AssuMPTION 3.1. Throughout this paper, we assume that the character n of N is
non-degenerate, i.e. both 4, _,, and #,,, are non-zero.

4. Whittaker functions and Schmid operators. Let#: N=exp(n) > C* be a unitary

character. Then we denote by C;°(N\G) the space
C(N\G)={¢: G- C, C*-function| ¢(ng)=n(n)d(g), (n,g9)e Nx G} .

By the right regular action of G, C;*(N \G)is a smooth G-module, and a (g¢, K)-module.

For any finite-dimensional K-module (z, V), we put

Cr(N\G/K)={F :G - V, C*-function | F(ngk ) =n(n)t(k)F(g), (n, g, k) e Nx Gx K} .
Let (%, H,) be an irreducible admissible representation of G, and denote its associated
(g, K)-module by the same symbol. Consider a homomorphism ¥, of (g, K)-modules
Yo Hy— CP(N\G).

Let (t*, V) be a K-type of H, and i: V. <, H, an injection of K-modules. Then
the restriction of ¥, to V. via i defines an element ¥,.; in C;5(N\G/K)=

CA(N\G)®g V. =Homy(V,., C;°(N\G)). Here (t, V) is the contragradient representa-
tion of 7*.
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DerINITION 4.1. We call . ; a Whittaker function of K-type 7 belonging to the
representation 7. The function y, . ; is determined by its restriction to 4. We denote
this by the same symbol ¥, ;.

Now let us recall the definition of Schmid operators. Let g=f@®p be a Cartan
decomposition of g, and Ad = Ad,,. the adjoint representation of K on p¢. Then we have a
canonical covariant differential operator V, ; from C’(N\G/K) to C;.gaqN\G/K):

V, F=Y Ry F(-)®X;, FeCJN\G/K),

where {X;}; is any fixed orthonormal basis of p with respect to the Killing form of g,
and Ry F(g)=(d/dt)F(g " exp(tX;))|;=0, g€ G.

Let P.: V.®pc— V. be the projection to an irreducible component of the
representation V,® pe of K. Then for a Whittaker function v, ;e C%(N\G/K), the
V.-valued function ¢’'=P.-V, (Y, . )eCr(N\G/K) is also a Whittaker function
belonging to m, because the coefficients of ¢’ are linear combination of the derivations

of the coefficients of V. ; with respect to elements in pe.

5. Radial part of Schmid operators. Put 4 =exp(a), i.e.
a,

1 a;,a,eR,a,>0,a,>0
a,
a;*

Then we have the Iwasawa decomposition G=NAK of Sp(2; R). The value of
Fe C°(N\G/K) is determined by its restriction ¢=F|, to A.

We compute the radial part of the Schmid operators V, ;=V, .. As an orthogonal
basis of p, we take C|BI(X;+X_p), ClIBI/—1(X;—X_y), BeZ, with some C>0
depending on the Killing form. Then

V, F=2C* Y |IBI*Rx_F®X;+2C* Y [IBI*°Rx,FRX_;.
peZt

pezt

We define
1 _ 1
V:.AFZT Z(IpI* - Ry ,F® Xy V,,,AF=Z ZIBI* Ry FRX .

In order to write R(V,’;), we introduce some symbols. Set J; to be Ry, restricted to
functions on 4 (i =1, 2), and define linear differential operators Z* and ¥ * on C*(4, V)
by
{ Lro=00+2/— laizﬂ(E2e‘-))¢ (i=1,2);
yiqs = {ala; lrl(Eel —ez)i\/ - 1“1‘12’1(Ee, +ez)}¢ .
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Then we have

ProposITION 5.1 ([O, Proposition 6.17). The radial part of the shift operators,
R(VE): C(A, V) C*(A4, V,®py), are expressed as
(i) R(V;AW:(’%_ +T/1®Adp+(Hi)—4)(¢®X(z,0))
+(& ™ +1,QAd,  (X))P® X1,1)
+(&y +1,QAd, (H)—2)(¢ @ X2
(i1) RV, )¢=(ZL"—1,®Ad, (H})—4)d @ X(-1,0)
+HT -1, ®@Ad, (XNP®X(—1,-1)
+(& —1, ®Ad, _(H3) =2/ ® Xo,-2) -

6. Casimir operator. We shall investigate the action of the Casimir operator on
the Whittaker functions belonging to the principal series representations n(P; o; v,)
associated with the Jacobi parabolic subgroup.

