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Abstract. We show the existence of weak solutions of the Navier-Stokes equations
with test functions in the weak-L" space. As an application, we give a new criterion on unique-
ness and regularity of weak solutions which covers the previous results.

Introduction. Let £2 be any domain in the Euclidean n-space R" (n > 2) with bound-
ary 8£2. Consider the Navier-Stokes equations in £2 x (0, T'):

]

a—Ltl—Au+u~Vu+Vp:O mxe2, 0<t<T,
(N-S) divu=0 inxef2, O0<t<T,

u=0 onds2,

u|t=0 =a,
where u = u(x,t) = (u'(x,1),...,u"(x, 1)) and p = p(x,t) denote the unknown velocity
vector and the pressure of the fluid at a point (x, ) € §2 x (0, T), respectively, while a =
a(x) = (a'(x), ..., a"(x)) is the given initial velocity vector field. For simplicity, we assume

that the external force has a scalar potential and is included into the pressure gradient.

The purpose of this paper is to enlarge the space of test functions in the definition of
weak solutions. In [19] and [13], Leray and Hopf proved the existence of weak solutions
with test functions in C&"a (§2), where the subscript o means solenoidal vector fields. By the
density argument, one can extend the space of test functions to HOI‘ - (£2). To define the integral
/, o U - Vu - ¢dx for arbitrary weak solutions u with test functions ¢, we need ¢ € L"(£2).
Hence, if n < 4, by the Sobolev embedding we have HOI‘ J(Q) C L' (£2) for2 <r <
2n/(n — 2), so the space Hol, »(£2) suffices to be taken as test functions. In the case n > 5,
however, we need to choose ¢ in Hol,a (£2) N L"($2). On the other hand, from the viewpoint
of scaling invariance introduced by Caffarelli-Kohn-Nirenberg [4], it is important to find a
solution of (N-S) in L"($§2). Giga-Miyakawa [8] and Kato [14] constructed a solution u in
C([0, T]; L"(£2)), which is necessarily unique and regular. It seems to be reasonable to take
the space of test functions as large as possible so that smooth solutions can be obtained under
minimum additional assumption on weak solutions. Masuda [21] proved the existence of
weak solutions with test functions in C ([0, T']; HOIJ (£2)NL"($2)) and applied it to generalize
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the uniqueness criterion due to Foias [5] and Serrin [24]. Indeed, it is shown in [21] that, for
each n > 2, if u is a weak solution of (N-S) in L5(0, T; L9(£2)) for 2/s + n/q < 1 with
g > n, then u is unique.

Recently, Kozono-Yamazaki [17] constructed a smooth solution in C((0, T); L7, (£2)),
where L7, (£2) denotes the weak-L" space. In the present paper, we prove the existence of
weak solutions with test functions in C ([0, T']; H()],o (£2)NL7 (£2)). As an application, we give
a new criterion on uniqueness and regularity of weak solutions which covers Foias-Serrin-
Masuda’s result. Up to the present, the class C ([0, T']; L™ (§2)) is the largest space that enables
us to obtain both uniqueness and regularity of weak solutions. More precisely, uniqueness is
ensured in the class L>°(0, T'; L"(£2)) ([26], [15]), while its regularity is still an open question
([11, [2], [16]). Our class is larger than C ([0, T']; L™ (§2)). The crucial difference between the
usual and the weak L"-spaces stems from the fact that C§°(2) is not dense in the latter space.
To get around this difficulty, we impose a certain assumption on the distribution functions
determined by test functions, which plays a substitutive role for the density property.

In Section 1, we shall state our main results. Section 2 is devoted to some lemmas for the
proof of the main theorems. In Section 3, we shall show the existence of our weak solutions.
Finally in Sections 4 and 5, we shall prove the new criterion on uniqueness and regularity,
respectively.

The author would like to express his sincere thanks to the referee for valuable comme-
nents.

1. Results. Before stating our results, we first introduce some function spaces. Let
Co denote the set of all C* vector functions ¢ = (@', ..., ¢") with compact support in
§2, such that divg = 0. L[ is the closure of Cg“i7 with respect to the L"-norm || - ||,. (-, )
denotes the duality pairing between L” and L", where 1 /r +1/r" = 1. L" stands for the
usual (vector-valued) L"-space over §2, where 1 < r < o0. Hol,a denotes the closure of Cgf’a
with respect to the norm

ol = lglla + IV,

where Vo = (3¢ /3x;),i,j =1,... ,n.
L7, denotes the weak-L" space over £2 with the quasi-norm || - ||,.,, defined by

I @llrw = sup Rufx € 2; |p(x)| > R}'/",
R>0

where p is the Lebesgue measure. For 1 < r < oo, there is another norm equivalent to this
I II,w (see Bergh-Lofstrom [3, p. 8]), so we may regard L/, as a Banach space. For an interval
I in R" and a Banach space X, L?(I; X) and C™(I; X) denote the usual Banach spaces of
functions of L? and C™-class on I with values in X, respectively, where 1 < p < oo,
m=0,1,....

We next introduce an assumption on the initial data a and then state our definition of a
weak solution of (N-S).

