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Abstract. We compute general multi-canonical divisors on two-dimensional

smoothable semi-log-terminal singularities. As an application of this result, we give an

effective bound for the Gorenstein index of such singularities in terms of the local

self-intersection number of their multi-canonical divisor.

1. Introduction. This paper is devoted to certain basic calculations on two-
dimensional smoothable semi-log-terminal singularities. If we study minimal or ca-
nonical models of one-parameter degenerations of algebraic surfaces, we need to treat
singularities that appear in the central fiber. Smoothable semi-log-terminal singularities
are those which appear in the central fiber of a minimal model of a degeneration, as
well as those which appear in the central fiber of the canonical model of a degeneration
which may have large Gorenstein index. Kollar and Shepherd-Barron [5] characterized
these singularities, but for the numerical theory of degenerations, we need more detailed
information.

In this paper, we calculate general multi-canonical divisors on these singulari-
ties. Though the term "general" in algebraic geometry is a relative notion, for a
two-dimensional semi-rational singularity (Z, z), we can characterize effective Weil
divisors on Z which are sufficiently general (from the viewpoint of the intersection
theory) in the associated complete linear system, using the well-known notion of "full
sheaf"; and we use this characterization as the definition of the term "general" in this
paper (Definition 4.1). We introduce the notions of the A-expansion and μ-expansion
in Section 3, which represent positive integers as certain special sum (Proposition-
Definition 3.1); and we show that for a two-dimensional smoothable semi-log-terminal
singularity (X, x) (regardless of whether it is normal or non-normal), general members
of the complete linear system of the multi-canonical divisor — nKx in the above sense
are described in terms of the λ- and μ-expansion of n (Theorems 4.4 and 4.6). As an
application of the above result, we bound their Gorenstein indices in terms of the local
self-intersection number of the multi-canonial divisor (Theorem 5.2).

We briefly describe the motivation for such a theorem. Historically, Kollar and
Shepherd-Barron [5] asked the following question, as the remaining step to construct
the compactification of the moduli of surfaces of general type in characteristic zero.
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QUESTION. Let π : F-> Wbe the canonical model of a one-parameter degeneration

of surfaces of general type; i.e.,

( i ) V is a threefold with only canonical singularities,

(ii) Wis a smooth curve,

(iii) π is a projective morphism whose fibers have only semi-log-canonical

singularities and whose general fibers have only canonical singularities,

(iv) the canonical divisor of V is π-ample.

In this situation, does there exist an upper bound for the Gorenstein index of V

depending only on deformation invariants of the fiber?

Alexeev [1] showed that such a bound, depending only on the self-intersection

number of the canonical divisor of the fiber, exists; thus the construction of the above

compactification of the moduli were completed. His boundedness theorem, however,

by no means gives an effective bound for the Gorenstein index. Seeking this is interesting

in its own right.

Theorem 5.2, mentioned above, reduces the problem of effectiveness of the bound

in the above question to the problem of effective fixed component freeness of stable

surfaces:

PROBLEM. For a stable surface S, find an effective n, depending only on (Ks)
2,

such that nKs has no fixed component.

This is still an open problem.

The author would like to thank Professor Masaki Maruyama for his advice. Also

he would like to thank the referee for valuable suggestions for improvements.

2. Preliminaries. A two-dimensional semi-log-terminal singularity (for the de-

finition of "semi-log-terminal", see [5, Definition 4.17]) is said to be smoothable (cf.

Kollar [4, Definition 5.4]) if it admits β-Gorenstein one-parameter deformations to

rational double points. Kollar and Shepherd-Barron [5] characterized such singularities.

Let us recall their result.

We introduce two types of singularities.

DEFINITION 2.1 ([5, Proposition 3.10]). Let (α, d, m) be a triplet of positive integers

such that m/2<a<m and that a is prime to m. We denote by Xa%d^m a two-dimensional

quotient singularity of the form Soec C[_zu z2]/<p>, where <p> is a cyclic group of order

dm1 acting on Spec C[z1 ? z 2] as (p*z1 ? p*z2) = (εadm~ιzu εz2) in which ε is a primitive

dmhh root of unity.

DEFINITION 2.2. Let (a, m) be a pair of positive integers such that m/2 <a<m and

that a is prime to m. Put b = m — a, and let a' (resp. b') be an integer such that aa'=\

(resp. bb'=\) (modm). Let </?> be a cyclic group of order m acting on a normal crossing

point N C 2 : = Spec C\_zx, z2, z{\l(zγz2) as (p*zl9 p*z2, p*z3) = (έa'zu έb'z2, εz3) where ε is



GENERAL MULTI-CANONICAL DIVISORS 213

a primitive rath root of unity. We denote by Xa%m the quotient of NC 2 by this </5>-action.

Then the result in [5] which motivates this paper is as follows:

THEOREM 2.3 (Kollar and Shepherd-Barron [5, 5.2]). Let (X, x) be a two-

dimensional smoothable semi-log-terminal singularity which is neither a smooth point, a

rational double point, a normal crossing point, nor a pinch point. Then (X, x) is analytically

isomorphic to Xa^m or Xam.

The above Xa%ά%m and Xa%m are the main objects of this paper.

