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AND THEIR APPLICATIONS
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Abstract. We study the magnetic Schrodinger operator H on Rn, n > 3. We assume
that the electrical potential V and the magnetic potential a belong to a certain reverse Holder
class, including the case that V is a non-negative polynomial and the components of a are
polynomials. We show some estimates for operators of Schrodinger type by using estimates of
the fundamental solution for H. In particular, we show that the operator V2(—Δ + V)" 1 is a
Calderόn-Zygmund operator.

1. Introduction and main results. Let V(x) be a non-negative potential and con-

sider the Schrodinger operator —Δ + V on Euclidean n-space Rn, n > 3. When V is a

non-negative polynomial, Zhong ([Zh]) proved that the operators V2(—Δ + V)~1,V(—Δ +

V)"1/2 and V(—Δ + V)" 1 V are Calderόn-Zygmund operators. Subsequently, for the poten-

tial V belonging to the reverse Holder class, which includes non-negative polynomials, Shen

([Shi]) generalized Zhong's results. Actually, he proved that the operators V(—Δ + V)"1/2

and V(—Δ + V)" 1 V are Calderόn-Zygmund operators and the operator V2(—Δ + V)~ι is

bounded o n L / 7 , l < / ? < o o , while it is well-known that Calderόn-Zygmund operators

are bounded o n L / \ l < / ? < o o . He also proved that the operators V(—Δ + V)" 1 and

y i / 2 V ( _ Δ + V ) - i ^ bounded on ZΛ 1 < p < oo.

For the operators V(-Δ + V)" 1, V 1/ 2V(-Δ + V)~ι and V 2 ( - Δ + V)" 1, in [KS]

we generalized Shen's results as follows. We replace Δ by a second order uniformly elliptic

operator Lo = — Σ" j=ι(d/dxi){aij(x)(d/dxj)} and suppose that V satisfies the same con-

dition as above. Then we showed that the operators V(L0 + V)" 1, V 1 / 2 V(L 0 + V)" 1 and

V2(Lo + V)~ι are bounded on weighted Lp space (1 < p < oo) and Morrey spaces. (We

need appropriate conditions for at j to prove the boundedness of each operator.) It should be

remarked that Calderόn-Zygmund operators are bounded on weighted Lp space (1 < p < oo)

and Morrey spaces ([CF], [St]).

To be precise, we first recall the definitions of the reverse Holder class (cf. [Sh2]) and the

Morrey space (cf. [CF]). Throughout this paper we denote by Br (x) the ball centered at x with

radius r, and the letter C stands for a constant not necessarily the same at each occurrence.

DEFINITION 1 (Reverse Holder class). Let U be a non-negative function on Rn.
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(1) For 1 < p < oo, we say U e (RH)p if U e Lfoc(Rn) and there exists a constant

C such that

/ 1 ί \ ι / p C ί
(1) 7^—τ / U{yγdy < —— / U(y)dy

\\Br(x)\ JBr(x) ) \BΛx)\ JBr{x)

holds for every x e Rn and 0 < r < oo. If (1) holds for 0 < r < 1, we say U € (RH)pjoc.

(2) We say U e (RH)^ if U e L™c(R
n) and there exists a constant C such that

(2) \\U\\L">iBΛχ)) < 7^-τ; ί V(y)dy
l^rWI JBr(x)

holds for every x e Rn and 0 < r < oo. If (2) holds for 0 < r < 1, we say U e (RH)oojoc.

REMARK 1. If P(x) is a polynomial and a > 0, then U(x) = \P(x)\a belongs to

(RH)oo ([Fe]). For 1 < p < oo, it is easy to see (RH)^ c {RH)P.

DEFINITION 2. For 0 < μ < n and 1 < p < oo, the Morrey space Lp'μ(Rn) is

defined by

"β(Rn) ={fe Lf(Rn) : \\f\\Ptβ = sup ( ^ - / | / O 0 | * d y < oo,μ = sup (-L ί
r>0 \ r μ JBr(x)

Note that LP^{Rn) = L^(/?'ϊ).

