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Abstract. It is known that the underlying spaces of all abelian quotient singularities
which are embeddable as complete intersections of hypersurfaces in an affine space can be
overall resolved by means of projective torus-equivariant crepant birational morphisms in all
dimensions. In the present paper we extend this result to the entire class of toric local complete
intersection singularities. Our strikingly simple proof makes use of Nakajima's classification
theorem and of some techniques from toric and discrete geometry.

1. Introduction.

1.1. Motivation. In the past two decades crepant birational morphisms were mainly

used in algebraic geometry to reduce the canonical singularities of algebraic (not necessarily

proper) d-folds, d > 3, to β-factorial terminal singularities, and to treat minimal models in

high dimensions. From the late eighties onwards, crepant full desingularizations Y —• Y

of projective varieties Y with trivial dualizing sheaf and mild singularities (like quotient or

toroidal singularities) play also a crucial role in producing Calabi-Yau manifolds, which serve

as internal target spaces for non-linear supersymmetric sigma models in the framework of

physical string-theory. This explains the recent mathematical interest in both local and global

versions of the existence problem of smooth birational models of such Y's.

Locally, the high-dimensional McKay correspondence (cf. [IR, R]) for the underlying

spaces Cd/G, G C SL(J, C), of Gorenstein quotient singularities was proven by Batyrev [B,

Theorem 8.4]. It states that the following two quantities are equal: the ranks of the non-trivial

(=even) cohomology groups H2k(X, C) of the overlying spaces X of crepant, full desingular-

izations X —• X = Cd/G on the one hand and the number of conjugacy classes of G having

the weight (also called "age") k on the other. Moreover, a one-to-one correspondence of

McKay-type is also true for torus-equivariant, crepant, full desingularizations X —> X = Xσ

of the underlying spaces of Gorenstein toric singularities [BD, §4]. Again, the non-trivial

(even) cohomology groups of the X's have the "expected" dimensions, which in this case are

determined by the Ehrhart polynomials of the corresponding lattice polytopes. Thus in both

situations the ranks of the cohomology groups of X's turn out to be independent of the partic-

ular choice of a crepant resolution. Also in both situations, a crepant resolution exists always
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if d < 3, but not in general: for d > 4 there are, for instance, lots of terminal Gorenstein

singularities in both classes.

We believe that a purely algebraic, sufficient condition for the existence of projective,

crepant, full resolutions in all dimensions is to require our singularities to be, in addition, lo-

cal complete intersections (l.c.L's). In the toric category, where the existence question can be

translated into a question concerning the existence of specific lattice triangulations of lattice

polytopes, this conjecture was verified for abelian quotient singularities in [DHZ98] via a The-

orem by Kei-ichi Watanabe [W]. (For non-abelian groups acting on Cd, it remains open.) Fur-

thermore, the authors of [DHZ98, cf. §8(iii)] asked for geometric analogues of the joins and

dilations occuring in their Reduction Theorem also for toric non-quotient l.c.i.-singularities.

As we shall see below, such a characterization (in a somewhat different context) is indeed

possible by making use of another beautiful Classification Theorem, due to Haruhisa Naka-

jima [N], which generalizes Watanabe's results to the entire class of toric l.c.i.'s. Based on

this classification we prove the following:

MAIN THEOREM 1.1. The underlying spaces of all toric l.c.i.-singularities admit

torus-equίvariant, projective, crepant, full resolutions {i.e., smooth minimal models) in all

dimensions.

An extended version of this paper is electronically available as [DHaZ]. Families of

Gorenstein non-l.c.i. toric singularities that have such special full resolutions seem to exist

only rarely. For a discussion of this problem for certain families of abelian quotient non-l.c.i.

singularities the reader is referred to [DHH, DH, DHZ99].

1.2. Notions from convex geometry.

1.2.1. In the following we refer to Zd as the lattice; (Zd)v is the dual lattice of integral

linear forms. The convex hull and the affine hull of a set S C Rd are denoted by conv(S) and

aff(S), respectively, and the dimension of S is the dimension of aff(S). A lattice polytope is

the convex hull of finitely many integral points; it is elementary (also called empty or lattice

point free) if its vertices are the only lattice points it contains. A lattice simplex s whose

vertices form an affine lattice basis for aff(s) Π Zd is called unίmodular (or basic). Every

unimodular simplex is elementary, but the converse is not true in dimensions d > 3. Two

sets S C Rd and Sf C Rd are lattice equivalent if there is an affine map aff(S) -• aff(S')

that maps Zd Π aff(S) bijectively onto Zd> Π aff(S') and which maps S to S'; e.g., all

J-dimensional unimodular simplices embedded in Rd (df > d) are lattice equivalent to the

standard simplex s^ which is defined to be the convex hull of the origin 0 together with the

standard unit vectors ez (1 < / < d) in Rd.

