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DIFFERENTIAL EQUATIONS

KAI L1IU AND ANYUE CHEN

(Received April 27, 1999)

Abstract. The objective of this paper is to investigate the p-th moment asymptotic sta-
bility decay rates for certain finite-dimensional Itd stochastic differential equations. Motivated
by some practical examples, the point of our analysis is a special consideration of general de-
cay speeds, which contain as a special case the usual exponential or polynomial type one, to
meet various situations. Sufficient conditions for stochastic differential equations (with vari-
able delays or not) are obtained to ensure their asymptotic properties. Several examples are
studied to illustrate our theory.

Introduction. So much effort has been devoted to the study of optimal control and
filtering of stochastic differential equations. In practice, even from probability theory view-
point, stability of stochastic differential equations is also important. There is an increasing
requirement to study stability for a number of problems from, for instance, physics, biology
and stochastic control, etc. in the sense of either p-th moment or almost sure. As a matter
of fact, there exists an extensive literature in exponential stability of stochastic differential
equations. We mention here Arnold [1], [2], Arnold, Oeljeklaus and Pardoux [3], Chappell
[4] and Has’minskii [5] among others. On the other hand, as is well-known, not all stochastic
systems are exponentially stable. However, it is worth pointing out that some of them are in-
deed stable but subject to a certain lower decay rate which is different from exponential decay,
for instance, polynomial or logarithmic one. In particular, for stochastic differential equation
theory itself it appears to be useful to extend the usual exponential stability concepts to a more
general stable decay function. Let us start with the following examples for our motivation of
the work.

EXAMPLE 0.1. Consider a one-dimensional It6 stochastic differential equation

(0.1) dX, = L X, dt + (1 +1)"PdW,, t>0,

14¢

with initial real data Xo = xo € R!, an Fy-measurable random variable with finite second-
order moment. Here p > 1/2 is a constant and W; is a one-dimensional Brownian motion.
It is easy to obtain the explicit solution

Xi=@xo+W)1+077, t>0.
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By a direct computation and using properties of one-dimensional Brownian motion, we get
immediately that
. log EX,(x0)?
lim ————
—>00 t
That is, the solution is not mean square stable with exponential decay. However, we can
deduce that whenever p > 1/2, the solution is mean square stable with polynomial decay.
Moreover, we have

=0.

log EX;(x0)?
limsupw <-Q2p-1.
t—00 log¢
EXAMPLE 0.2. Consider a scalar linear Itd equation

X, 4
(1+1)log(1+1)

with initial data Xo = xo € R, an Fy-measurable random variable with finite second-order
moment, where W; is a one-dimensional Brownian motion.
We can easily obtain the explicit solution

t 1 1 t
X, = xpex - ——‘2sd+/ —de}.
r= o0 p{/o [ (1+s)logl+s) 2° ] ST

Using the exponential martingale properties, it can be deduced that

t 1 3 [t
log EX,(x0)% = lo Ex2—2/ ds—i——/ e_%ds,
g EX;(x0) g LXg ) (0 +5)log(l £ 9) 3/,

which immediately implies that

(0.2) dX[ = t+€_[X[dW1 y t > O,

log E X (x0)?
lim log EX: (x0)” =0
t—00 log t
In other words, the solution on this occasion is not mean square stable with polynomial decay.

However, we have the following logarithmic decay stability

lim sup w <-2.
t—00 loglog ¢

Motivated by the examples above, in this paper we will carry out a Lyapunov func-
tion programme to study stability of stochastic differential systems with a general decay rate.
There have been several expositions to treat these sort of decay rates different from exponen-
tial one. For instance, in [8] and [16] the polynomial type decay rate was studied to establish
the stability of the traveling wave solutions of a class of determined hyperbolic systems with
relaxation. For stochastic differential systems, the most original work on this aspect goes at
least back to Has’minskii [5] for some possible consideration of certain decays different from
exponential one. More recently, Mao [13], [15] studied the polynomial decay in a system-
atic way in the sense of pathwise with probability one for a class of stochastic differential
equations with respect to Brownian motion. For a class of perturbed stochastic differential
equations with respect to semimartingales, under some circumstances Mao [14] considered
the same kind of decays once more in the sense of almost sure. For the general consideration
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of decay rate, in [12] a careful investigation has been carried out for non-autonomous stochas-
tic differential equations with respect to Brownian motion in the sense of almost sure. In [9]
and [10] some results above have also been generalized to cover infinite dimensional stochas-
tic evolution equation cases. In this paper, we shall devote ourselves to the investigation of
a class of non-autonomous stochastic differential equations for a general stability decay rate
similarly to [12] but in a p-th moment sense.

