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Abstract. By using the alternative method and the topological degree theory, we
obtain some sufficient conditions for the existence of 2z-periodic solutions of some
semilinear equations at resonance where the kernel of the linear part has an arbitrary
dimension

1. Introduction. The existence problem of periodic solutions for nonlinear
systems at resonance has been extensively investigated in the literature and many
existence results have been obtained for nonlinear systems of first order differential
equations at resonance that involve a small parameter (see Hale [1], Nagle [2] and the
references therein).

Many existence results have also been obtained for some nonlinear systems whose
nonlinearities satisfy the so-called Landesman-Lazer conditions. Several of these results
are mentioned in [3].

In the special case where the linear part has a two-dimensional kernel, some results
have also been obtained in [4]-[9]. However, considerably less is known for the case
where the linear part has dimension greater than two. In this direction, an example
with a three-dimensional kernel and a fourth order ordinary differential equation are
considered in [8] and [10] respectively. In a recent paper [11], the authors have extended
some results in [8] to semilinear equations with a three-dimensional or four-dimensional
kernel. By using some fixed point theorem, [12] studied the existence of periodic solutions
of the n-dimensional Duffing system at resonance

R +m2x+ fit, x)=pd1), s=1,2,....n

with unbounded perturbations f(t, x) (x=(xy, X5, ..., x,) and some additional
conditions.
For some related topics, we refer to [13], [14], [15] and the references therein.
In the present paper, we are concerned with the existence of 2z-periodic solutions
to the nonlinear system of first order functional differential equations of mixed type
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{xi(t)=Bixi(f)+Fi(t’ xX(t+ ), yt+ ) +pdt), i=1,2,...,n,
.})](t):,f](ta X(t+ .)a y(t+ - ))+Ej(t) ’ .]= la 2, vy nZ s
where n,, n, are nonnegative integers with n,+n,>1; x;(t)eR?, y;()eR; B;eR%;
x(t+ +)e BC(R, R*") and y(t+ *)e BC(R, R™) are defined by x(¢+5)=(x,(¢+5), x,(¢ +
S)y ey Xy, (1+5) and Yt +5)=(py(t+5), yo(t+9), . .., yu,(t+5)) respectively; p;e C(R, R?)
and E;e C(R, R) are 2zn-periodic in ¢, and

F;: Rx BC(R, R*>")x BC(R, R") — R* ,

i Rx BC(R, R*")x BC(R, R") >R,
J

(L.1)

are continuous, bounded and 2n-periodic with respect to the first variable ¢.
In this paper, we assume that

Bi=< O mi), i=1,2,...,n1
—m; 0

where m; (i=1, 2, ..., n,) are some positive integers.

2. Statement of Main Result. We need the following two hypotheses

(F) There exists a permutation k,, k,, ..., k,, consisting of 1,2,...,n, and for
any i with 1 <i<n,, there exist 1" e R, H;e BC(R?, R?) such that the asymptotic limits
H(+, +)=lim, . ;. H;(r, s) exist, and there exists G;: R x BC(R, R*"') x BC(R, R") -
R?, which is continuous, bounded and 2n-periodic with respect to its first variable z,
such that for any e R, ¢ € BC(R, R*"") and y € BC(R, R™),

Fi(t, o, ‘//):Hi((p2ki—1(_1i(1))’ §02ki(_fi(1)))+Gi(t, 0, Y).

(f) There exists a permutation /4, /,, ..., /,, consisting of 1, 2, ..., n, and for any
J with 1<j<n,, there exist /¥ €R, h;e BC(R, R) such that the asymptotic limits
hi(£)=lim,, ., ;(r) exist, and there exists g;: R x BC(R, R*"')x BC(R, R™)— R, which
is continuous, bounded and 27-periodic with respect to its first variable ¢, such that for
any te R, o e BC(R, R*™) and € BC(R, R™),

filt, o, y)=h;( (=) +g;(t, 0, ¥) .

To state our main theorem, we also need some notation as follows. For any positive
integer n, we shall denote by |+ | the Euclidean norm in R". Whenever the assumptions
(F) and (f) are satisfied, for i=1,2,...,n, and j=1,2, ..., n, we set

)Pi(s)ds 5

_ 1 (2" (cosm;s —sinm;s
2.1 pi(mi):=_J (
2n

o \sinmys cosm;s

2.2) W(H»:=~\§%[Hi(+, )= H(—, —)+<(1) ‘01>(Hi(+, ) H(—, +»],

23) Mg, :=sup{|G,(t, ¢, ¥)|: teR, e BC(R, R*"), Y € BC(R, R™)} ,
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_ 1 2n
(24) E] . =E J\O EJ(S)dS N

(2.5 M, :=sup{|g;(t, o, ¥)|: te R, p e BC(R, R>"), y e BC(R, R™)} .