For S C Rd let pos(S) denote the set of all real, non-negative linear combinations of

elements of S. A set σ C Rd is a cone if it equals pos(S) for some S. A cone σ is polyhedral

if its generating set S can be chosen to be finite, and rational if, in addition, one may have

S C Zd. If σ Π (—σ) = {0}, we say that σ is pointed. A cone is simplicial if it is generated

by an /^-linearly independent set. A simplicial cone is unimodular if it is lattice equivalent to

the cone generated by the standard basis in R d i m σ . If P c Rd~ι is a lattice polytope, then
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σP := \)os(P x {1}) c Rd is a pointed, rational cone which will be referred to as the cone

spanned by P. Given a (rational/polyhedral) cone σ, the set σ v = {x e (/?J)V : (x, σ) > 0}

is also a (rational/polyhedral) cone, the dual cone of σ. A set of the form {y e σ : (x, y) = 0}

for fixed x e σv is a/αce of σ.

1.2.2. A polyhedron is a finite intersection of closed halfspaces in Rd. A polyhedral

complex Σ is a finite collection of polyhedra such that the faces of any member belong to Σ

and such that the intersection of any two members is a face of each of them. The support \ Σ |

of such a Σ is the union of its members. A single polyhedron together with all of its faces

forms a polyhedral complex that we denote by the same symbol as the single object. We say

that Σ' is a subdivision of Σ if every polyhedron in Σ' is contained in a polyhedron of Σ and

\Σf\ = \Σ\. A polyhedral complex that consists of rational pointed cones is a fan, whereas

a polyhedral complex all of whose members are lattice polytopes will be called a complex of

lattice polytopes. A fan is simplicial (resp. unimodular) if all of its members are. A complex

of lattice polytopes T that subdivides | Σ | into simplices is a {lattice) triangulation. A lattice

triangulation is unimodular if its faces are.

An integral Σ-linear convex support function is defined to be a continuous function

ω : \Σ\ -+ R, with ω(\Σ\ Π Zd) C Z, which is affine on each σ e Σ, and convex on the

entire \Σ\. If the domains of linearity of such an ω are exactly the maximal polyhedra of Σ,

then ω is said to be strictly convex. For a polyhedral complex Σ that is equipped with an

integral i7-linear strictly convex support function ω, we write Σ = Σω, and call Σ coherent.

1.3. Notions from algebraic and toric geometry.

1.3.1. Let R denote a local Noetherian ring with maximal ideal m. R is regular if

dim(/?) = dim(m/m2). R is said to be a complete intersection (c.i.) if there exists a regular

local ring R\ such that R = R'/(f\,.. , fq) for a finite set {/i,... , fq] c R' whose

cardinality equals q = dim(R') — dim(R). R is called Cohen-Macaulay if depth(/?) =

dim(/?), where its depth is defined to be the maximum of the lengths of all regular sequences

whose members belong to m. Such an R is Gorenstein if Ext^ (R/xn, R) = R/rn. The

hierarchy of the above types of R's reads:

regular ==>• c.i. =>> Gorenstein = > Cohen-Macaulay.

An arbitrary Noetherian ring R and its associated affine scheme Spec(R) are called regular,

Cohen-Macaulay, or Gorenstein, respectively, if all the localizations /?m for all maximal ideals

m of R are of this type. In particular, if all Rm's are c.i.'s, then one says that R is a local

complete intersection (I.c.i.).

