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Abstract. Proved are transference results that show connections between: a) multipli-
ers for the Fourier-Bessel series and multipliers for the Hankel transform; b) maximal opera-
tors defined by Fourier-Bessel multipliers and maximal operators given by Hankel transform
multipliers; c) Fourier-Bessel transplantation and Hankel transform transplantation. In some
way the connections described in a) and b) can be seen as multi-dimensional extensions of the
classical results of Igari, and Kenig and Tomas for the one dimensional Fourier transform. We
prove our results for the non-modified Hankel transform in the power weight setting, and this
allows to translate them also to the context of the modified Hankel transform. Together with
Gilbert's transplantation theorem, our transference shows that harmonic analysis results for the
Hankel transform of arbitrary order are consequences of corresponding results for the cosine
expansions.

1. Introduction. There are a number of theorems relating Lp multipliers on R and its

discrete subgroup Z. One of them, which is a converse to a well-known theorem of de Leeuw,

is the following result proved by Igari.

THEOREM ([11]). Let 1 < p < oo and assume that m is a bounded function on R,

continuous except on a set ofLebesgue measure zero. If{m(εn)} e Mp(Z)for all sufficiently

small ε > 0 and \[minfε^0+ \\m(εn)\\Mp(Z) < oo, thenm e Mp(R) and

\\m\\Mp{R) < liminf | |m(εn) | | M p ( Z ) .

Here Mp(Z) and Mp(R) denote the spaces of Lp-multipliers on Z and R respectively,

and \\mn\\MP(Z) or \\m\\Mp(R) denote the multiplier norms of mn or m, that are the norms of

Fourier multiplier operators associated to mn or m acting on Lp(0, 2π) or LP(R).

Igari [12] then found another interesting relation between multipliers for the Jacobi poly-

nomial expansions and the (modified) Hankel transform multipliers. This relation was suc-

cessfully exploited by Gasper and Trebels [5] to furnish sufficient conditions for the Hankel

transform multipliers by means of known sufficient conditions for the Jacobi multipliers.

A theorem relating maximal operators defined by Fourier multipliers on R and Z was

proved by Kenig and Tomas [14], and Kanjin [13] then showed a similar relation between

maximal operators defined by Jacobi multipliers and maximal operators defined by Hankel
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multipliers. The last relation was then used by Kanjin for proving a.e. convergence of spher-

ical means for radial functions on Rn by using known Lp-estimates for maximal partial sum

operators for Jacobi polynomial expansions.

The aim of this paper is, among others, to prove that similar relations of Igari and Kan-

jin hold true between multipliers for the Fourier-Bessel expansions and the Hankel transform

multipliers. It is quite natural to expect such a relation, since in both, Fourier-Bessel expan-

sions and Hankel transform of the same order, the same kind of Bessel function is involved.

We mention at this point that the, somehow misterious, relation between Jacobi expansions

and the Hankel transform is based on Hub's asymptotic formula that asymptotically links

Jacobi polynomials and Bessel functions.

Besides relations of Igari and Kanjin type we also show a relation between the transplan-

tation for Fourier-Bessel series and that for the Hankel transform. Such type of relation has

been recently proved in [22] for Jacobi series and Hankel transform. It should also be noted

that in a series of papers, [19], [20] and [22], relations of Igari and Kanjin type, as well as the

relation just mentioned, have also been proved for Laguerre series replacing Jacobi series.

Finally, we note that we use the non-modified Hankel transform in the polynomial

weights setting. This easily allows to translate obtained results to the (unweighted) modified

Hankel transform context. The results of Igari and Kanjin were proved in the (unweighted)

modified Hankel transform setting.

Throughout this paper, by [a] we understand the integer part of a. As usual in such

occasions the letter C will denote a positive constant that may vary from line to line.

2. Preliminaries and statement of results. Given v > — 1 and / , a suitable function

on (0, oo), its (non-modified) Hankel transform is defined by
poo

Hvf(x) = (xyγl2Jv{xy)f(y)dy, x>0,
Jo

where Jv{x) denotes the Bessel function of the first kind and order v, [16]. Then (7ίv o

Hυ)f = f and \\nvf\\L2{0tOΰ) = | | / | | L 2 ( o i 0 0 ) for any / e Cc°°(0, oo), the space of C 0 0

functions with compact support in (0, oo). These two facts are known in the literature for

v > —1/2; in Lemma 2.7 we furnish a proof that works for any v > — 1.

Given 1 < p < oo and a real number a, by Lp'a (0, oo) we denote the weighted Lebesgue

space of all (equivalence classes of) measurable functions g on (0, oo) for which the quantity

a oo \ \/p

\g{x)\pxadx\
is finite. For α = 0we simplify the notation writing \\g\\p and Lp(0, oo).

