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Abstract. In this note we prove that the Hausdorff dimension of a cut locus on
a smooth Riemannian manifold is an integer.

It is very difficult to investigate the structure of a cut locus (cf. [1] for the definition)
on a complete Riemannian manifold. The difficulty lies in the non-differentiability of
a cut locus. This means that one cannot describe the structure of a cut locus in a smooth
category. For example, it is not always triangulable (cf. [3]). In this note, the structure
of a cut locus will be described in terms of the Hausdorff dimension (cf. [2], [9] for
the definition of the Hausdorff dimension), that is, the aim of this note is to determine
the Hausdorff dimension of the cut locus of a point on a complete, connected
C*-Riemannian manifold. The cut locus on a 2-dimensional Riemannian manifold has
been investigated in detail by many reseachers. Actually it is already known that the
Hausdorff dimension of a cut locus on a smooth 2-dimensional Riemannian manifold
is 0 or 1 (cf. [4], [5]). On the other hand, the Hausdorff dimension of a cut locus on
a Riemannian manifold is not always an integer, if the order of differentiability of the
Riemannian metric is low. In fact, for each integer k>2, the first author, constructed
in [6] an n(k)-dimensional sphere S"® with a C*-Riemannian metric which admits a
cut locus whose Hausdorff dimension is greater than 1, and less than 2 (cf. [5]). In this
note we prove that the Hausdorff dimension of a cut locus on a C*-Riemannian manifold
is an integer. More precisely, we prove the following theorem.

MAIN THEOREM. Let M be a complete, connected smooth Riemannian manifold of
dimension n, and C, the cut locus of a point p on M. Then for each cut point q of p, there
exists a postive number §, and a non-negative integer k <n—1 such that for any positive
0 <6y, the Hausdorff dimension of B(q,d)nC, is k. Here B(q, d) denotes the open ball
centered at q with radius 0.

ReEMARK. The topological dimension is not greater than the Hausdorff dimen-
sion for a metric space. Since C, n B(g, 6) contains a submanifold with the same dimension
as the Hausdorff dimension of C,n B(q, 4), both dimensions coincide.
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For some basic tools in Riemannian geometry refer to [1], [8].

Let M be a complete, connected, smooth (C*-) Riemannian manifold of dimension
n and let S,M denote the unit sphere of all unit tangent vectors to M at p. For each
veS,M, let p(v) denote the distance from p to the cut point of it along a unit speed
geodesic 7y, : [0, o0) > M emanating from p with y,(0)=v. If there is no cut point of p
along y,, define p(v)=co. Then it is well-known that the function p : S,M — [0, 0] is
continuous. The cut locus of p will be denoted by C,. For each ve S, M, let A(v) denote
the distance function on the tangent space 7,M of M at p between the zero vector to
its first tangent conjugate point along y,. If there is no conjugate point of p along 7y,
define A(v) = oo. It follows from the proof of the Morse index theorem (cf. [8]) that the
function A: S,M — [0, co] is continuous. Note also that p</4 on §,M. We define two
maps e; and e, on {veS,M|A(v)< oo}, {veS,M|p(v)< oo} respectively by

€;(v) 1 =exp,(Av)r) , e,(v):=exp,(p(v)v),

where exp, denotes the exponential map on 7,M. If a cut point g of p is conjugate to p
along some minimal geodesic joining p to g, is called a conjugate cut point. Otherwise
q is called a non-conjugate cut point. If a cut point g of p is non-conjugate and if there
exist exactly two minimal geodesics joining p to ¢, then the cut point g will be called a
normal cut point. It follows from the implicit function theorem that the set of all normal
cut points forms a smooth hypersurface of M. For each ve S,M with A(v)< + o0, let
N(v) denote the kernel of the map (dexp,);.), and denote its dimension by v(v), which
is called the conjugate multiplicity of the conjugate point e,(v) along y,. It follows from
a property of Jacobi fields that N(v) can be identified with a linear subspace of the
tangent space of S,M at v. It follows from the implicit function theorem that if the
function v is constant on an open sebset U in S,M, then 4 is smooth on U.

LemMA 1. Suppose that v is constant on an open subset Uin S ,M. If A(vy) = p(vy) < 00
at a point vy in U, then any vector of N(v,) is mapped to the zero vector by the differential
de; of e;.

Proor. Let w be any element of N(v,). Choose a smooth curve v: (=1, 1)—S,M
with v(0)=v,, v'(0)=w such that v'(t)e N(v(t)) for each te(—1, 1). Suppose that de,(w)
is non-zero. Since we get

de;(v'(1)) =, (A))A°0)' (1) ,

we may assume that (400v)’(z) is negative on [0, 6] for some positive é <1. The length
[(8) of the subarc e, v|[0, ] is

(1 1(8) = Alvo) — Av(9)) .

By the triangle inequality we have

2 1(6)+ Av(0)) = d(p, e,(vo)) = p(vy) = A(vo) -
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The equation (1) implies that the equality holds in (2). This is impossible, because
Mv()) = p(v(5)). Therefore de,(N(vy))=0. O

If Q, denotes the set of all conjugate cut points, then we have:
Lemma 2. The Hausdorff dimension of Q, is not greater than n—2.