To obtain the value of the infinitesimal character of n at the Casimir element

L=H12 +H22_4H1 —2H2 +2Ee| —ezE—el+ez+4E281E—2e1
+ 2E21 +ezE—e1 —e2 +4E2e2E— 2e; ®
we recall how the discrete series of SL(2; R) are obtained as sub-quotient of the principal
series representation.

{The representations of SL(2; R).) The principal series representations of
S=SL(2; R) are given as follows. Set

o-{(5 7)es}

1 0 . _
MQ={i< 0 1)}, Ay={diag(a,a”')|aeR.,} .
Also we write K'=S0(2). Let ¢y: My — C* be a character of My, Aeaf ¢, and pyeaj
is a half of the positive root. Then £=IndsQ(eQ®(/1+pQ)) is a principal series rep-
resentations of S. We denote by V, the subspace consisting of K'-finite vectors in the
representation space of £. We identify aj ¢ with C via

a 0
A log<< 0 a_l)>=,1’-loga.

Here A’ is the complex number corresponding to 4, and p,, is identified with 1. We
denote by s the Lie algebra of SL(2; R).

ProrosITION 6.1 (cf. Vogan [V, Proposition (1.3.3), p. 59]). Let us work in the
category of (s, K')-modules.
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(1) If A is a positive integer with parity —ég, then & contains the discrete series
(s, K')-modules D  as submodules. Then quotient V/(D} ., @ D ,)is a finitedimensional
representation of weight A —1.

(i) If A is a negative integer with parity —eo. Then & contains as its unique
irreducible submodule, the finite-dimensional representation of weight — A— 1. The quotient
of Ve by this is isomorphic to D* ;. ,®DZ, .

By the above proposition the discrete series representation D of S is embedded
in a principal series representation Indfl(eQ‘k(@(k—— 1+pg)). Here sQ,keMQ is given by
ggu(£)=(%)~ By the transitivity of parabolic induction (see Vogan [V, Chap. 4] for
example), n=1Ind§ (¢, D) ® (v, + pp,)) is a submodule of

Indf, (e, Ind3(eg s ® (k —1+pg)) ® (vy +pp,) = IndF(o ® (1 + pp)) ,

where 6, € M is specified by a(y,.,)=&(y,.,) and 0(y3e,) =€0i(—1,) and p’ e ad is given
by u'=(v;, k—1). Since the principal series representation n’=Ind$(c, ® (4’ + pp)) is
quasi-simple, the eigenvalue of C, on 7 is equal to that on n’. Similarly, 7 is obtained
as a quotient (g, K)-module of n” =Ind$(s, ® (1" + pp)), Where o), is the same as above
and pu"=(v,, —k+1).
Now we can write the action of the Casimir operator on the Whittaker functions.
(The even case.) Assume that &(y,,)=(—1)* in this case. The K-type t_;

occurs with multiplicity one in =. Leti: W, _, _, — V, be the injective K-homomorphism
unique up to constant multiple. Then there is a K-homomorphism j: W, _, . — V..

which is a lifting of i with respect to the natural surjection V. — ¥V, which is also
unique up to constant multiple because of multiplicity one (cf. [M-O, Proposition 3.1]).
Then the space of Whittaker functions of type 7, , belonging to m is contained in the
space of Whittaker functions of type 7, , belonging to n".

ProrosiTION 6.2. (i) Let R(L) be the radial part of the Casimir operator L, and
set r(LYy=a"*R(L)a®. Then for Ie C*(A)

V(L)I:‘ {612 + a% + 2’1; —ez(al/aZ)2 +4r’§e1ag +4k\/ - 1 ’1e1 —e2aZ2 - 5}1 .

(ii) Let ¢p(a)e C*(A) be the radial part of the Whittaker function of type T,
belonging to n, and let I(a)=a™*¢P(a). Then

{HL)+ 5 =(vi+k—1)>1.