In this paper we consider the following magnetic Schrodinger operators. Let a(x) =

(a\(x),a2(x),... ,an(x)),
1 ίl

^y = T a.j(x) for 1 < y < n , n > 3 ,

and L = (Li, L 2 , . . . , Ln), where αy e C 2 ^ " ) . Define

// = //(a, V) = Γ L U V(JC) ,

where V e Lfoc{Rn) and V > 0.

We use the following notation throughout this paper. Let B(x) = (bjk(x))\<jtk<n, where

and for 1 < j < n, 1 < k < n, 1 < / < n, let

3 / ^ θ ^ = Σ I

\L2u(x)\2= Σ \LjLku(x)\2, \L\(x)\2= Σ \LjLkLiu(x)\2

j,k=\ j,k,l=l
n

and |B| = |B(x) |= ^ \bjk(x)\.
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For the operator //, Shen ([Sh2]) proved that the operators VH~\ Vι/2LH~ι and

L2H~ι are bounded on Lp, 1 < p < oo, if V and the magnetic field B satisfy certain

conditions given in terms of the reverse Holder inequality. These results are extensions of

those in the case a = 0, which were shown by himself.

The purpose of this paper is to show the following two results under certain conditions on

V, a and B. First, we show that the operators VH~ι, Vι/2LH~ι and L2H~] are bounded on

Morrey spaces (see Theorem 1). Secondly, we show that the operator L2H~ι is a Calderόn-

Zygmund operator (see Theorem 2) on the assumption that a e C4(Rn)n and V e C3(Rn)

for the regularity of coefficients.

In his paper [Sh2], Shen established the estimates (see Theorems 5 and 6) of the fun-

damental solution of the Schrόdinger operator by using an auxiliary function m(x,U) intro-

duced by himself. These estimates play an important role in the proof of Lp boundedness of

the operators mentioned above. We also need his estimates to prove our results.

We recall the definition of the function m(x, U) for later convenience.

DEFINITION 3 ([Shi], [Sh2]). For x e Rn, the function m(x, U) is defined by

I ? 1

r > 0 : — - / U(y)dy < 1 1 .

REMARK 2. Note that 0 < m(x, U) < oo for U e (RH)n/2 and 1 < m(x, U) < oo

for U G (RH)n/2joc.
We now state Theorem 1 and Theorem 2 which are main results of this paper.

THEOREM 1. Suppose a e C2{Rn)n, V e L™c(Rn), n>3αndV>0. Assume also

that

\B\ + Ve(RH)n/2,

(3) - V(x) < Cm(x, |B| + V)2 ,

|VB(JC)| < Cm(x, |B| + V)3 .

(1) Let 1 < p < σo and 0 < μ < n. Then there exist constants C\, C2 such that

l|Vff-7llp.μ ^ Ci | |/ | | p , μ for f e Cg°(Λ"),

| |V1/2L//-1/llp,μ<C2 | |/| |p. ί t for feC?(Rn).

(2) Let 1 < p < σo and 0 < μ < n. In addition, assume that

(4) |Va(jc)| < Cm(x, |B| 4- V)2 , |a(jc)| < Cm(x, |B| + V).

Then there exists a constant C such that

\\L2H-χf\\PΦ<C\\f\\p^ forfeC^(Rn).

REMARK 3. If V e (RH)oo, then there exists a constant C such that V(JC) <

Cm(x, V)2. In Theorem 1, if a = 0 then the conclusion was shown in [KS] under the as-

sumption that V e
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REMARK 4. Theorem 1 is also true for the case μ = 0. In this case, we can replace

(3) with somewhat weaker condition and do not need to assume (4) (see [Sh2, Theorems 0.9

and 3.1]). However, our proof of Theorem 1 is different from the one in [Sh2] and is based on

the method of [KS]. We emphasize that the method of [Sh2] does not work in the case μ > 0.

