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Abstract. 'We study the magnetic Schrodinger operator H on R”, n > 3. We assume
that the electrical potential V and the magnetic potential a belong to a certain reverse Holder
class, including the case that V is a non-negative polynomial and the components of a are
polynomials. We show some estimates for operators of Schrodinger type by using estimates of
the fundamental solution for H. In particular, we show that the operator VZ(—A + V)‘l isa
Calderén-Zygmund operator.

1. Introduction and main results. Let V(x) be a non-negative potential and con-
sider the Schrodinger operator —A + V on Euclidean n-space R", n > 3. When V is a
non-negative polynomial, Zhong ([Zh]) proved that the operators V2(—A + V)~!, V(—A +
V)~1/2 and V(—A + V)~!V are Calderén-Zygmund operators. Subsequently, for the poten-
tial V belonging to the reverse Holder class, which includes non-negative polynomials, Shen
([Sh1]) generalized Zhong’s results. Actually, he proved that the operators V(—A + V)_‘/ 2
and V(—A + V)~!V are Calderén-Zygmund operators and the operator V2(—A + V)~ ! is
bounded on L”, 1 < p < oo, while it is well-known that Calderén-Zygmund operators
are bounded on LP, 1 < p < oo. He also proved that the operators V(—A + V)~! and
V12v(—A 4+ V)~! are bounded on L?, 1 < p < oo0.

For the operators V(—A + V)~!, VI2V(—=A + V)~! and V2(=A + V)7L, in [KS]
we generalized Shen’s results as follows. We replace A by a second order uniformly elliptic
operator Lo = — Z:’ jzl(a /0xi){a;j(x)(3/0x)} and suppose that V satisfies the same con-
dition as above. Then we showed that the operators V(Lo + V)~ !, V/2V(Lg 4+ V)~! and
V2(Lo + V)~! are bounded on weighted L? space (1 < p < 0o) and Morrey spaces. (We
need appropriate conditions for g;; to prove the boundedness of each operator.) It should be
remarked that Calderén-Zygmund operators are bounded on weighted L? space (1 < p < 00)
and Morrey spaces ([CF], [St]).

To be precise, we first recall the definitions of the reverse Holder class (cf. [Sh2]) and the
Morrey space (cf. [CF]). Throughout this paper we denote by B, (x) the ball centered at x with
radius r, and the letter C stands for a constant not necessarily the same at each occurrence.

DEFINITION 1 (Reverse Holder class). Let U be a non-negative function on R".
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(1) Forl < p<oo,wesayU € (RH),ifU € Ll’j)C(R") and there exists a constant
C such that
(D (; U(y)rd >l/p<
B s ) T 1B s
holds for every x € R" and 0 < r < co. If (1) holds for 0 < r < 1, we say U € (RH)p,joc-
(2) WesayU € (RH)x ifU € Lf;’c (R™) and there exists a constant C such that

U(y)dy

U(y)dy

) Ullj oo X)) <
) 1Tl oo (B, (x)) 1B (x)| JB,(x)

holds forevery x € R" and 0 < r < o0. If (2) holds for 0 < r < 1, wesay U € (RH)wo.loc-
REMARK 1. If P(x) is a polynomial and ¢ > O, then U(x) = |P(x)|* belongs to
(RH)oo ([Fe]). For 1 < p < 00, itis easy to see (RH)oo C (RH)p.

DEFINITION 2. For0 < 4 < nand 1 < p < oo, the Morrey space LP*(R") is
defined by

1 1/p
LPHR") = { f € L. R") : | fllpu = sup (7/ If(y)l”dy> <0
r>0 \"" JB,.(x)
xER"
Note that L?"°(R”) = LP(R").
In this paper we consider the following magnetic Schrodinger operators. Let a(x) =

(a1(x), a2(x), ... ,an(x)),

1 0
Lj:T—.—aj(x) forl<j<n, n>3,

and L =(Ly, Ly, ..., L,),wherea; € C%(R™). Define
n
H=H@V)=)Y L}+ V),
j=1

where V € L{> (R") and V > 0.