A bounded measurable function m on (0, oo) (genuine function, not equivalence class)

is called a weighted Lp'a Hankel multiplier provided that
WHv(m>Hvf)\\p,a<C\\f\\p,a

with a constant C independent of / in C£°(0, oo). The least constant for which the above

inequality holds is called the multiplier norm of m and is denoted by I
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Given v > — 1, let λn = λn ? v, n = 1,2,... , denote the sequence of successive positive

zeros of Jv(x). Then

l 1
/

Jo

1
Jv(λnx)Jv(λmx)xdx = -(Jv+\(K)Ϋδnm , n, m = 1, 2,... ,

2
and the functions

n = 1,2,..., form a complete orthonormal system in L2((0, 1), <ijc) (for completeness, see

[10]). In particular,

ψ~l/2(x) = Λ/2cos(τrjc(n - 1/2)), ^ /J
/ 2

for n = 1,2, The functions ψ^(x) are eigenfunctions of the differential operator (sym-

metric on L2(0, 1))

J 2

 | 1/4-v 2

More precisely, we have

(2.1) Lvψ
v

n(x) =-λ2

nψ
v

n(x).

To every appropriate function / on (0, 1), for instance / e C£°(0, 1), we associate its

Fourier-Bessel series

1

The last integral will be frequently denoted by (/, ψ^) In general, we will write ( , )χ for

the inner product in a Hubert space X.

A comprehensive study of Fourier-Bessel expansions is contained in Chapter XVII of

Watson's monograph [24]. Slightly abusing the notation we will use the symbols Lp'a and

|| \\Pίa in the same sense as before, but now restricted to functions defined on (0, 1). A

bounded sequence {m n )^j is called a weighted Lp'a Fourier-Bessel multiplier provided

<C\\f\\p,a

p,a

(with cv

n defined above) with a constant C independent of / in C£°(0, 1) (for such an / the

series Y^° mnc
v

nψ^{x) converges pointwise, cf. Lemma 2.5). The least constant C satisfying

the above inequality is called the multiplier norm of {mn}™=χ and it is denoted by \\mn \\{p,a)

We will use the asymptotics of the sequence {λn}°°=ι:

(2.2) λn = π{n + Dv + O(n~1)), Dv = V- - l- ,

(2.3) dn%v =



112 J. J. BETANCOR AND K. STEMPAK

Also, we will use the well-known bounds for the Bessel function Jv(t):

(2.4) Jv(t) = O(tv), t -> 0 + ,

and

(2.5) Jv(t) = O(Γι/2), t^oo.

From now on we assume v > — 1 to be fixed, and hence the Fourier-Bessel expansions and

the Hankel transform we consider are both related to the index v.

THEOREM 2.1. Let 1 < p < oo, a e R and m(x) be a bounded function on (0, oo)

continuous except on a set of Lebesgue measure zero. If {m(ελn)} is an Lp'a(0, 1) Fourier-

Bessel multiplier for all sufficiently small ε > 0 and liminfε^o+ \\m(ελn)\\(p,a) is finite, then

m(x) is an Lp'a(0, oo) Hankel transform multiplier and

\\m(x)\\(p,a) < liminf | |m(ελπ)| | ( /, j f l).

For p = 1 and α = 0 w e have a weak type (1,1) substitute of Theorem 2.1. Such a sub-

stitute of Igari's result from [12] for Jacobi expansions was proved by Connett and Schwartz

[4].

A bounded sequence {mπ}^, is called a weak type (1,1) Fourier-Bessel multiplier pro-

vided

1 c
> s Ξ — I l / H lI* € ( 0 , 1 ) ;

' l

with a constant C independent of / in C^° (0, 1) and s > 0 (| A | denotes the Lebesgue measure
of a measurable set A c (0, oo)). The least constant C satisfying the above inequality is called
the weak multiplier norm of {m n }^ , and is denoted by | | w π | | w ^ Similarly, a bounded

measurable function m on (0, oo) is called a weak type (1,1) Hankel transform multiplier

provided

\{x e (0, oo); \Hv(m Hvf)(x)\ > s}\ < -\\fh
s

with a constant C independent of / in C^°(0, oo) and s > 0. The least constant for which the

above inequality holds is called the weak multiplier norm of m and is denoted by \\m || weak

THEOREM 2.2. Let m(x) be a function on (0, oo) as in Theorem 2.1. If {m(ελn)}

is a weak L^O, 1) Fourier-Bessel multiplier for all sufficiently small ε > 0 and

liminfε^o+ \\m(ε^n)\\weak is finite, then m(x) is a weak L[(0, oo) Hankel transform multi-

plier and

\\m(x)\\weak < liminf \\m(ελn)\\weak .

Given a bounded measurable function m(x) on (0, oo), define the maximal multiplier

operators

Mlf{x) = sup \Hv(m(ε.)Hvf)(x)\, / € Cc°°(0, oo),
ε>0
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and

M*mf(x) = sup
ε>0

/ € Cc°°(0, 1).

THEOREM 2.3. Let 1 < p < oo, a e R and m(x) be a function on (0, oo) as in
Theorem 2.1. If

\\M*mf\\p,a < C\\f\\p,a

with a constant C > 0 independent of fin C£°(0, 1), then

\\M*mf\\p,a<C\\f\\p,a

independently of fin C£°(0, oo) {with the same constant C).