We now recall the definition of the Calderόn-Zygmund operator. Let V denote the space

of distributions dual to C£°(Rn). An operator T taking C™(Rn) into V is called a Calderόn-

Zygmund operator if

(i) T extends to a bounded linear operator on L2(Rn),

(ii) there exists a kernel K such that for every / e C£° (!?"),

Tf(x)= f K(x,y)f(y)dy a.e. on {supp/}c,

(iii) there exist positive constants δ and C such that for all distinct JC, v e Rn and all z

such that \x - z\ < \x - y |/2,

C
(5) \K(x,y)\<

(6) \K(x,y)-K(z,y)\<

(7)

x-y\n'

C\x-z\δ

\x-y\n+δ '

C\x-z\δ

See e.g. [Ch, page 12].

THEOREM 2. Suppose a e C4(Rn)n, V e C3(Rn), n > 3 and V > 0. Assume also
that

\B\ + Ve(RH)n/2,

|V3V(JC)| < Cm{xγ , |V2V(x)| < Cm(x)4 , |VV(JC)| < Cra(jc)3 ,

|V3B(;t)| < Cm(x)5 , |V2B(x)| < Cm(x)4 , |VB(x)| < Cm(x)3 ,
(8)

where m(x) = m(x, |B| + V). Then L2H 1 is a Calderόn-Zygmund operator.

REMARK 5. It is known that | VB(JC)| < Cm{x)3 implies |B(JC)| < Cm(x)2 (see [Sh2,

Remark 1.8]). We also note that |VV(JC)| < Cm(x)3 implies V(x) < Cm(x)2.

REMARK 6. The condition (8) holds if the components of a are polynomials and V

is a non-negative polynomial. This follows from the fact that, if P(x) is a non-negative

polynomial of degree k, then for any positive integer / there exists a constant C such that

|V Z P(JC) | < Cm(x, P)ι+2 (see [Sh2, page 820]). We note that Theorem 2 is an extension

of Zhong's result that the operator V2(—Δ + V)~ι with non-negative polynomial V is a

Calderόn-Zygmund operator ([Zh, Proposition 3.1]). We also note that there exist potentials

V which satisfy our assumptions but are not non-negative polynomials. For example, consider

V(x) = \P(x)\a, where P(x) is a polynomial and a > 0.
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We denote by Γ(x, y) the fundamental solution for H. The operator H~ι is the inte-

gral operator with Γ(JC, v) as its kernel. It is known that the operator L2H~ι is bounded

on L2(Rn) ([Sh2, Theorem 4.7]). We note that the estimates (6) and (7) are implied by a

condition
C

([Ch, page 12]). Hence, to prove Theorem 2, it suffices to show that the estimates

\LjLkΓ(x, y)\ < C , \djLkLιΓ(x, y)\ < - ^ — Γ

I* — y\n \χ — y\n+[

hold. In fact, stronger estimates hold as the following two theorems state.

THEOREM 3. Suppose a € C3{Rn)n, V e C2(Rn), n > 3 and V > 0. Assume also

that

*| + V e(RH)n/2,

72V(x)\ < Cm(x)A , | W ( J C ) | < Cm(x)3 ,
|V2B(JC)| < Cm(jc)4 , |VB(JC)| < Cm(x)3 ,

where m(x) = m(jc, |B| + V). Then for any positive integer N there exists a constant CN such

that

\LjLkΓ(x, y)\ < { 1 + m ( ^ _ ι]N ' \n '

For the case V = 0, Theorem 3 was stated in [Sh2, Remark 2.9] without proof.

THEOREM 4. Assume the same assumption as in Theorem 2. Then for any positive

integer N there exists a constant Cyv such that

REMARK 7. We expect that Theorem 3 would hold under the condition V e Cι(Rn)

and without the assumption |V 2 V(JC) | < Cra(x)4, and that Theorem 4 (and hence Theorem

2) would hold under the condition V e C2(Rn) and without the assumption |V3V(x)| <

Cm(x)5. In the proof of Theorem 6 (see [Sh2, Lemma 2.3 and Lemma 2.7]). Shen first es-

tablished the estimate of Γo(x, y), which is the fundamental solution to //(a, 0), and treated

the case V φ 0 as a perturbation of it. We cannot take this strategy to obtain the point-

wise estimate of higher order derivatives LjLkΓ(x, y) because of the strong singularity of

d2

kΓo(x, y). To overcome this difficulty, in Theorem 3 (for example) we assume the additional

assumptions V e C2(Rn) and \W2V(x)\ < Cm(x)4 and estimate LjLkΓ(x, y) directly.