We use the following notation throughout this paper. Let B(x) = (bx(x))1<j k<n, Where

da; Oday
bin(x) = —L _ 2%
O = o T o,
andforl <j<n,1<k<n,1<l<n,let
b] 52 83 n
0i=—, 04 =—--—, 3, =—— |L 2 = L; 2
A PR Sl v PRl e vor A j;l ju@)l
n n
ILu@)P = Y ILjLw)*,  (LPu@)P = Y |LjLiLux)
Jik=1 jok =1

and [B|=[B(x)|= Y |bj@)l.

J.k=1
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For the operator H, Shen ([Sh2]) proved that the operators VH ', VI/2ZLH~! and
L?H~" are bounded on L?, 1 < p < oo, if V and the magnetic field B satisfy certain
conditions given in terms of the reverse Holder inequality. These results are extensions of
those in the case a = 0, which were shown by himself.

The purpose of this paper is to show the following two results under certain conditions on
V, a and B. First, we show that the operators VH ™!, VI/2LH~" and L2H " are bounded on
Morrey spaces (see Theorem 1). Secondly, we show that the operator L?H ~! is a Calderén-
Zygmund operator (see Theorem 2) on the assumption that a € C*R™" and V € C3(R™)
for the regularity of coefficients.

~ In his paper [Sh2], Shen established the estimates (see Theorems 5 and 6) of the fun-
damental solution of the Schrodinger operator by using an auxiliary function m(x, U) intro-
duced by himself. These estimates play an important role in the proof of L? boundedness of
the operators mentioned above. We also need his estimates to prove our results.

We recall the definition of the function m(x, U) for later convenience.

DEFINITION 3 ([Sh1], [Sh2]). For x € R", the function m(x, U) is defined by
2
|Br(x)| JB,(x)

REMARK 2. Notethat0 < m(x,U) < ooforU € (RH)ppp and 1 < m(x,U) < oo
for U € (RH)n/2,i0c-

1
m(x,U)

:sup|r>0: U(y)dysl}.

We now state Theorem 1 and Theorem 2 which are main results of this paper.

THEOREM 1. Supposea € C2(R™)",V € LY (R"),n >3 and V > 0. Assume also
that

Bl +V € (RH)u)2,
3) V(x) < Cm(x, |B| + V)2,
[VB(x)| < Cm(x, |B| + V)3.

(1) Letl < p <ooand0 < p < n. Then there exist constants Cy, Cy such that
IWVH™ fllpu < Cill fllpu for f € CER™,
IVV2LH™ fllpyu < Coll flpu for f € CER™.
) Letl < p <ooand0 < u < n. In addition, assume that
“) IVax)| < Cm(x, Bl +V)*, |a(x)| < Cm(x,[B|+ V).
Then there exists a constant C such that
IL2H ™ fllpu < Clflpu for f € CEPR™).

REMARK 3. If V € (RH)x, then there exists a constant C such that V(x) <
Cm(x, V)2. In Theorem 1, if a = 0 then the conclusion was shown in [KS] under the as-
sumption that V € (RH)o.
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REMARK 4. Theorem 1 is also true for the case u = 0. In this case, we can replace
(3) with somewhat weaker condition and do not need to assume (4) (see [Sh2, Theorems 0.9
and 3.1]). However, our proof of Theorem 1 is different from the one in [Sh2] and is based on
the method of [KS]. We emphasize that the method of [Sh2] does not work in the case u > 0.

We now recall the definition of the Calderén-Zygmund operator. Let D’ denote the space
of distributions dual to C8° (R™). An operator T taking C8° (R™) into D’ is called a Calderén-
Zygmund operator if

(i) T extends to a bounded linear operator on L%(R™),
(ii) there exists a kernel K such that for every f € C°(R"),

Tf(x)= /m K(x,y)f(y)dy ae. on {supp f}°,

(iii) there exist positive constants § and C such that for all distinct x, y € R" and all z
such that |x — z| < |x — y|/2,

(5) K (x,y)| < ,
lx — y["
Clx —z/*
(6) IK(x,y) — K(z,y)| < m,
Clx —zJ°
@) ]K(y,x)—K(y,Z)lfm,

See e.g. [Ch, page 12].
THEOREM 2. Supposea € C*(R")",V € C3(R"),n > 3 and V > 0. Assume also
that
Bl +V € (RH)y2,
IV3V(x)| < Cm(x)*, |V2V(x)| < Cm(x)*, |[VV(x)| < Cm(x)3,
[V3B(x)| < Cm(x)°, |V2B(x)| < Cm(x)*, |VB(x)| < Cm(x)?,
la(x)| < Cm(x),

®)

where m(x) = m(x, |B| + V). Then L’H Visa Calderon-Zygmund operator.