Guy [8] showed that the size of the Hankel transform of any suitable function, when
measured in the (weighted) L^-norm, remains the same whatever the order of the Hankel
transform is. More precisely, given v, μ > —1/2, 1 < p < σo and —1 < a < p — 1, there is

a constant C = C(v, μ, p, a) such that for every appropriate function /

C-{\\Hβf\\p,a < \\Hvf\\p,a < C\\Hβf\\p,a

In another way, this can be expressed as

\\(HV o Hμ)f\\Pta < C\\f\\p,a , / G Cc°°(0, OO) .

(The range of eligible α's can be enlarged to — p{v + 1/2) — 1 < a < p(μ + 3/2) — 1,

see [22]). The transplantation theorem for the Fourier-Bessel expansions says (cf. [6] for

unweighted version; adding weights requires only minor modifications) that for μ, v, p and a

as above

with C > 0 independent of / in C^°(0, 1).

We prove the following result.

THEOREM 2.4. Let 1 < p < oo, a e R and v, μ > - 1 . If the Fourier-Bessel

transplantation inequality

1 P,a

holds true, then the Hankel transplantation inequality

II(Wv o Hμ)f\\p,a < C\\f\\p,a , / € Cc°°(0, Oθ) ,

is also satisfied (with the same constant Q.

For the sake of completeness we now state and prove three auxiliary results. In the

first lemma we show that the Fourier-Bessel series with a C£°(0, 1) function / involved, is

pointwise convergent and hence makes sense.
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LEMMA 2.5. Let v, μ > - 1 and f e C^°(0, 1). Then the series

Σ
1

converges absolutely for every x, 0 < x < 1. A/so, i/ ( m ^ ^ j w α bounded sequence, the

series ΣT mncn(f)Ψn(χ^ converges for every x, 0 < x < 1, αrcd represents a continuous

function on (0, 1).

PROOF. For any fixed positive constant 0 < c < 1 we have

0 < x < cn~ι

(2.6) I^WI < C \ _λ

I I , en < x < 1.

This follows from (2.2)-(2.5). Next, using (2.1) we get

which gives (/, V^) = O(n~2) and, together with (2.6), proves the lemma (on every (ε, 1),

0 < ε < 1, the series are uniformly convergent). D

A bit of comment is now appropriate on the question why Ήv(m Ήvf) is well-defined

for / in C£°(0, oo) and m is bounded when —1 < v < —1/2. Clearly Ήvf{y) is a continuous

function on 0 < y < oo and, by using (2.4),

(2.7) Hvf{y) = 6>(y y + 1 / 2 ), y -• 0+ .

Also, by using the asymptotic

( ) b S m ( * + C y ) O(Γ2)J ί -> oo ,av) + bv

 S m ( * + C y ) + O(Γ2)

(for certain av, bv and cv), we get

(2.8)

Hence, for any bounded function m(y), the function y —• (xy)x / Λ(-xy)w(y)Wy/(y) is

Lebesgue integrable on (0, oo), and therefore Hv(m Hvf){x) exists for any x,0 < x < oo.

A similar comment applies to the definition of (HvoΊ-ίμ)f(y) when at least one of the indices

v, μ lies in ( - 1 , -1/2).

LEMMA 2.6. Let v, μ > - 1 , g e C^°(0, oo), ga(x) = g(ax), a > 0, and take a so

large that the support of ga is contained in (0, 1). Given N = 1, 2, . . . am/ ΛΓ > 0, there is a

constant C = CM,K such that for 0 < x < K and large a

MM
£<4c*,V^>W-) <Cχ y + 1 / 2 .

1

PROOF. We have

1 C°°
9a,Ψ!ϊ) = - / g(u)ψ£(u/a)du.

Oi JO
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If g is supported in (m, M), 0 < m < M < oo, then for 0 < u < M, 0 < x < K and

n < N[a] we have u/a < cnΓx and x/a < cn~x with c = Λf max{M, K}. Hence, by (2.6)

and

Therefore,

D

In the third lemma we prove the inversion formula and PlanchereΓs identity for any

C^°(0, oo) function / and the Hankel transform Hv of any order v > — 1. Known proofs

of these two facts usually use the assumption v > —1/2. The argument we apply in the

proof is standard but seems not to appear in the existing proofs of the inversion formula and

PlanchereΓs identity for the Hankel transform.

LEMMA 2.7. Let v > - 1 and f e C^°(0, oo). Then \\Hvf\\2 = II/II2 and

f{x) = I (xy)ι/2Jv(xy)Hvf(y)dy
Jo

for every 0 < x < 00.