We show Theorem 3 and Theorem 4 by a method similar to the one used in the proof of

[Sh2, Theorem 1.13].

The plan of this paper is as follows. In Section 2, we prove Theorem 1. Section 3 is

devoted to establishing Caccioppoli type inequalities, which we need to complete the proof

of Theorem 3 and Theorem 4. In Section 4, we prove Theorem 3. In Section 5, we prove

Theorem 4.

The authors would like to express their gratitude to the referee for helpful comments.



372 K. KURATA AND S. SUGANO

2. Proof of Theorem 1. Theorem 1 is easily proved by the following pointwise esti-

mates. These estimates generalize the results in [Zh, Lemma 3.2] and [KS, Theorem 1.3] to

the magnetic Schrodinger operators. For the rest of this paper, we set m(x) = m(x, |B| + V).

LEMMA 1. Suppose V, a and B satisfy the condition (3) assumed in Theorem 1. Then

there exist constants C\, C2 such that

(9) \m(x)2f(x)\ < CλM{\H(2L, V)f\){x) for f e C°°(Rn),

(10) \m{x)Lf(x)\ < C2M(\H{2i, V)f\)(x) for f e C~(/T),

where M is the Hardy-Littlewood maximal operator.

To prove Lemma 1 we use the following estimates of the fundamental solution for H.

THEOREM 5 ([Sh2]). Suppose a e C2(Rn)n, V e L^(Rn), n > 3 and V > 0.

Assume also that

ί|B| + V e(RH)n/2,

t|VB(jt)| <Cm(x)3.

Then for any positive integer N there exists a constant C# such that

11 V A ' ^ - { 1 + « W | J C - # \x-y\»-2'

THEOREM 6 ([Sh2]). Suppose a e C2(Rn)n, V e L%c(Rn), n > 3 and V > 0.

Assume also that

\B\ + V.e(RH)n/2,

V(x) <Cm(x)2,

|VB(JC)| <Cm(xγ.

Then for any positive integer N there exists a constant CM such that

CN 1
\LjΓ{x,y)\<

{l+m(x)\x-y\}N \x-y\n~ι '

REMARK 8. For \x — y\ < 1, estimates of the fundamental solution for the operator

H + 1 like above were obtained in [Sh2, Theorem 1.13, Theorem 2.8] under the assumption

given in terms of the inequality (1) which holds for 0 < r < 1. Theorems 5 and 6 are obtained

in the same manner as in the proof of Shen's theorems, since we assume |B| + V e (RH)nβ

and the pointwise estimates which are analogues of Shen's assumptions.
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PROOF OF LEMMA 1. Estimate (9) can be proved as follows. Let u = H(a,V)f and

r — \/m(x). Then it follows from Theorem 5 that

\m{x)2f{x)\ < lm(x)2\Γ(x,y)\\u(y)\dy

f m(x)2\u(y)\
~ N JR" {l+m(x)\x-y\}N\x-y\»-2

< CN

dy

\x - y\)N \x - y\"

-

oo 22U-l )+π

22J

Σ 7TT2ΊΨ

Therefore we obtain the desired estimate, if we take Λf = 3 for example.

The proof of (10) can be done in the same way as above by using Theorem 6. D

PROOF OF THEOREM 1(1). The boundedness of the operators VH~ι and Vι/2LH~ι

immediately follows from Lemma 1 and the fact that the Hardy-Littlewood maximal operator

is bounded on Morrey spaces ([CF, Theorem 1]).