REMARK 5. Itis known that |[VB(x)| < Cm(x)3 implies [B(x)| < Cm(x)? (see [Sh2,
Remark 1.8]). We also note that |[VV (x)| < Cm(x)? implies V(x) < Cm(x)2.

REMARK 6. The condition (8) holds if the components of a are polynomials and V
is a non-negative polynomial. This follows from the fact that, if P(x) is a non-negative
polynomial of degree k, then for any positive integer [ there exists a constant C such that
|[VEP(x)] < Cm(x, P)'*? (see [Sh2, page 820]). We note that Theorem 2 is an extension
of Zhong’s result that the operator V2(—A + V)~! with non-negative polynomial V is a
Calder6n-Zygmund operator ([Zh, Proposition 3.1]). We also note that there exist potentials
V which satisfy our assumptions but are not non-negative polynomials. For example, consider
V(x) = |P(x)|*, where P(x) is a polynomial and o > 0.



FUNDAMENTAL SOLUTION FOR MAGNETIC SCHRODINGER OPERATORS 371

We denote by I'(x, y) the fundamental solution for H. The operator H~! is the inte-
gral operator with I"(x, y) as its kernel. It is known that the operator L2H ! is bounded
on L2(R") ([Sh2, Theorem 4.7]). We note that the estimates (6) and (7) are implied by a
condition

C
[0; K (x, y)| < m

([Ch, page 12]). Hence, to prove Theorem 2, it suffices to show that the estimates

|ILiLy I (x, y)| < oy’ [0; Ly LT (x, y)| < |x——y|—”ﬁ
hold. In fact, stronger estimates hold as the following two theorems state.

THEOREM 3. Suppose a € C3(R™", V € C2(R”), n>3and V > 0. Assume also
that

Bl +V € (RH)n)2,
V2V (x)] < Cm(x)*, |VV(x)| < Cm(x)?,
[VZB(x)| < Cm(x)*, |VB(x)| < Cm(x)3,

where m(x) = m(x, |B|+ V). Then for any positive integer N there exists a constant Cy such

that
Cn 1

LiLiI'(x,y)| < : .
b I = e = =y
For the case V = 0, Theorem 3 was stated in [Sh2, Remark 2.9] without proof.

THEOREM 4. Assume the same assumption as in Theorem 2. Then for any positive

integer N there exists a constant Cy such that
Cy 1

(T +m@x —y¥ * x =yt

REMARK 7. We expect that Theorem 3 would hold under the condition V € C!'(R")
and without the assumption V2V (x)| < Cm(x)*, and that Theorem 4 (and hence Theorem
2) would hold under the condition V € CZ(R™) and without the assumption |V3V (x)| <
Cm(x)>. In the proof of Theorem 6 (see [Sh2, Lemma 2.3 and Lemma 2.7]). Shen first es-
tablished the estimate of IH(x, y), which is the fundamental solution to H (a, 0), and treated
the case V # 0 as a perturbation of it. We cannot take this strategy to obtain the point-
wise estimate of higher order derivatives L;LiI"(x, y) because of the strong singularity of
812.,( I'o(x, y). To overcome this difficulty, in Theorem 3 (for example) we assume the additional
assumptions V € C2(R") and |[V2V (x)| < Cm(x)* and estimate L;LiI"(x, y) directly.

[0; LeLi T (x, y)| <

We show Theorem 3 and Theorem 4 by a method similar to the one used in the proof of
[Sh2, Theorem 1.13].

The plan of this paper is as follows. In Section 2, we prove Theorem 1. Section 3 is
devoted to establishing Caccioppoli type inequalities, which we need to complete the proof
of Theorem 3 and Theorem 4. In Section 4, we prove Theorem 3. In Section 5, we prove
Theorem 4.