ASSUMPTION 1. The initial dataa = a(x) isin L2.
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As our space of test functions, we define the space S by
S={® e H'0,T; Hj,)NC(0, T]; L1); & satisfies the following condition (1.1)};

R— o0 0<t<T

(1.1) lim ( sup Rufx € 2;|®(x,1)| > R}%) =0.

Concerning the relation between S and the usual space of test functions, we have
PROPOSITION 1. Every function ® € C([0, T]; L") satisfies (1.1).
For the proof, see the Appendix.

DEFINITION. Suppose that Assumption 1 holds. A measurable function u on £2 x
(0, T) is called a weak solution of (N-S) if

(i) uelL®0,T;L2)NL*O0,T;H,);

(ii)) Forevery @ € S with &(T) =0,

T
/ (—(u, D) + (Vu, V) + (u - Vu, D)}dt = (a, ®(0)).
0

REMARKS. (1) Foru and @ as above, the integral fOT(u - Vu, ®@)dt is well-defined.
Indeed, by Lemma 2.1 below there holds that

T T
/ [(u-Vu,@)|dt <C sup H‘P(t)lln,w/ IVulizd:.
0 0

O<t<T

(2) Masuda [21] defined test functions & in H'(0, T’; HOIJ N L"). By Proposition 1,
we see that our space S is larger than that of Masuda.

(3) After redefining its value of u(¢) on a set of measure zero in the interval (0, T'), we
see that u(¢) is continuous for ¢ in the weak topology of Lg. By a weak solution we mean a
weak solution redefined in this manner.

Our theorem on the existence of weak solutions now reads:

THEOREM 1. Suppose that Assumption 1 holds. Then there exists a weak solution u
of (N-S) such that

t
(1.2) ||u(z)||§+2/0 IVu()|3dt < llal3, 0<t<T;

(1.3) lu() —all — 0 as ¢ § 0.

We next proceed to the uniqueness criterion. To this end, we impose the following as-
sumption.
ASSUMPTION 2. Foreachm =1, 2, ..., there is a bounded operator J,,, on HO1 o nL?

such that the following properties (i), (ii) and (iii) hold:
i) Jm,m =1,2,..., are uniformly bounded as

su J, =M < o0,
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where | - ||p(x) denotes the norm of bounded operators on X;
(ii) Forevery ¢ € HO1 » N Ly, we have

Junp e L" forall m=1,2,...
with
1Jm@lln < Cmlipll2,

where C,, is a constant dependingonm = 1,2, ... ;

(iii)) Forevery ¢ € H(},o‘ N Ly, {(Imd}),,_, satisfies

Jn$p > ¢ in H}, and Ju¢ — ¢ weakly*in L,

asm — 00.

The assumption above is satisfied at least in the following cases.

PROPOSITION 2. Assumption 2 is satisfied if one of the following conditions is satis-

fied.

0 2=<n=z4

(1) $2 is the whole space R™ (n > 2);

(2) $2 is the half space R (n > 2);

3) 2 is a bounded domain in R™ (n > 2) with C?tH (. > 0)-boundary 352;

(4) 2 is an exterior domain in R" (n > 2), i.e., a domain having a compact comple-
ment R™ \ 2 with C*** (. > 0)-boundary 382.

For the proof, see the Appendix.
Our theorems on the uniqueness and regularity of weak solutions now read as follows.

THEOREM 2. Suppose that Assumptions 1 and 2 hold. Then there is an absolute con-
stant g9 > O with the following property. Let u and v be weak solutions of (N-S). Suppose
that there is a non-negative L?-function M = M (t) on (0, T) such that

(1.4) sup Ruf{x € 2;|u(x,t)| > R}% <e&o foralmosteveryt e (0,T).
R>M(t)

Assume that v satisfies the energy inequality
t
1.5) i +2 [ Iveikar < jai, osr<T.
0

Then we haveu = v on [0, T].

REMARKS. (1) The constant g in (1.4) depends only on n, butnoton 7 anda € Lg.

(2) In Theorem 2, v need not fulfill the property (1.4) assumed for u, but satisfies the
energy inequality (1.5). On the other hand, it should be remarked that (1.4) assures a stronger
property than (1.5). Indeed, u satisfies necessarily the energy identity

t
w1 +2f IVu()3dr = lu()|2, 0<s<i<T.

See (4.18) below.
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As for regularity, we impose the following assumption on the domain £2:

ASSUMPTION 3. The domain §2 satisfies one of the conditions (1), (2), (3) and (4) in
Proposition 2.

THEOREM 3. Suppose that Assumptions 1 and 3 hold. Then every weak solution u
with the property (1.4) belongs to C*(2 x (0, T)).

REMARKS. (1) By Serrin [23], [24] and Masuda [21], it is known that if the weak
solution u is in L*(0, T'; L?) for 2/s + n/q = 1 with ¢ > n, then u = v in Theorem 2 and u
belongs to C2([2 x (0, T)). For such u, we can define M(t) in (1.4) as

q\ i
M(I)E(nu(rn)nq)q .
€o

T 2n pT
/ M(0)*dt = e}~ / lu@Il}dt < oo.
0 0

Obviously, there holds

Moreover, by the Chebischev inequality, we have
q
Rufx € £2; lu(x, )| > R}% < Rl_%llu(t)ll,'; forall R >0,
which yields

sup Rulx € 2: lu(x,0)| > Rt < M@ Hlu()]lf = e
R=M(1)
and (1.4) is fulfilled. Hence our theorems cover the previous criterion on the uniqueness and
regularity in the class L*(0, T; L?) so far as Assumptions 2 and 3 are satisfied.
(2) von Wahl [29] and Giga [7] showed that, under Assumption 3, if the weak solution
u is in C ([0, T]; L"), then u belongs to C*(£2 x (0, T)). Foru € C([0, T]; L"), we obtain
from Proposition 1 a constant Rg depending &g such that

sup Rufx € £2; |u(x, t)| > R}% <¢gy forallte€(0,T).

