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Abstract. In this paper, we construct interior spike layer solutions for a class of
semilinear elliptic Neumann problems which arise as stationary solutions of Keller-Segel
model in chemotaxis and also as limiting equations for the Gierer-Meinhardt system in
biological pattern formation. We also classify the locations of single interior peaks. We
show exactly how the geometry of the domain affects the spike solutions.

1. Introduction. Consider the problem

{ ε2Δu-u + up = Q in Ω,

w>0 in Ω,

du/dv = 0 on dΩ,

where ΩaRN, ε>0, 1 <p<(N+2)/(N-2) when N>39 and 1 <p< oo when N= 1, 2 and
v is the outward normal vector to dΩ.

Equation (1.1) is known as the stationary equation of the Keller-Segel system in
chemotaxis. It can also be seen as the limiting stationary equation of the so-called
Gierer-Meinhardt system in biological pattern formation. (See [11] for more details.)

In the pioneering papers of [7], [9] and [10], Lin, Ni and Takagi established
the existence of least-energy solutions and showed that for ε sufficiently small the least-
energy solution has only one local maximum point Pε and PεedΩ. Moreover,
H(Pε)-^maxPedΩH(P) as ε->0, where H(P) is the mean curvature of dΩ at P. Ni and
Takagi [11] constructed boundary spike solutions for axially symmetric domains while
in [21], the author studied the general domain case. When p = (N+ 2)/(ΛΓ—2), similar
results for the boundary spike layer solutions have been obtained by [1], [2], [3], [8],
[18], etc.

In all the above papers, only boundary spike layer solutions are obtained and
studied. It remains to see whether or not interior spike layer solutions exist for the
problem (1.1). In this paper, we shall study this question and give an affirmative answer.

To state our results, we need to introduce some notation.
By the results of [5] and [6], we know that the solution of the problem
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ί
= 0 in 7?*,

w>0, > φ ) - 0 as |z |-*oo ,
is radial and unique. We denote this solution by w.

Let ueH\Ω) and

(1.3)

Put

(1.4)
P+l JRN

We assume that Ω is C 3 . Moreover for each PeΩ, we assume that the set

Bd{P dΩ)(P) n dΩ has only finitely many connected components.

For each PeΩ, we associate P with the set

there exists εk -* 0 such that

(1.5) ΛP=<; dμPeM(dΩ)

where M(3Ω) is the set of bounded measures on dΩ.

For any dμP(Ω)eΛP, it is easy to see that supp(dμP)adΩnBd{PeΩ)(P) when

When PedΩ, we can see that dμP = δP. When 3Ωn5 l f (p f δ β )(P) = {P 1 , . . . , Pz}, then

dμP(z) = Yj

ι

i=1ciδP.(z) with Ci>0 and Σ j = 1 cf = 1. (See Appendix D and Appendix E in

[20] for more details on this set.)

Our first result is the following:

THEOREM 1.1. Ifuεisa solution 0/(1.1) and limε^oε~iV/ε(wε) = /(w), then there are

two possibilities:

(i) uε has only two local maximum points Pi and Pε satisfying Pε e dΩ, Pε e dΩ and

\PΪ-PΪ\/ε-*aoasε->0.

(ii) uε has only one local maximum point PεeΩ and d(Pε, dΩ)/ε -> oo as ε -> 0, where

d(P, dΩ) denotes the distance from P to dΩ.

In the second case, if we assume that Ω is convex, we have Pε-+PeΩ and there exist

aeRn and dμPeΛP such that

(1.6) e<z-p>a\z-P)dμP(z) = 0.
JdΩ

Therefore the set Bd(PdΩ)(P) n dΩ contains at least two points.

Our second result is a converse of Theorem 1.1.

THEOREM 1.2. Assume that Ω is convex. Let PeΩ. Suppose there exist aeRn and
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dμP(z) e ΛP such that

(ii) the matrix (§dΩe<z~p'a}(zi-Pi)(zj-Pj)dμP{z)) is nonsingular.

