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Abstract. We compute general multi-canonical divisors on two-dimensional
smoothable semi-log-terminal singularities. As an application of this result, we give an
effective bound for the Gorenstein index of such singularities in terms of the local
self-intersection number of their multi-canonical divisor.

1. Introduction. This paper is devoted to certain basic calculations on two-
dimensional smoothable semi-log-terminal singularities. If we study minimal or ca-
nonical models of one-parameter degenerations of algebraic surfaces, we need to treat
singularities that appear in the central fiber. Smoothable semi-log-terminal singularities
are those which appear in the central fiber of a minimal model of a degeneration, as
well as those which appear in the central fiber of the canonical model of a degeneration
which may have large Gorenstein index. Kollar and Shepherd-Barron [5] characterized
these singularities, but for the numerical theory of degenerations, we need more detailed
information.

In this paper, we calculate general multi-canonical divisors on these singulari-
ties. Though the term ‘‘general” in algebraic geometry is a relative notion, for a
two-dimensional semi-rational singularity (Z, z), we can characterize effective Weil
divisors on Z which are sufficiently general (from the viewpoint of the intersection
theory) in the associated complete linear system, using the well-known notion of “full
sheaf”’; and we use this characterization as the definition of the term “‘general” in this
paper (Definition 4.1). We introduce the notions of the A-expansion and u-expansion
in Section 3, which represent positive integers as certain special sum (Proposition-
Definition 3.1); and we show that for a two-dimensional smoothable semi-log-terminal
singularity (X, x) (regardless of whether it is normal or non-normal), general members
of the complete linear system of the multi-canonical divisor —nKy in the above sense
are described in terms of the A- and u-expansion of » (Theorems 4.4 and 4.6). As an
application of the above result, we bound their Gorenstein indices in terms of the local
self-intersection number of the multi-canonial divisor (Theorem 5.2).

We briefly describe the motivation for such a theorem. Historically, Kollar and
Shepherd-Barron [5] asked the following question, as the remaining step to construct
the compactification of the moduli of surfaces of general type in characteristic zero.
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QuEesTION. Let w: V' — W be the canonical model of a one-parameter degeneration
of surfaces of general type; i.e.,

(i) Vis a threefold with only canonical singularities,

(ii) W is a smooth curve,

(ili) = is a projective morphism whose fibers have only semi-log-canonical
singularities and whose general fibers have only canonical singularities,

(iv) the canonical divisor of V is m-ample.
In this situation, does there exist an upper bound for the Gorenstein index of V
depending only on deformation invariants of the fiber?

Alexeev [1] showed that such a bound, depending only on the self-intersection
number of the canonical divisor of the fiber, exists; thus the construction of the above
compactification of the moduli were completed. His boundedness theorem, however,
by no means gives an effective bound for the Gorenstein index. Seeking this is interesting
in its own right.

Theorem 5.2, mentioned above, reduces the problem of effectiveness of the bound
in the above question to the problem of effective fixed component freeness of stable
surfaces:

ProBLEM. For a stable surface S, find an effective n, depending only on (Kg)?,
such that nKg has no fixed component.

This is still an open problem.
The author would like to thank Professor Masaki Maruyama for his advice. Also
he would like to thank the referee for valuable suggestions for improvements.

2. Preliminaries. A two-dimensional semi-log-terminal singularity (for the de-
finition of “semi-log-terminal”, see [5, Definition 4.17]) is said to be smoothable (cf.
Kollar [4, Definition 5.4]) if it admits Q-Gorenstein one-parameter deformations to
rational double points. Kollar and Shepherd-Barron [5] characterized such singularities.
Let us recall their result.

We introduce two types of singularities.

DEerFINITION 2.1 ([S, Proposition 3.10]). Let (a, d, m) be a triplet of positive integers
such that m/2 <a<m and that a is prime to m. We denote by X, ,,, a two-dimensional
quotient singularity of the form Soec C[z, z,]/{p), where {p) is a cyclic group of order
dm?* acting on Spec ([ z,, z,] as (p*z,, p*z,)=(e*™ 'z,, ez,) in which & is a primitive
dm*th root of unity.

DerFINITION 2.2.  Let (a, m) be a pair of positive integers such that m/2 <a<m and
that a is prime to m. Put b=m—a, and let a’ (resp. ') be an integer such that aa’'=1
(resp. bb’=1) (mod m). Let {p) be a cyclic group of order m acting on a normal crossing
point NC?:=Spec C[zy, z,, 23]/(2,2,) as (§*z,, p*z,, p*z3)=(8"z,, §"'z,, §z,) where & is
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a primitive mth root of unity. We denote by X, ,, the quotient of NC? by this (g >-action.
Then the result in [5] which motivates this paper is as follows:

THEOREM 2.3 (Kollar and Shepherd-Barron [5, 5.2]). Let (X,x) be a two-
dimensional smoothable semi-log-terminal singularity which is neither a smooth point, a
rational double point, a normal crossing point, nor a pinch point. Then (X, x) is analytically
isomorphic to X, 4, or X, .

The above X, ,,, and X, ,, are the main objects of this paper.