PROOF OF THEOREM 1(2). Let / € C^(Rn). Note that

(11) LjLk = -djk - djLjc - akLj - -djak - ajak ,

Π γ

(12) //(a, V) = -A + V - 2 ]ΓajLj - - diva - |a|2 .
j=ι l

By (11), we have

(13) \\L2f\\p,μ < C||V2/llp,μ + C\\mLf\\p,μ + C\\m2f\\p,μ .

Here we have

(14) H V 2 / l l p , μ < C | | Δ / | | P f μ ,

which follows from [CF, Theorem 3], since V 2 ( - Δ ) - 1 is a Calderόn-Zygmund operator. By

using (12) we can control the term \\Af\\Ptμ. Then, using Lemma 1, we arrive at the desired

estimate. Π

3. Caccioppoli type inequalities. In this section we establish the Caccioppoli type

inequalities given in the following lemmas.
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LEMMA 2 (see [Sh2, Lemma 1.2]). Suppose //(a, V)u = 0 in BR(XO). Then there

exists a constant C such that

f \Lu(x)\2dx <-^ f \u(x)\2dx.
JBR/2(XQ) K JBR(X0)

LEMMA 3. Suppose //(a, V)u = 0 in BR(xo) and

f|VV(jc)| <Cm(x)3,

[|VB(JC)| <Cm(x)3.

Then there exist constants C, k\ such that

LEMMA 4. Suppose //(a, V)u = 0 in BR(xo) and

ί |V 2 V(JC) | <Cm(;c) 4 , |VV(JC)| < Cm(xγ ,

[ IV2B(JC)| < Cm(x)4 , IVB(JC)| < Cm(x)3 .

Then there exist constants C, ki such that

f , Λ W I ^ < < ^ 1 ± ^ 1 f
JBR/S(X0) K JBR{XQ)

The next Lemma 5 is used in the proof of Lemmas 3 and 4, and is also used in the

following sections to prove our theorems.

LEMMA 5 ([Shi, Lemma 1.4(b), (c)]). Suppose U e (RH)n/2 and U > 0. Then there

exist constants C\, C2Λ0 such that

(15) m(y, U) < Cχ{\ + \x - y\m{x, U)}k°m(x, U),

(16) m(y, U) > .

PROOF OF LEMMA 3. Note that, for 1 < j < n, 1 < k < n,

1 1
(17) [Lj, Lk\ = LjLk kj τ(hj j/c)

[Lk, L) + V] = Lj[Lk, Lj] + [L*, Lj]Lj + [Lk, V]

(18) 2 1
= T^kjLj + -d/cV — djbkj .

Hence we have

J¥(a, V)Lfc« = -[L t , tf (a, V)]κ = - J ] [ L t , L) + V]u

A •
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Let η e C^(BR/2(xo)) such that η = 1 on BRμ(x0) and \Vη\ < C/R. Multiplying the

above equation by η2LkU and integrating over Rn by integration by parts, we have

LJRn ~

(19)

- f Σ \-τhj(Lju)η2Lku - (j
j

The left hand side of (19) is equal to

- djhλ uη2Lku\ .

Hence we have

f \L2u(x)\2η(x)2dx <C f \Vη(x)\2\Lu(x)\2dx + C f \B(x)\\Lu{x)\2η(x)2dx
JRn JRn JRn

+ C f (\VV(x)\ + \S7B(x)\)\u(x)\\Lu(x)\η(x)2dx .
JRn

By (15) and Lemma 2, we then obtain

\L2u(x)\2dx

C f 9 C{\ + Rm(xo)}2(k°+^ f
< -̂ 9 / \Lu(x)\2dx + —2 / \Lu(x)\2dx

K JBRnixo) K JB)

«L
\u(x)\Adx,

where k\ =3(ko + 1). D

PROOF OF LEMMA 4. Note that, for 1 < j < n, 1 < k < n, 1 < / < n,

[LkLh L2 + V] = Lk[Lh L2 + V] + [Lk, L2 + V]L/

C20) = τbijLkLj + -bkjLjLι — 2dkbijLj + ί T3/V — djbij \Lk
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where we used (18). Hence we have

//(a, V)LkLiu
n

= -[LkLι, //(a, V)]u = -Σ[LkL,, L) + V]u

y"=i

(21) _\M_2 _ 2 . 2 u-(-dV-d b^L u

-2-^\ i 'J
 k

 JU i kJ J
 k 1J JU \i ' J 'Jj

(\ \ ( 2 1 2 \ I
~ I ""A; V — Ojbkj ] LiU -\- I όui V + —OK: On ] U\ .