The main result in this paper is the following Theorem 2.1, which provides a
sufficient condition for the existence of 2n-periodic solutions of the equation (1.1).

THEOREM 2.1.  In addition to (F) and (), we assume that m, =m; (i=1,2,...,n,)
and that
H) |[WH)>Ms +|pi(m)],  i=1,2,...,n,

() b (=) <0, | By(+) > M, +1 Byl j=1.2,....n,
hold. Then the equation (1.1) has at least one 2n-periodic solution.

3. Preliminaries. To prove Theorem 2.1, we need to state some basic facts about
the degree theory.

Let X and Z be real normed spaces and L: dom L< X — Z be a linear Fredholm
mapping of index zero, i.e. Im L is closed and dim ker L =codim Im L < co. It follows
that there exist continuous projections P: X — X and Q: Z — Z such that Im P=ker L,
Im L=ker Q=Im(/— Q). Moreover, the restriction Lp: dom Lnker P—»ImL of L to
ker P is invertible. We denote its inverse by Kp: Im L —»dom Lnker P. We shall denote
by Kpo: Z—dom Lnker P the generalized inverse of L defined by Kp o= Kp(I— Q).

Let Q be a bounded open subset in X such that dom LnQ# S and N: Q- Z is
a nonlinear mapping. The mapping N is said to be L-compact on Q if ON: Q- Z is
continuous, QN(Q) is bounded and Kp ,N: Q — X is compact (i.e. it is continuous and
Kp oN(Q) is relatively compact). This definition does not depend upon the choice of P
and Q.

Let L: dom L< X — Z be a Fredholm mapping of index zero and Q< X a bounded
open set. In the above notation, let C;(2) denote the class of mappings F: domLnQ—Z
which is of the form F=L—N, with N: Q - Z L-compact on Q, and which satisfies
the condition 0¢ Fldom L ndQ).

We say that the mapping D,(-, Q): C(Q)— Z is the degree of F in Q relative to
L if it is not identically zero, and if the following axioms are satisfied: (i)
Additivity-excision axiom: If Q, and Q, are disjoint open subsets of Q such that
0¢ Fl[dom LnQ\ (2, u,)), then

Dy(F, Q)=D(F, Q)+ Dy(F, Q,).

(ii) Axiom of homotopy invariance: If F: (domLn®Q)x[0,1]—Z is of the
form F(x, A)=Lx—N(x, A) with N: @ x[0,1]—Z L-compact on @x[0,1], and 0¢
F((dom Ln 0Q) x [0, 17), then the mapping A D (F(-, A), ) is constant on [0, 1].

An important property of the degree is the following existence property: If Fe C;(£2)
and D,(F, Q)#0, then 0€ F(dom Ln Q), i.e. the equation



516 S W MA,J S YUAND Z C WANG

3.1) Fx=0

has at least one solution in dom Ln Q.
To prove our main theorem, we shall use the following theorem of Borsuk proved
in [17].

THEOREM 3.1 (Borsuk). If Fe C(Q) with Q symmetric with respect to 0 and 0€ Q,
and if F(—x)= — F(x) for every xedom Ln0Q, then D;(F, Q)= 1(mod 2).

In order to use the above degree theory, we next rewrite the equation (1.1) as an
equivalent operator equation.
Let n be any positive integer. Let

P ={xe (R, R"): x(t+2m)=x(t), for any re R} .

x| =sup|x(t)|= sup |x(z)].
teR te[0,2x]

Then P{” is a Banach space.
In the sequel, we shall denote P§2"**"2) by P, . It is clear to see that

Po=PEM x Py

Suppose D =diag(B;, B,, ..., B,,, 0,,) is a (2n; +n,) x(2n, +n,) matrix with O,,
an n, x n, zero matrix. Define the operator L: P, — P,, by

(3.2) Lx(t)=(t)— Dx(1),
dom L={xeP,,: X(t) exists and is continuous} .
Obviously, we have
ker L={xeP,,: x(t)=e¢”a,aeR*" "},

2z
ImL= {x epP,,: J eP"ix(t)dt :O} ,

0

where DT denotes the transpose of D. Moreover, Im L is closed and we have the direct
sum decomposition

P,,=kerL@ImL
which implies that
dimker L=codimIm L=2n,+n,< oo ,
and thus L is a Fredholm mapping of index zero. Let P=Q: P,,— P,, be the
projections defined by

(3.3) Px(t)=2L eD‘fzn eP"sx(s)ds .