3. The J-expansion and u-expansion. In this section we introduce the notions
of the A-expansion and p-expansion which are needed later to compute general
multi-canonical divisors on X, 4, and X, ,. Let m and a be positive integers such that
m/2<a<m and that a is prime to m. Put b=m—a, and let a/b=[q,, q,, ..., q,] be
the regular continued fraction expansion. Let r; be the ith remainder of the Euclid-
ean algorithm for a/b and P,/Q; the ith convergent for a/b. We assume that k is
even throughout this paper, because the odd case can be treated in a way similar to the
even case, with minor and obvious modifications. For a pair of integers (i,j) such
that 1 <i<k+1, that j>1, and that i is odd (resp. even), we denote P,_,+Q, ,+
(—=I(P;-1+Q;-y) by 4; ; (resp. ; ;). We agree that 4; ;=0 (resp. p;,=0) for all odd
i’s (resp. even i’s). In this situation, we have the following.

PROPOSITION-DEFINITION 3.1. Let n be an integer such that 1 <n<m—1. Then n
can be written uniquely as

n=»Aa;+ Z (i 1Ain+ A+ hdir 11 <V€SP~”= Z (li—lﬂi,1+lli,j.-)>a

3<i<k-—-1 2<i<k
iodd ieven
where ji, Ly, ay Lay oo oy Jie 15 b (F€SP. 11, s I3, Jus - - o5 e 1, Ji) are integers that satisfy the
following conditions:
(i) (@) 0<l;<q;+1 for any even (resp. odd) i.
(b) 0<j,<gq; for any odd (resp. even) i, and j,#1 for i>2.
(ii) If there exists even (resp. odd) iy such that I, =q; +1, then there exist odd
(resp. even) i, and i, that satisfy the following conditions:
(a) 0<i;<ig<i,<k.
(b) l.=gq; for any even (resp. odd) i’ such that i, <i'<i, and that i' #i,.
(©) j.=0 for any odd (resp. even) i’ such that i, <i' <i,.
d L-1<q,-,—1ifi; 22
) ly+1=qn+1—1 i i<k—1.
(i)  If there exists even (resp. odd) iy such that I, =q; and j; ., >2, then there
exists odd (resp. even) iy that satisfies the following conditions:
(a) 0<iz<ip.
(b) [.=gq; for any even (resp. odd) i’ such that iy <i' <i,.
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(©) j»=0 for any odd (resp. even) i’ such that i;<i' <i,.
(@) ly-1=<qi,-1—1ifis>2.
We call this expression of n the A-expansion (resp. u-expansion) of n with respect to a/b.

Let us give an example.

ExaMpLE 3.2. Let m=9976 and a=6961. Then we have b=3015, a/b=
[2,3,4,5,6,7], Ay =1, A1,=2, A3,=3, A3,=13, A33=23, A3,=33, A5 ,=43,
As =268, s 3=493, s ,=T18, A55=943, 15 ,=1168 and 4, ,=1393. Let n=9503.
We determine /g, js, I, j3, [, and j; successively in this order by the following manner.
In the firste step, we determine /4, js and ns. We determine /g by n=ns+/s4, ,, where
ns and /4 are integers such that 0<ns <4, ;. In this case, we have /;=6 and ns=1145.
If ns<As ,, then we put js =0; otherwise, we pick up the greatest A5 ; smaller than or
equal to ns from {45 ;},.;<s and put js=j'. In this case, we have js=5. We put
ns:=ns—As ;,;=202. Here we obtain 9503=n5+ 45 s+ 64, ,. In the second step, we
repeat the first step for n5, As; and {4;;},.;<4 instead of n, A;, and {is ;},<;<s
respectively, to determined /,, j; and nj instead of /g, js and nj respectively. Namely,
we divide 202 by A5, and obtain 202=30+44,,, and hence we put /,=4. Since
A33<30<41;,, we put j;=3. We put n;=30—4; 3=7, which we send to the next step.
In the last step, we put /, =2 and j, =1 since we divide n3 by 45  to obtain the quotient 2
and the remainder 1=4, ;. As a result, we have (lg, s, l4, j3, 5, j1)=(6,5,4,3,2,1)
and 9503=4, {+2A;+A33+44s+As 5s+64;,. This is in fact the A-expansion of
9503 with respect to 6961/3015. By a similar computation that uses y; ;s instead of
A:.j’s, we obtain 9503=0" p, | + Uy o+ 2441 + Ma.0+4He,1 + K67, and this is in fact the
u-expansion of 9503 with respect to 6961/3015.

In fact, we can always compute the A- and p-expansion in the above way. Namely,
the A-expansion is characterized as follows:

LemMmA 3.3. Let n be an integer such that 1 <n<m—1. Let

n=»Aa ;+ Z (i1 Aig + 4 )+ hAir 1
3si<k-1
be the A-expansion of n with respect to a/b. Then we have the following:
(1) For any odd h, we have

Ly =max{leZ|M,,,l <A+ Y (lioihiy +i,-,ji)+l,,_l,1,,,l}.
3<i<h-2
iodd

(ii) For odd h, put j,:=max{je Z, |4y ;<A1 j;,+ Y 3<icnllioihin+4i,)}. Then
we have foad

: {j_h if jp=2o0r if h=1,
Jh= .
0 otherwise .
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Obviously we can characterize the u-expansion similarly. We leave the elementary
proofs of Proposition-Definition 3.1 and Lemma 3.3 to the reader.

In the rest of this section, we introduce the notation relevant to the A- and
u-expansion needed later. We define a set I, ,, of pairs of integers by

Ln={G )| 1<i<k+1;1<j<gq; (for i<k), j=1 (for i=k+1)} .

We denote by L, , the set of all Z-valued functions on I, ,,. For veL, , and 1€, ,,, we

denote by v, the value of v at 1. For 1€, ,,, we define 6'eL, ,, by 6,=1 and §,=0 for
n+#1. We agree that % =0 for any integer i.