R>Rg
Hence, by taking M(t) = Rp, we see that Theorem 3 covers also the result on regularity
proved by von Wahl and Giga.

(3) Itis an open question whether every weak solution u € L*°(0, T; L") is regular or
not (see [16]). Struwe [27] showed that if supy_, .7 [[u(?)]l» < €0, then u is a unique smooth
solution. From Theorem 3 we obtain a larger class of smooth solutions, namely, if the weak
solution u satisfies

limsup( sup Ru{x € 2; |u(x, t)| > R}%) <&,
R—oo \0<t<T

then u belongs to C%(£2 x (0, T)). This implies that if u(z) lies uniformly in (0, T') near the
closure of L7 N L in the norm of L, then u is the smooth solution. In other words, every
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weak solution in L°°(0, T; L’ ) whose local singularities in L’ are uniformly small in (0, 7')
becomes regular.

2. Preliminaries. In this section we shall prove some lemmas for later use. In what
follows we shall denote various constants by C. In particular, C = C(x, ..., *) denotes
constants depending only on the quantities appearing in the parentheses.

Let us first estimate the nonlinear term of (N-S).

LEMMA 2.1. (i) Letu,v bein Holﬂ and ¢ be in L’,. Then the coupling (u - Vv, ¢)
of the integral in the definition of a weak solution of (N-S) is well-defined with

2.1 |(u- Vv, ¢)| < ClIVull2IVoll2lidlinw

where C = C(n).
(i) Letu,v,wbein Hol‘o. Suppose that u is decomposed as u = ug~+uy withug € L7,
and uy € L. Then there holds

2.2) (w-Vo,w)=—(u-Vw,v),
2.3) (v-Vu,u)=0.

(iii) Letu,v,w be in L%, T; L(Z,) N LZ(O, T; Hol,a)' Suppose that u is decomposed
asu =ug+uy withug € L, T; L) and u; € L2(0, T; L®). Then there holds

T T
2.4) / (u - Vv, w)dt = —/ (u - Vw,v)dr,
0 0

T
2.5) / (- Vu,u)dr =0.
0

PROOF. (i) Letusdenote by L?9 (1 < p < 00,1 < g < o0) the Lorentz space over
£2 with the norm || - ||Lr¢. By the Holder inequality in L?-4 ([18, Proposition 2.1]), there
holds

|(u - Vv, §)| < Cllull 2e/m-221VVll 22§l Lnoo

where C = C(n). Since HOl is continuously embedded into L2"/ n=2).2 ([18, Proposition 2.2])
and since L>? = L2, L™® = L" , the estimate above yields

(2.6) [ - Vv, 9)| < ClIVull21Vull2[l@lln,w
with C = C(n). This implies (2.1).
(ii) Since Cgf’g is dense in Hol’o, there is a sequence vg, k = 1,2, ...,in Cgf’g such that

vx — v, Vuy — Vo in L2, By integration by parts, we have

2.7) (w-Vo,w)=—w-Vw, ) forall k=1,2,....
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By (2.1) there holds

|(u - Vug, w) — (u - Vo, w)|
< Huo - V(vk —v), w)| + [(u1 - V(vx — v), w)|
< Clluolln,wllVok = Vo2l Vwll2 + Cllui ool Vor = Vull2[lwll2
-0 ask— .

(2.8)

Similarly, we have
[ - Vw, ) — (u- Vw, v)|
2.9 =< Cluolln,wlVwli2lVuk = Vol + Cllutlloo [ Vw2 vk — vll2
-0 ask— 0.
Letting k — 00 in (2.7), from (2.8) and (2.9), we obtain (2.2).
In the same manner, we have by integration by parts
(2.10) (vg - Vu,u) = —(vg - Vu,u) =0 forall k=1,2,....
By (2.1) there holds
|(vk - Vu,u) — (v-Vu, u)|
< [((vk = v) - Vu, up)| + [(vk —v) - Vu, uy)|
< ClIVue = Voll2lVull2luolln,w + Cllve — vil2Vull2lluilloo
— 0 as k— o0.

Letting k — o0 in (2.10), we obtain (2.3) from (2.11).
(iii) By (2.1) and the Holder inequality, we have

T T 5/ oT 3
/0 |<u-Vv,w)|drsc||uo||Loo<o,T;L@)(/0 anu%dr) (fo Hun%dr)
T ) 3 T , 3

+cnw||LOO(O,T;Lz)(fO ||u1||oodr) (fo ||Vv||2dr)

Hence each term of integrals in (2.4) and (2.5) is well-defined. Then the proofs of (2.4) and
(2.5) follow from (ii). O

The following lemma may be regarded as a generalization of the one by Masuda [21,
Lemma 2.5].