(The odd case.) Assume that &(y,.,)= —(—1)*. By Proposition 2.1, the K-type
(T(=r,—k—1y V) occurs in © with multiplicity one. We use the realization of (z;, V) with
a basis {v;}o< ;<4 in [O, §3]. We call the basis as the standard basis for 7,. We also use
freely the formulae in [O, Lemmas 3.1, 3.2, 3.3]. Let {v,, v,} be the standard basis of
V, and V* the dual space of V. Fix an injective K-homomorphism i: V* — H, , unique
up to constant multiple. Then we can find again a lifting j: V*— H_.. x of i so that
i=p-jwhere p: H,. x— H_x is the natural surjection. As in the even case, Lemmas



PRINCIPAL SERIES WHITTAKER FUNCTIONS 253

7.4 and 7.5 of [M-O] implies the following.

ProrosiTION 6.3. (i) Let R(L) be the radial part of the Casimir operator L on

C®(A)® V. Then the operator r(L)=a"°R(L)a’ reads
ML) = {(P+4(k+ 1/ = 102¢,3)b(@) =21, - (@1 /a2)b1(@)} o
{20, (@ /ar)bo(a@) + (P +4ky/ — 1n,,,a2)b,(a)}v, — ST
Jfor la)=by(a)vy+b,(@)v, € CP(A)RV, bi(a)e C*(A4), i=0, 1. Here
P=0}+0;+2n . (a1/a,)* +4n3. a3 .

(ii) Let e C*(A)@V=C,, ., N\G/K) be a Whittaker function with K-type

T+ 1.4 Delonging to m. Set I=a™’¢. Then I(a) satisfies
{HL)+5 ={vi+(k—1)*}I.

7. Holonomic systems for Whittaker functions. In this section we compute explicit
formula of differential equations for Whittaker functions of the fundamental series
T(Py; (e, Dy ); vy + pp,) With K-type T ) O Tger 1 1)

7.1. The even case. We consider the case &(y,.,)=(—1)* in the first place. In this
case 7 has K-type 7_, _,, with multiplicity one (cf. Proposition 2.1). Here is the main
result in this subsection for the even case.

ProposiTION 7.1.  Let ¢pe C*(A)=Cr, k)(N \G/K) be a Whittaker function with

K-type 1., belonging to n. Define h(a)e C*(A4) by
lar, a)=a{ " as exp(—/ = Inze,aDhlay, as)

Then h(a) satisfies

(1) (6,0,—FHh=0;

(i) {(0,+0,)*+2(k—1)0; +0,) =4/~ 1n,.,030, + (k—1)> —vi}h=0.

The system (1), (i) make a holonomic system of rank 4.

Proof. First we show (i). Let

@down c® (N\G/K)—)

n,T(k,k) N\G/K)
be the down shift operator defined in [M-O, §8, (8.3)]. Then, since 7_; 4, —+2, does
not occur in n, the Whittaker function ¢ in CZ.  (N\G/K) satisfies 2" =0, i.e.

'I T(k,k)
for ¢(a)

rlf(k 2,k - 2)(

FIv(p)=[{0, —(k+ 1)}{0,+2/ —1a3n,,,—k} —F*]$=0.

Define A(a) as in the statement. Then the above equation leads to the first equation in
the proposition.
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Now we rewrite the action of the Casimir element (cf. Proposition 6.2). Then we have

(0} +03 —2F*—dn3, a5 +8k\/ — 1,0 ={vi+(k—1)*}1

for I=a}~'ay™ ' exp(—./— 1n,.,a3)h. Rewriting this equation for 4, we have

(01 +k =1 +(0, +k—1=2/=1n,,,a2)* =29 —4n3, a3
+ak/ = 1ny,a2 h={v+(k—1)*}h.
Note that &*h=0,0,h by the equation (i). Then the above equation leads to
{0y +02)* + 2k — 1)@, + 0,) + 2k — 1)> =4/ — 1y3,a0, h= (v} +(k—1)*}h .
This is the second equation (ii) in the proposition. q.e.d.