1.3.2. Throughout the paper we consider only complex varieties (X, Oχ), i.e., integral

separated schemes of finite type over C, and work within the analytic category. The algebraic

properties of 1.3.1 can be defined for the whole X via its affine coverings, and pointwise via

the stalks Oχ,x of the structure sheaf at x e X. By Sing(Z) = {x e X : Oχ?x non-regular}

we denote the singular and by Reg(X) = X \ Sing(X) the regular locus of X. A partial

desingularization f : X —> X of X is a proper holomorphic morphism of complex varieties

with X normal, such that there is a nowhere dense analytic set S C X, with S Π Sing(X) φ 0,
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whose inverse image f~ι(S) C X is nowhere dense and such that the restriction of / to

X \ f~ι(S) is biholomorphic. / : X —• X is called Άfull desingularizatίon of X (or full

resolution of singularities of X) if Sing(X) c 5 and SingCX) = 0.

1.3.3. A Weil divisor Kx of a normal complex variety X is canonical if its sheaf

Oχ(Kχ) of fractional ideals is isomorphic to the sheaf of the (regular in codimension 1)

Zariski differentials or, equivalently, if θReg(χ)(Kχ) is isomorphic to the sheaf A ^ of

the highest regular differential forms on Reg(X). As it is known, a Cohen-Macaulay variety

X is Gorenstein if and only if Kx is Cartier, i.e., if and only if Oχ(Kχ) is invertible. A

birational morphism / : X' -• X between normal Gorenstein complex varieties is called

non-discrepant or simply crepant, if the difference Kχ> — f*(Kχ) (which is uniquely deter-

mined up to rational equivalence) vanishes. Furthermore, / : X' —> X is projective if X'

admits an /-ample Cartier divisor.

1.3.4. Let σ C Rd be a pointed rational cone and σ v its dual. Then the semigroup ring

C [ σ v Π (Zd)v] defines an affine complex variety

Xσ : = S p e c ( C [ σ v n ( Z J ) v ] ) .

If σ = σp is spanned by P, we also write Xp instead of Xσp. A general tone variety XΣ

associated with a fan Σ is the identification space XΣ '•= ([_\σEΣ Xσ)/~ o v e r t n e equivalence

relation ~ defined by the property: Xσι 3 u\ ~ U2 £ Xσi if and only if there is a face τ of

both σ\, <72, and u\ = u^ within Xτ. XΣ is always normal and Cohen-Macaulay, and has

at most rational singularities. Moreover, XΣ admits a canonical group action which extends

the multiplication of the algebraic torus Xjo} = (C*)d. This action partitions XΣ into orbits

that are in one-to-one correspondence to the faces of Σ. We denote by Dσ the closure of the

orbit corresponding to σ. The notion of equίvariance will always be used with respect to this

action. We refer to [E, F, KKMS, O] for further reading.

2. From the dictionary. In this section, we review some entries of the dictionary that

translates between convex and toric geometry.

2.1. Gorenstein property, ampleness and smoothness. The torus invariant prime

divisors on XΣ are the orbit closures DQ, for all one-dimensional cones ρ e Σ. So the torus

invariant Weil divisors are just formal Z-linear combinations of the DQ. A divisor ]Γ λQDQ

is Cartier if for every maximal cone σ e Σ there is an element tσ e (Zd)v such that λρ =

(tσ, p(ρ)>, for every one-dimensional subcone ρ of σ, where p(ρ) is the primitive lattice

vector that generates ρ. The divisor KΣ, all whose λρ 's are —1, is canonical. From this we

deduce:

PROPOSITION 2.1. XΣ is Gorenstein if and only if every cone in Σ is spanned by

some lattice poly tope.

Any subdivision Σ' of a fan Σ induces a proper equivariant birational morphism

fg, : XΣ> -> XΣ By the ampleness criterion for torus invariant divisors (see [KKMS,

Theorem 13, p. 48]) one gets:
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PROPOSITION 2.2. The morphism f£f is projective if and only if Σ' is a coherent

subdivision of Σ.

On the other hand, since each Xσ> c XΣ> is smooth if and only if σ' is unimodular

(cf. O, [Theorem 1.10]), we obtain the following:

PROPOSITION 2.3. The morphism f£, is a full desingularizatίon ofXz if and only if

Σ' is unimodular.

It is well-known that projective full desingularizations always exist for any XΣ (see

[KKMS, §1.2]). Nevertheless, asking about conditions under which such /Jr, are, in addition,

crepant, for XΣ Gorenstein, leads to an existence problem of special lattice triangulations

which is subtle in general.