Then we can construct a family of solutions uε to (1.1) such that ε~NIε(uε)->I(w) and (ii)

of Theorem 1.1 applies. Furthermore, P£ -> P as ε —• 0.

We suspect that the convexity condition on Ω in Theorems 1.1 and 1.2 is not
needed (this is only needed to study a linear problem, see Lemma 2.1).

A special example is when Ω is a ball centered at the origin. In this case, P = a = 0,
dμP(z) = cdz for some c>0 and it is easy to see that \dΩe<z~p'a>(zi — Pi)(zj — Pj)dμP(z) = cδφ

hence Theorem 1.2 applies.
A point PeΩ which satisfies the conditions (i) and (ii) of Theorem 1.2 is called a

nondegenerate peak point. A geometric characterization of nondegenerate peak points
is given in Section 5. In particular, P is a nondegenerate peak point if and only if

Peint(co(supp(φF))),

where int (co(supp(dμP))) is the interior of the convex hull of the support of dμP.
Furthermore for each nondegenerate peak point P there is a unique aeRN satisfying
the conditions (i) and (ii).

If Ω is convex, we can say more. The following Corollary will be proved in Section 5.

COROLLARY 1.3. (1) If Ω is convex and PeΩ is a point satisfying condition (1.6),

then d{P, dΩ) = maxQGΩd(Q, dΩ).

(2) If Ω is convex, then there is at most one nondegenerate peak point.

We note that there is a remarkable connection between the interior spike solutions
of (1.1) and the single-peaked solutions of the corresponding Dirichlet problem

{ ε2Au-u + up = 0 in Ω,

w>0 in Ω,

u = Q on dΩ.

In [12], Ni and the author studied the problem (1.7) and showed that for ε sufficiently
small the problem (1.7) has a least-energy solution which possesses a single spike-layer
with its unique peak in the interior of Ω. Moreover this unique peak must be located
near the "most centered" part of Ω, .i.e. where the distance function d(P,dΩ), PeΩ
assumes its maximum. Later in [20], the author studied the single-peaked solutions of
(1.7) and showed that the limit of the maximum points of single-peaked solutions satisfy
the same condition (1.6).

We remark that other concentration phenomena are found in [12], [13], [14],
[15], [16], [17], [19], [21], [22], etc.

Our basic idea is similar to that of [20]. Namely, we decompose our solution into
two parts: one part carries the peak information, the other part is very small. The crucial
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observations are Lemmas 2.1 and 2.3. We shall frequently use the results of [20].

The organization of our paper is as follows. In Section 2, we introduce the projection

of w in Hι(Ω) and set up the technical framework. We then reduce the problem to a

finite dimensional problem and then solve it in Section 3. Section 4 is devoted to the

proofs of Theorems 1.1 and 1.2. We study some geometric meanings of the conditions

(i) and (ii) in Theorem 1.2 and give in Section 5 examples of convex domains for

which there exists a nondegenerate peak point. We also prove Corollary 1.3 in Section

5. In Appendix A, a decomposition lemma is proved. Appendix B is devoted to the

study of the linearization problem. We include all the estimates in Appendix C.

In this paper we denote various generic constants by C. The notation O(A\ o(A)

means that | O(A) \ < C\ A |, | o(A) |/| A | -• 0 as | A \ -+ 0, respectively.

ACKNOWLEDGEMENT. This research was supported by a Direct Grant of the

Chinese University of Hong Kong. The author would like to thank Professor E. N.

Dancer and E. Noussair for helpful discussions. He also thanks the referee for carefully

reading the manuscript and many insightful suggestions.

2. Preliminaries. In this section, we introduce the projection of w in Hγ(Ω) and

show the connection between the problems (1.1) and (1.2). Finally, we set up a technical

framework for the problem (1.1).

Let PeΩ. Let w be the unique solution of (1.2). For a domain U in RN, we set

P"w to be the unique solution of

(Auu + w = 0 in U,

\du/dv = 0 on U.