The authors would like to express their gratitude to the referee for helpful comments.
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2. Proof of Theorem 1. Theorem 1 is easily proved by the following pointwise esti-
mates. These estimates generalize the results in [Zh, Lemma 3.2] and [KS, Theorem 1.3] to
the magnetic Schrodinger operators. For the rest of this paper, we set m(x) = m(x, |B| + V).

LEMMA 1. SupposeV, a and B satisfy the condition (3) assumed in Theorem 1. Then
there exist constants Cy, Cy such that

©) Im(x)*f(x)| < CIM(|H(a, V) f)(x) for f e CFR"),

(10 ImG)Lf(x)| < C2M(|H(a, V) f)(x) for f € CZ7(R™),

where M is the Hardy-Littlewood maximal operator.
To prove Lemma 1 we use the following estimates of the fundamental solution for H.
THEOREM 5 ([Sh2]). Suppose a € C2(R™)", V € L}/>?(R"), n > 3and V > 0.
Assume also that

[|B| +V € (RH)p)2,
|VB(x)| < Cm(x)3.

Then for any positive integer N there exists a constant Cy such that

Cy 1
{1+m@)x—ypN  |x—yp=2"

I (x, y)| <

THEOREM 6 ([Sh2]). Suppose a € CZ(R™", V € L (R"),n > 3and V > 0.
Assume also that
B|+V e (RH)n/2 ,
V(x) < Cm(x)?,
[VB(x)| < Cm(x)3.

Then for any positive integer N there exists a constant Cy such that

Cy 1
+m@)x —yV  Jx =yl

ILjI(x, y)| < a

REMARK 8. For |x — y| < 1, estimates of the fundamental solution for the operator
H + 1 like above were obtained in [Sh2, Theorem 1.13, Theorem 2.8] under the assumption
given in terms of the inequality (1) which holds for 0 < r < 1. Theorems 5 and 6 are obtained
in the same manner as in the proof of Shen’s theorems, since we assume [B| + V € (RH),2
and the pointwise estimates which are analogues of Shen’s assumptions.
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PROOF OF LEMMA 1. Estimate (9) can be proved as follows. Let u = H(a, V) f and
r = 1/m(x). Then it follows from Theorem 5 that

(O f ()] < fR mPIC G ] )iy

m(x)?|u(y)|
C
= ”fm (I +m@x -y x —yp2

<Cy Z /2 lu(y)

= —dy
it 2t cp—yizair P4 T Hx = yPN | — ypn?

Cx i / L162]

< n -
=D+ 1
<Cn - C = f lu(y)ldy
j;oo A+2I=HN @ir)" Ji_yi<2ir

o) 22]
<CON ) Gy M@
J=—00

Therefore we obtain the desired estimate, if we take N = 3 for example.
The proof of (10) can be done in the same way as above by using Theorem 6. 0

PROOF OF THEOREM 1(1). The boundedness of the operators VH™ ! and V'/2LH"!
immediately follows from Lemma 1 and the fact that the Hardy-Littlewood maximal operator
is bounded on Morrey spaces ([CF, Theorem 1]).

PROOF OF THEOREM 1(2). Let f € C°(R"). Note that

1
(11) LjLy = =0} —a;Ly —aLj - ~0jai —aja,

n
1
(12) H@V)=—-A+V -=2) a;L;— —diva— |a]*.
. l
j=1

By (11), we have

(13) L2 fllpop < CIVZ fllpou + ClmLE pou + Clim® fllp -
Here we have

(14) 1V fllpu < CUASpou -

which follows from [CF, Theorem 3], since V2(—A)~! is a Calderén-Zygmund operator. By
using (12) we can control the term | Af ||y, .. Then, using Lemma 1, we arrive at the desired
estimate. O

3. Caccioppoli type inequalities. In this section we establish the Caccioppoli type
inequalities given in the following lemmas.
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LEMMA 2 (see [Sh2, Lemma 1.2]). Suppose H(a, V)u = 0 in Br(xo). Then there
exists a constant C such that

C
/ [Lu(x)|?dx < - lu(x)dx .
BRry2(x0) R BR(xo)

LEMMA 3. Suppose H(a, V)u = 0in Bgr(xg) and

IVV(x)| < Cm(x)3,
|VB(x)| < Cm(x)3.
Then there exist constants C, k| such that
C{1+R ki
f IL2u(x)2dx < ﬁ—'f—(xﬂ—/ u(x)|2dx .
BRrya(xo) R Bgr(x0)