DerFINITION 3.4. Let n be an integer such that 1 <n<m—1. Let

n=Ay+ 2 Goihia+A) +hder = 2 (Gopy+mij)
3<i<k-—1 2<i<k
iodd ieven

be the A- and p-expansion of n with respect to a/b. We define v, ,(n)eL,,, as follows:

V,,,m(fl)=5“’j‘)+ Z ([i_15(i,1)+5(i.jf))+lk5(k+1,1)+ Z (li—15“’1)+5(i'ji))-
35_:'5‘113-1 2<i<k
Lo reven

4. General multi-canonical divisors. In this section, we compute general multi-
canonical divisors on two-dimensional smoothable semi-log-terminal singularities
in terms of the A- and u-expansion introduced in Section 3. Before doing so, we deter-
mine what we mean by the term “general” in this paper.

Esnault [3] introduced the notion of “full sheaf” for sheaves on a resolution of a
two-dimensional rational singularity. Note that we can generalize this notion for sheaves
on a semi-resolution of a two-dimensional semi-rational singularity in an obvious manner
and can prove bijective correspondence between the set of isomorphism classes of full
sheaves on the semi-resolution and the set of isomorphism classes of reflexive modules
on the singularity. (See [3, Lemma and definition (2.2)].) We use this notion of full
sheaf to describe a Weil divisor on a two-dimensional semi-rational singularity as a
“general member” in the associated complete linear system.

First we fix notation and terminology. For Weil divisors D and D’ on a surface
singularity Z, we say that D is linearly equivalent to D’ when there exists a rational
function f on Z such that D—D'=(f). For a Weil divisor D on Z, the complete linear
system associated with D, denoted by | D/, is the set of effective divisors that are linearly
equivalent to D. When we are given a semi-resolution p: Z — Z of a two-dimensional
semi-rational singularity Z, we denote by F(.#) the full sheaf on Z associated with a
reflexive module .# on Z.

DEerINITION 4.1. Let (Z, z) be a two-dimensional semi-rational singularity and D
a Weil divisor on it. Let p: Z— Z be the minimal good semi-resolution and D the
proper transform of D in Z. We call D a general member of | D | if 03(D)~FO4(D)) and
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if D intersects the exceptional locus transversely.

Note that general members always exist since the full sheaf is generated by global
sections. We give a numerical characterization of “‘general members” in the next lemma,
which justifies Definition 4.1 from the viewpoint of the intersection theory. For a
O-Cartier divisor D on a surface singularity (Z, z) and an exceptional curve E of a
semi-resolution p: Z — Z, we define a rational number az(D) by p*D =D +axD)E+E’,
where D is the proper transform of D in Z and E’ is a Q-linear combination of the
exceptional curves other than E.

LEMMA 4.2. Let (Z,z) be a two-dimensional semi-rational singularity and D a
Q-Cartier Weil divisor on Z. Let p: Z — Z be the minimal good semi-resolution. Assume
that the proper transform D of D in Z intersects the exceptional locus transversely. Then,
D is a general member of | D| if and only if the inequality og(D)<ag(D") holds for any
D’e|D| and any exceptional curve E in Z.

PrOOF. Suppose that D is a general member of | D| and D’ is a member of | D|.
Let 7 be the set of exceptional curves in Z, and E= U g, E- Since 03(D) is a full sheaf,
we have HY(Z, 03(D))~ HE(Z 03D D)) ~0. Hence we obtain

(1) H(Z, 03(D)=~H%Z\E, 03(D))~HZ, 0,(D)),

using the exact sequence for local cohomology groups. We regard D’ as the zero
locus of a section (4(D). Then, (1) means that there exists an effective divisor of the
form ), _, BgE such that D’+Z ooy BeE is linearly equivalent to D, where D’ is the
proper transform of D’ in Z. On the other hand, D’e|D| implies that D and
D’ +ZE6 1 (@g(D)—ag(D))E are linearly equivalent. Therefore we have ag(D’)—ag(D)=
Be=>0, and hence we have proved the “only if”” part.

Next suppose that D and E intersect transversely and that ay(D)<wa(D’) for
any D'e|D|. Choose a general member D, of |D|. We have already shown that
ag(Do) <ag(D) for any E€l. Thus ag(D,)=ogD) for any Eel. This means that D and
D, are numerically equivalent. Therefore they are linearly equivalent since Z is a
semi-rational singularity. Hence (D) is a full sheaf, and so we have proved the “if”
part. |

COROLLARY 4.3. Let (Z, z) be a two-dimensional semi-rational singularity and D,
and D, be Q-Caritier Weil divisors on (Z, z). Assume that D, and D, are general members
of | Dy | and | D, | respectively and the proper transforms of D, and D, in the minimal
good semi-resolution have no intersection. Then

D,+D,=min{D; - D}| D}e|D,|, Dye|D,|, dim D, nD;=0} .