T 0
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Then we have

Im P=kerL, kerQ=ImL.

LemMma 3.1. Let Kp:ImL—domLnkerP be the (unique) right inverse of L
associated to P. Then Kp is a compact operator with | Kp| <2m.

PrOOF. It is easy to know that for zeIm L,

t - 1 2n *s -
sz(t)=eD‘J el 5z(s)ds ——— eD‘J J eP" " z(t)drds .
2n o Jo

0
Since [{ e”"z(s)ds is 2n-periodic, it follows that
| Kpz(t) | <m||z]l, forall teR,
| Kpz(t))— Kpz(t,) |[< (1 +w(mi+m3 + - - - +ml) 2| z||| ¢, — 1, |, forall ¢,t,eR
and Lemma 3.1 is then a consequence of the Arzela-Ascoli theorem.
It is also easy to see that H: R*"**" > ker L defined by
H(a)=e"a, for aeR?*"*m

is an isometry. In what follows, we identify a € R*"**"> with its image H(a)eker L, i.e.,
H(a)=a,acR?*"*",
Define the operator N: P,,— P,, by

(3.4 N(x, pX6)=(N@"(x, y)(r), N (x, y)t) ,

(3.5) NE™(x, y)(e)=(NT"(x, y)0), NE"x, e, -0 Nt p)(0)
(3.6) NE(x, y)O=Fi(t, x(t+ +), yt+ D +pe),  i=1,2,...,n,,
3.7 NOI(x, y)(t)=(NT2(x, y)e), NS, p)0), - .o Ni2(x, y)(0))
3.8) NEDGx, y) ) =fi(t, x(t+ +), i+ D+ Ej(6),  j=1,2,....n,,

where xe PP ye Py and (x, y)eP,, defined by (x, y)(t)=(x(¢), ¥(t)). Then N is
continuous and bounded, and hence is L-compact on @ for any bounded open set Q
in P,, with dom LnQ# .

Let x(t)=(x(t), x,(t), ..., x,,(1)) with x;€ P (1<i<n,) and p(t)=(p,(t), ya(),
ceoy ooy V(1) With y;€ PSY) (1 <j<n,). Then the assumptions (F) and (f) imply that

(3.9) NE"(x, y)t)=H(x, (1=t + Gi(t, x(t+ +), y(t+ *)+pi(2),

and

(3.10) NED(x, y)t)=h;(y,, (=) +g;(t, x(t+ +), Yt + )+ Ej(2)
i=1,2,...,n,.
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In the above notation, the equation (1.1) is equivalent to the operator equation
(3.11) F(x,y)=0, (x,y)edom L,
where xe P2"), ye Py'» and F=L—N:domLcP,,— P,,.

4. Proof of Theorem 2.1. In proving our main theorem, we also need some

lemmas.
Let

Y={HeBC(R?* R?:H(£, )= lim H(r,s) exist},
r,s— oo

[H| = sup |H(r,s)| < o0 .

r,seR

Then (Y, || + ||) is a normed space. Define the mapping W: Y — R? as in (2.2). Then W
is linear and continuous. Moreover, if H(r, s)=H(—r, —s), then

4.1) W(H)=—W(H).
The following Lemma 4.1 is obvious.

LemMA 4.1. Let He Y and

_ 1
(42) H(r’ S)Z'E[H(r, S)—H(—‘V, _S)] .
Then
4.3) W(H)=WH).
Lemma 4.2. Let HeY, peR and ve BC(R, R?). Let
1 27 . )
(4.4) M(p, v)=2v J e?"“H((psin s, p coss)T +v(s))ds ,
T Jo
where
4 =< 01 ) .
-1 0
Then
4.5) lim M(p, v)=e* "™ W(H)
p—r oo
(4.6) lim M(p, v)= —e*" ™ W(H)
p—>—©

uniformly for |v(t)| <M, where M is a constant.