3. The Λ-expansion and //-expansion. In this section we introduce the notions

of the ^-expansion and μ-expansion which are needed later to compute general

multi-canonical divisors on Xaj,m and Xa,m. Let ra and a be positive integers such that

m/2<a<m and that a is prime to ra. Put b = m — a, and let a/b = [q1, q2,..., qk~\ be

the regular continued fraction expansion. Let r, be the zth remainder of the Euclid-

ean algorithm for a/b and PJQi the zth convergent for a/b. We assume that k is

even throughout this paper, because the odd case can be treated in a way similar to the

even case, with minor and obvious modifications. For a pair of integers (i,j) such

that 1 <i<k+ 1, thaty>l , and that / is odd (resp. even), we denote Λ-2 + &-2 +

t/-l)(Λ -i + β/-i) b y Kj ( r e s P toj- W e a S r e e t n a t Λ i.o = ° ( r e s P Mi,o = 0) for a 1 1 o d d

/'s (resp. even z's). In this situation, we have the following.

PROPOSITION-DEFINITION 3.1. Let n be an integer such that \<n<m-\. Then n

can be written uniquely as

resp.n= Σ (';-1/^
\ 2<i<k

iodd ieven

where j\, l2, j3, / 4 , . . . ,jk_u lk (resp. luj2, /3, y 4,..., 4_ 1? jk) are integers that satisfy the

following conditions:

( i ) (a) 0 < /j < qx-Λ 1 for any even (resp. odd) i.

(b) 0<ji<qi for any odd (resp. even) i, andj\^\ for i>2.

(ii) If there exists even (resp. odd) i0 such that lio = qio + \, then there exist odd

(resp. even) i1 and i2 that satisfy the following conditions:

(a) 0<i1<i0<i2<k.

(b) li' — qi for any even (resp. odd) V such that i1 <ϊ<i2 and that i'φi0.

(c) jv = 0 for any odd (resp. even) i' such that i1 < ϊ < i2.

(d) / l l _ 1 < ^ , _ 1 - l z / / 1 > 2 .

(e) lί2+ί<qi2 + 1-Hfi2<k-\.

(iii) If there exists even (resp. odd) i0 such that lio = qio andjio+1>2, then there

exists odd (resp. even) i3 that satisfies the following conditions:

(a) 0</ 3 </ o .

(b) li=qi> for any even (resp. odd) V such that i3<ϊ <i0.
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(c) Jv — 0 for any °dd (resp. even) ϊ such that i3 <V <i0.

(d) lh-1<qh.1-\ifi3>2.

We call this expression of n the λ-expansion (resp. μ-expansioή) of n with respect to a/b.

Let us give an example.

EXAMPLE 3.2. Let m = 99Ί6 and α = 6961. Then we have 6 = 3015, a/b =

[2,3,4,5,6,7], Alfl = l, λlt2 = 2, vl3fl = 3, A3t2 = 13, A3i3 = 23, Λ3,4 = 33, A5 f l=43,

A5t2 = 268, Λ5 3=493, A5i4 = 718, Λ5,5 = 943, A5t6 = 1168 and A7fl = 1393. Let rc = 9503.

We determine I6,js, /4,/3, l2 andyΊ successively in this order by the following manner.

In the firste step, we determine /6,y5 and n'5. We determine /6 by n = n5 + l6λΊΛ, where

n5 and /6 are integers such that 0<n5<λΊΛ. In this case, we have 16 = 6 and n5 = 1145.

If n5<λ5 2, then we put75 = 0; otherwise, we pick up the greatest λ5j, smaller than or

equal to n5 from {λ5J}2<j<6 and p u t y 5 = / . In this case, we havey5 = 5. We put

n'5:=n5—λ5js = 202. Here we obtain 9503=«5+Λ,5f5 + 6λ7t l. In the second step, we

repeat the first step for n'59 λ5Λ and {A3>J }2<j<4 instead of n, λ1Λ and {̂ 5,j}2<j<6

respectively, to determined /4, j3 and n3 instead of /6, j5 and ri5 respectively. Namely,

we divide 202 by λ5Λ and obtain 202 = 30 + 4Λ5 l 9 and hence we put /4 = 4. Since

A3t3<30<A3f4, we puty'3 = 3. We put n'3 = 30 — λ3,3 = 7, which we send to the next step.

In the last step, we put l2 = 2 andyΊ = 1 since we divide ri3 by λ3Λ to obtain the quotient 2

and the remainder \=λlΛ. As a result, we have (/6,y5,/4,y3,/2,7Ί) = (6, 5, 4, 3, 2, 1)

and 9503 = A l f l+2A3>1+A3t3+4A5>1+A5>5 + 6A7tl. This is in fact the ^-expansion of

9503 with respect to 6961/3015. By a similar computation that uses μ t/s instead of

λitj% we obtain 9503 = 0 μ2Λ+ μ2,0 + 2μ41+ μ40 + 4μ6l+ μ6Ί, and this is in fact the

μ-expansion of 9503 with respect to 6961/3015.