Then by the maximum principle, PyW>0.

Let ΩεP = {y \ εy + P e Ω} and PQE PW be the projection of w on ΩεP.

Let φ^p = w — PnEPw. To analyze PQEP

WI we need to introduce another notation.

If we change the boundary condition of (2.1) to the Dirichlet condition, then we get

P£ ε P w and φ^,P = w-P^εPw (see [12] and [20] for details).
E> We set V^P{y) = φlp{P + εy)lφ^p(P). Then 0 < VE

N

P(y) in ΩεP and it satisfies

Au-u = 0 in Ω&P, u{0)=\ .

The following key result connects φE

D

P and φεP.

LEMMA 2.1. Assume that Ω is convex. Let ao>0. Then there exist v0, ε o > 0 such

that for ε < ε 0 , d(P, dΩ)>a0, we have

(2.2) - ( 1 + v o ε ) ^ P < ^ P < - ( 1 -v o ε)φ° P .

PROOF. Assume that Ω is convex. We just need to show that

(2.3) ( l -
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The proof of the other inequality is the same.

To this end, we note that on dΩ, w'({x-P)/ε)/w({x-P)/ε)= - 1 + O(ε). Let

Ψ?AX)= ~ε^°%ψf,p % t r i e results of [20, Section 3], we have that

dv \χ-P\

Hence on dΩ, we have

dv ε dv

\x-P\

dv

since (x — P, v>/|x — P | > 0 for xeδΩ (Ω is convex). The proof of Lemma 2.1 is

completed. •

By Lemma 2.1, we have

so we can now use the results of [12] and [20] for the Dirichlet case to treat the

Neumann case.

Let ao>0 be a fixed positive number (to be determined later). As in [20], for each

a > 0, we define

(2.4) Fao

(2.5) Va = {(oι,P)eRxΩ\\(x-\\<aid(P,dΩ)>a0} .

For each u, veH1(Ω), we define

We denote <w, U)EΩ as ||w||^Ω. Sometimes we omit the index ε, Ω when there is no

confusion.

Setd(u,FJ = mfveFJu-υ\\ε,Ω.
The following decomposition lemma will be proved in Appendix A.

LEMMA 2.2. IfueHι(Ω) such that d(u, Fao) is small enough and a is small, then the

problem
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minimize \\u — OLPQE PW\\2

εΩ

with respect to (α, P) has a unique solution in the open set Va.

Next we state an important lemma about the location of the interior maximum

points of the solutions of (1.1).

LEMMA 2.3. Let uε be a solution 0/(1.1) such that limε_0ε~NIε(ue)->I(w). Then

there is an a0 such that ifuε has only one local maximum point Pε φ dΩ then d(Pε, dΩ) > a0.

PROOF. Suppose that uε satisfies the conditions of Lemma 2.3. Then an argument

similar to that in the proof of Theorem 2.1 in [9] show that pε:=d(Pε, dΩ)/ε^>oo.

Suppose now that dε: = d{Pε, dΩ) -> 0 and so Pε-+Poe dΩ.

Let δ > 0 be a fixed small number. Set

(2.6)
Jao

d1Ω = Bδ{P0)ndΩ, 32Ω = dΩ\dίΩ.

Let K(r) be the Green function of — Δ + l on Rn. Since Ω is convex,

dK/dv((x-Pε)/ε)<0 on dΩ. Hence

(2.7) uε>Cκ(^Λ onΩ\BRε(Pε)

if uε> CK((x — Pε)/s) on dBRε{Pε) for a positive number R. Therefore

(2.8) uε>Ce~pε on 5 xί2.

Next we shall obtain an upper bound for uε on δ2Ω. To this end, fix a point P1eΩ

so that \P1 — P0\ = δ1 where δ1 = δβ. Let φε

D

Pl be the unique solution of

(2.9) εΔz;-|Vι;|2 + l = 0 , v = \x-Pί\ on dΩ.