LEMMA 4. Suppose H(a, V)u = 0in Bgr(xg) and
V2V (x)] < Cm@x)*, |[VV(x)| < Cm(x)?,
IV2B(x)| < Cm(x)*, |VB(x)| < Cm(x)*.
Then there exist constants C, ko such that
C{1+R k2
/ ]L3u(x)|2dXS {—+_’:£ﬂ}__/ |u(x)|2dx.
Bprys(xo) R BRr(xo)

The next Lemma 5 is used in the proof of Lemmas 3 and 4, and is also used in the
following sections to prove our theorems.

LEMMA 5 ([Shl, Lemma 1.4(b), (c)]). Suppose U € (RH),;2 and U > 0. Then there
exist constants Cy, Ca, ko such that
(15) m(y,U) < Ci{l + |x — ylm(x, U)}om(x, U),
U > Com(x, U) '
{1+ |x — y|m(x, U)}ko/ko+1)
PROOF OF LEMMA 3. Note that,forl < j <n,1 <k <n,

(16) m(y,

1 1
(17) [Lj,Lil=LjLy— LgLj = l—.(akaj — djak) = lfbjk,

[Li, L2+ V] = Lj[Ly, Lj]+ [Ly, LjIL; + [Ly, V]
(18) 2 1
= lfbkij + lfakV —0jby; .
Hence we have

H(a, V)Lyu = —[Ly, H(a, V)lu = = Y [L, L3 + V]u
j=1

“ 2 1
= Z {_l_'bkiju - (lfakV - ajbkj) u] .
j=1
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Letn € C8°(BR/2(x0)) such that n = 1 on Bg/4(xp) and |Vn| < C/R. Multiplying the
above equation by n?Lu and integrating over R" by integration by parts, we have

n
fR L;(Lgu)L j(n*Lyw)
n =1

(19) ! ) | ’
—Zbi(Liw)n*Liu — | =8,V — ;b Yun*Liut .
5/,, Z[ ibkj( jun” Lyu (i k j k,)m) ku}

n
j=1

The left hand side of (19) is equal to

1 2
f }:{(L,-Lku)zn2+~.n(L,~Lku>-a,-nLku} :
n j=l 1
Hence we have

/ IL2u(x)|*n(x)%dx <C / IVn(x)?|Lux)|?dx + C f IB(x)||Lu(x)|?n(x)*dx
R" R" R"
+ C/Rn('w(")' + [VB) ) (x) | Lu(x)|n(x)2dx .

By (15) and Lemma 2, we then obtain

/ |L2u(x)|?dx
Bprya(xo)

C C{1+R 2(ko+1)
<— L) Pdx + LRG0 / |Lu(x)2dx
BR/2(x0) R BRr/2(xo)

C{1 4+ Rm(xq)}>kot+D 1
4 Ut RmGo)} : R/ (lLu(x)|2+ —2|u(x)|2) dx
R Bgrj2(x0) R

R ki
< St Rmbo)l? / ()P,
R BR(x0)

where k1 = 3(kg + 1). O

PROOF OF LEMMA 4. Note that,forl < j<n,1 <k <n,1<I[<n,
[LiLy, L? + V] = Li[Ly, L? + V1+[Lk, L? + VIL,

2 2 1
(20) = ?bleij + ?bkijLl —20¢b;;Lj + (lfa,V — 3jb[j>Lk

1 1
+(l—,3kV - 8jbkj> L, — <3,%IV + l—,a,fjb,,) ,
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where we used (18). Hence we have
H(a, V)LyLju

n
= —[L¢L;, H@, V)]u = "Z[LkLl, L? 4 Viu
j=1

d 2 2 1
= Z ['—Tbleiju — by LjLiu+ 20kbyjiLju — (;BIV - ajblj) Lyu
i i
=1

1 1
- (l—_akV - ajbk,-) Liu+ (3,?,V + lfa,fjblj) u} .