SEMILINEAR EQUATIONS AT RESONANCE 519

Proor. Fixed ¢>0 (e<1/4). Let M,>0 be large enough so that
|H(x, y)—H(+, +)|<e, for any x,y>M,.
Define po=(M,+ M)/sine. Then for any p>p,, we have

/2 /2
J eATSH((psins,pcoss)T+U(s))ds—f e H(+, +)ds

0 0

<

JS e*™[H((psins, pcoss)T+v(s) —H(+, +)]ds

o]

+

mes e S[H((psins, pcoss)T +u(s)—H(+, +)]ds

+

J"/Z eA"[H((psins, pcoss)” +uv(s) —H(+, +)]ds

n/2 —¢
S4I|H||e+%s=<4||H|l+72t>s,

where || H | =sup, s.r| H(r, 5)| < oo. Hence

/2 /2
4.7) lim f e H((psins, pcoss)? + v(s))ds = f eASH(+, +)ds
P Jo 0
uniformly for |v(t)| <M.
A similar argument shows that
4.8) lim J e H((psins, pcoss)! +v(s))ds = J eASH(+, —)ds ,
PR Jn2 n/2

3n/2 3r/2
(4.9) lim J e "H((psins, pcoss) +v(s))ds = J e SH(—, —)ds ,

N
PO Jn n

2n 2n
(4.10) lim f e H((psins, pcoss)’ + v(s))ds=f e "SH(—, +)ds,
PO J3n2 3n/2
uniformly for |v(t)| <M.
It follows from (4.4), (4.7)—(4.10) that

/2 T
J eA"H(+, +)ds+J e"SH(+, —)ds

. 1
lim M(p, v)=— |:
us 0 n/2

p— 0 2

3n/2 2n
+J e SH(—, —)ds—!—j eA"SH(—, +)ds]

T 3n/2

=TT (H),

uniformly for |v(¢) | < M.
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By using a similar argument, we can show that

lim M(p, v)= —e" O W(H),

p=— o
uniformly for |v(z)| <M, and this completes the proof.

LemmA 4.3.  Condition (h) holds if and only if

1 1 _ ,
@I () =) > )+ (=) + My, +I B j=1,2,.

Proor. Suppose that (h) holds, that is,

(4.12) hi(+)h(=)<0, |hi(2)I>M, +E;|, j=12,....n,.

For any j with 1<j<n,, without loss of generality, we assume that
(4.13) hi(+)>0, hj(—)<0.
From (4.12) and (4.13), we find

1 1 _
(4.14) S IR =) 1> +) 4 hy(=)+ M, 1 B
and
(4.15) %Ihj(+)—hj(—)|> —%(hj(+)+hj(—))+ng +|Ej| .

Then (4.11) follows from (4.14) and (4.15).
Conversely, suppose that (4.11) holds. Then

h(4)h(—) <0 .

Case 1. hj(+)>0,h;(—)<0.
If hf(+)+h;(—)=0, then (4.11) implies that

hi(+)= —hj(=)>M, +|E;|.
If hy(+)+h;(—)<O0, then (4.11) implies that
—h(=)=hi(+)>M, +|E;|.
Therefore, we always have
lhj(+)|>M, +|E;l.

Case 2. hi(+)<0, hj(=)>0.
A similar argument shows that

|hi(£) 1> M, +]E;] .

sy
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The proof is complete.
We are now in a position to prove our main theorem.

PrOOF OF THEOREM 2.1. Let

(4.16) )= 3 ()= H(=r, =), i=1.2,0. .,
and

_ 1 .
(4.17) hj(r)=?(hj(r)—hj(_r)), J=l, 2,...,”2.
Then
(418) Fli(—r,—s)=—1-—1i(r,s), i=1,2,...,n1,
(4.19) hi(=r)=—=hir), j=1,2,...,n,.

Hence by virtue of Lemma 4.1, we get
(4.20) W(H;)=W(H,), i=1,2,...,n;.
Define the operator N: P,, x [0, 1] — P, as follows:
N(x, y, A)(t)=(N"x, y, (1), N"(x, y, (1)),
NC™(x, y, A(t)=(NP"(x, y, A(E), NP, p, A0, ..o NE(x, y, A1),

NE"™(x, y, ()= H,(x (1 —7{V) +% [H(x, (= (") + Hi( = (t— ()]

+A’Gl(t»x(t+.)9y(t+.))+'1pl(t)a i=1a2,'~"n1,
N®(x, y, ()= (N{2(x, y, (8), N§2(x, p, (D), - .., NE2Cx, p, ANE))