LEMMA 2.2 (Masuda). For any ¢ > 0 and any @ € S, there exist a constant C =
C(e, @), an integer N and functions i, i =1,2,... ,N,in L? such that the inequality

(2.11)

T T
/0 |<u~Vv,¢>|drse/0 (VI3 + 1V 12 + [uld)dz

N T
+C Z/O |u(r), i) |*de
i=1

holds for allu,v € L*(0, T; Hol,g)-
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PROOF. We follow the argument in Masuda [21, Lemma 2.5]. Let n = n(z) be a
smooth monotone decreasing function on [0, co) sothat0 <n <1, np(t)=1for0 < |t| <1
and n(t) = O for |t| > 2. We also take { € C;°(R") in such a way that {(x) = n(|x])
for x € R". For R > 0 we define ng and ¢g by ng(t) = n(t/R) and ¢g(x) = ¢(x/R),
respectively.

Let us take @ € S. By (1.1), for every ¢’ > O there is R,y > 0 such that

(2.12) Rui{x € 2;|®(x,t)| > R}% <¢ forall R> Ry andall t € (0, 7).

Let us fix such R,. We decompose @ as
P =10-nr,(|Px,)))P(x, 1) +nr, (P, ))P(x,1)

(2.13)
= Po(x,t) + P1(x,1).

Then there holds @¢ € L>®(0, T; L? N L?) with

(2.14) sup | Po(0)|lnw < €.
O<t<T
In fact, since |® (x, t)| > |Po(x, t)| for all (x, ) € 2 x (0, T), we have by (2.12) that
1
[Po()lnw = sup Ru{x € 2;|Po(x,t)| > R}

0<R<o0

S =

< max sup Ru{x € 2;|®Po(x,1)| > R}rlr, sup Rufx € 2; |Po(x,t)| > R}
0<R<R£/ REISR<OO

< max {Rg/,u{x € 2;|P(x,t)| > Rs/}%, sup Rufx € 2;|P(x,t)| > R}%}

R5/5R<OO

— sup RulxeQ;|®x, 0| > R)7 <&

R,/ <R<o0

for all t € (0, T'), which implies (2.14).
As for @, we have

(2.15) @, € L0, T; L") forall2<r <o0.
Taking m = 1, 2, ..., we next decompose @; as
Di(x,1) = (1 = () P1(x, 1) + En(x)Pi(x, 1)
= P (x, 1) +d>{"’](x,t).
Since it holds for every (x, t), (x,t’) € 2 x (0, T) and everym = 1, 2, ... that
[@7(x, 1) = Do (x, £)| < sup (n(7) + [T’ (DIDIP(x, 1) — P (x, 1),

TeR!
we have cD;’fO € C([0, T]; L%). Using the inequality 1 —Zp(x) > 1 —m41(x) forallx € R”,
we see that for each fixed ¢ € [0, T], there holds

1276 llnw = 197'¢  lnw, m=1,2,....
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Obviously, (2.15) yields
Ilcb O(t)ll,, w =< [ch 0(t)||,, — 0 as m — oo foreach fixed r € [0, T].
Then it follows from the Dini theorem that there is an integer m,/ such that

(2.16) sup “q)] 0 (t)”n w<¢&
0=<t=<T

Let us fix such m,/. By (2.1), (2.14) and (2.16) we have

T T
2.17) [ (- Vv, do)ldr < C&’ / IVull2Volladr
0

T
(2.18) f |(u- Vv, @ 0)Idr < C¢’ / IVull2||Vvll2dt,
0
where C = C(n) is independent of u, v, &’
To handle <1>{"1, notice that
supp @7 (-, 1) C $22m = £2 N {|x| < 2m}

and that @1"| € L*®(£2 x (0, T)) with ||¢7flI|LOO(QX(O‘T)) < 2R,. Hence by the Schwarz
inequality there holds

T T
/ |(u - Vv, @")|dT < 2R€/[ Null 20,0 IVVIl 1202y, DT
(2.19)

<ef0 anu%dr+csf lel7 20, ,d7

Since H!(£25,,) is compactly embedded into L%(£23,), it follows from the Friedrichs inequal-
ity that there is an integer N,/ such that
2
u - c/),-dx)

I, 5 < (||Vu||L2(92 yFlulag, )+ Z (/Q

Ny

< —<||wn2 + lull?) +Z|(u X2 ®1

i=

2m

(2.20)

where {45,} © 1 is the complete orthonormal system in LZ(QZ,,,) and xg,, is the characteristic
function on §2,,,. Defining ¥; = x@,, ¢, = 1,2,..., Ny, we have ¢; € L? and (2.19)-
(2.20) yield

T T
- Vo, &) ldr < e’/o (VoI + 1Vull2 + fuld)de

Ny T
+ Y [P,
i=1

Since ¢’ is arbitrarily taken, the desired estimate follows from (2.17), (2.18) and (2.21). This
proves Lemma 2.2.