Let n € C§°(BRrya(xo)) such that n = 1 on Bg/g(xo) and |[Vn| < C/R. Then as in the
proof of Lemma 3, we have

(21)

/ IL3u(x)?n(x)%dx <C / IV L2u(x)|dx + C f IB(x)[|L%u(x)[>n(x)%dx
R" R" Rn
+C /R (IVV @)+ [VB@) D Lux)[|Lux)|n(x)*dx
- Cf VAV (@)| 4 [V2Bx) ) [u (o)l L2u(x) I (x)?dx .
Rn

By (15) and Lemmas 2 and 3, we then obtain

/ [L3u(x)|?dx
Brs(xo)

C Cc{1 R 2(kp+1)
<— \L2u)Pdx + S0 m(:")} f IL2u(x)2dx
Bgya(xo) R Bgrya(xo)
C{1 4+ Rm(xq)y>*ot+D 1
+ & o)} : Rf (|L2u(x)|2+ —2-|Lu(x)|2) dx
R Bprya(xo) R
C{l+R Alko+1D) 1
N { m(::o)} ) sz <IL2M(X)I2+7IM(X)I2) dx
R Bprya(xo) R
C{1+R ka
< Sl RuGol? f uodx,
R Bg(x0)
where ky = k| +4(ko+ 1) = T(ko + 1). a

4. Proof of Theorem 3. Theorem 3 follows easily from the following subsolution
estimate for L2u.

LEMMA 6. Suppose that H(a, V)u = 0 in Br(xg) for some xo € R" and
Bl +V € (RH)n2,
V2V (x)| < Cm(x)*, |VV(x)| < Cm(x)3,
[VZB(x)| < Cm(x)*, |VB(x)| < Cm(x)*.
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Then for any positive integer N there exists a constant Cy such that
c 1 1 12

R L2 = T Rl * T <|BR(xo>| Br) '”(x)lzdx) '

Assuming this lemma for the moment, we give

PROOF OF THEOREM 3. Note that, by the diamagnetic inequality

e @V £1(x) < e MOV £1(x)

for ¢t > 0 (see [Si], [LS]) and V > 0, we have
(23) |H@, V)7 f100) < (=8) 7' |f1x) for f € CPR™).

Then we have

C
24 I'(x, < —.
24) P S s

Fix xg, yo € R" and put R = |xo — yo|. Then u(x) = I'(x, yp) is a solution of H(a, V)u =0
on Bg,2(xo0). Hence, combining (22) with (24), we arrive at the desired estimate. O

To prove Lemma 6, we need Lemmas 3 and 5 proved in Section 3 and the following
subsolution estimates.

LEMMA 7. Suppose that H(a, V)u = 0 in Br(xo) for some xo € R" and

{IBI +V e (RH)np,
|VB(x)| < Cm(x)3.

Then for any positive integer N there exists a constant Cn such that

CN 1 5 1/2
(25) sup  |u(y)| < ( lu(x)| dx) )
v Baneo) T+ RmGo)N \1BrGo)l Jagce0)

PROOF. In the same way as in the proof of [Sh2, Lemma 1.11], forall 0 < R < oo we
obtain the estimate for |u(xg)|, that is,

(26) lu(xo)| < Cy ( ! Iu(x)|2dx)l/2
Y=+ RmGo)¥ \1Br@o)l Jgeo ‘

Then, (25) follows easily from (26). Indeed, from (26) we have for all y € Bg/2(xp),

c 1 1/2
N 2
d .
|u(y)| < {1 + Rm(y)}N (IBR/4()’)I Br(y) |M(X)| x>

Then, by using (16), we have

CCy 1 .. \"?
sup  |u(y)| < ( |u(x)| dX) .
yeBR/I;(xo) Y {1+ Rm(x0)}N \ |Br(x0)| JBg(x)
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LEMMA 8. Suppose that H(a, V)u = 0 in Bgr(x) for some xo € R" and
Bl +V € (RH)nj2,
V(x) < Cm(x)?,
|VB(x)| < Cm(x)*.