Proor. It follows from the Morse-Sard-Federer theorem [9] that the Hausdorff
dimension of the set

{exp,(w)| we T, M, rank(dexp,), <n—2}
is not greater than n—2. Thus the Hausdorff dimension of the set
{e,(V)e Q,|veS,M, v(v)=2}

is not greater than n—2. Thus it sufficies to prove that the Hausdorff dimension of the
set A, :={e,(v)e Q,|v(v)=1} is not greater than n—2. By the proof of the Morse index
theorem (cf. [8]), the function v is locally constant around a neighborhood of each
veA,. Thus 4 is smooth around each ve S,M with ve 4,. It follows from Lemma I
that 4, is a subset of

{exv)|ve S, M, v(v)=1, dimde,(T,S,M)<n—2} .

Therefore by the Morse-Sard-Federer theorem, the Hausdorff dimension of A4, is not
greater than n—2. O

If L, denotes the set of non-conjugate cut points which are not normal, then we
have:

Lemma 3. The Hausdorff dimension of L, is not greater than n—2. Thus the
Hausdorff dimension of the cut locus of p is not greater than n—1.

PrOOF. Let g be any element of L,. Let v, ..., v, be all the elements of e, Y.
It follows from the implicit function theorem that for each pair of two vectors v;, v;
(i<j) in e, '(g) there exist hypersurfaces W, W, H,; containing p(v;)Jv, p(v;)v;, g
respectively such that for each xe H,; there exist vectors w;e W, w;e W; of the same
length with exp,w;=exp,w;=x (cf. [7]). Let v;, v;, v, (i<j<k) be any distinct three
vectorsine, !(g). Since the tangent spaces of H;, jand H;, at g are distinct, we may assume
that the intersection H,;,:=H;;nH;, forms an (n—2)-dimensional submanifold
containing ¢, by taking smaller hypersurfaces H,; H;,. If we set H,= Ui<j<kH,~,j‘k,
then any cut point of L, sufficiently close to ¢ is an element of H,. Moreover, the
Hausdorff dimension of H, is n—2. Therefore for each point ge L, we can choose a
subset H, (3¢q) of Hausdorff dimension n—2 such that L,n H, is relatively open in L,
Since M satisfies the second countability axiom, L, is covered by at most a countable
number of H,, ;€ L,. Thus implies that the Hausdorff dimension of L, is at most n—2.
As was observed above, C,\(L,uQ,) is a countable disjoint union of smooth
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hypersurfaces of M. In particular its Hausdorff dimension is # — 1. Thus the latter claim
is clear from Lemma 2. O

LemMa 4. If voe S,M satisfies p(vy) < Mv,), then there exists a sequence of {v;}
of elements in S,M convergent to v, such that e, (v;) is a normal cut point for each j.

Proor. Since the functions p, A are continuous, there exists a relatively open
neighborhood U around v, in S,M on which p <A. Since dexp, has maximal rank at
each ve U, we have

dimy(e,|y) " (Q,u L,)=dimy(Q,uL,)
where dimy denotes the Hausdorff dimension. Thus by Lemmas 2 and 3,
3) dimy(e,|y) " (Q,uL,)<n—2.

This inequalty implies that the set U\e, '(Q,UL,) is open and dense in U, since
dimy U=n—1. Therefore if we get a sequence {v;} of points in U\e, (Q,UL,)
convergent to vy, then the sequence {e,(v;)} of normal cut points converges to g. [

REMARK. The inequality (3) is a generalization of Lemmas 2.1 and 3.1 in [10].

PrOOF OF THE MAIN THEOREM. Let g be any cut point of p. Suppose that there
exists a sequence {v;} of tangent vectors in S,M with lim;,, e,(v;)=¢ such that
p(v;) < A(v;) for each j. By Lemma 4 for any positive &

dimy B(g,e)n C,=>n—1.

On the other hand, dimy C,<n—1. Thus dimy(B(q, e)n C,)=n—1 for any positive e.
Suppose that the cut point ¢ does not admit a sequence {v;} as above. Then there exists
a neighborhood W around e, '(g) in S,M such that p(w)=A(w) for any we W. For each
vee, '(g), we define a positive integer k(v) by
k(v):=lim inf v(w) .

Thus we may take a sufficiently small neighborhood U(v) (= W) around v in S,M such
that min v, =k(v). Since e, '(g) is compact, we may choose finitely many neighborhoods
U(v,), ..., Uw) from U(v), vee, '(g), which cover e, '(g). Set U;:=U(v,), k;:=k(v;) for
simplicity. Without loss of generality we may assume that

ky=min{k;|1<i<l}.
For each i, let
I’Vi3=("|u,-)_l(k1)-

If W, is not empty, i.e. k; =k;, then it follows from the Morse index theorem that W
is an open subset of U;. Therefore A is smooth on |J ﬁ= , W Since A=pon |J §= JUicW,
it follows from the Morse-Sard-Federer theorem and Lemma 1 that



DIMENSION OF A CUT LOCUS 575

dimye (0 Wl><n (ki +1), dimHep< U U\W) n—k,+1).

i=1

Therefore we get

i=1

4) dimHep< U U)<n (ky+1).

Let J, be a sufficiently small positive number satisfying

C,nB(g, 9, <UU>

i=1

By (4) we have
(5) dimy C,n B(q, dop)<n—(k,+1).

Let 6€(0, 4] be fixed. Since v, is an element of the closure of W,, there exists an
open subset W< W, such that e,,(W)CCpnB(q, 0). By Theorem 3.3 in [11], e,( W)=
e,(W) is a submanifold of dimension n—(k, + 1). Thus

(6) dimy; C,n B(g, 8)=n—(k,+1)

foranyd €(0, d,]. Combining (5) and (6), we conclude the proof of the main theorem.
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