In fact, we can always compute the λ- and μ-expansion in the above way. Namely,

the /[-expansion is characterized as follows:

LEMMA 3.3. Let n be an integer such that 1 <n<m—l. Let

n=λui+ Σ (A - A i + kji) + ιkλk+i,i
3<;<fc-i

iodd

be the λ-expansion of n with respect to a/b. Then we have the following:

( i ) For any odd h, we have

lh_ι=m?J]leZ\lλhΛ<λUh+ X C i - Λ i + U + / * - Λ i •
I 3<ϊ<ft-2 J

todd

(ii) For odd h, put fh:=m<ϊx{jeZ>0\λhj<λ1Jl + Σ3<i<h(li_1λiΛ + λiJi)}. Then

we have I o d d

• \Jh if Th^2 or if h=\ ,

) 0 otherwise .
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Obviously we can characterize the μ-expansion similarly. We leave the elementary

proofs of Proposition-Definition 3.1 and Lemma 3.3 to the reader.

In the rest of this section, we introduce the notation relevant to the λ- and

μ-expansion needed later. We define a set /α?m of pairs of integers by

Ia,m = {(i,j)\l<i<k+Ul<j<qi(fori<k\j=l(foτi = k+\)}.

We denote by Lam the set of all Z-valued functions on Iam. For veLajn and i e / α m , we

denote by v, the value of v at i. For ιelam, we define διeLam by (5/= 1 and δι

η = 0 for

ηφi. We agree that δ ( i ' 0 ) = 0 for any integer /.

DEFINITION 3.4. Let n be an integer such that 1 <n<m — 1. Let

n=Kh+ Σ (ii-ιki+λiji)+ιkλk+i,ι= Σ (li-i^i+Viji)
3 < ΐ < / c - l 2<i<k

iodd ieven

be the λ- and μ-expansion of n with respect to a/b. We define vam(n)GLam as follows:

Σ ( / i - i 5 ( U ) + δ ( i J"l)) + W ( k + 1 1 ) + Σ
3 < i < /c - 1 2<i<k

iodd i even

4. General multi-canonical divisors. In this section, we compute general multi-

canonical divisors on two-dimensional smoothable semi-log-terminal singularities

in terms of the λ- and μ-expansion introduced in Section 3. Before doing so, we deter-

mine what we mean by the term "general" in this paper.

Esnault [3] introduced the notion of "full sheaf" for sheaves on a resolution of a

two-dimensional rational singularity. Note that we can generalize this notion for sheaves

on a semi-resolution of a two-dimensional semi-rational singularity in an obvious manner

and can prove bijective correspondence between the set of isomorphism classes of full

sheaves on the semi-resolution and the set of isomorphism classes of reflexive modules

on the singularity. (See [3, Lemma and definition (2.2)].) We use this notion of full

sheaf to describe a Weil divisor on a two-dimensional semi-rational singularity as a

"general member" in the associated complete linear system.

First we fix notation and terminology. For Weil divisors D and D' o n a surface

singularity Z, we say that D is linearly equivalent to D' when there exists a rational

function f on Z such that D — D' = (f). For a Weil divisor D on Z, the complete linear

system associated with D, denoted by | D |, is the set of effective divisors that are linearly

equivalent to D. When we are given a semi-resolution p: Z^>Z of a two-dimensional

semi-rational singularity Z, we denote by F{Jί) the full sheaf on Z associated with a

reflexive module Jί on Z.

DEFINITION 4.1. Let (Z, z) be a two-dimensional semi-rational singularity and D

a Weil divisor on it. Let p: Z-+Z be the minimal good semi-resolution and D the

proper transform of D in Z. We call D a general member of\ D \ if (9%{D) ̂  F(ΘZ(D)) and
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if D intersects the exceptional locus transversely.

Note that general members always exist since the full sheaf is generated by global

sections. We give a numerical characterization of "general members" in the next lemma,

which justifies Definition 4.1 from the viewpoint of the intersection theory. For a

(7-Cartier divisor D o n a surface singularity (Z, z) and an exceptional curve E of a

semi-resolutionp: Z-+Z, we define a rational number ocE(D) by p*D = D + ocE(D)E+E\

where D is the proper transform of D in Z and E' is a (Minear combination of the

exceptional curves other than E.

LEMMA 4.2. Let (Z, z) be a two-dimensional semi-rational singularity and D a

Q-Cartier Weil divisor on Z. Let p\ Z^Zbe the minimal good semi-resolution. Assume

that the proper transform D of D in Z intersects the exceptional locus transversely. Then,

D is a general member of \D\ if and only if the inequality ocE(D) < ccE(D') holds for any

D' e IDI and any exceptional curve E in Z.

PROOF. Suppose that D is a general member of | D | and D' is a member of | D |.

Let / be the set of exceptional curves in Z, and E= \J EeIE. Since Θ%Φ) is a full sheaf,

we have H°(Z, Θ2{D))^H^{Z, Θ2(D))~0. Hence we obtain

(1) 7/°(Z, Θzφ))~H0{2\E, Θzφ))*H°(Z, GZ(D)),

using the exact sequence for local cohomology groups. We regard D' as the zero

locus of a section ΘZ(D). Then, (1) means that there exists an effective divisor of the

form YjEeIβEE such that ^ ' + X £ e / ^ £ ^ is linearly equivalent to D, where D' is the

proper transform of D' in Z. On the other hand, De\D\ implies that D and

D' + ΣEeI(ocE(D') — ocE(D))E are linearly equivalent. Therefore we have ocE(D') — (xE(D) =

βE>0, and hence we have proved the "only if" part.