Then for any positive integer N there exists a constant Cn such that

Cwn 1 1 5.\
@7 sup  |Lu(y) < ——N . L (— ()| dx) .
yeBanteo) I+ RmGo))™ R \1BrGo)l Jopey

PROOF. In the same way as in the proof of [Sh2, Lemma 2.7], forall 0 < R < oo we
obtain the estimate for |Lu(xg)|, that is,

Cn 1 1 5 172
(28) [Lu(xo)| £ ————% ' 3 (—— 17163] dX> .
{1+ Rm(x)}¥ R \|Br(x0)| JBr(xo)
Combining (28) with the argument in the proof of Lemma 7, we arrive at (27). O
To prove Lemma 6, we also need

LEMMA 9. Suppose H(a, V)u = f in Br(xg). Then there exists a constant C such
that
172

l/q
_ lu(x)|9dx <C (; |u(x)|2dx>
|Br/8(x0)| J Bgs(x0) T \IBRr(x0)| JBr(xo)

1/p
+CR? ( If(x)l”dx) ,

|BRr(x0)| JBg(xo)
where2 < p<qg <ocandl/q>1/p—2/n.
See [Sh2, Lemma 1.3] for the proof. Now we are ready to give

PROOF OF LEMMA 6. Let2 < p <g <ooand 1/q > 1/p —2/n. Then it follows
from (21) and Lemma 9 that

1 1/q
S — [L%u(x)|9dx
<|BR/64(XO)' BRryea(xo)

1 1/2
<C (— |L2u(x)|2dx)

|Br/8(x0)| J Bg/s(x0)

1/p
+CR | —— {IBOOIIL2u(x)|}Pdx
'BR/S(XO)' Bpryg(xo)

1/p
+CR* | —— {(IVV ()] + IVB(x) )| Lu(x)|}Pdx
[Br/8(x0)| JBg/s(x0)
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1 1/p
+CR* | {(IV2V ()| + IV2B@)]) |u(x)}Pdx
[Br/8(x0)| JBg/s(x0)

172

1 R k1/2 1

SC{ + mz(xO)} lu(x)|?dx
R |Br/2(x0)| J Bg/2(x0)

+ CR*{1 + Rm(x0)}*°m(x0)* <

1/p
- |L%u(x)|Pdx
|BR/8 (x0)| Bpgs(x0)

1/p
1
+ CR*{1 + Rm(x0)}*om(x0)* | ——— |Lu(x)|Pdx
|Br/8(x0)| JBg/s(x0)
1 1/p
+ CR*{1 + Rm(xp)}*om(xp)* | —— lu(x)|Pdx
|Br/8(x0)| JBgs(x0)
C{1 + Rm(xo)}®> 1 v
< 5 0 |u(x)|2dx
R |BR/2(X0)| J Bg/2(x0)

1

+ C{1 + Rm(xo)2*ot) [ ———
|BR/8(x0)| J Bg/s(xo)

1/p
|L2u(x)|pdx> ,

where k3 is a constant depending only on ko and we have used (15) and Lemmas 3, 7 and 8.
A bootstrap argument combined with Lemmas 3 and 7 then yields that

12
C{1 4+ Rm(xg)}* 1
IL?u(x0)| < i lu(x) PPdx
R |Br/2(x0)| JBg/2(x0)

1/2
+C{1 4+ RmGxo) | ——— |L?u(x)|dx
|Br/8(x0)| JBg/gx0)

1/2
cl1 R k1 /2+k4 1
< ClL Rmto)) ju(x) Pdx

R? |BR/2(X())| Bpg/2(x0)
C 1 1 172
< ——N—N- © 5 (——— |u(x)|2dx) )
{1+ Rm(x0)}¥ R \|Br(x0)| JBg(xo)
where k4 is a constant depending only on n and kq. O

5. Proof of Theorem 4. We need the following lemma to prove Theorem 4.
LEMMA 10. Suppose that H(a, V)u = 0 in Bg(xo) for some xo € R" and
Bl +V € (RH)n2,

V3V (x)| < Cm(x)°, |V2V(x)| < Cm(x)*, |VV(x)| < Cm(x)?,
IV3B(x)| < Cm(x)®, |V?B(x)| < Cm(x)*, |VB(x)| < Cm(x)3.
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Then for any positive integer N there exists a constant Cp such that

3 Cyn 1 1 . \?
@) s LuG) < —N L (—— )| dx) .
YE€BR/2(x0) {1 + Rm(xO)}N R3 |BR(X0)| Bpr(xp)

PROOF OF THEOREM 4. Fix xg, yo € R" and put R = |xg — yo|- Applying (29) to
u(x) = I'(x, yp) and using (24), we obtain the estimate

ILjLyLiT (x, y)| < Cu !