PROOF. For any N > 0 the system

is a complete orthonormal system in L2((0, ΛO, dx). Given / € C^°(0, 00), take N so large
that the support of / is contained in (0, Λ0 We claim that

(2.9) f(χ) =
1

for any 0 < x < N. This follows from the fact that the series in (2.9) converges to / in

L2((0, ΛO, dx). Hence, we can choose a subsequence of partial sums

SN(k)f(x) =

N(l) < N(2) < , converging to / almost everywhere on (0, N). Now, by scaling the

result of Lemma 2.5, the series in (2.9), and hence the sequence Syv(^)/O0, converges for

every x in (0, N) and represents a continuous function on (0, N) and the claim follows.
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Rewriting (2.9) gives

— λn

N

We now claim that the sum represented by the first series converges, when N -> oo, to

p
/

Jo

while the sum given by the second series approaches zero. To simplify the notation we write

hx(y) = (xy)l/2Jv(xy)Hvf(y). By (2.4), (2.5), (2.7) and (2.8), hx{y) = 6 > ( / y + 1 ) , y ^

0 + , and hx(y) = O(y~2), y -> oo. Therefore, given large M > 0 and small 8 > 0, we have

oo

Σ
MiV+l

( *

- λn

N
c 1

and, in case — 1 < v < —1/2,

[δN]

Σ hx[ — \'

with C independent of N -> oo, M and 8. If v > -1/2, /ϊjt(.y) is bounded on (0, oo) and

N

— λ r°°
n - / A^ίyMy

Jo

Σ / An

1
oo

Σ
MN+\

^

Ax ^

pπM

Jo

pOO

- / |Λ
A M

The last three terms are sufficiently small for large N provided we first choose appropriate M.

If — 1 < v < — 1 /2, then, in addition to cutting off from infinity, we have to separate off from
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zero, since now hx (y) is unbounded there. We write

117

oo

Σ'
1

λn+λ-λn -f
Jo

Σ <
[8N]<n<MN

N

— λ

N

rπM

- - / hx(y)dy
Jπδ

oo

Σ
MN+l

hx —

N
• /

Jo
\hx(y)\dy

N
/ \hx(y)\dy.

JπM

Again all three terms are sufficiently small for large N, provided we first choose appropriate

M and 8.

To finish the proof of the inversion formula, it suffices to check that the remainder term

in (2.10) approaches zero. Since d% v + λn — λn+\ = 0{n~λ) (this follows from (2.2) and

(2.3)), by using (2.4), (2.5), (2.7) and (2.8), we bound the absolute value of the second series

in (2.10) by a constant multiplied by

1 //i\2v+i 1

) +

1

which is o{\) as N —> oo, considering separately the cases — 1 < v < —1/2, v = —1/2 and

-1/2 < y.

The proof of PlanchereΓs identity follows similar lines. For large Λf

00r
Jo

\f(x)\2dx - , f{t))L2mN)Mί)\
1

- λn)/N

dlv - λn+X + λn)/N .

Since, by (2.7) and (2.8), the function Ήvf(y) is square integrable on (0, oo), the first sum

above converges to

f
Jo

\nvf(y)\2dy

when N -^ oo, while the sum of second series is o{\) if

appropriate cutting off at infinity and, if necessary, at zero.

oo. Clearly, we apply

D
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REMARK. Careful analysis of the proofs of Theorems 2.1 through 2.3 furnished in

the next section reveals that in these theorems the multiplier sequence {m(ελn)} can be re-

placed by {m(εn)}. This is important for a possible applications since, for instance, measur-

ing smoothness of the sequence {m(εn)} for given m is much easier than doing the same for

{m(ελn)}. Similar remark applies to Theorems 4.1 through 4.3 stated in Section 4.

3. Proof of theorems. In this section Theorems 2.1 through 2.4 are proved. Through-

out, given g e C£°(0, oo) and a > 0, we use ga to denote the function defined by ga(x) —

g(ax), x > 0. Also, we assume a to be sufficiently large; in particular, we assume ga to be

supported in (0, 1). We would like to point out here that in several places of the proofs the

case —1 < v < —1/2 requires additional efforts (this has been already seen in the proof of

Lemma 2.7).

PROOF OF THEOREM 2.1. Fix g e C^°(0, oo). By assumption,

< \\m(λn/a)\\{p,a)\\ga\\p,a
1 p,a

and a change of variables then gives

\\Fa\\p,a< \\m(λn/a)\\(Pta)\\g\\p,a,

where we denote

oo

1

L e t L = l iminfα-^oo \\rn(λn/a)\\(p,a). T h e r e exists a s e q u e n c e 0 < a\ < oti < ••-,«; —> o o ,

s u c h that L = rim;_*oo \\m(λn/(Xj)\\(D a

(3-D \\Faj\\Pta<(L + l/j)\\g\\p,a, j eN.

On the other hand, since m is bounded, |m(;c)| < B, x e (0, oo), we have

(3.2) l |F β , | | 2 <B| | f f | | 2 , je*-

From (3.1) and (3.2) it follows that there exists a subsequence of {(Xj}jeN (c aU it

again {aj}j€j\i), such that {Faj}je^ converges weakly to a function F both, in L2(0, oo) and
Lp'a(0, oo). Moreover, (3.1) also gives

\\F\\p,a <L\\g\\Pta.