Next suppose that D and E intersect transversely and that VLE(D)<OLE{D') for

any D'e\D\. Choose a general member Do of \D\. We have already shown that

ocE(D0)<ocE(D) for any Eel. Thus GCE(D0) = OLE{D) for any Eel. This means that D and

Do are numerically equivalent. Therefore they are linearly equivalent since Z is a

semi-rational singularity. Hence @zΦ) is a full sheaf, and so we have proved the "if"

part. •

COROLLARY 4.3. Let (Z, z) be a two-dimensional semi-rational singularity and Dγ

andD2 be Q-Caritier Weil divisors on (Z, z). Assume that Dγ and D2 are general members

of\Dί\ and \D2 \ respectively and the proper transforms of Dγ and D2 in the minimal

good semi-resolution have no intersection. Then

D, D2=min{D'ί D'2 \D[ e | D γ |, D'2e\D2 |, dim/); nD 2 = 0} .

Now we compute general members of the multi-canonical systems of two-

dimensional smoothable semi-log-terminal singularities. By Theorem 2.3, it suffices to

consider Xa^m and Xa,m.
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4.1. Xa,d,m The symbols b, k, qh rh Pt and Qi9 which represent numbers derived

from m and a, are the same as in Section 3. Let/? α d m : Xaj,m -> Xa,d,m ^ e the minimal

resolution. We denote its exceptional locus, which is a chain of Pl9s (see, e.g., Brieskorn

[2]), by U(/,,)e/(Λ:α)d)W)£'u ' w h e r e t h e i n d e x s e t ^xa,dj is denned by

<j<qt (for i<k\ 1 <j<qk— 1 (for i = k), > ,

and the indices are assigned to the exceptional P l 5 s by the following rule:

( i ) (ElΛ)
2=-2.

(ii) £ ^ - £ ^ = 1 if either (a) i = i' and | 7 ~ / | = 1, (b) {(i,j), ('",/)} = {0", ?i),

(/ + 2, 1)}, or (c) {(U), (Γ9/)} = {(fc,^-l),

Note that

-2-qt-, if 7 = 1 and (i, j)φ(k+1, d),

-2 if y > 2 and (1,7)

- 3 if (/,7)

- 3 - ^ if (z,7)

(Eij)2 =

(cf. Kollar and Shepherd-Barron [5, Proposition 3.11].)

Let us recall the λit/s and μt/s introduced in the preceding section. For

(Uj)eI{XatiJ and C = C7i ^ e ^ M D :0], [0:1]}, we set

if / is odd ,

if / is even .

Then CiJ(ζ) is an irreducible curve on A"M>m whose proper transform in Xatdifn intersects

Eitj transversely and does not intersect the other exceptional curves.

In this situation, we have the following theorem.

THEOREM 4.4 (the Xa%d%m case). Let n be an integer such that \<n<m—\. Let

3<i<k- 1 2<i<k

iodd ί even

be the λ- and μ-expansίon of n with respect to a/b. Then

( )
3 < ί < k - l \ l < Λ i - i < ί i - i / l<hk<lk

i odd

y y cuί£ί° ϊ+c ί j i ί f ( ί ) π+ y ck+ίΛ(nΐ+ί))
La \ la ^ K^hi-i)^^ VS ) J^ La ^ \*hk )

i<k-l \ ί<hi-
i odd

+ Σ ( Σ
2 < i < k \ 1 < hir _ i <
ί even

is a general member of the { — ή)-canonical system \ —nKXadm\, where ζlι\ ζ(ι)e
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:0], [0:1]} such that ζ^φζft if hφh\ and Cu%)'s are regarded as empty

sets.

For the proof of Theorem 4.4, we need the following proposition whose proof is

elementary.

PROPOSITION 4.5. Put T, v and Tmin as follows:

Z>o\s + (dmb-\)t = drnbn (moddm2)} ,

\{s9t)eT}9 Γ m i n = {(s, ί ) e T\

Then we have the following:

( i ) Ifd=l and m-(Pk_ι + Qk_1)<n<m, then υ = 2n — m + 2(Pk-ι + β fc_i) and

(ii) Otherwise, v = 2n and Tm i n = {(n, ή)}.

PROOF OF THEOREM 4.4. For simplicity, we assume that d>2. Modifications

needed to treat the case d= 1 are left to the reader.

We denote by L(Xa^m) the set of all Z-valued functions on I(Xa^m). We regard

Ia%m as a subset oϊ I(Xadm) by an injective map that sends (ij)elatm to (i,j)eI(XatdtJ if

(ij)φ(k,qk) and to (k+l,d)eI(Xadjn) if (i,j) = (k, qk). We extend va,m(n) to a function

on I{Xa%dtJ by vam(n\ = 0 for i^/α,m and regard it as an element of L(Xadn). We

define v'(n)eL(Xa^m) by v'(«)I = deg £ F(ω^ n

d

] J for i eI(Xa%dJ, where ω^" d

3

m is the triple

dual of the «th tensor power of the dualizing sheaf of Xatdtfn. Then the theorem is restated

as follows:

(2) v e » = v'(n).

We shall give an arithmetical characterization of v'(n) and show that it forces the above

equality.