1. Stability of It6 equations. Let (£2, F, {F};>0, P) be a complete probability space
with the filtration {F};>0 satisfying the usual conditions, i.e., {F};>0 is right continuous and
Fo contains all P-null sets. Let W, = (W,', W,z, ..., W) be an m-dimensional standard
Brownian motion with Wy = 0. Consider the following n-dimensional stochastic differential
equation:

(l 1) dXt=f(Xtaz)dt+g(Xtvt)dW[» tZOa
' Xo = xo,
where f(x,t) = (f!,..., fHT : R" x Rt — R", g(x,1) = (¢")yxm : R" x Rt —

R"™™™ are two Borel measurable functions and xg is an Fp-measurable R"-valued random
vector. In particular, since we shall restrict ourselves to stability analysis, one always assumes
throughout this paper that Equation (1.1) has a unique global solution which is denoted by
X:(xp) € R™. We note that under the conditions (1) and (2) of the following Theorems
1.1 and 1.2, the stochastic differential equations (1.1) has a unique global solution which is
denoted by X, (xo). In fact, for the family {V (¢, x), ¥1(¢), ¥2(¢) (resp. ¥3(¢))} of functions as
in Theorem 1.1 (resp. Theorem 1.2), set U (¢, x) = 1+ V (¢, x) and W (¢t) = 1 (¢£)+ 2 (2) (resp.
Y¥3(t)). Then LU(t, x) < W (1)U (¢, x), where L is the differential generator associated with
(1.1), and also limjy|—o0 U (¢, x) = oco. Namely, U(t, x) is a radially unbounded Lyapunov
function satisfying a sufficient condition for nonoccurrence of an explosion, which guarantees
the pathwise uniqueness of a global solution for (1.1). For explosion criteria, see Has’minski
[, pp. 84-86 and p. 186] and Narita [6], [7].

Before proceeding to our stability arguments, let us firstly give the precise definition of
the p-th moment stability with general decay rate A(¢).

DEFINITION 1.1. Assume that A(z) 1 +00, as t — 400, and satisfies A(t +5) <
A(s)A(t) for s,t € R largely enough. Equation (1.1) is then said to be the p-th momently
stable, p > 0, with decay A(¢) of order y > O if there exist a pair of positive constants y > 0
and C(xg) > O such that

E|X:(x0)|? < C(xp)-A@®)™Y, >0

holds for any X9 = xg € R", an Fp-measurable random vector, or equivalently,

log E|X p
fimsup PEEK GO
t—00 log A(t)
REMARK. Clearly, replacing the decay function A(¢) by €', 1+ and log(1 +¢) leads to

the usual stability behavior with exponential, polynomial and logarithmic decays, respectively.
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Let C2'(R" x R*; R*) denote the family of all functions V(x,¢) : R” x Rt — R™*
with continuous second-order partial derivatives in x and first-order partial derivatives in ¢. If
V(x,1) € C2Y(R" x R*; R™), we define an operator L by

3 noo 3
LV, 0) =2 V(x.0) + Z fix, r)EV(x, £

+ Z Zg"‘(x g/t (e, 1)

lj 1 k=

THEOREM 1.1. LetV(x,t) € C21(R" x RT; R*) and Y1 (t), ¥2(t) be two continu-
ous non-negative functions. Assume that for all x € R", t € R, there exist positive constants
p > 0, m > 0 and real numbers v, 0 such that

(1) [x|PA@®)™ < V(x,t), (x,t)eR"xR™;

@) LV(x,0) <y +92(0V(x, 1), (x,1) eR" xRY;

t
log ( fo ws)ds) / baords
@) Mmsup = eny =V M S

Then, whenever y := m — 0 — v > 0, the solution of Equatzon (1.1) is the p-th momently
stable with decay A(t). Moreover, we have
log E|X p
(1.2) lim sup - EIX GO
t—00 lOg A(t)
PROOF. By It6’s formula and the definition of L, we can derive that

V(x,t).