By the result of Section 3 in [20], ψ£Pί(x) -> inf z e e Ω(| z-P1\ + \z—x\) uniformly as ε -> 0

and dιl/ε

D

PJdv= -{x-Pu v}/\x-p[\ + O(ε) for xedΩ.

Let ι;ε = exp(-(-2^1+^ε

D

P l)/ε). Since Ω is convex, <<x-Pί,vy/\x-P1\>c>0.

Hence

^ Q n d Ω

dv δv

if \Pε — Pι\<2δ1. Therefore by the comparison principle, we have

(2.10) -φ"pE<vε.

So

l iψ^-lδJ/ε) on dΩ.
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On the other hand, we note that vε{y) = uε(εy + Pε) satisfies

Δvε- \ vε>0 in Ωe,pΛ\BRl(0),

where Rt>0 is a sufficiently large number depending on δι>0. Observe that

^ δ λ ) ) satisfies

It is easy to see by comparison that uε(x) < CPQE P w(y/(l + δj) for ε small. Hence we have

(2.11) uε<Ce-2δ/ε onΩ\Bδ(P0).

By elliptic regularity theory (to see this, we look at a tubular neighborhood of d2Ω and

then apply interior //-estimates in that neighborhood), we have

(2.12) \ue\, \Vuε\<Ce-δίε on δ2Ω.

We can now finish the proof of our lemma as follows. Let v0 be the outward unit

normal at Po. Hence | v01 = 1. By the Pohozaev identity, we have for any yeRN

JdΩ

Therefore we have

(2.14)
p+l J

We write

=vo/i+/2+/3,

where I2 and / 3 are defined by the last equality.

For //, by (2.8) we have
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For I2 we have

\h\<.δl}

For I3, by (2.11) we have

|/31

Thus

a contradiction. •

By Lemma 2.2, there exists a diffeomorphism between a neighborhood of the

possible single interior peak solutions of (1.1) we are interested in and the open set

(α, P, v)eR+ xΩxH\Ω\ | α - 1 1 < η -,'

d{P,dΩ)>a09ΌeEBtP,\\v\\etΩ<η

with η > 0 being a suitable constant and

>e,Ω= (v, P f l ί i P w \ = 0 , 1 = 1 , . . . , .

Let us now define a functional

AΓε: Mη -* R , m = (α, P, ι;) i—• ε~NIS(OCPQE pw + f ) .

F r o m Lemma 2.2 we have:

PROPOSITION 2.4. m = ((x,P,v)eMη is a critical point of Kε if and only if u =

°Ωε pW + v is a critical point ofKε, I e. if and only if there exists (A,B)eRxRN such that

= 0 ,(2.15)

(2.16)

(2.17)

(EJ

(E,)

(EΓ)

doί

ε,Ω

ΛP2

3. Reduction to a finite dimensional problem. In this section, we analyze the

equations (Eα), (EP) and (Ev). We first analyze (Ev) and solve v. Then we take care of

(EJ. Finally we solve (EP). Since it is very similar to Section 4 of [20], we omit most

of the details.
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We first deal with the i -part of u, in order to show that it is negligible with respect

to the concentration phenomenon.

PROPOSITION 3.1. There exist ηo>0, εo>0 such that for ε < ε 0 , η<η0 there exists

a smooth map which to any (ε, α, P) with (α, P, 0)eMηo associates ϋeEεP, \\v\\εtΩ<η such

that (Ev) is satisfied for some (A, Bu . . . , BN)eRx RN. Such a v is unique, minimizes

Kε(oc, P, v) with respect to v in {veEεP\ IMIε>Ω<*/} and we have the estimate

(3.1) ^ = 0 on dΩΛ\v\\ε,Ω<O{{φZP{Pψ + σ*2),
ov

where σ = min(p — 1, 1).

For the proof, see Appendix B.