_ - A
N, y, O =hy(y, (=) + 0 (At =T +hy(—y, (1= )]

+Agj(t’x(t+.)’y(t+.))+AEj(t)’ j=192,"-5n2:

where x =(x, X, ..., X, )€ P& with x;,e P& (i=1,2,...,n)and y=(y, ¥3o - .-, Vuy) €

P2 with y;e P (j=1,2,...,n,). Then N is continuous and bounded, and hence is

L-compact on 2 x [0, 1] for any bounded open set Q in P,, with dom LnQ# (.
Define F: dom L x [0, 1] P,, by

4.21) F(x, y, )=L(x, y)—N(x, y, 1),

where xeP$2") and yeP{"?. Then it is easy to see that F(x,y, 1)=F(x,y) and
Fy(x, y):=F(x, y, 0) satisfies
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(4.22) Fo(—x, —y)=—Fy(x,y), forany xePZ", 6 yePy?.
Let p>0, and
Q;9={(u’ v)ekerL: u=(”1Pa1» ”zpab cety rnlpanl)s aieaBl(O)(:R2 bl OSri<1 s
i:1,2,...,n1,
U=(01pa G20, .-, anzp)s O'jGR, la'jl< 1,j=l, 25 e ”2} 5
where B,(0)={a€R?: |a|<1}=R? Then Q) is a bounded open set in ker L.
Put
ny ny 1/2
M=47T|: Y (H I+ Mg +p:)*+ ) (th+ng+”Ej”)2] +1,
i=1 j=1

where M, =sup,.g|h;(r)| < oo.
Since | Kp(I— Q)| <4m, it follows from (4.16), (4.17) and the definition of N that

(4.23) IKp(I—O)N(x, y, D <M,
for any xe P2"), ye P{"? and A€[0, 1].
Again set

Q,={(x, ) € Pyr: xe P, ye PL2, |(I—-P)x, y)| <M, P(x, y)€Q)} .

Then Q, is a bounded open set in P,,, 06Q, and Q, is symmetric with respect to 0.
Moreover, 02,=I"; uI',, where

I'y={(x,y)e Py, : xe P, ye PY2, |(I- P)(x, y)| =M, P(x, y)e 2},
F2={(X, y)EPZ‘rt: xeP%i"l)’ yEPg‘NZ)a “(]_P)(x> J))HﬁM, P(x’ y)eag;?} .

We claim that for p sufficiently large,

(4.24) 0¢ F((dom LnoQ,)x [0, 1]).

Indeed, the equation F(x, y, A)=0 is equivalent to the system of equations
(4.25) ON(x, y, )=0,

(4.26) (I—P)(x, y)=KpI-Q)N(x, y, %) .

For any (x, y)eI'y, (4.23) implies that
(I=P)x, y) #Kp(I—Q)N(x,y,4),  forany Ae[0, 1]

and hence F(x, y, A)#0, for any (x, y)eI'; and A€[0, 1].
For any (x, y)eI',, we can assume that

x(t)=(r1pa1, r2pa23 HRE ] rnlpan1)+x(l‘)a aieaBl(O)ch s Osrlsl s

i=1,2,...,n,,
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y(t)=(61p962p5*H:O-nzp)-"—j;(t),o-jeRa |0.j|<1’ j=132a‘-’,n25

where Xe P33, yePY2, (%, p)elmL, (%, 7)| <M and either r, =1 (1<ip<n,) or
o,,=*1 (1<jo<ny).
By the definition of N, we find

(4.27) ON(x, 7, ) =((QN(x, y, W)™, (QN(x, y, )™,
(428) (ON(x,y, D) =(QN(x, y, P, (QN(x, y. P, ..., (QN(x, y, A)E™)

_ 1 CLI
(4.29)  (ON(x,y, /1)),‘2”"=2—J BN (x, y, Ns)ds,  i=1,2,...,n,.
T Jo

(4.30)  (QN(x, y, )" =((QN(x, y, )", (ON(x, y, ANF", ..., (ON(x, y, )37 ,

2

_ 1 (.
(431) (QN(Xa Vs /1))1('”2)=-2; J N}"z)(x’ Y, )*)(S)ds H ]= 15 29 PR

0

Now we consider the following two possible cases:
Case 1. 7, =1(1<ip<n).
Since my, =n, by (4.29) and the definition of N, it is not hard to verify that