To finish the proof we show that

(3.3) F(x) = HΛmΉvg){x)

for almost every x in (0, oo).
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For any given N = 1, 2 , . . . , we will use the decomposition

/N[a] oo \
)

1 N[a]+\J

= Fa
w(x) + Ha

w(x), J C € ( 0 , O O ) .

Using (2.1) and the symmetry and homogeneity of the differential operator Lv leads to

(9a, Ψv

n) = -(a/λn)
2((Lvg)a, ψv

n), n e N.

Fix N e N. Applying the above identity and ParsevaΓs identity then gives

f
Jo

oo oo

\H?(x)\2dx=a Σ \m(λn/a)\2\{g^ψv

n)\2

0 N[ct]+\

oo

< CBa

1

= —.\ \Lvg(x)\2dx.

Hence, we conclude that
/•OO

\H?(x)\2dx = 0(N~4)Γ
Jo
Jo

uniformly in a —> oo.

Now, by invoking the diagonal argument, we can find a subsequence of {a/}ye# (call

it {aj}jejs[) such that for every N e N, {H^}jeN is weakly convergent to a function HN

in L2(0, oo). Clearly, H/Z^lb = O(N~2), and hence, for an increasing sequence {N^keN

of positive integers, {HNk}keN converges to zero almost everywhere on (0, oo). By defining

FNk = F - HNk, k e N, it is clear that F^k -> FNk weakly in L 2(0, oo), for every k e N.

Moreover, {FNk}iceN converges to F almost everywhere on (0, oo).

We now prove that

rπNk

(3.4) lim F?Hx)= / m(y)Hυg(y)(xy)ι/2Mxy)dy

for every x e (0, oo). Then, by weak convergence in L2(0, oo), (Fa/, X(r,s)) -^ (FNk, X(r,s))

for arbitrary 0 < r < s < oo. Hence, by using the Lebesgue dominated convergence theorem

(this is possible by means of Lemma 2.6), we will get

FNk(x)= / m(y)Hvg(y)(xyΫ/2Jv(xy)dy
Jo

a.e. in (0, oo). Therefore, by letting k —> oo, (3.3) will follow. Thus the proof of Theorem

2.1 will be finished.
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To prove (3.4), fix again N e N and x e (0, oo) and write for a large

N[a]

1

[] d2

' W[

= Ym(λn/a)Hvg(λn/a)(-λn) Jv (-λn) - ^

1/2 1 _ 1

n/a)Hvgfrn/a)(-λn) Jv (-λn) • λ " + ' λ "

-λn) Jv (-λn) - ^ J
Since ^ y — λ n + i + λn = O(n~ι), by using (2.4) and (2.7) we bound the absolute value of

the second sum in (3.5) by a constant multiplied by

1 V

Considering separately the cases—1 < v < —1/2, v = —1/2 and v > —1/2 easily shows that

this bound is o{\) as a ->• oo. Now, it remains to note that the first sum in (3.5) approaches

pπN
I m{y)Hvg(y){xyΫ/2Jv{xy)dy.

Jo

This is clear when v > —1/2, since then the integrand is a bounded Riemann integrable

function on (0, πN) (m(y) is such by assumption). If — 1 < v < —1/2, then by (2.4) and

(2.7), the integrand is O(y2v+ι) as y -> 0 + and hence is Lebesgue integrable on (0, JΓΛO.

Proceeding as in the proof of Lemma 2.7, we take a δ > 0 sufficiently small, cut off from zero

and prove the claim. This finishes the proof of (3.4), and hence (3.3) and Theorem 2.1. D

PROOF OF THEOREM 2.2. Fix g e C^°(0, oo) and s > 0. By assumption,

x € (0, 1); m(λn/a)(ga,ψZ) ψZ(x)
' ' '" ' II s

>s)\< -\\m(λn/a)\\weak\\ga\\ι

which implies

\{x e (0, oo); \Fa(x)\ > s}\ < -\\m(λn/a)\\weak\\g\\ι,
s

where Fa has the same meaning as in the proof of Theorem 2.1. Let L —

liminfα^oo \\m(λn/a)\\weak. We now choose a sequence 0 < a\ < u^ < , otj —> oo, and

a function F in L2(0, oo) such that L = l im^oo Wrn&n/aj)\\weak,

(3.6) \{x 6 (0, oo); \Faj(x)\ > s}\ < ( L + 1 / y ) | | g | | i , jeN,
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and {Faj}jGN converges weakly to F in L2(0, oo). Proceeding as in the proof of Theorem 2.1

(and keeping the notation), we prove that

= Hv(m-Hvg)(x)

a.e. in (0, oo). So it remains only to check that

(3.7) |{JC e (0, oo); \F(x)\ > s}\ < -\\gh , s > 0.

s

Recall that we have to our disposal a subsequence of {OIJ}J^N (called again {(Xj]jeN),

increasing sequence {Nk)keN of positive integers, the decomposition

Faj = FaJ + Ha

Nl,
and the L2(0, oo) functions FNk satisfying the following properties:

(i) FNk converges to F a.e., k -» oo;

(ii) for every k = 1,2,... , Faj

k converges to FNk a.e., j —> oo;

(iii) \\Haf | | 2 = O(Λ^"4) uniformly in j = 1, 2 , . . . .