Now we compute general members of the multi-canonical systems of two-
dimensional smoothable semi-log-terminal singularities. By Theorem 2.3, it suffices to
consider X, ,4,, and X ,,.
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41. X, ;. The symbols b, k, g;, r;, P; and Q;, which represent numbers derived

from m and a, are the same as in Section 3. Let p, 4,,: X, 4m = X,4.m be the minimal
resolution. We denote its exceptional locus, which is a chain of P'’s (see, e.g., Brieskorn

2D, by U Gie 1(xa,d,m)Ei. j» where the index set (X, ,,,) is defined by

1<i<k+1;
I(Xa.d‘m)={ (,))eZxZ 1<j<gq; (for i<k), 1<j<q,—1 (for i=k), },

1<j<d (for i=k+1).

and the indices are assigned to the exceptional P'’s by the following rule:

(i) (E1.1)2=_2- ‘

(ii) E;;-E; ;=1 if either (a) i=i" and |j—j'|=1, (b) {(G, j), (', )} ={G q:),
(i+2, )}, or (c) {(i, ), (7", )} ={(k, s = 1), (k+1, d)}.
Note that

—2—g;-, if j=1and (i, j)#(k+1,d),

E -2 if j>2and (i, j)#(k+]1,d),
i —3 if (i, j)=(k+1,d) and d>2,
—3—gq, if (i, j)=(k+1,d)and d=1.

(cf. Kollar and Shepherd-Barron [5, Proposition 3.117.)
Let us recall the 4; s and y; s introduced in the preceding section. For
(6, )€ XX,y am) and {=[y;:7,]€ P\ {[1:0], [0:1]}, we set

cu(c).={wa+v2z;l-'»f”m<'f-1-<f-“'f>)/<p> if i is odd,
C | (pyz et dmtric =G Dy 200y if iis even.
Then C*/({) is an irreducible curve on X, ,,, whose proper transform in X’a,d,m intersects

E; ; transversely and does not intersect the other exceptional curves.
In this situation, we have the following theorem.

THEOREM 4.4 (the X, ,,, case). Let n be an integer such that 1<n<m—1. Let

n=~A, j+ Y (-1 Aig+ A )+ oAy s = > oty + 1 5,)
dsis! Znsk

be the A- and u-expansion of n with respect to a/b. Then

cHE+ ¥ ( ) C"-l(c;?_1>+C**f-'(c‘“’>>+ gy
3sii05dlé—l 1<hi-1<li-y 1<he<lk

" z( ) Ci'l(c:.?_,)+C**f*(c'“)))
2<i<k \1<hi-1<li-

is a general member of the (—n)-canonical system |—nKy_ , |, where {\), {We



218 M. IWAMOTO

P'\{[1:0],[0:1]} such that ("’ if h#h', and C*°({)'s are regarded as empty
sets.

For the proof of Theorem 4.4, we need the following proposition whose proof is
elementary.

ProPOSITION 4.5. Put T, v and T, as follows:
T={(s,t)eZ, o X Z |5+ (dmb—1)t=dmbn (mod dm?)} ,
v=min{s+1[(s,0)e T}, Tpn={(61eT|s+r=0}.

Then we have the following:

(1) Ifd=1 and m—(Py_+ Qr-)<n<m, then v=2n—m+2(P,_+Q,-,) and
Toin={n+P 1+ QO ,n—m+ P +0,_ 1)}

(ii) Otherwise, v=2n and T;,={(n, n)}.

PrOOF OF THEOREM 4.4. For simplicity, we assume that d>2. Modifications
needed to treat the case d=1 are left to the reader.

We denote by L(X,,.,) the set of all Z-valued functions on I(X,,,). We regard
I, as a subset of I(X, , ,) by an injective map that sends (i, j)e I, , to (i, j) e I(X, 4. if
(i, j)#(k, q) and to (k+1,d)e (X, , ) if (i, j)=(k, q,). We extend v, ,(n) to a function
on I(X,4,) by v,mn),=0 for 1¢1,, and regard it as an element of L(X,,,) We
define v'(n) € L(X, 4 ) by v'(n),=degg F(wk," ) for 1€ I(X, 4,.), where w§," is the triple
dual of the nth tensor power of the dualizing sheaf of X, , .. Then the theorem is restated
as follows:

) Vo) =V'(n) .

We shall give an arithmetical characterization of v'(n) and show that it forces the above
equality.

For a Weil divisor D on X, ,,, we define ev(D)e L(X,,,) by ev(D),=D+ E, for
1€1(X, 4.m), Where D is the proper transform of D in )?a_d‘,,,. We extend 4, ; (resp. u; ;)
to a function on I(X,,,) by 4, ;:=—u ;+dm{r,_,—(j—1)r;} for even i (resp.
Wi ji=—A j+dm{r,_;—(j—1)r;} for odd i). For ve L(X, ), we define a(v)e L(X, 4,)
by “(")z:Zr,el(xu,,,,m)vn“E.(C"(C")) for 1€ (X, 4,,), Where

(dm®) 1A if iand i are odd and (i, j)<(', j),
ag, (CP ()= if iand i’ are even and (i, j)>(i', j),
' or if iisodd and i'is even,
(dmz)_ lﬂi,j)»i"j/ otherwise .

(“<” means the lexicographic order.) Note that a(v),=ag (ev(D)) for a Weil divisor D
on X, and for 1€ (X, ,,). Let L,:={ev(D)|De| —nKy_, |}. Then by Lemma 4.2,
v/(n) is the element of L, that is characterized by a(v'(n)), <«(v), for any ve L, and any
ne I(Xa.d,m)-



GENERAL MULTI-CANONICAL DIVISORS 219

L, is characterized as follows. Put '=[27'4d"]. Put I’ and I” as follows:
I{(, j)e I(Xoam|i is 0dd, and j<d’ if i=k+1}, I"=IX,q)\J' .