0
(2.21)
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Let us assume that the domain 2 is as in Assumption 3. For such 2, the L"-theory of
the Stokes operator A, is established. Recall first the Helmholtz decomposition:

L' =L, &G (directsum), 1 <r < o0,

where G" = {Vp € L";p € L;OC(K_Z)}. For the proof, see Fujiwara-Morimoto [6] and
Simader-Sohr [25]. Let P, denote the projection operator from L" onto L, along G". The
Stokes operator A, on L. is then defined by A, = —P,A with domain D(A,) = {u €
H?>"(2);ulze = 0} N L] . We regard D(A,) as a Banach space with the graph norm

lullpa,y = llullr + |Arull,. It is known that
(2.22)  (L7)* (the dual space of L7) = Lf,/ , AY (the adjoint operator of A,) = A,/
where 1/r + 1/r’ = 1. Moreover, we have

LEMMA 2.3 (Giga-Sohr). Suppose that Assumption 3 holds. Then we have the follow-
ing.

(i) —A, generates a uniformly bounded holomorphic semigroup {e~'"},>¢ of class
cOin L.

(ii) By (i) above, we can define the fractional power AY for « > 0, and there is a
continuous embedding D(AY) C H>®" with

(2.23) lull g2 < C(lully + [ A%ull,)  forall u € D(AY)

withC = C(n, r, o), where H B-r denotes the space of Bessel potentials over S2.
(iii) Letl < s < ooand 1 < r < o0o. Suppose that w € L5(0, T; D(A,)) with
w e L*(0,T; L)) and w(0) = b € D(A,). Then we have

we L0, T; LY
forl <s <sgp<oo,l <r<rg<oowith2/so+n/ro=2/s+n/r—2,
Vwe L0, T; L™)

forl <s <s; <oo,l <r<rp<oorl <s <s; <00,1 <r <r; < oowith
2/s1+n/ri =2/s +n/r — 1. Moreover, there hold the estimates

2.24) Nwllrso,7:070) < Collldrwllrso,7;1ry + I(Ar + Dwllzso,1:07y + I1bllD(a,)) »
(2.25) IVwlipn,r;1y < CrlldrwllLs 0,717y + (A, + DwllLs,7;L7y + 1Bl DA »
where Cj = Cj(s,r,sj,1;), j =0, 1, is independent of T.

For the proof, see Giga-Sohr [9, Theorem 3.1] and [10, Lemma 5.2]. Although they
proved the result for 1 < r < n/2, with A, replaced by A, + 1, the above estimates can be
proved for all 1 < r < oo in the same way as in [9] and [10]. In fact, restriction on 1 <
r < n/2 is necessary only for getting (2.24) and (2.25) including the case T = oo in exterior
domains. This is related to the sharp estimate || D?u|, < C|A,ul|, for all u € D(A,) which
holds in exterior domains for 1 < r < n/2. However, the estimate ||D2u||r < C|I(A; + Dull,
is true for all 1 < r < oo. It should be noted that the above estimates hold even in the case

so = s and s; = s provided r < rg, r < r1. (2.25) holds even for r = r| provided s < s7.
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Let us introduce the space X*" (0, T) by
X0, T) ={w e L*(0,T; D(A,)); 3w € L°(0, T; L")},
which is a Banach space with the norm
lwlxsro.r) = 10 wllLso,7;r) + I(Ar + DwllLso. 717y -

LEMMA 2.4. Suppose that Assumption 3 holds.

(i) Letup € L*®(0,T;L})andv € X57(0,T) for1 <s < 00,1 <r < n. Then we
have ug - Vv € LS50, T; L") with
(2.26) luo - Vullzso,1;Lry < ClluollLeoo,7;Lz) Ivllxsr0,7) 5

where C = C(n, s, r) is independent of T.

(i) Letu; e LZ(O, T;L®)and v € X*"(0,T) for1 <s <2,1 <r < oo with
v(0) € D(A,). Then we have uy - Vv € L*(0, T; L") with
(2.27) luy - VollLs,r;ry < Cllurll 20,7 200y 0l x5r0,7) + 10OV D4,)) 5
where C = C(n, s, r) is independent of T.

PROOF. (i) Takingrpand ry sothatl < rg <r < r; < n,wehave 1/r = (1 —
0)/ro+6/r| forsome 0 < 6 < 1. Letus define gj, j = 0,1,by 1/g; = 1/r; — 1/n. By
(2.23) and the Sobolev embedding H 2rj < H'9 we have

lu-Vollr,w < lulln,wllVollg;w
< Cllulinwlivll g2,
< Cllulln,wl(Ar; + Dol
forall u € Ly, and all v € D(A,;) with C = C(n, ro, r1). This implies that for each fixed
u € L7, the map ‘
veD(A,) > u-Vvely, j=01

is a bounded operator with bound < C|lu|l,,. Applying the Marcinkiewicz interpolation
inequality, we see that '
veDA)—u-Vvel
defines a bounded operator with bound < C|lu||, . Hence we have
lu-Voll, < Cllullp,wl(Ar + Dully, v e D(Ay)

with C = C(n, r). Then (2.26) is an immediate consequence of the above estimate.
(i) Taking s; € (1, 00) so that 1/s; = 1/s — 1/2, we have by the Holder inequality

lur - VollLso,r;0r) < il p20.7: 200y IVVILs1 0,717y -
Applying (2.25) with r = ry to this estimate, we obtain (2.27). O