For a Weil divisor D on Xa^m, we define ev(D)eL(Xa^m) by ev(D)ι = D Eι for

ιeI(Xatdtm), where 5 is the proper transform of D in . ? M i m . We extend λUj (resp. μ u )

to a function on I(Xatdtn) by AftJ : = - ^ f 7 + dm{ri_ί-(J-l)rj for even i (resp.

)"ί,j = - ^ j + ̂ ί ^ i - i - O ' - l K } for odd /). For veL(Xa^m\ we define

by Φ\ = Σ,snxΛ.dtmWESCη(Cn)) for ^/(Jr f l f d t J , where

(dm2) 1λijμi>J> if / and /' are odd and (i, j)<(ϊ, j'),

if / and /' are even and (/,y)>(i', / ) ,

or if / is odd and /' is even ,

(dm2)~1μijλi'j otherwise .

("<" means the lexicographic order.) Note that α(v), = α£ι(ev(Z>)) for a Weil divisor D

on Xa%d%m and for ιeI{XaJJ. Let Ln: = {ev(D)\De\ -nKχadJ}. Then by Lemma 4.2,

v'(n) is the element of Ln that is characterized by α(v'(A2))̂ <α(v)̂  for any veLn and any
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Ln is characterized as follows. Put d' = \Ί~xcΓ\. Put /' and /" as follows:

m)\i is odd, and j<d' ifi = k+l.} , Γ

For veL(Xa^m\ define s(v) and t{v) by s(v) = Σl€l^A and Φ0 = Σ « e / " v A respectively.

Then, since p*φ = ε

{adm~ 1)siev{{φ)Kpy)) + t{ev{iφ)Kp>))φ for a <p>-semi-invariant φeC[zuz2~\

and p:¥{dz1Adz2)®i'n) = ε-dman(dz1Adz2f
{-n\ we know that !,„ consists of the elements

of L{Xa^m) satisfying the following conditions:

( i ) vt > 0 for any i eI(Xa,djm). (ϋ) s(v) + (dmb- \)t(v) = dmbn (mod dm2).

Since s(vam(n)) = t(vam(n)) = n, we have vam(n)eLn. Therefore, we have

(3) Φ'(n))η<ΦaJn))η

for any ηeI(Xa^m).

To prove (2), we first show

(4) φ \n)) = s(vam(n)), t{v f{n)) = t{va,m(n)).

For this purpose, we look at φ)ik + ι,d') a n < 3 Φ)(k + i,d' + i) f ° r ^e^(^α,d,m) We have

where jS1=((i-ί/ /

and

where β3 = (d-d')rn-(Pk_ί + Qk_1)>0 and βA = (2df-d)m + 2(Pk.ι + Qk_1)>0. If

WvX/i)),ί(vX/i)))#(^vβfJ/i»,ί(vβi>))) = (w,π), then we have φ'(«)) + ί ( v ' ( « ) ) > φ α , » )

+ ί ( v β » ) by Proposition 4.5. Thus we have α(v'(n))(fc + l f d, )>α(vβ f l f I(«)) ( k + l f l f Ί or
α(v/(/|))(k+i,d' + i)>Φfl,m(Λ))(ik + i,<ί' + i) by the above equalities. This contradicts (3). Thus

we obtain (4).

Next we show va$m(n)η = v f(n)η for ηeΓ by induction on the lexicographic order

(which is denoted by " < " ) in /'. Let η be an element of /' which is not (1, 1). Assume
vatm(n)ι = v'(n)ι f° r a n y ι e I ' s u c ^ that ι>η. We show vam(n)η = v\n\ under this induction

hypothesis. For arbitrary v e L(Xadm), we have

(5) dm2φ)η*=-<bn2vη + (s(y)- Σ vιλι)μηl + (t(v)+ Σ vj/, )ληl,
\ J

and β2 = (d-2df+ 2)m-2(Pk_ι

η ( )
\ ie/',ί>r/ / \ ιeΓ,ι>η

where 7/*: =max{z e/' 11 <η). The induction hypothesis and (4) imply

(6)

and ^

obtain

s(vajn))-
ιeΓ,ι>η ιeΓ,ι>η

W A Thus from (3) and (5) we

(7)
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Note that (6) is written as

(8) Σ v β » Λ = Σ v'(/iU

By Lemma 3.3, we know that (7) and (8) imply v\ri)η = vam(n)η.

The same argument shows vatjn)η = vf{n)η for ηeΓ. Hence we obtain the equality

(2). ' •

4.2. Xam. The symbols b, qb k, rb Pb Qb λitj and μitj are the same as in

Section 3. Let pam\ Xa,m-*Xa,m be the minimal good semi-resolution. We denote its

exceptional locus by \J{i j)eIarnEiJ, where the indices are assigned to the exceptional

P 1 ?s by the following rule:

( i ) (ElΛ)
2=-2.

(ii) Eij Ev y = 1 if either (a) i=i' and \j-f \ = 1, or (b) {(i, j), (ϊ, /)} = {(/, qt),

(ί + 2, 1)}.

(iii) Ek + l Λ and Ekqk intersect the double curve of Xam.

Note that

Γ -2-qt-, if 7=land( ϊ , ; )#( fc+l , l ) ,

(Eij)
2 = < -2 if y > 2 ,

I - l - ^ f c if (i,7') = (/c+l, 1).