\i J JJ V * 3 ) \

Let 77 G C£°(£/?/4(jco)) such that η = 1 on B/?/sUo) and |V77I < C//?. Then as in the

proof of Lemma 3, we have

f \L3u(x)\2η(xfdx <C ί \Vη{x)\2\L2u{x)\2dx + C ί \B(x)\\L2u(x)\2η(x)2dx
JRn JRn JRn

+ C f (|VV(JC)| + \WB(x)\)\Lu(x)\\L2u(x)\η(x)2dx
JRn

+ C ί (\V2V(x)\ + \V2B(x)\)\u(x)\\L2u(x)\η(x)2dx.
JRn

By (15) and Lemmas 2 and 3, we then obtain

I \L3u(x)\2dx

~ R2 JBR/4(X0) R2 JBt

r / 9 9 1
R / \LZU(X)\Z + - y

JBR/4(X0) \ R

BR/4(X0)

where jfc2 = k\ + 4(ik0 + 1) = 7(*0 + 1). •

4. Proof of Theorem 3. Theorem 3 follows easily from the following subsolution

estimate for L2u.

LEMMA 6. Suppose that //(a, V)u = 0 m BR(xo)for some xo e Rn and

\B\ + V e(RH)n/2,

\V2V(x)\ < Cm(x)4 , IVV(JC)| < Cm( c)3 ,

|V 2 B(JC)| < Cm(x)4 , |VB(JC)| < Cm(x)3 .
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Then for any positive integer N there exists a constant Cyy such that

2
(22) sup \L2u(y)\ <

CM 1 /
N . - ^

1 C
/ |«

l5/?(*o)l y^(χ0)

Assuming this lemma for the moment, we give

PROOF OF THEOREM 3. Note that, by the diamagnetic inequality

for f > 0 (see [Si], [LS]) and V > 0, we have

(23) |ff (a, V Γ 7 l W < ( - Δ Γ ' I / K * ) for / e Cg°(Λ").

Then we have

(24) | Γ ( * , y ) | < - ^ — j .

Fix JCO, X) ^ ^ w and put R = \x0- yo\. Then M(JC) = Γ(JC, >̂ o) is a solution of //(a, V)iι = 0

on BR/2(XO). Hence, combining (22) with (24), we arrive at the desired estimate. D

To prove Lemma 6, we need Lemmas 3 and 5 proved in Section 3 and the following

subsolution estimates.

LEMMA 7. Suppose that //(a, V)u = 0 in BR(xo)for some xo e Rn and

ί|B| + V e(RH)n/2,

llVBWI < Cm{xγ.

Then for any positive integer N there exists a constant CM such that

(~* / 1 P 1/2

(25) sup \u(y)\ < N ( /
t 1 + Rm(χθ)Γ \\BR(XO)\ JBR{X0)

PROOF. In the same way as in the proof of [Sh2, Lemma 1.11], for all 0 < R < σo we

obtain the estimate for |M(JCO)|, that is,

(26)
/ 1 Γ

N 7ΊΓTT\ /N \\BR(x0)\ JBRm(xo)}N \\BR(x0)\ JBR(X0)

Then, (25) follows easily from (26). Indeed, from (26) we have for all y e BR/2(XO),

(
\ 1/2

, p

 ί

ί Λ, ί \u(x)\2dx) .

\BRμ(y)\ JBR/4(y) )
Then, by using (16), we have

1/2/ 1 Γ
S U P l « ( » l < „ ^ p ^ ΛλN ( , B , M / W(χ)\2dx

y€BR/2(x0) {l + Rm(xO)Γ \\BR(XO)\JBR(XO)

ϋ
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LEMMA 8. Suppose that # (a , V)u = 0 in BR(xo)for some xo € Rn and

|B| + V e(RH)n/2,

V(x) < Cm(x)2,

|VB(JC)| < Cm{xγ .