3. Existence of weak solutions; Proof of Theorem 1. We shall construct a weak
solution via the method of retarded mollifier according to Caffarelli-Kohn-Nirenberg [4].
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Leth(>0) € Cg°(R1) and p(> 0) € Cj°(R™) such that

2
supph C [1,2], /h(t)dr:l, suppp C {x € R"; |x| < 1}, / p(x)dx =1,
1

|x]<1
respectively. For § > 0 we set
T

hs(z) = %h (5) L ps(x) = %p(%) :

Foru € L%(0, T HOI,U), we define the retarded mollifier ¥s[u] by

hs(t — 1) (fR ps(x — y)u(y, r)dy> dr,

where u(y, t) = u(y, t) for (y, t) € £2 x (0, T'), and = O otherwise. It is easy to see that for
everyu € L0, T; L) N L%(0, T; Hol,a) there holds ¥s[u] € BC(R" x R'), BC denoting
the class of bounded and continuous functions, with div ¥s[u] = 0 and

oo

YUs(ul(x,t) = f

—00

(3.1) 1Wslulll pooo,7:22) < Nullpooqo, 702y IVWslulllL20,1:02) < IVullz2,1;102) -
Foreachm =1, 2, ..., consider the following approximation
u, + Agtm + Po(Ws[uml - Vuy) =0, 0<t<T,
3.2)
um(o) =a,

where § = T'/m. It follows from Caffarelli-Kohn-Nirenberg [4, Appendix] that there exists a
solution u,, of (3.2) such that

(3.3) um € C([0, T); LN L20, T; Hy )
(3.4) uy, € L*0,T; (Hj )%);
t
35) (1) + 2 /0 IVuml2dr = al2, 0<1<T.

By (3.5) we see that the sequence {up,}5._, is bounded in L*°(0, T’ L> N L%, T; H()"U).
Hence the weak compactness theorem yields a subsequence of {u,}>>_;, which we denote
also by {un }°°_, for simplicity, and a limit u such that

3.6) U, — u weakly-starin L°*°(0, T; L2) and weakly in L2(O, T; H&a).
Moreover, for every ¢ € Cgf’a, we have by (3.1) and (3.5)

1 1
t 7 t 3
5(/ ||Vum||§dr) (/ ||V¢u%dr) < llall2IV@lalt — 512 .

t
/ Wslum] - Vo, upm)dr

t
/ (Auy,, p)dt

t
/ (P(Uslttm] - Vi), $)d

=< ||V¢”oo”Ws[um]”Loo(o,T;LZ) (et ||Loo(o,T;L2)|t — 5|
< IVolisllal3lt —s|

forallm=1,2,...andall0<s <t <T.
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Integrating (3.2) in time on (s, #), we obtain from these estimates

| (1). @) — (um(s), )] < lall2llVlalt — 5|2 + IV$lloollali3le — s

forall0 < s <t < T andall ¢ € Cg,. Since CJ;, is dense in L2 and since we have

SUPgcr<7 llttm (D)2 < llallz for allm = 1,2, ..., the above estimate implies that for each
¢ e Lf, the sequence {(un (t), ¢)},_, forms a uniformly bounded and equi-continuous family
of continuous functions on [0, T]. By the Ascoli-Arzeld theorem, we may assume that for
every ¢ € ch,

(Um (), ¢) = (u(t), ) uniformlyin ¢t € [0,T] as m — 0.
By (3.1) and the definition of ¥s[u], we also have for each ¢ € Lf,
(3.7 (Wslum1(t), ) > (u(t), ) uniformlyin ¢t € [0, T] as m — oo.

To prove that the limit u is the desired weak solution, it suffices to show that

T T
(3.8) / (Ws[um] - Vuy, ®)dt — / (u-Vu,d)dt forall ® € S§.
0 0
Indeed, we have

T T
f Wslum] - Vu, @)dt -—[ (u - Vu, ®)dt
0 0

3.9 T T
= / [(Ws[um] —u) - Vup, @)ldt +/ [(u - V(um —u), @)ldt
0 0

=hLh+1D.
By Lemma 2.2, for every ¢ > 0, there are a constant C = C(¢), an integer N and functions
Vi,i=1,2,...,N,in L? such that

T
I < sf IV ®s[um] — Vull3 + |Vull3 + | Ps[un] — ull3)dt
0

N T
+C Z/O |(Zs[um] — u, i) Pz .
i=1

By (3.1), (3.5) and (3.7), we have
limsup I; < 3(1 + T)al3e .

m-—00

Since ¢ > 0 is arbitrary, this implies that

(3.10) lim I) =0.

m—0o0

By [18, Proposition 2.2], we have a continuous inclusion Hj C L?*/"=22 and hence it
follows from the Holder inequality in the Lorentz space ([18, Proposition 2.1]) that

w/ =u/® e L*0, T, L>) (= L*(£2 x (0, T))
with ||w/ l2cexo.1yy < CUVullp20. 1,021 ®lILe©,1;17), Where u’/ denotes the j-th com-
ponent of u. Since C{°($2 x (0, T)) is dense in L?(£2 x (0, T)), there is a sequence wj,
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k=1,2,...,in Cgo(.Q x (0, T)) such that w,i — w’/ in LZ(Q x (0, T)) as k — oo. Hence,
by integration by parts we have