7.2. The odd case. We consider the corresponding result for the odd case, i.e.
&(2¢,)= —(—1)*. By Proposition 2.1, n has K-type (m—,, -4 1), V*) with multiplicity one.

Let ¢(a) =cola)uy + ¢ (a)v, € C*(4)®¢ V be a Whittaker function with K-type 74 4
belonging to n. Recall the down shift operator

e C) (N\G/K)—- C/", (N\G/K)

MT(k + 1,k) N,T(k,k - 1)
defined in §9 of [M-O], which is the composite of the operator V, e and the
projector onto 7 -, Because the K-type 7, - does not occur in m, we have
EXY(P)=0. If we write I(a)=a "P(a)=by(a)vy+b,(a)v,, then by Remark 9.2, (3) of
[M-Q], this condition is equivalent to the two equations:
a2 {ne, - e@1/a)bola) + (0, kb, (@) = 0
02+ 23/ = 1130,a3 —K)bo(@) + 1o, - (a1 /a)b1 (@) =0 .
DerNITION 7.2.  We define functions 44(a) and A,(a) by
{bo(a) aj " lasexp(—y/ = 1M2,a3)ho(a) ;
1(a)=a1a2"exp(—\/ - lnzezazz)hx(a) .
It is easy to check that A;(a), i=0, 1, satisfy
’7e, ezalho(a)+a hl(a) s agalho(a)‘('"er-ezhl(a):
which are derived from (7.2.1). In particular, they satisfy
(010, = S h(@)=0  (i=0,1).

Now recall the differential equations arising from the Casimir operator, i.e.
Proposition 7.2 of [M-O]. By using (7.2.1), this is equivalent to the system of equations:

{08403 +2n2 _,(a1/a))* +4n3,,a5 + 4k + 1)/ — 193,03
+2(0,+2/— lnzezazz —k)}bola)= {(vi+k— 1)2}bo(a)

and
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{0t +03+2n _.(ai/a)* +4n3 a3 +4k\/"7221a2 —2(0,—k)}by(a
={vi+(k—1)*}b(a).
We want to write this in terms of /;(a), i =0, 1. These two equations are transformed to
(0, +k+1) +(0, +k =2/~ 1n,,,03) + 252
+an3,at+ 4k + 1)/ = 1n,.,03 + 20, hola) = dho(a) ,
(0, +kP +©0,+k—1-2/ =102 +252
+4n3,a%+dky/ — 19,02 —20, thy(@)=dh,(a)
Here d=v#+(k—1)%. Direct computations show that these are reduced to
(024024252 + 20k +1)(0, + 05) — 4 — 11130,030, + (k +1)* + k* }ho(a) = dh(a),
(02402 4292+ 2k — 1)@, + 05) — 4 — 11120,030, + (k—1)* + k*}hy(a) = dh,(a).

Recall that 0,0,h;=%?h;, i=0, 1. Together with these, the above equations give the
following:

ProroSITION 7.3. Let ¢ be a Whittaker function with K-type v 4, 4 belonging to
n. Write ¢ =a’l and

I(@)=bo(a)vo+by(a)p; € CH(A)®V

with respect to the standard basis {vy, v} of V. Define hy(a) as in Definition 7.2. Then
h;(a) satisfy the differential equations:

(1) Ney—e@ihol@)+0,h1(a)=0,

(i) a30,h0(@) +1e, - e,h11(@) =0,

accordingly

(iii) (0,0, —FHh,(a)=0, i=0,1.

Moreover they satisfy

(iv) {0,482 +282 + 20k +1)0, +0,) — 4/ — 103,030, = (v} —k*—ak)ho(a)

(v) {(61 +62)2+2y2+2(k_1)(51 +52)"4\/ ‘1"/2e2a262}h1(a)=("1 _kz)hl(a)'

8. Integral formula for the Whittaker function.

8.1. The even case. Now we want to solve the equations in Proposition 7.1:
(1) (0,0,—FHh=0,
(il) {0, +02)*+2k—1)0, +8,)—d/ — Ine,a30, + (k=12 —v}h =0,
where S =1,,_.,(a,/a,).