For ve L(X, 4,.), define s(v) and #(v) by s()=),_,. v/, and #(v)=Y ... v.u, respectively.
Then, since p*¢ = g(@m = DseV(@K) +1(ev@rN gy for a (p)-semi-invariant ¢ e C[z, z,]
and p*(dz; Adz,)® " =g mMdz, Adz,)® "™, we know that L, consists of the elements
of L(X, 4, satisfying the following conditions:

(i) v,>0 for any 1€ I(X, 4. (ii) s(v)+(dmb—1)t(v)=dmbn (mod dm?).
Since s(v, (1)) =t(v, ,(n))=n, we have v, ,(n)e L,. Therefore, we have

3) o' (1), < AV (),

for any € 1(X, 4.
To prove (2), we first show

“ s(V'() =50 m(n), 1V (n)) =y m(n)) -
For this purpose, we look at a(v); 1,4+ and a(V)y+.4-+1) for ve L(X, 4,,). We have
dm?a(V) g+ 1.4y = B1(s0) +1(v) — B,2(v) ,
where f, =(d—d'+ 1)m—(P,_ 1+ Q-)>0and p,=(d—2d" +2)ym—2(P,_+ Q,-,)>0,
and
Am?o(V) e+ 1.ar+ 1) = Ba(s(v) + (V) + Bat(v) ,

where By=d—-d')m—(P,_;+0,-)>0 and f,=Qd —dm+2(P,_;+Q,_,)>0. If
(s(v'(n), 1(v' () # (v m(1)), E(Vam(m))) =(n, n), then we have s(v'(n))+#v'(n))>s(v, m(1))
+#(v,m(n)) by Proposition 4.5. Thus we have o(v'(n))y+1.4)>Vom®))p+1.4y OF
(V' (M) g+ 1.4+ 1) > Vo) + 1.4+ 1) DY the above equalities. This contradicts (3). Thus
we obtain (4).

Next we show v, ,(n),=v'(n), for nel’ by induction on the lexicographic order
(which is denoted by “<”’) in I'. Let 5 be an element of I’ which is not (1, 1). Assume
Vam(n),=Vv'(n), for any 1€ I’ such that 1>>1. We show v, ,(n), =v’(n), under this induction
hypothesis. For arbitrary ve L(X, ), we have

5 dmzoc(v),llz—dmzvn«l—(s(v)— Y v,/l,)u,,1+<t(v)+ Y v,,u,)l,,z,
1el’,i>n 1el’,i>n

where n':=max{1eI'|1<n}. The induction hypothesis and (4) imply
(6) s(va,m(n)) - Z va.m(n)llx = S(V l(n)) - Z v l(n)t'll

tel’;i>n 1el’,i>n

and 1V ™)+ 1 iy Vam® bt =10’ )+, 1 s, V(). Thus from (3) and (5) we
obtain

() V(1) Z V() -
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Note that (6) is written as

®) Y VamWA= Y V)AL

el 1<n el’ 1<n
By Lemma 3.3, we know that (7) and (8) imply v'(n), =v, ,(1),.
The same argument shows v, ,(n),=v'(n), for neI”. Hence we obtain the equality

Q). ]

42. X,,. The symbols b, g;, k, r, P, Qi 4;; and p,; ; are the same as in
Section 3. Let p, ,.: )?a_m—»Xa,m be the minimal good semi-resolution. We denote its
exceptional locus by J; ;. 1... Ei.j» where the indices are assigned to the exceptional
P"’s by the following rule:

(i) (B )?=-2.

(i) Ey;*Eyp=1if either (a) i=i and |j—j'|=1, or (b) {(i j). ("))} ={G. q0).
(i+2, )}

(i) Ey,,, and E, , intersect the double curve of )?‘,,m.

Note that

—2 if j>2,
—1-q, if (G, j)=(k+1,1).

For (i, j)el,,, and {=[y,:7,]1e P\ {[1:0], [0: 1]}, we set

—2—qi—, if j=land (i j)#(k+1,1),
(Ei.j)z_

c“i.f<4):={(zz, yizi bz TRy s odd
(21, pi25 7Ty 2 (py  if dis even.
Then C*J({) is an irreducible curve on X, . whose proper transform in X, . intersects
E, ; transversely and does not intersect the other exceptional curves.

In this situation, we have the following theorem, whose proof is left to the reader
since it is almost parallel to that of Theorem 4.4.

THEOREM 4.6 (the X, ,, case). Let n be an integer such that 1 <n<m—1. Let

n=~7%;+ > (o 1A+ A ) +H oA 11 = > (i it 5)

be the A- and u-expansion of n with respect to a/b. Then

C’w1.j1(é'(l))+ Z ( Z Cvi,l(c}(lt;)_l)+éi,ji(5(i))>+ Z ék“’l(c;(.ﬁﬂ))

3<i<k—-1 1<hi-1<li-y 1<he<lk
iodd

v 2 (L3 o)
2<i<k \1<hi-1<li-y

is a general member of the (—n)-canonical system | —nKy, | where {7, [Ve
P'N\({[1:0], [0: 17} such that [P #LD if h#h', and C*°({)’s are regarded as empty sets.
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5. Local intersection numbers. As an application of the result in Section 4, we
shall state and prove Theorem 5.2 in this section. To state the theorem we first define
a function B(M, N).