(1.3) V(X,,t)—V(xo,O)+/ LV(XS,s)dH—/ ZZQ”‘(XS, )—V(Xs,s)de

i=1 k=
Since the diffusion term

/ ZZg"‘(Xs,s) -V (X5, $)AWS

i=1 k=
is a continuous martingale, it is easy to deduce, in addition to the condition (2), that

t
EV (X, t) < EV(xo, 0)+/ E(LV(Xs,s))ds
0

< EV(xo,0) +/ Y1(s) + Y2 () EV (X, 5))ds .
0

So, by virtue of Gronwall’s lemma, we derive that

t t
EV(X:, 1) = [EV(xO,O) +/ ‘//l(s)dsjl exp (/ lﬂz(S)dS> ,
0 0

which implies immediately that

t t
log(EV (X;,t)) <log [EV(xo, 0) +/ ¥ (s)ds] +/ Yo (s)ds .
0 0
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Therefore, by virtue of the conditions (2) and (3), for arbitrary ¢ > 0, whenever ¢ > 0 largely
enough, it deduces that

log(EV(X,, 1)) < log[EV (xg,0) + A(t)"*¢] + log A)fTe
that is,

log(EV(X,,t
limsupM <Ww+se)+6+¢.

1—00 log A(7)
Letting ¢ — 0 then gives
log(EV (X:,1) _

lim su <v+6.
t—>oop log A(2)

Finally, in view of the condition (1), we have

. log E| X, (x0)|? . log[A(t) ™™ EV(X;, 1)]

lim sup ——— < lim sup
t—00 log A(2) t—00 log)»(t)
< =[m—-@Ww+0)]

as required. O

In order to obtain the second main result, we need the following extended Gronwall type
lemma.

LEMMA 1.1. Assumeh(t), u(t) € B([0, T], RY), thatis, h(t) and u(t) are two bound-
ed Borel measurable non-negative functions. Let w(t) be a continuous, non-negative and
non-decreasing function defined on [0, T], and 0 < o < 1. Suppose

t
h(t) < w(t) +/ u(s)h(s—)*ds, 0<t<T.
0
Then
t =
h(t) < {w(t)l_"’+(l —oz)/ u(s)ds]l , 0<t<T.
0

PROOF. See[15]. O

THEOREM 1.2. Let V(x,1) € C>Y(R" x Rt; Rt) and ¥, (1), ¥2(1t), ¥3(1) be three
continuous non-negative functions. Assume that for all x € R" and t > 0, there exist positive
constants p > 0, m > 0 and real numbers v,0, 1,0 < o < 1 such that

(1) |x|PA@®)™ < V(x,t), (x,t)eR"xR™T;

(2) LV, ) <)+ 2OV, ) + Y3V (x, 0%, (x,1) € R" xR,

t t
log (/0 1/fl(S)a'S) /Wz(S)ds
i i 0 0000 —
@) s —ogam =" P T geam ST
t
log (] 1//3(s)ds>
lim sup 0 <n(l —a).

=00 log A(t)
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Then, whenever y :=m — 0 — v V n > 0, the solution of Equation (1.1) is the p-th momently
stable with decay rate A(t). Moreover, we have

log E|X P
(1.4) lim sup 28 217X X1 (x0)l < -
100 log A.(z)
PROOF. Using the same notation and a similar argument as in the proof of Theorem

1.1, we can get
t

EV(it) < EVG0,0 + [ EQLV(Xes)ds,
0
which, together with the condition (2) and the Holder inequality, immediately implies that

t
EV (X, 1) < EV(x0,0) +/ W1(8) + Y2 ()EV (X5, 5) + Y3()EV* (X, 8))ds
0

(1.5) ‘
< EV(xp,0) +/O [V1(s) + V2()EV (X5, 5) + ¥3(s)(EV (X5, 5))*1ds .

So, by virtue of Gronwall’s lemma, we easily derive that

t t t
EV(X:,1) < [EV(XO, 0) +/ V1(s)ds +/ 1//3(S)(EV(XS,S))°‘dS} exp (/ '/fz(S)dS> .
0 0 0

Once again invoking Lemma 2.1, we derive that

t l—a t
EV(X;,1t) < “:EV(JC(), 0) + f ¥ (s)ds:l exp (/ Iﬂz(s)ds)
0 0

' ' =
+ (1 —a)exp (/ wz(s)ds) / %(s)ds} I .
0o 0

Therefore, noticing the conditions (2) and (3), for arbitrary ¢ > 0, whenever ¢ > 0 largely
enough, it is easy to deduce that

log EV(X(t),1) < 1og{[EV (x0, 0) 4+ A(t)"+e]1 =% 4 A ()1~ (+e)y

l—«
+ (@ +¢)logh(t) + ¢,
which, together with the condition (3), immediately implies that
. log(EV (X:, 1))
limsup ———
oo logA()
Letting ¢ — 0 then gives

<(wvn+e)+0+e.

lim s log(EV (X;, 1)) <
f—00 log A(2)
Finally, by virtue of the condition (1), we have

. log E|X;(x0)|P . log[A ()™ EV(X;, 1)]
limsup —————————— < limsup
t—00 log A(1) t—>00 log A(7)

< —[m—-(@vn+06)]

vvn+6.

as required. |
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Lastly, let us study several examples to close this section.