- x, y)| < . .

SIS W m@l =y =yt

Then, using the assumption on a and Theorem 3, we arrive at the desired estimate. ]

PROOF OF LEMMA 10. Letl <j<n,1<k<n,1<l<n,1<m=<n. By(l8)
and (20) we then have

n
H(@, V)LyLiLytt = =[LgLiL, H(@, V)]t = =Y [LgLiLm, L} + V]u
j=1

n
= =Y {LLiLm, L5 + VIu + [Lg, L3 + VILiLyu)
j=1

z 2 2 2
= Z [ — ?bmijLleu 7 bijj Ly L;jLyu — lfbkijL[Lmu + 20kbm; LI L ju

30 1
(30) +20kbyji L jLinu + 201bpmj L L ju — (—_amV — 3jbmj)LkL1u
1

1 1 2
—(Ta,v — ajblj)LkLmu - (Takv - 3jbkj>L1Lmu + Z87)bmj L ju
l 1 4
1 1
+<a,3,,,v + ;ijbmj)Llu + (a,f,v + ;a,fjb,,)L,,,u
1 1
+(a,2mv + 78,2jbmj>Lku + (73,’;‘,mv - a,?,jbm,-)ul :

Let2<p<g <ooandl/q > 1/p —2/n. Then it follows from (30) and Lemma 9 that

| 1/q
- [L3u(x)|qu
|Br/128(X0)| J Bg)128(x0)

| 1/2
<cf——M |L3u(x)|?dx
[BR/16(x0)| JBR16(x0)

l/p
+CR (s (IBO)IIL u(x)|}Pdx
|BRr/16(x0)| J B16(x0)

1/p
+CR* | —— {(IVV )]+ IVB@)DIL2u(x)]}Pdx
IBR/S(xO)' Bprys(xo0)
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1/p
+ CR? _ {(IV2V ()| + V2B | Lu(x)|}Pdx
IBr/16(x0)| J B 16(x0)
. 1/p
+yerr( 1 UV’ V @)+ VB DIu(x)[}Pdx
IBr/16(X0)| J B /16(x0)
172
C{1 + Rm(xq)}2/2 1 2
d
= R3 IBR/Z(x0)| Bgr2(x0) |u(x>| *

1

+ CR*{1 + Rm(x0)}*m(x0)? | ———
|Br/16(X0)| J BR16(x0)

1/p
|L3u(x)|”dx)

1/p
+ CR?*{1 + Rm(x0)}*m (x)> ( |L2u(x)|pdx)

|Br/16(x0)| J Brj16(x0)

+ CR*{1 + Rm(x0)}*om(x0)* (

1/p
— |Lu(x)|Pdx
IBR/IG(XO)I Br/16(x0)

1/p
+ CR?*{1 + Rm(x0)*m(xp)° ( |u(x)|pdx>

IBRr/16(x0)| J B 16(x0)

C{1 4+ Rm(xg)}*s 1 2
< 0 ( |u(x)|2dx>

R3 |BR/2(x0)| JBg2(x0)

+ C{1 4 Rm(xp)p2*otD | ——
|Br/16(X0)| JBR)16(x0)

1/p
|L3u<x>|"dx) ,

where ks is a constant depending only on ko and we have used (15) and Lemmas 4, 6, 7 and
8. A bootstrap argument combined with Lemmas 4 and 7 then yields that

1/2
C{1 + Rm(xg)}* 1

L3 2d

IL7u(x0)l = R3 (IBR/z(xo)i Brya(x0) @l x)

1/2
+C{1 + Rm(xp)}¢ | ———— |L3u(x)|?dx
|Br/16(x0)| J B 16(x0)

1/2

cil R ko /2+ke 1

< {1+ m(3xo) lu(x)|2dx
R |BR/2(x0)| J Bg2(x0)

c 1 1 172
< (—— |u(x>|2dx) :
{1 + Rm(x0)} R> \ |Br(x0)| JBg(xo)
where kg is a constant depending only on n and k. a
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