(4.32) (ON(x, y, E™ =eBi0D,(p, ay, )+ e ™5™y (p, ay, )+ AX(x, y)+Api(mi,) »

where

1 27 S
(4.33) D(p, ar, )= E j eB'OsHio(PeBi"sakio + Xy, (8))ds
T Jo °

1 2n ~ ~
(4.34) Dy(p, a4, )= i J Pl H(pe”oa, + %, () + Hio — pePioay, — %, (5)]ds ,
0

2n
(4.35) X(x, y)=2ij eBl5G (s, X(s+ *), p(s+ *))ds .
n

0

Let o be defined by sina=aj;), cosa=a?, where a,, =(af,), a2)". Then we find

)P
)

27

1 - .
D,(p, akln) =2—n eBiotimg f eBQSHi‘)((p sinmy; S, p COS m; 5)T +)Eklo<s -

0

1 mig 2z I .
_ Zf A Hf(psins, pcoss)” +u(s)ds
2m;m k=1 Jo

27

1 T . _
D,(p, aklo) = o eBio%/mq j eBio® [Hio<(p sinmys, p cosm;s)" + x,%(s —

0

+ H,-0<( —psinm;s, —pcosnys)" — xk‘h(s — >>}ds

m;,
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LT 2n
__ ety f e [H, ((psins, p coss)” +v(s)

4m; 1 k=1 Jo

+H, ((—psins, —pcoss)’ —uv(s)])ds,
where

_ [ s+2k—Dn—a
W) =%, (T
0 m;,

Hence, by (4.20) and Lemma 4.2,

(4.36) lim | @,(p, ay, )| =| W(H,,) | =| W(H,,)| ,
p
. 1 T T
(4.37) lim | @,(p, ak,o) | =5 | e W(H,-O)—eA @4 W(H,)|=0,
p— oo

uniformly for any @, €0B,(0)=R? and X, e P4 with |%,, | <M.
By (4.35), we also have

(4.38) | X(x, y) < Mg, -

Therefore, by the assumption (H), (4.36), (4.37) and (4.38) imply that for p sufficiently
large,

(4.39) | @1(p, ax, ) 1> Pop, @, )|+ X(x, y) |+ pig(myg) |,

for any a,, €0B,(0)=R 2 and X, wWith | X, (1)| <M, which together with (4.32) yields
that for p sufficiently large,

(ON(x, y, )" #0, for any (x,y)el,, Aie[0,1],

and hence ON(x, y, 1)#0. Therefore, for p sufficiently large, F(x, y, )#0, for any
(x,y)el', and A€[0, 1].

Case 2. 0y, = +1 (1<jo<n,).

Without loss of generality, we assume that o,,=1. The case o,,=—1 may be
treated in a similar way.

By (4.31) and the definition of N, we may verify that

(4.40) (ON(x, y, )i =¥ (p)+ AW ,(p) + AY(x, y) + AE;,
where
] 2n _
(4.41) Yip)=—— j hj(p + 31, (s))ds
2n Jo

(4.42) %(p)=% f Dhip+ 71, () + B —p— 3, (5)11ds
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1 2n
(4.43) Y(x, y) =5 f jols, X(s+ +), y(s+ +))ds .
0

Clearly, we have
~ 1

(4.44) ,}Ln; Y’l(p)=hjo(+)=7(h,-0(+)—h,-0(—)),
. 1
(4.45) phglo ¥y(p)= 0 (hjo(+)+Rio(—=)) 5

uniformly for A7 with | T (<M.

By (4.43), we also have
(4.46) | Yx, y) | <M, .
Therefore, by the assumption (h) and Lemma 4.3, (4.44), (4.45) and (4.46) imply that
for p sufficiently large,
(4.47) | ¥ 1(0)|>1Pp) |+ YOx, y) |+ Ej |
for any y, with | (<M, which together with (4.40) implies that for p sufficiently
large,

(QN(X, Vs ;L))j(.gl);é(), for any (x’ y)GFZ s Ae[oa 1] s

and hence QON(x,y, A)#0. Therefore, for p sufficiently large, F(x,y, A)#0, for any
(x,y)el', and 1€[0, 1].

Thus, we have proved that for p sufficiently large, (4.24) holds.