EXAMPLE 1.1. Let us first return to Example 0.1, i.e., consider a one-dimensional Itd
stochastic differential equation

—__P

dX; = 1_HX,dH-(l + )" PdW;, t>0

with initial data Xo = xo9 € R!, where p > 1/2 is a constant and W; is a one-dimensional

Brownian motion.
We construct the Lyapunov function as follows:

Vix,t)=(1+1)*x*>, teR", xeR'.

It is easy to deduce that
LV(x,t)=1.
Using Theorem 1.1, we can obtain that whenever p > 1/2, the solution is the second mo-
mently stable with polynomial decay. Moreover, we have
1
lim sup — log EX,2 <-Q2p-1.
t—00 logt
EXAMPLE 1.2. Let us once again return to Example 0.2, i.e., consider a scalar linear

Itd equation
X
dX,=——'  _di+e "X, dW,, t>0
(1+41)log(l +1)
with initial data X = xo € R!, where W, is a one-dimensional Brownian motion.

We construct the Lyapunov function as follows:
Vx,t) = (og(l+1)*x*, teR*, xeR'.
A direct computation easily deduces that
LV(x,t)=e 2V(x,t).

Using Theorem 1.1, we can obtain that the solution is the second momently stable with loga-
rithmic type decay. Moreover,

log EX? < 2.

T
l,riigp loglogt

2. Stability of delay stochastic systems. Let/ > 0 and denote by C([—/, 0], R") the
space of all continuous functions defined on [—/, 0] with values in R”. We introduce a norm
over this space by

lull = max{|u(s)| : =l <s <0}, wueC(-I,0],R").

At the moment, let Lz(f.?, Fo, P; C([—1,0], R")) denote the family of all Fy-measurable
C([—I, 0], R™)-valued random variable (r) with E||n|* < oo.
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In this section, we shall carry out a Lyapunov function approach to study the p-th mo-
ment stability for a class of stochastic differential equations with time delays:

@1 [dX, = f(Xs, Xi—50), )t + g(X¢, Xe—s(r), )AWr, t>0

X =n@), te€[-10]

with initial data X, = n(t) € L2(2, Fo, P; C([—I,0],R™)), =1 <t < 0. Here f : R"xR" x
RT™ - R",g:R"xR" xRt — R"™ are two measurable mappings and §(+) : [0, c0) — [0, ],
[ > 0, is a continuous function which shall play the role of variable delays. We shall also
assume that the equation (2.1) has a unique global solution which is denoted by X, (xo) € R".
In particular, we could also define the stability with a general decay rate of the solutions of
the equation (2.1) in a totally similar way to Definition 1.1.

In order to obtain our main consequences, we need the following lemmas.

LEMMA 2.1. Assume that T > | > 0 and y(t) is a continuous, nonnegative function
defined on [—1, T]. Let w(t) be a continuous, nonnegative, nondecreasing function defined
on [0, T] and u(t), v(t) be two continuous nonnegative functions. Assume that

t t
(2.2) y(t) < w(t) +/ u(s)y(s)ds +/ v(s)y(s —8(s))ds, 0<t<T.
0 0

Then forany0 <t <T

! t t
2.3) y() < (w(t) +f v(s)dsl: sup y(r):l) exp[f u(s)ds +/ v(s)ds] .
0 —-l<r<0 0 0