We use the above properties to show (3.7). Fix 8 > 0. Fatou's lemma then gives

l } |
£-•00

Hence, for a subsequence of {TV̂ } (call it again

(3.8) \{\F(x)\ > s}\ < \{\FNk(x)\ > s}\ + 5 .

Fix £ = 1,2, Fatou's lemma again gives

\{\FNk(x)\ > s}\ < liminf \{\F?!<(X)\ > s}\.
j^oo J

Hence, for a subsequence of {oίj} (call it again {αy})
(3.9) \{\FNk(x)\ > s}\ < \{\F%(x)\ >s}\+δ.

By invoking the diagonal argument, we can assume that (3.9) holds for every k, j e {1, 2,.. .}.

Combining (3.8) and (3.9) then gives

(3.10) |{|F(*)| > s}\ < \{\F*(x)\ > s}\ + 25

for every k, j e {1, 2,...}. We now have

\{\F^(x)\ > s}\ = \{\Faj(x) - H^(x)\ > s}\

< \{\Faj(x)\ > s(l - 8)}\ + \{\H^(x)\ > sδ}\.

By Chebyshev's inequality

Hence \{\Haj

k(x)\ > s8}\ can be made arbitrarily small for sufficiently large k, uniformly in

j = 1,2,.... Let

(3.12) \[\H*(x)\>sδ}\<&
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for k > ko and j = 1, 2 , . . . . Combining (3.10), (3.11) and (3.12) now gives

| { |F(JC)| > s}\ < \{\Faj(x)\ > 5(1 - 8)}\ + 3δ .

Finally, by using arbitrariness of 8 and (3.6), letting j' -> oo shows (3.7) and finishes the

proof of Theorem 2.2. D

PROOF OF THEOREM 2.3. To prove Theorem 2.3 we first define

Mm,εf(x) = Hv(m(ε.)Hvf( ))(x), / e Cc°°(0, oo),

and

Mm,εf(x) = f, ψv

n)ψv

n(x), / e Cc°°(0,

The following linearization result is a reformulation of [14, Lemma 1] to our situation.

LEMMA 3.1. Let l<p<oo,l/p+l/q = l and a e R. Assume that mis a function

as in Theorem 2.1. Then

(i) \\M*mf\\p,a < C\\f\\p,a for all f e Cc°°(0, oo) if and only if with the same con-

stant C > 0,

(3.13) <c
q,a " 1 uq,a

for every finite sequence {gk]k=\ 0/C£°(O> oo) functions and every finite sequence

of positive numbers.

(ii) \\Mnf\\p,a < C\\f\\P,aforall f e C£°(0, 1) if and only if with the same constant

C > 0,

(3.14)

q,a q,a

for every finite sequence {hjc}£=ι ofC™(0, I) functions and every finite sequence {Rk)f=\ of

positive numbers.

Thus, we are now reduced to showing that (3.14) implies (3.13). Let K e N. Choose a

sequence of functions gu e C£°(0, oo) and a sequence of numbers Rk > 0, k = 1, 2 , . . . , K.

To simplify the notation, write gk,a in place of (<7&)α, and assume a is so large that all gk,a,

k = 1, 2 , . . . , K, are supported in (0, 1). By assumption, for every subset S of {1, 2 , . . . , K}

Σ-Mm,Rk(9k,ot)
keS q,a keS q,a

and a change of variables then gives

(3.15)
keS

<c
q,a

Σ
kεS

\9k\\
Wq,a
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where we let to denote
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In particular, in (3.15) we can consider an S consisting of a single element. Also, (3.15) holds

true, by ParsevaΓs identity, for q .= 2 and a = 0. Now we proceed as in the proof of Theorem

2.1: first we choose an α-sequence good for any k = 1, 2 , . . . , K and corresponding weak

limits, and then we obtain required vector valued inequalities. D

PROOF OF THEOREM 2.4. Since the present proof mimics the proof of Theorem 2.1,

we will skip a large part of details. Fix g e C^°(0, oo) and, for sufficiently large a, consider

the function

Ga(x) = X(o.«)0O (0, oo).

By assumption,

\\Ga\\P,a<C\\g\\p,a.

On the other hand, PlanchereΓs identity leads to \\Ga H2 = IIgib-

There exist a sequence 0 < a\ < o?2 < , α 7 —> 00, and a function G e Lp'a(0, 00) Π

L2(0, 00) such that {Gaj }jeN converges weakly to G in Lp'a(0, 00) and L2(0, 00). Moreover,

p,α — C\\9\\p,a It is now sufficient to show that

(3.16) G(x) = (HvoHμ)g(x)

a.e. on (0, oo). This will be achieved by showing that

(3.17) lim (xy)ι/2Jv(xy)Hμg(y)dy,

for every given x e (0, oo) and N e N, and

(3.18)
pa

/ (goί,ψϊ)ψv

n(x/a) dx =

uniformly in a —> 00.