DerFiNiTION 5.1. For a sequence of positive integers L=(L, L,, ..., Ly;,) and a
positive integer N, we define a sequence

AL, Ny=(A(L, N)_,, AL, N)y, A(L,N),, ..., A(L, N)jw)

by the formulas A(L, N)_,=A(L, N)o=N and A(L, N);=L;A(L, N);—+A(L, N);_,
(1<j<J(L)). For a pair of positive integers (M, N), we define B(M, N) by

B(M, N)=max A(L, N),q, ,
L

where L=(L, L,, ..., Ly, runs through all sequences of positive integers such that

21 sjsJ(L)Lj:M‘

We easily rewrite the above B(M, N) in an explicit form as

1 1 g, M+2 1 _ 5 M+2

B(M,N)=— {<i> —<—V_> }N.
\[5 2 2

Now we state the main theorem of this section:

THEOREM 5.2. Let (X,x) be a two-dimensional smoothable semi-log-terminal
singularity, and n a positive integer. Let D and D' be members in |nKy | without common
components. Then, the Gorenstein index of X is bounded by an effectively computable
Sfunction of n and the local intersection number of D and D' as follows:

) index(X, x)<B(D-D'+1,n).

The rest of this paper is mainly devoted to the proof of the above theorem. First,
if X is Gorenstein, the above theorem is trivial. Thus, it suffices to consider the cases
X=X,,,and X=X, , (see Theorem 2.3). Secondly, it can be easily seen that B(M, N)
is strictly increasing function with respect to M if we fix N. Thus it suffices to prove
the inequality (9) for D and D’ in |nKy| such that D+ D’ attains the minimal value,
that is, by Corollary 4.3, D and D’ which are general members in | nKy | whose proper
transforms in the minimal good semi-resolution have no intersection. Thirdly, we easily
obtain index(X, 4, x)=index(X, ,, x)=m. Finally, it suffices to consider the case
n<index(X, x) because B(M, N)=> N holds for all pairs of positive integers M, N. Hence,
summing up all the above, we know that Theorem 5.2 follows from the next claim.

CramM 1. Let X=X,,,, or X=X,,. Let n be an integer such that | <n<m—1.
Let D and D' be general members of | nKy | whose proper transforms in the minimal good
semi-resolution of X have no intersection. Then
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(10) m<BD-D'+1,n).

We know that general members of |[nKy_ , |and [nKy, | are expressed in terms
of the A- and u-expansion of m —n with respect to a/b (Theorems 4.4 and 4.6). Therefore
we can write D - D’ in (10) in terms of such expansions. For this purpose, we introduce
the following notation. For a pair of positive integers (i, j) such that i<k+1 and that
i is odd (resp. even), we denote P;_,+(j—1)P;_, by 4, ; (resp. fi; ;). We define subsets
I, and I{, of I, by I2,,={(, j)el,|iis odd.} and I}, =1,,\I.,, respectively. We
denote by < the lexicographic order in I, ,,. We define a Z-valued symmetric bilinear

[TP%1]

form “°” on L, by
—Ady, (el 1<n)
—Ady (L NEL,, 1>1)
5'o6"={ wi, (1 NE€Lp 1<)
fty (L MELL L, 1>1)
0 (otherwise) .

With velL,,, we associate an integer o(v) (resp. t©(v)) by a()=) _,. V4, (resp.
(W)= ,.;c V.i4,). Then we have the following lemma. ‘

LeEMMA 5.3. Let D and D' be as in Claim 1. Then we have
D:D'=v, (m—n)ov,,(m—n).

Proor. In the case X=X, ,,,, the lemma follows from the following intersection
formula. For simplicity, we assume that d>2. Let v and ¥ be elements in L,,. We
regard v and v as elements in L(X, ,,,) in the same way as we regard v, ,(n) as an element
in L(X, 4,,) in the proof of Theorem 4.4. Let C and C be divisors on X, 4.m of the forms

Z:el(xa,d,,,.) Y, en<v, C'Ch) an(} lel(xa,d,m) >, <h <5, C'((;) respectively. Assume that the
proper transforms of C and Cin X, ,,, have no intersection. Then we have

C+ C=voi+(dm?)~*{(dma—1)a(v)a(¥) + a(v)r(¥) + 1(v)a(¥) — (dma + 1)x(v)e(¥)} .
We leave the case X=X, ,, to the reader. |
Therefore we can rewrite Claim I as follows.
CrLamm II.  For an integer n such that 1 <n<m-—1,
m< By, (m—n)ov, ,(m—n)+1,n).
We can easily deduce Claim II from the following two propositions.

PROPOSITION 5.4. Let n be an integer such that 0<n<m—(P,_,+ Q,_,). Put
i(n):=max{i|0<i<k—1, P,+Q,<n}. Then

n

(1 1) Va.m(n)ova.m(n)?-———_ .
Pi(n)+ Qi(n)
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PROPOSITION 5.5. Let n be an integer such that m—(Py_,+ Q,_ ) <n<m—1. Put
i'(n) and j(n) as follows:

m—n
i'(n):=min{i|0<i<k—1,m—n<P+Q;}, j(n):=l7—~———————‘—l .
Piy— 1+ Qitmy-1

Then

(12) va,m(n) ° va.m(n) = Z dn _J(n) ’
i'm<h<k

To complete the proof of Theorem 5.2, we shall prove Proposition 5.4 and 5.5 in
the rest of this paper. We start with the following easy lemma. Withve L, ,,, we associate
an integer G(v) (resp. ©(v)) by 6(V)=Y,_ . v, (resp. i(v)=) . 1o Vilhy)-

LemMmA 5.6. Letv,velL,,. Assume:

(i) Ifuynel,,v,#0andv,#0, then 1<n. If 1, nel;,, v,#0 and v, #0, then 1<n.

(ii) o(v)=1(v), 6(¥)=1(V), and 6(V)=1(V).
Then, vov=0.

The proof is easy.
For the proof of Proposition 5.4, we introduce two types of special elements of

L, ., namely, ¢(1) and (1, 7).