PROOF. See [15]. O

LEMMA 2.2. Assume that T > | > 0 and y(t) is a continuous, nonnegative function
defined on [—1, T]. Let w(t) be a continuous, nonnegative, nondecreasing function defined
on [0, T] and u(t), v(t) be two continuous nonnegative functions. Let 0 < o < 1 and §(t) be
defined as above. Assume that

t

t
y(t) < w() +/ u(s)y(s)ds +/ v(s)y(s — 8(s))%ds .
0 0

Then

1
t t =
2.4) y(t) < exp [ (—1—)/ u(s)ds} (N(t)'_“ + (1 - ot)2°’/ v(s)ds)I ,
l -« 0 0

where N(t) = w(t) + [25up_; <, <o ¥(1)]* J5 v(s)ds.
PROOF. See [15]. O
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Suppose V(x,1) € C>1(R" x R*; R™), and define the function LV (x, y, t) as follows.
For arbitrary x, y € R", t € R, we set

LV(x,y,1) :_—V(x t)+Zf (x, y, t) V(x D)

92

+5 Z Zg"‘(x ¥ 09740y, D5V (6. 1).

i,j=1 k= J

THEOREM 2.1. Let V(x,1) € C>V(R" x RT; R) and v (1), Y2(t), ¥3(r) be three
continuous non-negative functions. Assume that for all x,y € R" andt > 0, there exist
positive constants c; > 0, ¢y > 0, p > 0, m > 0 and real numbers v, 6, y such that

(1) cilx|PA@)™ < V(x, 1) < calx|PA@®)™, (x,t) e R" xR™;
2 LV, y, ) =y1@®) + vV x,t) +¥3()V(y,t), x,y€R" tel0,+00);

log (/0 t/fl(S)dS) /llfz(S)ds

3) limsu <v, limsu <@,
@) Hmswp—— o = et e S
/ Y(s)ds
limsup ————— .
t—)oop )»(t) =Y

Then the solution of Equation (2.1) satisfies

i log E| X, (n)|?
imsup ————— <
t—00 log)t(t)

PROOF. By Itd’s formula and the definition of L, we can derive that

—[m — (v + (c2/c1)0 + (c2/cHAD ™" Y)].

t
V(X0 1) = V(x0,0) + f LV (Xs, Xs_s(s), $)ds

(2.5)
/ ZZg (X5, Xss5(5)» 8 )—V(Xs,s)dwk

i=1 k=

Since the diffusion term

t n m
/ZZg (X5, X 3<s>,s)—V<xs,s)de

i=1 k=

is a continuous martingale, it is easy to deduce from the condition (2) that
t
EV(X;,t) < EV(x0,0) + / ELV(Xs, Xs5-5(s), s)ds
0

t
26) < EV(x0,0) + /O W1(s) + V2()EV (Xs, 5)
U3V EV (Xs—s(s), $))ds
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for all r > 0. A direct application of the condition (1) and Definition 1.1 to (2.6) yields that

t
CLEIX, 1A < EV (x0,0) + /0 (W1(5) + 2925 E| X |PA(s)™
+ a¥3 (I E|Xs—505)|PAs — 5())")ds .

which, in addition to Lemma 2.1, immediately yields that

t
clE| X |PA@)™ 5[EV(xo,0)+f Vi(s)ds
0

!
+(02/01))»(l)m/0 1/f3(S)a’S[ sup In(r)l”]]

—l<r<0

t t
" exp (/0 (62/01)1//2(S)dS+/0 (62/01))»(1)m1/f3(S)dS>

for all ¢+ > 0. Therefore, for t € R+ large enough, we derive for arbitrary &€ > 0

log(c1 E| X [PA(1)™)

!
Slog[EV(XO,0)+(62/61))»(1)'"/0 V3(s)ds | sup Iﬂ(r)l”J +)»(t)“+8}

_—l§r§0

t 1
+(62/61)/0 1//2(S)ds+(cz/cl))»(l)m/0 Y3(s)ds

l .
SlOg{EV(XO,0)+(62/01)>»(1)"’/ Y3(s)ds | sup [n(r)l? +)»(t)”+8}
0

—I<r<0

+ (c2/c1)(O + &) log A(t) + (c2/c)AMD)™ (¥ + &) log A(2)
which implies immediately that
. log(c1 E| X |PA(1)™)
lim sup
1—00 log A(1)
Letting ¢ — O then gives
. log(c1 E| X [PA(1)™)
lim sup
=00 log A(t)
Finally, we have

Sv+e+(e2/e)@ + &) + (c2/c)AD)™ (v + &)

< v+ (c2/c1)B + (c2/c)AD)My .