Once v is obtained, we can estimate A and B. Indeed, we have

dKε

and

RN

..o

P

dv / BtΩ doc

dKε dP»εjPw\ _ 1 dKε

dv ' dPt / e t f l α dPt

On the other hand, we have by Appendix C

(3.2)
)RN

1

ε

Combining all these, by Appendix C we have
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We can now estimate the equation (EP).

5 ^

NU
ε,Ω

h σ ) / 2 ( | α - ]

We have by the same arguments as in [20, Lemma 4.2].

LEMMA 3.2. Supposed d(P, dΩ)>ao>0. Let v = v and (A, Bu . . . , BN) be defined

in Proposition 3.1 for ε<ε 0 . Then the N equations of(ΈP) are equivalent to

<3 4) 'L""*w
where VP. is a smooth function such that

(3.5) VPί = 0(\oc-l\q

4. Proofs of Theorems 1.1 and 1.2. We can now prove Theorems 1.1 and 1.2.

Let uε be a solution of (1.1) such that limε^oε~iV7ε(wε) = /(w). Combining the

arguments of Section 3 in [9] and Section 3 in [12], we see that uε can have at most

two local maximum points and there are two possibilities:

(i) either uε has two local maximum points Pε and Pε, then | Pε—Pε |/ε -> oo and

Pε\ PfedΩ by the results of Section 3 in [9],

(ii) or uε has only one local maximum points Pε and d{Pε, dΩ)/ε -• oo by the result

of Section 3 in [12].

Suppose (ii) occurs. Then by Lemma 2.3, d(Pε, dΩ)>a0. It is easy to see that

\\uε-pΩε,Pε

w\\ε,Ω-+Q as ε->0. Hence d(uε9 Fao)-+0 as ε->0. By Lemma 2.2,

(4.1) W e =

and by Proposition 2.3, (αε, Pε, v) is a critical point of Kε, i.e. satisfies (EJ, (EP) and (Ev).

So ϋ = i;(ε,αε,Pε).

By the equation (Eα), we have

(4.2) * E = l + O((p?Pe(PE)).

Substituting this into the equation (EP), by the same argument as in [20, Lemma
5.1], we have:

LEMMA 4.1. Suppose that Pε^>P0. Then we have
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(4.3) PoφdΩ;\Pc-Po\<Cε.

Suppose now that (Pε—Po)/ε->boeRN. Then we have

(4-4) \z-Pt\ = \z-P0\

Letting a = bo/d(Po, 3Ω), using Lemma 3.2 and by the calculations of Appendix A in

[20], we conclude the proof of Theorem 1.1.

Next we prove Theorem 1.2.

Let POGΩ satisfy (i) $Ωe<z-p°<a>(zi-POJ)dμPo(z) = 0, i = 1, . . . , TV and (ii) the matrix

(Le<z~Po'a>(zi-poMzj-P0JWP0{Z)) is nonsingular. We set

(4.5) oc=\+β,

(4.6) P = Po + ε(ξ-ad(Pθ9dΩ))9

where βeR, ξeRN are to be determined. With these changes of variables, the system

(E) turns out to be equivalent to (with v = v(ε, α, P)):

(4.7) β=Vfaβ9ξ)9

(4.8) Li(ε9ξ)=VPi(ε9β9ξ)9 i=l9...9N9

where for / = 1 , . . . , N,

(4.9, W | .>ί .

and Vβ, Vi are smooth functions satisfying

(4.10)

(4.H) VPi

Then we have:

LEMMA 4.2. Lt can be written as

(4.12) L

where Aε is a matrix such that Aε->A=y($Ωe<Σ~Po'a>ε>Ω(zi-Poi)(zj-POJ)dμPo(z)) asε^O

for some positive constant γ>0 and L is a smooth function satisfying

(4.13) L = 0(\ξ\2 + \β\+(φ»Po(P0)T).