DEFINITION-LEMMA 5.7. (1) For 1=(i, j)el,,, such that i#k+ 1, we define ¢(1)e
Lo by @)= =001 +87 4 (j—1)5* 10,
(ii) We have the following formulas:

ale(1) =) =(j—1)(P;- 1 +Q;-1),
a(e)=te)=(—1P;-,
P@)ep(t)=j—1.
DErFINITION-LEMMA 5.8. (i) Let 1=(iy, j,) and n=(i,, j,) be elements in I,,,. We
say that  is defined for (1, n) if it satisfies the following conditions: (a) i, #k+1, (b)

iy +1, is even, (c) 1<(iy, 1). For a pair (1, n)=((iy, j1), (i5,]>)) for which \ is defined, we

LT L z qi_15(i,1)_5(i2.1)+5n+j25(iz+1.1) (tel?,)
1<) <n
l//(l, 17)= i iodd,i¥#1 V ‘ ‘
N R Y AN LU G L S R (T T

1<(,1)<n
ieven

where 1':=max{1'eI?, |1'<1} and 1" :=max{1' e I, |1'<1}.
(ii) Let (1, n)=((iy, j1), (i, J2)) be a pair for which \ is defined, and (i', i") a pair
of integers. We say that (1, n) is of type (i', i"') if it satisfies the following:
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i,=1" i ={ll ((il’j1)=(1, 1) Orj122)
2 U i +2 (otherwise) .

(i) Let (1, n) be a pair for which  is defined. Assume that n=(i", j") and that (1, 1)
is of type (i’,.i"). Then we have the following formulas:

oW1, m) =W, mM)=j"(Pi -1+ Qi -1),
oW, m)=j"P; -y,

_ _JJ"Pi—y (t#@2, 1)
‘L'(l//(la n))_{jﬂpi”—lﬂl_ 1 (12(2, 1)) s

J'+ Y a4 (ell,)

i’+1_gisi"*l
Y(1, n)eoy(a, )=
J+ Y @ (el).
i'tl<i<gi”’—1
iodd

We can check the above formulas by direct computations.

PrROOF OF PROPOSITION 5.4. We use induction on i(n). If i(n)=0, then the A- and
p-expansions of n are n=21; ,=nu, ;, i.e., v, (n)=56""+nd*". Hence, a direct
computation yields v, ,(n)°v, (1) =n. Therefore we are done in this case.

Let i be an integer such that 1 <i<k—1. Assume that the inequality (11) holds for
all »’s such that i(n)<i. We shall show that the inequality (11) holds for » such that
i(n)=1i under this induction hypothesis. We only treat the case where i is odd since the
proof for even i is similar.

Let nbe an integer such that i(n)=i. Write n=j(P;+ Q;)+n’'such that 0<n’' < P;+ Q,.
Note that 1 <j<gq;,, (resp. 1 <j<gq,—1)if i<k —3 (resp. i=k—1). We divide the proof
into threecases: (I)n'=0,AD) 1 <n’'<P;_+Q;_,and (I P;_ + Q;_, <n'<P;+ (O,

Case (I). In this case,the A-expansion of nis n=j4,, , ; and the p-expansion of n is

(g1 +Duy + Z Qh— 1P H(Gi— D10+ My (i=3,j=2)
M
n=+ (g1 + Dpyy + Z Gn-1Mn1 T Gilki+ 1,1 (i=3,j=1)
4<h<i—1
heven
1Mo+ U (i=1,j=2)
| (g1 +Dpay (i=1,j=1).

Hence, we know that v, ,(n)=y/((2, 1), (i+1, j)). Thus by Definition-Lemma 5.8 (iii), we
have v, (1) v, (1) =j. As a result, we have v, (n)ov, ,(M)(P;+ Q;)=j(P;+ Q;)=n, and
hence we are done in this case.
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Case (II). Put n=min{1€lf, |1'<1 for any 1’€I{, such that v,,(n), #0}. We
claim:

(13) Vo) = Vo () + ¥, (i+1, 7)) .

PRrOOF OF (13). We look at the relation of the A- and u-expansion betwe¢n n’ and
n.Letn'=24; ; + Y 3<n<i(lh-14n1 + 4 ;) be the A-expansion of n’. Then the A-expansion
hodd

of nis n=24y j;+Y 3cn<i(lh—14n1+An j,) +JAi+2,1. For the pu-expansion, we have two
hodd

cases: (o) " =(i’, j;) in which j;, >2, and (f) n"=(", 1). (The suffix “r” is the same as in
Definition-Lemma 5.8 (i).) In the case (x), »' has the u-expansion of the form
n'=Y 5 cn<i-(Uh—1tn1 + pn, ;,)- Then the p-expansion of n is

heven

Z (D= 1ty i jy) L ey + B v
2<h<i'—2
heven

+ Z Gn— 181 H(@i— Dpie 10+ Mig (Uir<q:i—1,j=2)
P e !