We first find the form of the solution by formal computation. Assume that / is
represented as a Laplace transform
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h(ay, az)zjv D(u,, uz)exp(ulalz+u2a2_2)du1du2 .
RZ
Then we have
2
0,0,h(a,, a,)= f —4u u2)< ) D(u,, u,)exp(u,at +u,a; ?)du,du, .
2

Therefore the equation (i) above implies that
(4uyuy + ”Iezl —e2)¢(u1, uy)=0.

Hence the support of a generalized function @ is on the hyperbola 4uu,=—n? _,,
(>0, if # is unitary.) Thus taking a function ¢ on R\ {0}, we can write & as

u e du
h(a,, aZ):J ¢(u)exp{c<7_L_i alz)} e
R a 4u u

where c is a constant + 1. This is a general solution of the equation (i). Now we note that

ol v n )\ du
o, a= [ (= Mo gt penpe( LMo a4
R 2u aj 4u u
u 2 e du
0:h(ay, a2>=f (— >¢<u)exp{ (7*'1_6112)}_
R a? a? 4u u

at/4u)} -0 as u— 0 or u— oo. Then integration by

and

Assume that exp{c(u/a; —nZ _.,
parts shows that

2
(01+62)h(a1,a2)— (— 2)< M- a? _?>¢(u)exp{ < “ Ll‘iz_a12>}ﬂ
R 4u az a 4u u

Y,

P

2

2
=| - )¢(uu—exp{ ”e' = f)}—di
vR u
du

[ a u ’181 —e2
= ] <2u rn ¢(u)> exp{c <a—22—v4u af‘)} —-

Hence from the equation (ii), we get a differential equation for ¢,

(8.1.1) ((20,)2 +2(k — 1)(20,) + 8/ — Len o u+(k— 12 —v2}p(w) =0 ,

where 9, =u(0/0u). Assume that ¢ has support in {u€ R|u>0}. Then we should choose
c=—1 to justify the integration by parts. We set ¢(u)=v"">"**1y(v) with v=/u.
Then 2u(0/0u) =1v(d/0v), and the above equation (8.1.1) is written for Y(v) as
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(8.1.2) M’ (——v1—8\/ 1n,.,0 ) =

o2

On the other hand, when Re(k —1/2—m) <0, the function
e~ 12z

K ['e] t k—1/2+m
ka(2)=————J t"‘“”“"‘<1+—) ce”'dt
' r2—x+m J, z

defined for z ¢ (— oo, 0) satisfies the Whittaker differential equation

d? 1 1/4—m?
— W+{_Z+£+_/. m }W:O,

dz? z z2

and W, ,(z) is a unique solution which rapidly decreases if z— +o0. Set k=0, and
m=v, in above W, ,. We finally obtain that

Y(@)=Wo,,,(\/32[12, [V)
satisfies the differential equation (8.1.2). This gives an integral representation of the

function h(a,, a,).

THEOREM 8.1. Let n=n(P,; 0;v,), 0 =(g, D), be a principal series representation
of Sp(2; R) as before. Assume that the character n: N,,— C is unitary and generic. Then:

(1) = has a Whittaker model for y if and only if Im(n,,,) <0.

(i) In this case, the function h(a,, a,) has integral representation

h(ab a2)=

const Xj t k+(1/2)W ([ exp< t 8\/ - lr’el—eznZezal ) dt
. 0,vq —
0 2\/7’72@“2 t? t

Then we have an integral representation of the radial part of the Whittaker vector
(rb(ala a2) as

$(ay. az)=const. x at* a4 - exp(— /= n;,03)

¥ ka2 t? 8¢/ —1n2 _eMae at '\ dt
X t Won,(t)exp| — + P —_—.
32\/ —11’]282022 t t

It is determined uniquely up to constant multiple under the condition that it rapidly
decreases when a,ja, — o0 and a, — c0.

0

Proor. We replace ¢ by a,? in the above integral representation of h(a,, a,). Then
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© a, —k+(1/2) a,
h(a,, a,)=const. X —ca,t Woy | — ay*t
o \a2 a,

2 dt
XCXP{ <ﬂ> 't2+81/—lrlezl_eznhz-t‘z}—m.
32f1;12€2 t

If Im(n,,,)<0, then —1/32,/—1#,,,<0 and 8/—1n2 _, n,.,<0. Therefore the
integrand above rapidly decreases when t—0 and when ¢ — +oo. Hence the above
integral converges, and as a function in a,, a,, it rapidly decreases when a,/a, - +
and when a, > + . q.e.d.