Thus the system (4.7) and (4.8) may also be written as

ϊβ=V(ε9β9ξ)9
(4.14)

Ueξ=W(ε9β9ξ)9

where F, W are smooth functions satisfying
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(4.15) V(t

(4.16) W(ε,β,ξ) =

Since the matrix A is invertible, we choose ( — r,r)x Br(0) where r is so small that

(V9 A~ι W) is a continuous map from (-r , r) x i?r(0) to itself. By Brouwer's fixed point

theorem, there exists (βε9 ζε) such that βε = 0(φε

N

tPo(P0)l ξε = O(ε\ that is (E) is satisfied.

Therefore we have a critical point UE = OCEPQEP w + v(ε, αε, Pε) of/ε.

By construction, the corresponding uε e H\Ω) is a critical point of Jε, i.e. uε satisfies

(4.17) ε2Auε-uε + \uε\
p~ίuε = 0 in Ω, — = 0 on dΩ.

Multiplying this equation with wε~ = max(0, — uε) and integrating the result over Ω, we get

I«.Ί'+1

By Sobolev's imbedding theorem, we have

α \2/(p+l)

J":rΊ £C

(4.19) implies that either u~ =0 or $ΩεP\u~ \p+1>C>0. Since by construction

j Ω ε P l u~ | p + 1 ->>0, we have wε~ = 0 for ε sufficiently small. By the maximum principle,

uε>0. Moreover since IE(uε)/εN->/(w), we know that wε is a single-peaked solution. By

the results of [12], uε has a unique local maximum (hence global) point Pε. It is not

difficult to see that Pε-Pε = o{\). Hence Pε->P0.

5. Analysis of the Conditions (i) and (ii) in Theorem 1.2 and proof of Corollary

1.3. In this section, we discuss the geometric meanings of the condition (1.6) in Theorem

1.1 and the conditions (i) and (ii) in Theorem 1.2. We first prove the following:

THEOREM 5.1. P is a nondegenerate peak point if and only if

P e int(co(supp(dμP)))

where int(co(supp(ί/μP))) is the interior of the convex hull of the support ofdμP. Furthermore

for each nondegenerate peak point P there is a unique aeRN satisfying the conditions (i)

and (ii).

PROOF. The following proof is essentially due to an observation of Dancer and
Noussair [4].

Let PeΩ be fixed. Without loss of generality we may assume that P = 0. We shall

write dμ0 as dμ and K=supp(dμ). Notice that dμ is a positive measure with compact

support.

We note that the function
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F(a)= e<x>a>dμ(x) for aeRN

JK

is real analytic and for all a in RN,

VF{a)= I e<x>a>xdμ(x)
JK

and

\ jdμ(x).HF(a)u= e^XiX Cj i j

JK

Then 0 is a nondegenerate peak point means that VF(a) = 0 and that HF(a) is nonsingular

for some aeRN.

If aeRN and beSN~\ then

(HF(a)b,b}= ί e<x>a>(b,x}2dμ(x)>0
JK

and the equality holds if and only if

We also notice that if Kab1 for some beSN~\ then F(a) = F{a + tb) for all aeRN and

teR and HF is singular for all aeRN. Conversely if there is no beS1*'1 for which

Kab1, then

(HF(a)b9b}>0

for all beS"'1 and hence HF(a) is nonsingular. It is easy to see that the following

statements are equivalent:

( i ) Kab1 for some beSN~1;

(ii) cofflab1 for some beS1*'1;

(iii) co(Â ) has trivial interior.

Henceforth, we assume that co(̂ Γ) has nontrivial interior. We show next that the

conditions:

(a) F attains its minimum at some aeRN;

(b) Kφ{xeRN;(x,b}>0} for allfteS*- 1;

(c) 0 e int(co(A )̂)

are equivalent.

Suppose (b) does not hold. Then there is a beSN~x such that <x, b}>0 for all

C Then for any aeRN,

— F(a + tb)\t = 0= e<x>a\x,b}dμ(x)>0,
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since we have excluded the possibility that Kczb1. Therefore WF(a)φO for all aeRN.