Y (T S TP B I T o O
25h<i=2
even

+ Z Gn-1Bn1 T Gilkiv 1,1 Uir<qi—1,j=1)
et

(= b1+t )+l i g+ o+ (@it + Dl g2

"1

2<h<i'-2
heven
= + Z qh—lﬂh.1+(qi_l)ﬂi+1.1+ﬂi+1,j (('<i=3, ji=q;, j=2)
i‘+4hShSi—1
even

Z (ly- 14,1 +ﬂh,j,.)+li'— Wi FHe o+ (G e+ Dl 0y

2<h<i'—2
heven
+ ) + gt ('<i=3, ji=q;, j=1)
qh—lﬂh,l qx“z+l,l - > Jir=dqis ]
i'+4<h<i-1
heven

Z, z(lh— Wt ) oy oot itk 1,0t iy

('=i=1,jpy=4¢:,J22)

> 2”}-—1/1;.,1 i) ity F i 0 H (@ Dty
i -

(i,=i_],ji'=qi',j= 1)‘

Using these equalities, we can check the equality (13) in the case (x). We leave the case
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(B) to the reader. [ |
From the equality (13), we have

Vanl?) ©Vam(M) =Vam(n)Vam(n) + 2Vamn) W0, (41, )+, (+ 1, j)y(n, (+1, ) -

The first term on the right hand side of the above equality is greater than or equal to
n'/(P;+ Q;) by the induction hypothesis. The second is zero by Lemma 5.6, and the
third is greater than or equal to j by Definition-Lemma 5.8 (iii). Thus we obtain the
inequality (11) in this case.

Case (III). In this case, n’ has the 4- and p-expansions of the form

n'=4Ai + Z (b= 1An1 + 2 )= Z (Y T S TN B P

3<h<i 2<h<i-1
hodd heven

where /;>0. Thus we know that the A- and u-expansions of n are

n=2; ;+ , Zh A(lh—l’ih.l + A ) Fikiv 2
hodd

= Z (T — 1ty + ) =Dy F M q e -

2 shhsi— 1
Namely, we obtain v, (1) =v, .(n")+@@i+1, j+1). Thus we obtain the inequality (11)
by an argument similar to that in Case (II), using Definition-Lemma 5.7 (ii). ]

Next we shall prove Proposition 5.5. For this purpose, we introduce (i, j)e L, ,.

DEeFINITION-LEMMA 5.9. (1) For(i, j)el, , suchthat1<i<k—1and1<j<gq; we
define 0(, /)€ Ly, by 0(i, )= =345 56+ 2D 4 jo 10,
(i1) We have

(66, j)=7(00, j)=j(Pi- 1+ Qi-1),
a(0G, ) =100, j)=jPi-y,
6, j)< 66, j)=j .
(iii) Let n, i, j be positive integers such that m—(P,_,+ Q,_)<n<m—1,i<k—1,
J<gq;and i'(n)<i—1. Then v, ,(n)°0(, j)=j.

Proor. We can check (ii) and (iii) by direct computations. As for (iii), when i is
even, note that » has the A- and pu-expansions of the form

n=~7a ;+ Z h—1dna+ 2 )+ kv + Z Gn— 121+ DA+ 1.1
3<h=i-1 i+3<h<k—1
hodd hodd

= 2 (T = 1ty + )+ Loy + > Gh—1Bn1t Gr— 1Mk, 1 T B, -
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The details are left to the reader. ]
Finally, we prove Proposition 5.5, thereby completing the proof of Theorem 5.2.

PrOOF OF ProOPOSITION 5.5. We use induction on i'(n). If i'(n)=0, then n=m—1
and its A- and p-expansions are

m—1=20+ 2 @n-1dns+Ano)+ B

= 2 (Ghe s B0) F i 1y + Ui g, -
2<h=k-2
heven

From these we obtain v, ,(m—1)ov, (m—1)=)", <n<x9n Thus we are done in this case.
Let i be a positive integer and assume that the inequality (12) holds for all #’s such
that i'(n) <i. We shall show that (12) holds for n such that i'(n)=i under this induction
hypothesis.
Let n be an integer such that i'(n)=i. Putj:=j(n)and n':=n+j(P;_; + Q;,). Then
i(n")<i. In this situation we claim

(14) Vo) =Vam(n)— 00, j) .
PROOF OF (14). We only treat the case where i is odd, since the argument for even

iis the same. First, since m —(P;_; + Q;_ ;) <n'<m—1, n" has the A-expansion of the form

n'=4Aa ;+ Y (= 1An1 + A ) it Ai + Ao+ Y Gn- 141+ DeArr11 -
3<hei-2 i+2<h<k—1
hodd hodd

Thus we know that the A-expansion of » is

( Ayt > (Bh— A1+ An ) H i 1A+ Aigi— 1
3<h<i-2
hodd
+(@irr— Dhisan+ 2 Gh— 141+ Thi+ 1,1 (U<g;—1)
i+d<h<k
hodd
n= |
Mgt 2 G+ ) G+ DA,
3<h<i-2
hodd
+(@is2—Dhivag+ 2, Gn— 141+ T+ 1,1 U=q).
L i+d<h<k
hodd
Next, n' has the p-expansion of the form
n'= 3 (= 1tn,1 + )+l g0+ > G- 1Mn,1 G- 1Bt T Mgy s
2<h<i-1 i+3<h<k-2

heven heven
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where /;>¢,—1. We can easily check that /,=g; if j=g;, and hence we know that the
u-expansion of # is

n= Z (D= 1ty + )+ =g 11 + Z G- 18n1 + Gr— 1Hr,1 7+ By -

2<h<i-1 i+3<h<k—2
heven heven
We can check the equality (14) by the above equalities. [ ]

From the equality (14) and Definition-Lemma 5.9, we obtain
(15) Vam(1)°Vam(N)=Vom(') Ve mn')—J -

By the induction hypothesis, we have

(16) Vo) Va2 Y @u—j)= Y gy
i'(ny)<h<k i(n)+1<h<k
From (15) and (16) we obtain the inequality (12). ]
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