We start with proving (3.18). By using ParsevaΓs identity, we have

Γ
Jo N[a]+\

dx
Jo 7V[α]+l

oo

Σ
N[a]+1

dx

dx
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k 2

— M4 L-<

C r°°

ti Ψn)

Returning to (3.17), note that

Hence, by using (2.3),

/ {9ct > ψ )ψ ( —
l a

a

Σ= - Σ ί- Λ (-λB,

The absolute value of the remainder RN,CI(X) is bounded by a constant multiplied by

N[a]

(3.19)
α

-(v+μ+2)

Considering separately the cases —2 < v + μ < — 1, υ + /x = —1 and v + /x > — 1 easily

shows that this is o(l) as α -> oo. Hence it remains to check that

(3.20) α
pπN

= / (xyΫ/2Jv(xy)Hμg(y)dy.
Jo

The mean value theorem allows to write

'X \ l / 2/X \l/2 /JC \ /JC \ 1 / 2 /JC \

^ μ ) ^
ay

y=yo

where j o is a value between xλn,v/a and xλn,μ/a. Differential properties of Bessel functions

give
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Therefore
d

Ty
and

i, y -> 0 +

= " Σ (-λ"
a

where, as it is easily seen, the absolute value of the remainder PM,U(X) is bounded by a

constant multiplied by (3.19). Hence, again PN,U(X) = °(Ό a s a ~* °°> a n d (3.20) follows

(cutting off from zero is necessary in case —1 < v < —1/2; the argument has been already

discussed in the proof of Lemma 2.7 or Theorem 2.1). The proof of Theorem 2.4 is completed.

D

4. Applications. The modified Hankel transform Hv, v > —1, is defined by

Hvf(x)= v f(y)dmv(y), x > 0 ,

where dmv(y) = y2v+ιdy and / is a suitable function on (0, oo). If v = (n — 2)/2, n =

2, 3 , . . . , the modified Hankel transform Hv replaces the Fourier transform of radial functions

in Rn. Clearly, both Hankel transforms are related to each other by

_ y+l/2 rr // x-(v+l/2) f ( NW x

0,

Hence, by Lemma 2.7, the inversion formula

°° J
= /

Jo
/ j£

Jo (χy)v

and PlanchereΓs identity

II Hvf II L2(dmv) = Wf\\L2(dmv)

hold for any / e C^°(0, oo) and v > — 1. Related to the continuous transformation Hv are

discrete expansions with respect to the complete and orthonormal in L2((0, 1), dmv) system

of functions

Φn(x) = cn,vJv(λnx)/{λnx)v , n = 1, 2, ... ,

where cn,v = dn,vλ
v

n . Multipliers, weak multipliers, multiplier norms, maximal multi-

plier operators for the modified Hankel transform Hv and for {0^}-expansions are defined

analogously to the previous situation (we abuse slightly the notation by using the symbols

|| \\(p,a) and )| \\weak\ now they refer to Hv or {φ%}-expansions). Then we have the following

analogues of Theorems 2.1 through 2.3.

THEOREM 4.1. Let l<p<oo,aeR andm{x) be a function on (0, oo) as in Theo-

rem 2.1. If{m(ελn)} is a {φv

n}-multiplier in L^((0, 1), xadmv)for all sufficiently small ε > 0
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and liminff_>o+ \\m(ε^n)\\(p,a) is finite, then m(x) is an Hv-multiplier in Lp((0, oo), xadmv)

and

\\m{x)\\{Pta) < liminf | |m(ελn)| |(p, f l ).

THEOREM 4.2. Let m(x) be a function on (0, oo) as in Theorem 2.1. If {m(ελn)}

is a weak Lι((0, 1), dmv) Fourier-Bessel multiplier for all sufficiently small ε > 0 and

liminfε^o+ W^i^rdWweak is finite, then m{x) is a weak Lι((0, oo), dmv) Hv-Hankel trans-

form multiplier and

\\m(x)\\weak < liminf ||
0+

THEOREM 4.3. Let 1 < p < oo, a e R and m(x) be a function on (0, oo) as in

Theorem 2.1. If

\\^mf\\LP((0,\),xadmv) < C\\f\\LPaθ,l),xadmv)

with a constant C > 0 independent of fin C^°(0, 1), then

\\M^f \\LP((0,oo),xadmv) < C\\ f\\LP((0,oo),χ"dmv)

independently of fin C£°(0, oo) {with the same constant C).