For (ϊ,7)e/β f M and ζ = [yx : 7 2 ] G P 1 \ { [ 1 :0], [0:1]}, we set

(z2, 7i^3i'J' + 72zϊ ί"1~°"1 ) r ί)/<P> if * is °dd ,

if z is even .

Then Cu\ζ) is an irreducible curve on Xam whose proper transform in Xam intersects

Etj transversely and does not intersect the other exceptional curves.

In this situation, we have the following theorem, whose proof is left to the reader

since it is almost parallel to that of Theorem 4.4.

THEOREM 4.6 (the Xam case). Let n be an integer such that \<n<m—\. Let

3<i<fc-l 2<i<k
iodd ieven

be the λ- and μ-expansion of n with respect to a/b. Then

Σ
. . . . , l<hk<lk

iodd

+ Σ ( Σ c-Wj+e-H?
2<i<fc\l<fti-i<Zj_1

i even

is a general member of the ( — n)-canonical system \—nKXam\, where ζtf\ ζ{i)e

P1 \ { [ 1 : 0 ] , [0:1]} such that ζ® Φζjp ifhφhf, and C^°(ζγs are regarded as empty sets.
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5. Local intersection numbers. As an application of the result in Section 4, we

shall state and prove Theorem 5.2 in this section. To state the theorem we first define

a function B(M, N).

DEFINITION 5.1. For a sequence of positive integers L = (Lι, L2, . . . , A/(L)) a n ( 3 a

positive integer N, we define a sequence

A(L9 N) = (A(L, Λ0-!, A(L, N)o, A(L9 N)l9..., A(L9 N)J{L))

by the formulas A(L9N).1=A(L9N)O = N and A(L9N)j = LJA(L9N)j-1+A(L9N)j-2

(1 <j<J(L)). For a pair of positive integers (M, ΛΓ), we define B(M, N) by

) J ( L ), N)J(L),

where L = (LU L2, . . . , £ J ( D ) r u n s through all sequences of positive integers such that

Σl<j<J(L)LJ = M

We easily rewrite the above B(M, N) in an explicit form as

Now we state the main theorem of this section:

THEOREM 5.2. Let (X, x) be a two-dimensional smoothable semi-log-terminal

singularity, and n a positive integer. Let D and D' be members in \nKx\ without common

components. Then, the Gorenstein index of X is bounded by an effectively computable

function of n and the local intersection number of D and D' as follows:

(9) index(Z, x) < B(D D' + 1, n).

The rest of this paper is mainly devoted to the proof of the above theorem. First,

if X is Gorenstein, the above theorem is trivial. Thus, it suffices to consider the cases

X=Xadm and X=Xattn (see Theorem 2.3). Secondly, it can be easily seen that B(M, N)

is strictly increasing function with respect to M if we fix N. Thus it suffices to prove

the inequality (9) for D and D' in \nKx\ such that D D' attains the minimal value,

that is, by Corollary 4.3, D and D' which are general members in | nKx \ whose proper

transforms in the minimal good semi-resolution have no intersection. Thirdly, we easily

obtain i n d e x ^ ^ , x) = index(ZβfTO, x) = m. Finally, it suffices to consider the case

n < index(X, x) because B(M, N)>N holds for all pairs of positive integers M, TV. Hence,

summing up all the above, we know that Theorem 5.2 follows from the next claim.

CLAIM I. Let X=Xa4m or X=Xam. Let n be an integer such that \<n<m — \.

Let D and D' be general members of\nKx \ whose proper transforms in the minimal good

semi-resolution of X have no intersection. Then
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(10) m<B(D'Df + l,ή).

We know that general members of | nKXa d m | and | nKXa m | are expressed in terms

of the λ- and μ-expansion of m -n with respect to a/b (Theorems 4.4 and 4.6). Therefore

we can write D D' in (10) in terms of such expansions. For this purpose, we introduce

the following notation. For a pair of positive integers (i, j) such that i<k+ 1 and that

i is odd (resp. even), we denote Pi_2+{j-\)Pi-1 by λu (resp. μ u ) . We define subsets

I°a%m and Ilm of Iatm by Γa%m= {(i, j) e/Ω,m | / is odd.} and /,%, = Ia,m\I°a,m respectively. We

denote by -< the lexicographic order in Iam. We define a Z-valued symmetric bilinear

form "o" on Lfl m by

-λtλη (hηellm, ι>η)

Z,m, ι<η)

0 (otherwise).

With veLam, we associate an integer σ(v) (resp. τ(v)) by <7(v) = Σ i e / ° vtA, (resp.
τ ( v ) ~ Σ i e / e v»iut) Then we have the following lemma.

LEMMA 5.3. Let D and D' be as in Claim I. Then we have

D-D' = vajm - ή) o vajm - ή).

PROOF. In the case X= Xa^tm, the lemma follows from the following intersection

formula. For simplicity, we assume that d>2. Let v and v be elements in Lam. We

regard v and v as elements in L(Xadm) in the same way as we regard vam(n) as an element

in L(Xadm) in the proof of Theorem 4.4. Let C and C be divisors on Xa^m of the forms

Σie/ίXα.d.^ΣisΛ^v, C^kϊ^Σ^x^^ΣiKh^ΐt C 1 ^ ) respectively. Assume that the

proper transforms of C and C in Xatdttn have no intersection. Then we have

C C = v o v + (dm2) ~x {(dma -1 )σ(v)σ(v) + σ(v)τ(v) + τ(v)σ(v) - (dma +1 )τ(v)τ(v)} .