Conversely suppose (b) holds. Then by a simple compactness argument we can show

that for some δ and η in R + , μ ({xeK: <x, b}>δ})>η for all beSN~K It then follows

that

F(tb)> e<x>tbydμ(x)>ηetδ

J{xeK;(x,b>>ό}

for all teR + and beS1*'1. It follows that Fhas an attained minimum in RN, i.e., there

exists a such that VF(a) = 0. The equivalence of (b) and (c) is obvious.

Finally, we notice that F is a convex function which implies the uniqueness of a.

This completes the proof of Theorem 5.1. •

The following Corollary follows easily from Theorem 5.1.

COROLLARY 5.2. Let P be a nondegenerate peak point. Then supp(φP) contains

at least three points.

We are now ready to prove Corollary 1.3 in Section 1.

PROOF OF COROLLARY 1.3. We always assume that Ω is convex. Hence for any

two points QίeΩ, β 2 e Ω w e have tQ1+(l-t)Q2eΩ for 0 < / < l .

(1) Let P e Ω b e a point satisfying condition (1.6). Then Bd{PdΩ)(P)ndΩ contains

at least two points Qί9 Q2. We claim that d(P, dΩ) = ma.xQeΩd(Q, dΩ). Suppose not. Let

P' be a point attaining the maximum of the distance function. Consider the convex

hull of Bd{PdΩ){P)\jBd{P.dΩ)(P'). Let L be the hyperplane passing through P and

perpendicular to the line ~PP'. Since d{P,dΩ)φd(P', dΩ\ the set Bd{PdΩ)(P)r\dΩ must

lie strictly on one side of L, which is impossible by condition (1.6).

(2) Let PeΩ be an nondegenerate peak point. Then supp{dμP)cBd(PdΩ)ndΩ

contains at least three points Qu Q2, Q3. By (1), d{P, dΩ) = maxQeΩd(Q, dΩ). Let P'ΦP

be another nondegenerate peak point. Then d(P, dΩ) = d(P\ dΩ). Consider again the

convex hull of Bd{PδΩ)(P)\jBd{P,dΩ)(Pr). Let L be the hyperplane passing through P and

perpendicular to the line PP>f. Since Ω is convex, the set Bd(P δΩ)(P) n dΩ must lie on one

side of L (including L). Condition (1.6) implies that Bd{PδΩ)(P)ndΩczL and hence

the interior of the convex hull of dμP is empty since L is a submanifold, a contradic-

tion. •

Finally we construct a convex domain Ω and a point PoeΩ which satisfies the

conditions in Theorem 1.2.

Indeed, we may assume that N=2. In Figure 1, Bd{PθtdΩ)(P0)ndΩ = {Pu P2, P3}.

Hence dμPo = c1δPι + c2δ2 + c3δ3. Since N=2, the three vectors P0-Pι, P0-P2, Po-P3

are linearly dependent. Therefore int(co(supp(<^uPo)))^0. By Theorem 5.1, Po is a

nondegenerate peak point.
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FIGURE. A convex domain.

6. Appendix A. Decomposition lemma. In this appendix, we shall prove the

decomposition lemma (Lemma 2.2) in Section 3. We start with a lemma.

LEMMA 6.1. Let (εk) be a sequence with εk>0,

α ke(l/2, 2) be such that

(6.1)

Then we have

(6.2)

Urn

\\m\ak-ak\ = 0,

(6.3) lim
fc^oo

Λ-Λ = 0.