T n ) j 9
/0 ng(w’—wk)-ax( —u)dxdt| +

(/ f Z|w1—w Izdxdr) (/ f IVum—Vulzdxdr>2

k (U — u)dxdr
8xj

L <

—(um —u)dxdrt
T n _ -
<2|la / / w! —w! dxdr) ’/ / —~ (u,, —u)dxdrt
[ llz( A ngll A Zaxj(m )
forall m,k = 1,2,.... Since u,, — u weakly* in L*°(0, T; L?) as m — oo and since

wy — win L2(2 x (0, T)), by letting m — o0 and then £ — oo in the above estimate, we
obtain

3.11) lim Ihb=0.

m—00

Then (3.8) follows from (3.9), (3.10) and (3.11). This completes the proof of Theorem 1.

4. Uniqueness of weak solutions; Proof of Theorem 2. Let u be a weak solution of
(N-S) with (1.4). Then u can be decomposed as

(41) u=u0+u1,
where up € L>®(0, T; L> N L") and u; € L*(0, T; L?> N L) with

(4.2) sup |[luo(®)lln,w =< €o-

0<t<T

Indeed, we define ug and u; as

(e 1) = {u(x,t) {(x,1) € 2 x (0, T); |ulx, )| = M)},
“ox D=1y on {(x,1) € 2 x (0, T): |ux, )] < M(1)},
o) = {O on {(x,t) € 2 x (0, T); lu(x, )| > M(t)},
R ) ((x,1) € 2 % (0, T): lu(x, )| < M)} .

Since M € L?(0, T), we see easily u; € L*(0, T; L) N L>®(0, T; L?) with

T 3
”ulllLZ(o,T;Loo) < (/0 M(t)zdt> .
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Similarly to (2.14), we have by (1.4)

1
luo(®lln,w = sup Ru{x € §2; [uo(x, )| > R}»

O<R<o0

= max{ sup  Rufx € 2;luo(x, )l > R}n, sup  Rufx € 2; luo(x, )] > R}%}
O<R<M(t) M(t)<R<oo

< max {M(t)u{x € 2;ulx, )| > M(t)}']ﬂ sup  Ru{x € £2; |u(x,t)| > R}%}
M(t)<R<oo

= sup  Ru{x € 2; |u(x,t)| > R}% < &o
M(t)<R<oo

forall 0 < ¢ < T, which implies (4.2).
Now taking a mollifier p;(t) = (1/h)p(t/h), (h > 0, T € R"), we define uy, , by

t
uh,m(r)sf pn(t —o)Jpu(c)do, m=12,..., 0<t<T,
0

where {J,,}°_, is the family of bounded operators on HOI,(7 N LY in Assumption 2. Since u =

uo +u; € L0, T; L"), we have by Assumption 2 (i)—(ii) and Proposition 1 that us , € S
forallh > Oandallm = 1,2, ... . Choosing uj_,, as a test function associated with the weak
solution v, we obtain

t
4.3) /.5 {—(, dzupm) + (Vv,Vup m) + (v- Vv, up m)lde

= —(@), upm()) + (a, upm(0)).

Let us define uy, be as
t
up(t) = / pn(t —o)u(o)do .
0

Since uy € C([O0, t]; H(}’ o N L?), we have by Assumption 2 (ii) that for each # > 0 and
Tt € [0, 1]
IVinm(t) — Vup(olla < (M + D(lun (@l g1 + len(T)lln,w)
with
1Vupm(t) = Vup(t)llz < 1Jmun(t) — up(t)llyr > 0 as m — oo.

By the Lebesgue convergence theorem, there holds

t '
“4.4) / (Vv, Vup,m)dt — / (Vv, Vup)dt as m — o0.
0 0

We obtain from (2.1) and Assumption 2 (i) that for every t € [0, t] and everym = 1,2, ...
[(v - Vo(T), upm(t) — un(v))|

< CIVV@ I3 1hm(T) = un(D)lln,w

=CM + 1)( sup [lun(o)lly1 + sup Iluh(o)lln,w)IIVv(f)ll%

0<o <t 0<o<t
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with C = C(n). Furthermore, by Assumption 2 (iii), there holds
Up,m(t) > up(r) weakly*in L7 as m — oo

for each fixed t € [0, ¢]. In the same way as in (2.6), we have v - Vu(7) € L""! and hence
from the above convergence we obtain

(- Vu(r), upm(r) —up(r)) >0 as m— o0

for almost every t € [0, ¢]. Then the Lebesgue convergence theorem yields

“4.5) /Ot(v -V, up mdr — /Ot(v -Vv,up)dt as m — o0.

Letting m — o0 in (4.3), we obtain from (4.4) and (4.5) that

(4.6) /Ot{—(v, orup) + (Vv, Vup) + (v - Vo, up)}dt = — (@), up(t)) + (a, un(0)) .