We leave the case X= Xam to the reader. •

Therefore we can rewrite Claim I as follows.

CLAIM II. For an integer n such that \<n<m—\,

m < B(va,m(m - n) o vam(m - ή) + 1, n).

We can easily deduce Claim II from the following two propositions.

PROPOSITION 5.4. Let n be an integer such that 0<n<m — (Pk_1 + Qk_l). Put

i(n):=msίx{i\0<i^k-l9Pi + Qi<ίn}m Then

(11) v f lm(w)ovβm(
M(n)
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PROPOSITION 5.5. Let n be an integer such that ra - (Pfc_ x -h gfc _ J < /? < m - 1 . Put
ϊ(ή) and j(n) as follows:

\ " ^ - 1 .
i(n) - 1 "+" Qi(n) ~

Then

(12) v a , » o v f l » > Σ 9k-j(n).
i'(n)<h<k

To complete the proof of Theorem 5.2, we shall prove Proposition 5.4 and 5.5 in

the rest of this paper. We start with the following easy lemma. With v e Lam, we associate

an integer <τ(v) (resp. f(v)) by Φ ) = Σ i e/°> m

vA ( r e sP f( v) = Σ i ej«> w

vA)

LEMMA 5.6. Let v, veLam. Assume:
( i ) Ifi.ηel^v^Oandv^O, then ι<η. Ifi, fje/£M, v ^ O W v ^ O , then ι<η.
(ii) σ(v) = τ(v), σ(v) = τ(v), and σ(v) = τ(v).

Then, v°v = 0.

The proof is easy.
For the proof of Proposition 5.4, we introduce two types of special elements of

Lα m, namely, φ{ι) and φ(ι, η).

DEFINITION-LEMMA 5.7. (i) For ι = {ij)elam such that iΦk+\, we define φ(ι)e
La,mbyφ(ι)=-δ^ + δ^j) + (j-l)δ{i+ίΛ\

(ii) We have the following formulas:

φ(ι)oφ(ι)=j-l .

DEFINITION-LEMMA 5.8. ( i ) Let ι = (i1j\) andη = (i2,j2) be elements in Iam. We
say that φ is defined for (ί, η) if it satisfies the following conditions: (a) i2Φk+\, (b)
z'i+/2 w even, (c) ι<(i2, 1) For a pair (ι, )̂ = (0Ί,7i), (12J2)) for which φ is defined, we
define φ(ι,η)eLa,m by

-διl + δ>+ Σ q i - ^ - δ ^ + δ'+hδ^1'" (ιel°aj
ι<(i,l)<η
iodd, iφ 1

where i*:=max{z'e/£m | ι'<ι) and ϊ r : = m a x { ϊ ' e / £ w | ι'<ι).
(ii) Le/ (1, η) = ((iι,j\), {ii.jiί) be a pair for which φ is defined, and (ϊ, i") a pair

of integers. We say that (1, η) is of type (/', /") if it satisfies the following:
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i' ((*Wi) = (l> 1) oryΊ>2)
/' + 2 (otherwise).

(iii) Let (i, η) be a pair for which φ is defined. Assume that η = (/", j " ) and that (i, η)
is of type {i\i"). Then we have the following formulas:

σ(ψ(ι, η)) = τ(ψ(ι, η))=j"(Pv> _

τ(φ(ι,η)) = j"Pr-i 0/(2,1))

a,m)

•J

/ ' + r + i < Σ r , qi
i even

/'+ Σ ί,
iodd

We can check the above formulas by direct computations.

PROOF OF PROPOSITION 5.4. We use induction on i(n). If φ ) = 0, then the λ- and
/^-expansions of n are n = λί n = nμ2Λ, i.e., vam(n) = δ{ί'n) + nδ{2Λ). Hence, a direct
computation yields vam(n)ovam(n) = n. Therefore we are done in this case.

Let i be an integer such that \<i<k-\. Assume that the inequality (11) holds for
all «'s such that i(n)<i. We shall show that the inequality (11) holds for n such that
i(n) = i under this induction hypothesis. We only treat the case where / is odd since the
proof for even / is similar.

Let n be an integer such that i(n) = i. Write n =j{P{ + Qi) + nf such that 0 <n' < P{ + Qt.
Note that 1 <j<qi+1 (resp. 1 <j<qk — 1) if ί<k — 3 (resp. ί = k—\). We divide the proof

intothreecases ^ w ' ^ O ^ I ^ l ^ ^ ^ P ^ i + β ^ ^ a n d ί Π ^ Λ - i + S i - i ^ ^ ^ Λ + βi
Case (I). In this case,the 2-expansion of n is n =jλi + 2,ι and the μ-expansion of n is

4 < Λ < ΐ - l
h even

, y
4 < h < i — 1

Λeven

(ίi + l K i O'= 1,7=1) •

Hence, we know that vαm(«) = ι/̂ ((2, 1), (/+1,y)) T n u s by Definition-Lemma 5.8 (iii), we
have vajn)ovajn)>j. As a result, we have vβim(Λ)ovαfm(Aiχ/>

i+ρf)>y(/>

ί + ρ ί) = w, and
hence we are done in this case.
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Case (II). Put η = mm{i£Γam\ ι'<ι for any ι'eΓa%m such that v^J/i '^O}. We
claim:

(13) v β » = v β > ' ) + ^ ( / + l , 7 ) ) .