Wing [25] proved that the partial sum operators

1

for the {τ/> }̂-expansions, v > —1/2, are uniformly bounded with TV —> oo in any Lp((0, 1),

dx), 1 < p < oo. Benedek and Panzone [2] then extended this result to—1 < v < —1/2 and

the /7-range 2/(2v + 3) < p < —2/(2v + 1). Theorem 2.1 thus gives (with m = X(o,i) and

a = 0).

COROLLARY 4.4. Let either v > - 1 / 2 and \ < p < o o o r - \ < v < - 1 / 2 and

2/(2v -f 3) < p < — 2/(2v + 1). Then the Hankel transform partial sum operators

% R>O,

are uniformly bounded in Lp((0, oo), dx).

Observe that uniform boundedness of SJ^/ in the case v > —1/2 is known as Wing's

theorem [26], but the result in the case — I < v < —1/2 seems to be new.

A slight modification of Wing's argument from [25] shows that the partial sum operators

N

1

for the {0^}-expansions, v > —1/2, are uniformly bounded with Λf -> oo in any Lp((0, 1),

dmv), 4(v + l)/(2v + 3) < p < 4(v + l)/(2v + 1). Another modification, of Benedek and

Panzone's result [2], then extends this result to — 1 < v < —1/2 and the p-range 1 < p < oo.

Theorem 4.1 hence gives (with m = X(o,i) and a = 0).
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COROLLARY 4.5. Let either v > -l/2and4(v+l)/(2v+3) < p < 4(v+l)/(2υ+l)

or — 1 < v < — 1/2 and 1 < p < oo. Then the modified Hankel transform partial sum

operators

S%f(x) = HV(X(O,R) • Hvf){x), R>0,

are uniformly bounded in Lp((0, oo), dmv).

Observe that the uniform boundedness of S% f in the case v > —1/2 is known as Herz'

theorem [9], but, as before, the result for the case —1 < v < —1/2 seems to be new. Let

us also mention that an alternative approach to the conclusion of Corollary 4.4 in the case

v > —1/2 is the following: modifying Wing's argument allows proving uniform boundedness

of Sjf in Lp((0, 1), xadx) with a in the Λ^-range —\<a<p — \. Hence, by Theorem

2.1, the conclusion of Corollary 4.4 holds in the weighted setting, and the relation (4.1) then

shows uniform boundedness of S%, R > 0, within the corresponding /?-interval. Therefore,

we could say that both, Wing and Herz results for the Hankel transforms, are consequences

of weighted results for {^J-expansions.

Boundedness of maximal operator associated to the partial sums for the modified Han-

kel transform was proved by Prestini [17]. An alternative proof of this result was given by

Kanjin [13], by transfering a corresponding result for the partial sums of Jacobi expansions

to the Hankel transform setting. As we already mentioned, our transference result, Theorem

2.3 (or, rather, its modified version, Theorem 4.3) substitutes Jacobi by Fourier-Bessel ex-

pansions in Kanjin's result. In fact, estimates of maximal operators for the partial sums of

Fourier-Bessel expansions were known since the paper of Gilbert [6]. In Theorem 1 of [6] a

general maximal transplantation theorem was proved that allowed, for instance, to transplant

Lp Carleson-Hunt maximal inequalities for the trigonometric system to fairly general sys-

tems (with Fourier-Bessel expansions included). This result was put into weighted setting in

[7] (see also [23] where a direct approach is presented following Prestini's ideas). Therefore,

the aforementioned transplanted Lp estimates can be used, via the transference results from

Theorem 2.3 and Theorem 4.3, to obtain the corresponding results for the Hankel transforms.

Gilbert's result [6, Theorem 1], and its weighted extension [7, Theorem 1] also give

a weighted transplantation theorem for Fourier-Bessel expansions (the unweighted case is

stated as Theorem A and Theorem B in [6]). To be precise, for v, μ > —1/2, 1 < p < oo

and —1 < a < p — 1, the transplantation inequality

II

*) <C\\f\\p,a

Wp,a

holds true with C > 0 independent of / e C^°(0, 1). Consequently, Theorem 2.4 gives a

weighted transplantation inequality for the Hankel transform:

II(«v o Hμ)f\\p,a < C\\f\\p,a , f € Cc°°(0, OO) .

This inequality is known as Guy's transplantation theorem (cf. [8] and also Schindler's paper
[18] for an interesting alternative proof based on an explicit kernel formula).
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The above remarks led to the following general conclusions. Harmonic analysis results

for the Hankel transform of arbitrary order v > —1/2 are consequences of corresponding

results for the cosine expansions. This is possible first, by transplanting cosine expansions

results (that correspond to the case v = —1/2) to the Fourier-Bessel {i/^}-expansions with

arbitrary v > —1/2, and then by transferring this result from {T/^}-expansions to the Hankel

transform Hv setting. The first step is done by using Gilbert's transplantation result, and

the second step is done by using our transference results. In case we use weighted setting

for cosine expansions, usually with the Arrange of power weights, then weighted version

of Gilbert's theorem and our transference results give the corresponding weighted results for

7ίv. Consequently, these can be translated to the modified Hankel transform Hv setting by

using (4.1).
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