2.2. Crepant resolutions via triangulations. Let Xp be the underlying space of a

Gorenstein toric singularity defined by means of the cone σ = σp. Let Σf denote a simplicial

subdivision of σ. Then Kχp is trivial, XΣ1 is β-Gorenstein, and the discrepancy with respect

to the partial desingularization morphism f°f equals

The summation is taken through all one-dimensional faces ρf of Σ' not belonging to σ, and

μρ/'s are rationals > — 1. If XΣ> itself is Gorenstein, then these coefficients are non-negative

integers and can be written as μQ< = (lσ>, p(or)) — 1 (with tσι as defined in 2.1 for every

maximal cone σ' e Σ', cf. [F, p. 61]). Hence, combining the vanishing of the discrepancy

with Propositions 2.2 and 2.3, one gets the following:

PROPOSITION 2.4. The proper birational morphism f°, is crepant if and only if

the fan Σ' = Σ'(T) is induced by a lattice triangulation T = Tp of P, where Σ' := {σs :

s simplex ofT}. In this case, fΣ, : XΣ1 —> Xp is projective if and only ifT is coherent, and

forms a full desingularization ofXp if and only ifT is unimodular.

2.3. Nakajima's classification. The question about the geometric description of the

polytopes which span the cones defining affine toric l.c.i.-varieties was completely answered

by Nakajima in [N]. His original definition reads as follows:

DEFINITION 2.5 (Nakajima Polytopes). Associate to a sequence g = (g i , . . . , g r) of

nonzero forms in (Zd)v (d > r), satisfying gij = 0 for j > /, the following sequence of

polytopes:

P ( 1 ) = {(1,0,... ,0)} C ^ ,

P ( / + 1 ) = conv(P ( / ) U {(x', (g/, x), 0 0 ) G ^ : X = (x;, 0, 0 , . . . , 0) e P(i)}).

Call g admissible if (g/, x) > 0 for all x e P{i). For g admissible we call PQ := P ( r + 1 ) the

Nakajima poly tope or lei poly tope associated to g.
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CLASSIFICATION THEOREM 2.6 (Nakajima [N]). An affine tone variety Xσ is a local

complete intersection if and only ifσ is lattice equivalent to a cone spanned by some Nakajima

poly tope.

For our purposes a recursive definition is more suitable.

LEMMA 2.7 (Inductive Characterization). A lattice poly tope P C Rd is a Nakajima

poly tope if and only if it is a point P = {p} C Zd or

(2.1) P = {x = (x', xd)eFxR:0<xd<(g, x')},

where the facet F C Rd~ι is a Nakajima poly tope, and g € (Zd~ι)w is a functional with

non-negative values on F (cf Figure 1).

PROOF. Let g be an admissible sequence. Then the corresponding Nakajima polytope

PQ has the following description by inequalities:

(2.2) P 0 = {x e Rd : x\ = 1 andO < JC/+I < (g/, x) for 1 < / < d - 1},

so that PQ can be reconstructed from the facet F — P§> and g = gr, where g' is the truncated

sequence (gi , . . . , g r -i) Conversely, given the situation (2.1), F is some PQ>. Then we can

append g to gr and obtain an admissible sequence for P. D

3. Proof of the main theorem. By Proposition 2.4 and Theorem 2.6 we reduce the

proof of Theorem 1.1 to the existence of coherent unimodular triangulations for all Nakajima

polytopes of any dimension. We do not lose generality if we henceforth assume that the

considered Nakajima polytope P c Rd is full-dimensional. (Otherwise, σp = dp Θ {0} leads

to the splitting Sing(Xp) = Sing(X^p) x (C*)d~άιm p which does not cause any difficulties for

our desingularization problem.) We shall proceed by induction on the dimension of P. Zero-

and one-dimensional polytopes always admit unique such triangulations. For the induction

step we proceed as follows: According to Lemma 2.7, we may assume that for a given Pβ, the

facet F (as in (2.1)) is already endowed with a coherent unimodular triangulation 7>. This

triangulation induces a coherent subdivision

SP = {(5 xR)DPQ:se TF}
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FIGURE 2.

of PQ into "chimneys" over the simplices of 7/r. The second step is to refine Sp coherently

by "pulling vertices" until we obtain a triangulation into elementary simplices. (Cf. Figure 2.)

We shall prove that any such triangulation is automatically unimodular.