8.2. The odd case. As in the even case, we can obtain a solution of the system
of differential equations in Proposition 7.3.

(i) (8,0,—FPh(a)=0, i=0,1,
(i) {014 8)* +2(k+1)0, +0,)—4/ —1n3.,a30, +k* + 4k —vi}ho(a)=0
(iii) {01 +0,)* +2(k—1)0, +0,)—4y/ — 1n3,,a30, + k* —vi}hy(@)=0

We can obtain an integral formula for 4,(a,, a,), i=0, 1, in the following manner. The
argument is similar to the even case. From the equations (i) for i=0, 1, we can write
hi(ay, a,), i=0, 1 as

u 2, du
hiay, a;)= f ¢i(u>exp{c<f2 _Jerzer 2a%)}—,
R a; 4u u

where ¢ is a constant + 1. By the same way as in the even case in §8.1, we can obtain
the differential equations for ¢,(u), i=0, 1 from the equations (ii), (iii) by integration
by parts.

(8.2.1) (20,7 +2(k +1)(28,) + 8./ — Len e u+k* + 4k —v2} po(u) =
(8.2.2) {20, +2(k —1)(20,) + 8./ — Leneu+ k> =2 ()=
We set

bo)=v" 2K (), i) =v 2 TE Y (),

with v=./u. Then the above equations (8.2.1) and (8.2.2) for each ¢,(u) are rewritten
for y;(v) as

2

Y
av20+<4 vEi41-2k)—8/—1n,,v >0_0,
, 0

a'/" <4 vE4+1—2k)—8/—1n,.,0 >¢1_0
1%

Here we choose ¢= —1 as before.
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THEOREM 8.2. Let n=mn(P,; o;v,), a=(¢, D, ) be a principal series representation
of Sp(2; R) as before. Assume that the character n: N,,— C is unitary and generic. Then:

(1) = has a Whittaker model for n if and only if Im(n,,,) <0.

(i) In this case, the functions h;(a,, a,) have integral representations with some
constant C as follows:

h al, (12 Cx{_16\/—\’1e1 eZnZez

~(1/2)—k—1 _ t? 8y _1’1e21—ez’12e2012 jd_t
X t W0 ﬁrﬂ—(t)exp + 3 .
0 32/ — 113,03 t t

hy(a,, a))=C

© —(1/2)—k+1 tz 8\/ _1’7221—(22'72932012 dt
x| TR g (D exp 2 — -
! 32\/—"12@02 ! !

These are determined uniquely up to constant multiple under the same condition as in the

0

even case.

Finally we obtain the radial parts of Whittaker vector ¢ =cy(a)vo+c,(a)v; as
follows:

colay, ay)= CX{_16\/ 1., - ez’72e2}xak+3 HICXP -V ﬂzezaz)

® t? 8./ —1n2 _ 2\ dt
xJ t“/z""‘Wowzlefz,‘(t)exp(— + \/~"8‘2 esll2e,%1 )
o 32/ —1n,,,03 z 4

0
¢ylay, a2)=CXa’1‘+za'2‘exp(—\/ —lnzezazz)
® t? 8/ —1n2_ 2\ dt
Xj t—(l/Z)—k+1W0 ¢\)T+1_2"(t)exp<_ + r’elz exl2e,41 > )
i OVt t t

By direct calculation one can show that these solutions satisfy the system of
differential equations (7.2.1).

0

ReEMARK. Here we do not discuss the irreducibility of the generalized principal
series representations 7 associated with P,. Regardless of whether it is irreducible or
not, the image of the “corner”” K-type vector in © by the unique element ¥ (if exists)
in Homg x(7, o7,(N\\G)) satisfies the integral expression given above.

Recently Hayata [Ha] obtained a similar integral expression for Whittaker
functions with corner K-type belonging to the generalized principal series representations
of SU(2, 2).
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