I log E|X:(mI? _ . log[A (1) ™" (c1 E|X:|PA()™)]
imsup ——————— < limsu
t—00 lOg )\.(t) t—00 lOg A.(t)
< —[m — (v + (c2/c1)0 + (c2/cDAD)"y)]
as required. O

THEOREM 2.2. Let ¥ (2), ¥2(t), ¥3(t) be three continuous non-negative functions.
Assume that for all x € R" and t > 0, there exist positive constants ¢ > 0, ¢ > 0, p > 0,
m > 0 and real numbers 0, v, p, 0 < o < 1 such that

1) clx|PA@®™ < V(x, 1) < calx|PA@)™, (x,1) €R" xR™;
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(2) LV(x,y,t) 1) +v2OV(x, )+ y3@)V(y, )% x,y €R", t €0, +00);

log (/0 !/fl(S)dS> /%(S)ds

3) 1 6, Ii <v(l —a),
@) s ——ogry =0 MR oan =4
t
log (/ 103(s)ds>
li 0 < p(l —a).
R T og A () spl-a)

Then the solution of Equation (2.1) satisfies
i log E|X;(n)|”
imsup ——————
t—>00 log A(2)
PROOF. Using the same notation as in the proof of Theorem 2.1, we can derive from
(2.6) and Lemma 2.2 that for arbitrary ¢ > 0

A E|X|PA@0)™

< exp {( ) / tpz(s)ds} [ (EV(xo, 0) + |:2 sup In(r)lp]
c(l— —1<r<0

i t l—a t
(@ JeDA D /0 3(s)ds + fo wn(S)dS) (S /)2 A /0 w3(s)ds}

< —[m = ((c2/c)v +6 Vv p)].

.

I—a

for all t+ > 0 large enough.
Therefore, by virtue of the condition (3), we have

log(c1 E| X/ 1PA(®)™) < (ca/c1)(v + &) log A(t) + log [(EV(xo, 0) + A(t)0+¢

o A I—a
+(c§/c1>x(l>°""[2 sup In(r)l”] /0 1//3(S)dS)

—I<r<0

1

1—a
+(cg/cl)2“A(l>“mx(r><'—“><p+€>] ,

which implies immediately that
fim sup IPECLEIX P A0
f—00 log A(t)
Letting & — 0 then gives

<(cafe)v+e)+ O +e)V(p+e).

log(c1 E| X [PA(D)™)

lim su <(c2/c)v+6Vop.
o0 log A(¢) (c2/er) p
Finally, we have
log E|X p log[A ()™ (11 X |PA ()™
lim sup og E1X: ()] < lim sup og[A ()™ (c1| X [PA@)™)]

=00 log A(¢) T 500 log A(t)
< —[m —((c2/c1)v+ 0V p)].
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EXAMPLE 2.1. Consider a one-dimensional stochastic constant time delay equation
—IL_;_tX,dt + ILHX,_,dt £ (1+1)"Pg(X)dW,
with initial data X, = n(t), t € [—I,0], where g(-) : R' — R! is a bounded, Lipschitz
continuous function, W; is a one-dimensional Brownian motion and p,! are two positive
numbers.

We construct the Lyapunov function as follows:

Vix,)=(1+1)*x>, teRt, xeR'".

dX[ =

We can deduce that there exists a positive constant M > 0 such that
1 1
LV(x,y,t) < —Vx,t) + —V(Q, )+ M.
(x,y.1) 1th( ) 1th(y)
Using Theorem 2.1, we can obtain that whenever p > 1 + [?7/2, the solution is the second
momently stable with polynomial type decay. Furthermore, we have

log EIX,(mI*> _ _

lim sup <—Qp-2-1%P).

t— 00 IOgt
EXAMPLE 2.2. Letl >0,p >0and0 < o < 1. Assume that n(t) : [-,0] x 2 —
R! is an Fy-measurable process and 8(-) : [0, o0) — [0, /] is the delay function. For r > 0,
consider a stochastic It6 equation with variable time delays.
o [dx, = —pX,dt + eI X, 5y [%dW,,
' Xt:n(t)9 tG[—l,O],

where W, is a one-dimensional Wiener process and v € R! is a certain real number.
We construct the Lyapunov function as follows:

Vix,t)=e*'x*, teR*, xeR'.
A direct computation deduces that
LV(x,y, 1) =2pV(x,t) —2pV(x, 1) + e@P~2U=@y(y )
= Py (), o
Using Theorem 2.2, we can therefore obtain that whenever v > 0, the solution is the second
momently stable with exponential type decay. Furthermore,

log E|X,(n)|?
limsupws_

t—00 t

2v.
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