DEFINITION 3.1 (Pulling Vertices; cf. [L]). Consider a polytope P c Rd and let S be

a subdivision of P. For any u e P w e define a refinement pull^GS) of S (called the pulling

of v) by the following properties:

(i) pu\\v(S) contains all Q e S for which v φ Q, and

(ii) ΊfυeQeS, then pull^GS) contains all the polytopes conv(F U v), where F is a

facet of Q such that v £ F.

If S is coherent, with S = Sω as in §1.2, then pull^iS) is obtained by "pulling v from

below". This means that, defining ω'(v) = ω(v) — ε for ε small enough, and ω' = ω on the

remaining lattice points, and extending ω' by the maximal convex function ω" whose values

at the lattice points are not greater than the given ones, we get pullu(tS) = Sω». Hence:

LEMMA 3.2 (Coherency of Pullings). If S is coherent, then so is pull^e?).

We revert now to the initial subdivision S = Sp of a Nakajima polytope P. Fix an

arbitrary ordering {v\,... , Vk] of all lattice points of P Π Zd, and define the new subdivision

TP := pull
,,

, ( pull,, (SP))).

Tp is a lattice triangulation of P, and is coherent by Lemma 3.2. It remains to show that Tp

is unimodular.

LEMMA 3.3 (Chimney Lemma). Let π : Rd —• Rd~x be the deletion of the last

coordinate. Let 5 be an elementary lattice simplex whose projection sf = π(s) is unimodular.

Then s itself is unimodular.

PROOF. We can assume that $ is full-dimensional. After a unimodular transformation

of Rd~ι we can suppose that sf is the standard (d — l)-simplex. After a translation in the last

coordinate, s contains the origin. Now we can shift the lines π ~ι (e, ) independently so that

we finally obtain a simplex with non negative last coordinate that contains 5^~^ x {0}. The

fact that 5 is elementary implies that the additional vertex has the last coordinate 1. D
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PROOF OF THEOREM 1.1. By construction, all simplices of the above lattice triangu-

lation 7/> are elementary because P ΠZd coincides with the set of vertices of 7/>. Since their

projections under π are unimodular simplices of 7/r, they have to be unimodular themselves

by the Chimney Lemma. D

4. Applications.

4.1. Computing Betti numbers. In this paragraph we are interested in the cohomol-

ogy groups of XΣ' They are trivial in odd dimension and their ranks in even dimensions can

be calculated from the admissible sequence g by combinatorial means, as we now explain.

Let P C Rd be a lattice polytope. Then the number of lattice points in kP (k e Z>o) is

a polynomial from Q [k], the so-called Ehrhart polynomial:

dimP

Ehr(P, k) := card(fcPΠZd) = J^ i

ι=0

The corresponding Ehrhart series

k>0 v J

gives rise to the δ-vector (8Q(P), . . . , δd[mp(P)) of P. The coordinates of this vector can be

written as Z-linear combinations of the coefficients tf/(P) of Ehr(P, k) by the formula

£(-ιy (d i m p + ι ) u - v)') ai
=0 ^ / /

(4.1) j (
i=0 \υ=

These are actually the only numbers one needs for the computation of the desired ranks by

the following:

THEOREM 4.1 (Cohomology Ranks [BD]). Let /£f : XΣ> -> Xp be any equivariant

crepantfull resolution. Then

if k is odd.

In particular, these ranks are independent of the choices of the unimodular triangulation T

of P by means of which one constructs the fan Σr = Σf(T).

In our specific case, where P is lattice equivalent to a PQ, one deduces for its dilations:

kPQ = {x G Rd : jci = k and 0 < x ί + i < (g/, x> for 1 < / < d - 1},

by making use of the inequalities (2.2). Thus, the Ehrhart polynomial of PQ equals

Ehr(Pβ,k)=Σ Σ •" Σ !•
V\=0 V2=0 Vd=0

Writing it in an extended form we first determine its coefficients ai(PQ) and then compute

the cohomology ranks according to Theorem 4.1 by the formula (4.1) for the δj(PYs. For
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instance, the Ehrhart polynomial of the d-dimensional Nakajima polytope P g for d < 3 equals

k) = gιΛk + l, forJ=l

#2,20i,i + 02, i0 i , iU 2 + (glΛ + ^^2,2^1,1 + 0 2 , i U + ! ' f o r d = 2

and

Ehr(Pg, k) = yg3Λg2Λ9ui + 203,202,101,1 + 2^3,302,1^1,1 + g03.302,201,l

1 2 1 2 1 3

+ 203,302,202,101,1 + 2 9 3 Λ 9 2 ' 2 9 l Λ + 303,202,201,1

/ 1 2 1 1 2

+ (02,101,1 + 29^392Λ + 2g3'ι92'29lΛ + ί^3'3^2'