Then for any positive integer N there exists a constant CM such that

f 1 / 1 Γ \ 1/2
(27) sup \Lu(y)\ < w . - ( / \u(x)\2dx I .

yeBR/2(xo) I 1 + Rm(χ0)} R \\BR(XO)\ JBR(XO) )

PROOF. In the same way as in the proof of [Sh2, Lemma 2.7], for all 0 < R < oo we

obtain the estimate for \LU(XQ)\, that is,

(28) |Lκ(*o)l < n ^ £ N , ΛXN ' 4 f ι p 1 M ί \u(x)\2dx) .
{1 + Rm(xo)Γ R \\BR(XQ)\ JBR(X0) /

>BR{XQ)

Combining (28) with the argument in the proof of Lemma 7, we arrive at (27). D

To prove Lemma 6, we also need

LEMMA 9. Suppose H(SL,V)U = f in BR(XO). Then there exists a constant C such

that

I l r \ι/q ( l r \ι/2

TB Γ ^ / \u(x)\qdx <C / \u{x)\2dx
\\BR/%KXQ)\JBR/I{XQ) } \\BR\X{S)\ JBR{XQ) J

, ( 1 f \l/p

+ CR2 / \f(x)\pdx
\\BR(XO)\ JBR(XO) )

where 2 < p < q < oo and l/q > l/p — 2/n.

See [Sh2, Lemma 1.3] for the proof. Now we are ready to give

PROOF OF LEMMA 6. Let 2 < p < q < oo and l/q > l/p - 2/n. Then it follows

from (21) and Lemma 9 that

\L2u{x)\Ux\
l#/?/64(*θ)l JBR/64(XQ)

\L2u(x)\2dx
~C\\BR/S(XO)\JB

+ CR>(—l—f
\\BR,*(XO)\JB

BR/s(χo) I

{\B(x)\\L2u(x)\}pdx)
BRβ(xo) /

+ C R l T^ Γ ^ / {(IWWI + \VB(x)\)\Lu(x)\}pdx
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+ C R 2 ( .a \ M I ί(|V2VU)| + \V2B(x)\)\u(x)\}Pdx)
\\BRβ(xo)\ JB,

C[\ + Rm(xo)}^ ( 1 f 2

I l r \ι/p

CR2{\ + Rm(xo)}2k°m(xo)
2

/ l Γ V/p

CR2{\ + Rm(xo)}3k(>m(xoΫ | p . ,, / \Lu(x)\Pdx
\\B(X)\ J I

/ l Γ

oΫ | p . ,, / \Lu(x)\Pd
\\BR/$(XO)\ JBR/S(XO)

I l r
{\ + Rm(xo)}4k°m(xo)4 / \u(xψdx

\\BR/S{XO)\JBR/S(XO)

1 / p

CR2

C{\ + Jtmfa)^ / 1 f 2 ,

** Vi^^)i Λ '
/ l r

C{\ + Rm(xo))2{ko+l) ———- / \L2u(xψd
\\BRβ(X0)\JBRβ(x0)

1/p

x

where £3 is a constant depending only on ko and we have used (15) and Lemmas 3, 7 and 8.

A bootstrap argument combined with Lemmas 3 and 7 then yields that

2(JCO)I;BΛ / 2(

, g ^ ., ί \L2u(x)\2dx
\BRI%(.XQ)\ JBR/S(XO)

5s

1 / 1 /*

Λ2 {jB^n JBIBR{X0)

where k\ is a constant depending only on n and ko. D

5. Proof of Theorem 4. We need the following lemma to prove Theorem 4.

LEMMA 10. Suppose that i/(a, V)u = 0 in BR(xo)for some XQ £ Rn and

\B\ + Ve(RH)n/2,

|V3V(JC)| < Cm(x)5 , |V 2 V(JC) | < Cm(jt)4 , |VV(JC)| < Cm(jt)3 ,

|V 3 B(JC)| < Cm(x)5 , |V2B(x)| < Cm(jc)4 , |VB(JC)| < Cm(x)3 .
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Then for any positive integer N there exists a constant C# such that