PROOF. We have

^ O . Let Pk, PkGΩao, αk,

Pk-Pk

Since both Pk,PkeΩao, we have \\Plk,Pw\\εk,Ω-+\\w\\HHRN) and | | < k Λ w | | ε k , β - ^

| | H I ( Λ N ) . Hence |α k — α k | = o(l),

On the other hand, suppose (6.3) is not satisfied, we have that by passing to a

subsequense, \Pk — Pk \/εk -> a with 0 < a < oo.
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If 0<a<oo, then \\PlkjPw-Pl^w(' -(pk-Pk)/ek)\\^Ω->\\w-w(. -a)\\HHRN)Φ0.
I f a = o o , t h e n | | P £ k P k v v - P ^ ^

we reach a contradiction to (6.1). •

We now prove Lemma 2.2. We will follow closely Appendix B of [20]. We argue
by contradiction. Suppose, there exist εk-+0, ηk-+0 such that

inf \\uk-v\\Ek,Ω<ηk,
FveFa

and (αk, Pk\ (άfe, Pk)eFao, such that if vk = uk-(xkP^pw, vk = uk-otkP^kw,

εk,Ω

εk,Ω

(6-6) (3k,PL.pw) =0'

(6.7) /^-^L-Pg^wJ =0.

L e t a k = (Pk — Pk)/εk, μ k = cck — α k . T h e n b y L e m m a 6 . 1 , \ak\ = o(l), \ μ k \ = t

We denote Cas various constants which do not depend on k. We first observe that

(6.8) I wp(y)-wp(y-ak) \<C\ak \wp(y).

By the maximum principle

(6-9) I Pn^w-Pn^pw \<Qak \w(y).

The rest of the proof is exactly the same as those of Appendix B in [20]. We omit
the details. D

7. Appendix B. Analysis of (Ev). In this appendix, we prove Proposition 3.1.

PROOF. We first expand KE(OL, P, V) at (α, P, 0) with respect to v, and we have

(7.1) Kfa P, υ) = Xε(α, P, 0) + / α , ε » + β β t β » + Λ β t β » ,

where
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v2-p
Ω JΩ

and Rε(lP satisfies

(7.2) Λβ»=o(iι^

(7.3) KAv)

(7.4) Kp(v) = O(\\v\\?:Ω

niUp-l))

Since fε^P(v) is a continuous linear functional on EεP equipped with the scalar product

< ' > >ε,Ω, we may write

(7.5) / ε , α » = <^ε,α,p^X,Ω for some FεaPeE^P.

Since δ ε,α,P is a continuous quadratic form on Eε P, there exists a continuous and

symmetric operator LεaP e L(EεP) (the space of bounded linear operators on iΓε P) such

that

(7.6) βe .«» = <Aiβ.P^ϋ>e.β

Moreover, we have by the same argument as in [19, Lemma 4.2], there exists p > 0

such that for ε and η small enough, we have

(7.7) α , α > ) > p l M L 2

Ω , forall ι;€i?efp.

Therefore LεoLP is a coercive operator whose modulus of coercivity is bounded

from below independently of ε, P.

The derivative of Kε with respect to v on EεP may be written as

Using the implicit function theorem, we derive the existence of a C 2 map T which to

each (ε, α, P) associates ι ; ε α P e ^ p such that

and

(7.8) llue,«iplle.fl

Moreover, since ^ ε α < P minimizes Kε over £ £ f P, Svε^P/dv = 0 on

We now claim that

ε,Ω 5(7.9) ll/ε,α»llε,Ω

which by (7.5) and (7.8), proves Proposition 3.1.

Indeed, for v e EεP, we have
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We now calculate,

JΩ

Thus (7.9) is established. Π

8. Appendix C. Various estimates. In this appendix, we provide all the estimates

we stated before. The proofs are similar to those in [20, Appendix C]. We omit the

details.

( C 1 )
)RN

dPΆ *•>
ίΓ^ Λ\ I /...D /nJV ...\Ό\ "ε .

™ fvVe
\y\

(C.3) ^ ^

(C4) ( i § ^ , % ^ \ =JL

(C5)

(C.6)

(C.7) ί I PlPw + ϋ\»- \P»εPw + v ) P l P w =ίw"+i + O(O(φ»P(P)))..

N _ dPlPw

ipN
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(C9) _^L
doc JRN

(CIO) e^= -p
dp
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