1 2 1 2 1 2 1
+ 202,201,1 + 29χ29λΛ + 29χ29^29lΛ + ϊ ^ 3 ' 3 ^ 2 '

1 1 1
+ 203,302,101,1 + 03,101,1 + 2^ 3 ' 2 ^ 2 ' 1 ^ 1 ' 1 + 2^ 3 ' 3 ^

\ 1 1 1 2

203,201,1 + 02,1 + 01,1 + 2^ 3 ' 3 ^ 2 ' 1 + 292a9lΛ + 93Λ + T ^ ^ 3 ' 3 ^ 2 ' 2 ^ 1 ' 1

+ £03,202,201,1 + 403,302,201,1 J * + 1 , for d = 3 .

4.2. Nakajima polytopes are Koszul. A graded C-algebra R = φ / > 0 Ri is a Koszul

algebra if the /?-module C = R/m (for m a maximal homogeneous ideal) has a linear free

resolution, i.e., if there exists an exact sequence

of graded free /^-modules all of whose matrices (determined by the φι-'s) have entries which

are forms of degree 1. Every Koszul algebra is generated by its component of degree 1 and is

defined by relations of degree 2.

The algebra R = C[σp ΠZd+ι] associated with a lattice polytope P c Rd has a natural

grading Rt = C[σP Π (Zd x {/})]. Call P Koszul if R is Koszul. Bruns, Gubeladze and

Trung gave a sufficient condition for the Koszulness of P. In order to formulate it, we need

the notion of a "non-face" of a lattice triangulation T of P. A subset F C P Π Zd is a face

(of T) if conv(F) is; otherwise F is said to be a non-face.

PROPOSITION 4.2 (Koszulness and Triangulations [BGT, 2.1.3]). If the lattice poly-

tope P has a coherent unimodular triangulation whose minimal non-faces (with respect to

inclusion) are l-dimensional (i.e., consist of 2 points), then P is Koszul.

This property is satisfied for the triangulations constructed in Section 3.

COROLLARY 4.3. Nakajima polytopes are Koszul.
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(2,5)

(1,2)

(1,1)

(5,5)

(4,5)

(3,4)

(1,3)

FIGURE 3.

PROOF. Once more we proceed by induction. Let P = P$ c Rd be a Nakajima

polytope and F = P Π (Rd~ι x {0}) the Nakajima facet, both triangulated (by TP and 7>,

respectively) as in Section 3. Let π : Rd -> Rd~x denote the projection. By construction π

maps faces of Tp to faces of Tp. Choose a non-face n c p ΠZ^ of Tp. We have to consider

two cases:

(i) The projection 7r(n) is a face of 7/r.

(ii) It is not.

In the first case we stay within the chimney over π(n) e Tp. Thus, we may assume

that π(P) = 7r(n). For all interior points x of π(P) the linear ordering of the maximal

simplices of Tp by their intersections with the line π ~x (x) is the same, say, 5 1 , . . . , s r . Assign

to each lattice point p e P Π Zd two numbers (m, M): M(p) = max{/ : p e 5/} and

ra(/?) = min{/ : p e 5/}, as illustrated in Figure 3 for a 2-dimensional Nakajima polytope.

Two vertices /?, // belong to the same maximal simplex s; of Tp if and only if m(p),

m(p') < / < M(p), M(pf). Such an index / can be found if and only if m(p) < M(pf) and

m(p') < M(p). Furthermore, if p e 5/ Π sy, then also p e s/c for all k between / and j .

Let n^ e n be a vertex with maximal m and « | G n a vertex with minimal M. Since n is

a non-face, we have m(n^) > M(n^). Hence n^ and rc^ do not belong to a common maximal

simplex, and {/t̂ , ΛẐ } is therefore a 1-dimensional non-face of Tp.