Now it follows from (4.24) that for p sufficiently large, the degree D,(F(-, 1),
Q,) is well-defined and is constant on [0, 1]. Therefore, by (4.22) and the Borsuk
theorem, we have

Dy(F, Q,)=Dy(F(-, 1), 2,)
=Dy(F(+,0),Q,)=1 (mod2),

so the existence of a solution of the equation (3.11) follows from the existence property

of the degree, and thus the equation (1.1) has at least one 2zn-periodic solution. The
proof is complete.

5. Examples. Finally, we shall give some specific examples to illustrate our
main result.

ExampLE 5.1. Consider the system
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=x, +arctan x; + x3/(1+x3)+p,(1),

X3
X5 = —X;+arctan x, + 3 arctan x, +p,(t) ,
x3=x4+/ 2 sinxz+xse x5+P3( )s
(5.1 ,
Xp=—X3+./ 2 cosxy—2arctan x5+ p,(t),
X5;=x¢—2arctanx,+./ 2 arctan xs+ps(t),
Xg= —Xs+2arctan x; +./ 2 arctan xq+pe(t),
where p;(j=1, 2, ..., 6) are continuous 2zn-periodic functions. In this example, n, =3,

n,=0, V=0 (i=1, 2, 3), and (k,, k,, k3)=(2, 3, 1), we set
x3/(14+x3) > Gt 0)= < arctan ¢,(0) >
3arctanx, )’ ! arctan ¢,(0)
xse™ 3 ~/ 2 sin @5(0)
5 ) . Gt 9)= ( v >

—2arctan x4 f cos @5(0

—2arctan x, </ 2 arctan ¢s(0)
) 3(t (P

2arctan x, A/ 2 arctan @g4(0)
where ¢ € BC(R, R®). A straightforward computation shows that

venn=(an) (2 ) w0

Mg, = V2 . Mg,=2, Mg=n.

' 2

H(xs, x4)=<
Hy(xs, X6)=<

H(x,, x2)=<

By Theorem 1.1, the equation (5.1) has at least one 2z-periodic solution provided

< 2
ley[<3— 2”, les|<2—/2, lesl<d—n,

where
1 ”"(coss ——sins><p1(s)
Ci=—— .
2n J, \sins coss 22(s)
1 (2*(coss —sins
Cy=—o < - P3(s) ds .
2n J, \sins coss Pals)
1 ”"(coss —sins><p5(s)
Cya=——— .
2n Jo, \sins coss De(s)

ExamPLE 5.2. Consider the system




SEMILINEAR EQUATIONS AT RESONANCE 527

1
x1=2x,+./ 3 arctan x, +x2e_"§ +?arctan X4 +py(t),

X1 X2
+—+ 3
I+x7 14x3

1
+3 arctan x5 +p,(?),
, 1 1
5.2) 1 x3=3x, +—2— arctan x; +arctan x; + 5 arctan x,+p;(t) ,

, 1 _2 1
Xp=—3x; +jarctany+e "3+7arctanx4 +p4t),

X3

y'= —arctan y+sinx, + 1

+ps(),
L +x32 ps()

where p; (j=1,2, ..., 5) are continuous 2z-periodic functions. In this example, we take
ki, ky)=(1,2), I,=1, t1V=1P=1?=0, and

<4 arctan ¢5(0)

/ 3 arctan x; +x2e_"%
Hi(xy, x2)=<

1
Y % , Gl(t,<p,z//>=(Zar"tan""‘(o)),
1+x2  1+x?

arctan x; +-+arctan x, +-arctan ¢,(0)
—x2 1 ’ GZ(t’ (pS lp) = 1 ’
e 34 Garctanx, +-arctan /(0)

h(y)=—arctany, g(t, @, ¥)=sin ¢,(0)+ @3(0)/(1 +(¢3(0)?),
where teR, pe BC(R, R*), y € BC(R, R). A straightforward computation shows that
W(H1)=<ﬁ/2>, W(Hz)=< V2 )
J6/2 J22

2w
MG;=MG2= 4 3

Hy(x3, x4)=<

3
h(+)=—h(—)= —%, M=

By Theorem 1.1, the equation (5.2) has at least one 2n-periodic solution provided

2 5 2 3
1c1|<ﬂ—Q, |czr<£~f", ld)<Z—2,

4 2 2

where
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1 2n o
Cl=—J <C$)82S sm2s>(p1(s)>ds,
2n Jo \ sin2s cos 2s 22(8)
1 [ ( cos3s —sin3s )<p3(s) >
Cy=— . ds ,
2n J, \ sin3s cos 3s P4(s)

1 2n
d=— J ps(s)ds .
2% Jo
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