PROOF OF (13). We look at the relation of the λ- and μ-expansion between ri and
n. Let «/ = Alfi/l + ̂ 3<h< f (/Λ_ ιλhΛ+λhjh) be the /l-expansion of ri. Then the /l-expansion

ft odd

of n is n = λujl + Σ3<h<i(lh_ιλhΛ+λhjh)+jλi + 2Λ.
 F o r t h e μ-expansion, we have two

/iodd

cases: (α) ηr = (ϊ, jr) in which jiy>29 and (/?) ηr = (i\ 1). (The suffix " r" is the same as in
Definition-Lemma 5.8 (i).) In the case (α), ri has the /z-expansion of the form
n' = Σ2<h<i'(lh-it*h,i+ VhjJ- Then the μ-expansion of n is

n =

2<h<i'-2
h even

2<h<i'-2
h even

h even

Λ even

Σ
Λ even

Σ

2<h<i'-2
h even

Σ
< Γ -

h even

2<h<i'-2
h even

Using these equalities, we can check the equality (13) in the case (α). We leave the case
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(β) to the reader. •

From the equality (13), we have

v β » ° v f l » = vajn ') o vajn') + 2vβim(/i') o # / , (i + 1, j)) + # / , 0" +1,7)) ° # J , 0' +1,7'))

The first term on the right hand side of the above equality is greater than or equal to
n'ftPi + Qi) by the induction hypothesis. The second is zero by Lemma 5.6, and the
third is greater than or equal toy by Definition-Lemma 5.8 (iii). Thus we obtain the
inequality (11) in this case.

Case (III). In this case, ri has the λ- and μ-expansions of the form

jJ= Σ
2<h<i

heve

where lt>0. Thus we know that the λ- and μ-expansions of n are

3<Λ<i
hodd heven

3<Λ<i
hodd

= Σ
2 < Λ < Ϊ - 1

h even

Namely, we obtain vam(n) = va,m(n') + φ(i+ I, j + I). Thus we obtain the inequality (11)
by an argument similar to that in Case (II), using Definition-Lemma 5.7 (ii). •

Next we shall prove Proposition 5.5. For this purpose, we introduce θ{iJ)eLam.

DEFINITION-LEMMA 5.9. ( i ) For (ΐ, j)eIamsuch that \<i<k—\ and 1 <j<qi9 we
define θ(i,j)eLatmby θ{iJ)=-δ(i^-j+

(ii) We have

(iii) Let n, i, j be positive integers such that m — (Pk -i + Qk-^)<n<m — 1, i<k— 1,
j<qi and ϊ(ή)<i—\. Then vam{n)oθ{i,j)=j.

PROOF. We can check (ii) and (iii) by direct computations. As for (iii), when / is
even, note that n has the λ- and μ-expansions of the form

hodd hodd

= Σ (Λi- IMII.I+MΛ, j j + A - lMi.i -+•
2<h<i-2 i+2<h<k-2

heven heven
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The details are left to the reader. •

Finally, we prove Proposition 5.5, thereby completing the proof of Theorem 5.2.

PROOF OF PROPOSITION 5.5. We use induction on i\ή). If I'(AI) = 0, then n = m — \
and its λ- and μ-expansions are

m— l =>

2<h<k-2
h even

From these we obtain vam(m — 1) o vam(m — 1) = Σ i< Λ < & #Λ Thus we are done in this case.
Let i be a positive integer and assume that the inequality (12) holds for all «'s such

that ϊ(ή)<i. We shall show that (12) holds for n such that if(n) = i under this induction
hypothesis.

Let n be an integer such that ϊ(ή) = i. Put j:=j(n) and n'\=n+j{Pi_ι + βI _1). Then
i(n')<i. In this situation we claim

(14) v f l » = v f l > ' ) - 0 ( U ) .

PROOF OF (14). We only treat the case where / is odd, since the argument for even
/ is the same. First, since m — (P{: _ γ + Qi _ x) < n' < m — 1, n' has the ̂ -expansion of the form

Σ (4-i\i +^,jh) + 'ί-1^,1+^,0+ Σ
Λ < ί - 2

hodd

Thus we know that the /l-expansion of n is

3 < Λ < ί - 2
hodd hodd

3<h<i-2
hodd

n =
i i . Λ + 3 < Σ _

"ftodd

ί + 4 < h < k
hodd

+ 2-l)λi+2.1+ Σ
Λodd

Next, n' has the μ-expansion of the form

l,l+ Σ
Λeven
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where / f > # f — 1 . We can easily check that k = qi if j = qh and hence we know that the

μ-expansion of n is

« = Σ ( f*- i/*M+^h) + (W)jKi + i , i+ Σ ί f c - A
2 < Λ < i — 1 i+3<h<k-2

Λeven ft even

We can check the equality (14) by the above equalities.

From the equality (14) and Definition-Lemma 5.9, we obtain

By the induction hypothesis, we have

From (15) and (16) we obtain the inequality (12). •
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