In the second case, by induction π (n) contains a 1-dimensional non-face of 7>. Any two

vertices in n with this projection form a 1-dimensional non-face of Tp. D

5. Examples. In this section we apply our results to two classes of examples which

are "extreme" in the sense that they achieve the lowest respectively highest possible numbers

of faces of a (d—1)-dimensional Nakajima polytope. Moreover, we give the concrete binomial

equations for the underlying spaces Xp of the corresponding I.e.i.-singularities, and present

closed formulae for the cohomology ranks of the overlying spaces XΣ of any crepant full

desingularization XΣ -> Xp.

5.1. Dilations of the standard simplex. Our first class of examples is the family of

dilated standard simplices k^d~x\ These polytopes have the Nakajima description Pg by
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the admissible sequence g = (ke\, e2,.. . , e^-i) and, being simplices, they achieve for all

/ the minimal number of /-faces any (d — l)-polytope can have. This Pg spans the cone

σ = {x e Rd : 0 < xj < . . . < JC2 < kx\}, and its dual cone equals

σv = pos(ej, ej_i - e</,... , β2 - e3, ke\ - β2).

The semigroup σ v Π Zd has the Hubert basis (minimal generating system) Ίϊ = {fi, . . . , f̂ , g},

with fi =ed, f/ = e, — e/+i for / = 2, . . . , d — 1, fj = fcei — e2 and g = ej. Introducing vari-

ables U[ and t to correspond to the evaluation of the torus characters at f, and g, respectively,

we see that there is only one additive dependency (kg) — (Σ t ) = 0, which means that

Xσ = {(r, uu...,ud)e Cd+ι :tk-\\Ui= 0}

is a (d; &)-hypersurface (cf. [DHZ98, 5.11]).

After computing the coefficients of the Erhart polynomial of ks^d~{\ we obtain by

Theorem 4.1 the following formula for any equivariant crepant full desingularization /£ :

i=0 v/ v d ~ l

Besides the triangulations of k$^d~^ constructed by the inductive procedure of Section 3,

there is also another coherent unimodular triangulation which is directly induced by a hyper-

plane arrangement. The families of hyperplanes

H i J ( k / ) = { x e R d X : x t - xj = kr] (/, j , k' e Z ) a n d

Hi(kr) = { x e R d x : */ = kf] (/, k' e Z)

form an arrangement 9) that triangulates the entire ambient space Rd coherently and uni-

modularly. Since the facets of k$^d~^ span hypeφlanes of $), it is enough to consider the

restriction of this f)-triangulation to ks^d~ι\ The advantage of this new triangulation is the

uniform nature of its vertex stars. (A vertex star consists of the union of all simplices which

contain the reference vertex.) The cones spanned by the simplices of each triangulation-

vertex which is not a vertex of ks^d~^ determine a fan defining an exceptional prime divisor

of /£ : XΣ —> Xσ- In particular, the compactly supported exceptional prime divisors of

/£ correspond to the vertices lying in the interior of k$^d~^ and the star of each of them is

nothing but the S) -triangulation of a polytope which is lattice equivalent to the lattice zonotope

W(d~l) = conv([-l, O]^"1 U [0, l ] ^ " 1 ) .

This suffices to show that each compactly supported exceptional prime divisor of / £ comes

from the crepant full S)-desingularization of a projective toric Fano variety which admits an

embedding of degree

5.2. Products of intervals. Our second class of examples is the family of hyper-inter-

vals [0, a] = [0, a\] x x [0, a^-i] for integers a t > 0. These polytopes have the Nakajima

description PQ by the admissible sequence Q = (a\e\, . . . , ad-\e\), and for all / achieve the
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maximal number of /-faces any (d — 1)-dimensional Nakajima polytope can have. The cone

spanned by this PQ is σ = {x e Rd : 0 < X[ < a[Xd\,

α v = pos(ei,...

and σ v Π Zd is generated by H = {fi,... , f</-i, g i , . . . , gd-\, h} with f, = e, and g; =

α/e^ — e, for / = 1,... , d — 1, and h = e^. Introduce one variable U[ for each f;, t>; for g/,

and ί for h. The d — 1 equations (f/ + g/) — (tf/h) = 0 form a basis for the lattice of integral

linear dependences of H, giving rise to the equations U[V[ — tai = 0.