(29) sup \L3u(y)\ < N - 3 ( / \u(x)\2dx
yeBR/2{x0) U + Rm(xo)}N R3 \\BR(XQ)\ JBR(X0) )

3 ( /
yeBR/2{x0) U + Rm(xo)}N R3 \\BR(XQ)\ JBR(X0)

PROOF OF THEOREM 4. Fix xo, yo e Rn and put R == \xo - yo\ Applying (29) to

u(x) = Γ(x, yo) and using (24), we obtain the estimate

Then, using the assumption on a and Theorem 3, we arrive at the desired estimate. D

PROOF OF LEMMA 10. Let 1 < j < n, 1 < k < n, 1 < / < n, 1 < m < n. By (18)

and (20) we then have

n

//(a, V)LkLιLmu = -\LkL{Lm, //(a, V)]κ = - ^ \LkULm, L) + V]u

n

= -Σ {Lk[LιLm, L] + V]u + [Lk, L) + V^Lmu}

_VJ 2 2 2

" U ί 7 miLkLίLjU ~ 7 ̂ L * L ^ ' « M - 7 ̂ ^ L ' L - « + 29*^

+2dkbijLjLmu + 2dιbmjLkLjU - I -dmV - djbmj jLkLiu

-1-dιV - djbij jLkLmu - I -\V - djbkj jLιLmu + -dklbmjLjU

Let 2 < p < q < oo and \/q > l/p-2/n. Then it follows from (30) and Lemma 9 that

l r \ ι / q

\L3u(x)\qdx)

( \
,B \ „ / \L\{x)\2dx )

I l f \ι/p

+ C R 2 TΈ Γ ^ / {\B(x)\\L\(x)\}Pdx

\\BR/\6(X0)\ JBRn6(x0) J
I l r

I R / M /\\BRβ(x0)\ JB

\ι/p

{(|W(x)| + |VBW|)|L2«W|}^x
BR/S(X0) /
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CR2 (.D \ .. f {(\V2V(x)\ + \V2B
\\BR/\6(X0)\ JBR/16{X0)

TB Γ ^ / ί(|V3V(^)l + |V3B(JC)|)|«(JO|}'ΛC
\\BR/16(X0)\ JBRμ6(.xo)

C{\ ( f 2

I l c \ι/p

+ CR2{\ + Rm(xo)}2k°m(xo)2 — - — / | L 3 « ( * ) | ^
\\BR/16(X0)\ JBRn6(x0) I

I l r \ι/p

CR2{\ + Rm(xo)fkom(xof — - — / \L2u(xψdx
\ \ B ( X ) \ JBR/16(X0) j

I l f Ϋ/p

CR2 4 k 4 /

I l r
— - — /

\\BR/16(X0)\ JB

I l f Ϋ
2{\ + Rm(xo)}4kom(xo)

4 — — / \Lu{x)\pdx
\\BR/16(X0)\ JBRn6(xo) }

I 1 f V
2{\ + Rm(xo)}5k°m(xo)5 — — - / \u(x)\"dx

\\BR/I6(XO)\JBR/16(XO) J

I l r V/p

+ C{l + Rm(xo)}2(ko+l) - — / \L\(x)\Pdx) ,

where k$ is a constant depending only on ko and we have used (15) and Lemmas 4, 6, 7 and

8. A bootstrap argument combined with Lemmas 4 and 7 then yields that

\u(x)\ιdx
Rό \\BR/2(XO)\ JBR/2(XO) I

(
\ 1/2

ι p \ Λl ί \L\{x)\2dx\

\BRI\6{X0)\ JBRn6(x0) j

BRn6(x0) j

\ 1 / 2

C* 1 /1 / 1

where &6 is a constant depending only on n and ko. D
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