Moreover, using the multiplicative behavior of the Ehrhart polynomial for products of

polytopes, one obtains by Theorem 4.1 and (4.1) the following formula for any equivariant

crepant full desingularization /£ : XΣ —> Xσ of Xσ •

d-\ jd-\ j /A

= Σ Σ ( ~ 1 ) V ( v ) U ~ vysyniW '
i=0 v=0 V /

<j_i xμι -x^ denotes the elementary symmetric polyno-where sym/(x) = Σ i < μ i < > . . < μ / < j _ i xμι

mial of degree /.

Note that this example also admits the ή-triangulation discussed in 5.1.

REFERENCES

[B] V. V. B AT YREV, Non-Archimedian integrals and stringy Euler numbers of log-terminal pairs, J. European

Math. Soc. 1 (1999), 5-33.

[BD] V. V. BAT YREV AND D . I . DAIS, Strong McKay correspondence, string-theoretic Hodge numbers and

mirror symmetry, Topology 35 (1996), 901-929.

[BGT] W. BRUNS, J. GUBELADZE AND N. V. TRUNG, Normal polytopes, triangulations and Koszul algebras,

J. Reine Angew. Math. 485 (1997), 123-160.

[DHaZ] D. I. DAIS, C. HAASE AND G. M. ZIEGLER, All tone l.c.i.-singularities admit projective crepant reso-

lutions, TU-Berlin Preprint 614/1998 and LANL-Preprint alg-geom/9812025, 33 pages.

[DHH] D. I. DAIS, U.-U. HAUS AND M. HENK, On crepant resolutions of 2-parameter series of Gorenstein

cyclic quotient singularities, Results Math. 33 (1998), 208-265.

[DH] D . I . DAIS AND M. HENK, On a series of Gorenstein cyclic quotient singularities admitting a unique

projective crepant resolution, alg-geom/9803094; to appear in: Combinatorial Convex Geometry and

Toric Varieties (ed. by G. Ewald & B. Teissier), Birkhauser, Basel.

[DHZ98] D. I. DAIS, M. HENK AND G. M. ZIEGLER, All abelian quotient c.i.-singularities admit projective

crepant resolutions in all dimensions, Adv. in Math. 139 (1998), 192-239.

[DHZ99] D. I. DAIS, M. HENK AND G. M. ZIEGLER, On the existence of crepant resolutions of Gorenstein

abelian quotient singularities in dimensions > 4, in preparation.

[E] G. EWALD, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math. 168, Springer-
Verlag, New York, 1996.

[F] W. FULTON, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton,

1993.
[IR] Y. Iτo AND M. REID, The McKay correspondence for finite subgroups of SL(3, C), Higher Dimensional

Complex Varieties (Trento, 1994), 221-240, de Gruyter, Berlin 1996.
[KKMS] G. KEMPF, F. KNUDSEN, D. MUMFORD AND D. SAINT-DONAT, Toroidal Embeddings I, Lecture Notes

in Math. 339, Springer-Verlag, Berlin-New York, 1973.
[L] C. W. LEE, Regular triangulations of convex polytopes, Applied Geometry and Discrete Mathematics—

The Victor Klee Festschrift, 443-456, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, Amer.
Math. Soc, Providence, RI, 1991.



TORIC LOCAL COMPLETE INTERSECTION SINGULARITIES 107

[N] H. NAKAJIMA, Affine torus embeddings which are complete intersections, Tόhoku Math. J. 38 (1986),

85-98.

[O] T. ODA, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties,

Ergeb. Math. Grenzgeb. (3) 15, Springer-Verlag, Berlin-New York, 1988.

[R] M. REID, McKay correspondence, Algebraic Geometry (Kinosaki, 1996), 14—41.

[W] K. WATANABE, Invariant subrings which are complete intersections I, (Invariant subrings of finite Abelian

groups), Nagoya Math. J. 77 (1980), 89-98.

DIMITRIOS I. DAIS CHRISTIAN HAASE AND GUNTER M. ZIEGLER

SECTION OF ALGEBRA & GEOMETRY FACHBEREICH MATHEMATIK, MA 6-2

MATHEMATICS DEPARTMENT TU-BERLIN

UNIVERSITY OF IOANNINA STRASSE DES 17. JUNI 136

GR-45110 IOANNINA D-10623 BERLIN
GREECE GERMANY

E-mail address: DDais@CC.UoI.Gr E-mail address: [Haase/Ziegler]@Math.TU-Berlin.De