For the weak solution v, there is a sequence v, k = 1,2, ..., in HY 0, T; HOIJ N L")
such that vy — v in LZ(O, T; Hol’g) (see Masuda [21]). Let us define vk , and vy by

t

t
v, p(T) = fo or(t —o)w(o)do, vu(T) = / pr(T —o)v(o)do .
0
Similarly to (4.3), we have

t
4.7) /0 {=(u, dcvip) + (Vu, Vugn) + (- Vi, vep)}dt

= —(u(1), v,n (1)) + (a, v, (0)) .
By (2.1) and (4.1), there holds

t
/ [(u - Vu, v p —vp)ldt
0

t t
s/ (o - Vi, vih —vh)|dr+/ (w1 - Vi, v — v)lde
0 0

1 1

t 3 t 2

< sup ||uo<o)||n,w< / nwn%dr) ( ] ||Vvk,h—whn%dr)
0<o<T 0 0

1 1

t 2 t 2

+ sup nvk,h(o>—vh<a)nz(/ nuln%,odr> (/ nwuédr> .
0<o<t 0 0

Since vg; — vy in H'(0, t; HOI‘ ») as k — 0o, the above estimate yields
t t
/ (u - Vu, v p)dt — / (u-Vu,vp)dt as k — oco.
0 0
Hence, letting k — oo in (4.7), we see easily

t
(4.8) / {=(u, 0zvp) + (Vu, Vop) + (u - Vu, vp)ldt = —(u(t), vu (1)) + (@, vr(0)) .
0
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By the symmetry of p;,, we have f(; (v, dzup)dt = — fot (u, 3;vp)dt, and hence adding (4.6)
and (4.8), we obtain

t
/ {(Vv, Vup) + (Vu, Vup) + (v - Vo, up) + (u - Vu, vy)}dt
0
= —(v(@®), up(t)) — (u(@), va(¢)) + (a, up(0) + vy (0)) .

Let up , and u) 4 be as

4.9

t
ui p(7) = / pn(t —o)uj(o)do, i=0,1,
0

where ug and u are as in (4.1). Since ug € L*°(0, T; L},), we have ug , — uoin L" (0, ¢; L})
forall 1 < r < oo. Hence there is a subsequence of {ug ;}s~0, which we denote also by
{to,n}n>0 for simplicity, such that ug () — wuo(r) in L7 for almost every T € [0, ¢] as
h — 0, which yields by (2.1)

(v - Vu(r), ug p(r)) = (v-Vo(r), up(r)) foralmostevery t € [0,¢] as h — 0.
Moreover, by (4.2)
(v Vo(2), uon(0))] < CIIVu@I31140,4 (D) In,w < €0l VU (D)3
forall 4 > O and all T € [0, #]. Hence the Lebesgue convergence theorem states

t t
(4.10) / (- Vo, upp)dt — / (w-Vv,ug)dt as h — 0.
0 0

Since u; , — uj in L?(0, T; L®) as h — 0, we have by the Schwarz inequality
t t

}/ (v - Vv, uyp)dr — / (v-Vv,uy)dr
0 0

1 1
“4.11) t 2 t 2
< sup IIU(U)Hz(/ ||Vv||%dr) (/ nul,h—unliodr)

0<o<t 0 0

—0 ash—0.

Then (4.10) and (4.11) yield

t t
4.12) / (v - Vv, up)dt — / (v-Vo,u)dt as h— 0.
0 0

Since v, — v in L%(0, t; Hol,a)’ we have by (2.1) and (4.2) that

t t
f (ug - Vu, vp)dt — / (ug - Vu, v)dt
0 0

(4.13) C NI ,\?
< 80(/ ||Vu||2a't> (/ 1V — Vvllzdr)
0 0

—-0 ash—0.
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Furthermore, there is a subsequence of {vj},-0, which we denote also by {vp}r>0 for sim-
plicity, such that vy (t) — v(7) in Holy , for almost every t € [0, t] as h — 0, which yields

[Quy - Vu(), va(t) = v(0)| < llu1(DllooIVu(m)l2llva(z) — v(T)l2 = 0
as h — O for almost every t € [0, ¢] together with the uniform estimate with respect to A:
[(u1 - Vu(r), va(r) = v(D)| < 2|vliLoo,7;22) U1 (Dl Vu(D)l2, O0=<7 <71.

Since the right hand side of the above is summable on (0, t), the Lebesgue convergence theo-
rem yields

4.14) /(;t(ul -Vu(r), vp(t))dt — /(;[(ul -Vu(r),v(r))dt as h —> 0.

By (4.13) and (4.14), we have

(4.15) At(u -Vu(t), vy (t))dt — /Ot(u -Vu(r),v(r))dt as h—> 0.

Now letting 4 — 0 in (4.9), we obtain from (4.12), (4.15) and the standard argument that
(4.16) Lt{2(Vu, Vu)+ (v-Vo,u) + (u-Vu,v)}dt = —(v(t), u(t)) + |la||%.

For every ¢ € H(},a, we have by (2.1) and (2.2)

|(u-Vu, )| =[(u- Vo, u)| = |(u-Ve,uo+uy)|
< CIVull2lluolin,w + llul2llutllc) VL2 ,

which yields u - Vu € L0, T; (Hol,a)*)’ X* denoting the dual space of X. Then it follows
from Temam [28, Chapter 3, Lemma 1.2] that u satisfies the energy identity:

4.17)

(4.18) (@113 +2f0[ IVu(@)lli3dr = llall;, 0<r<T.
Adding (4.16) (multiplied by —2), (4.18) and (1.5), we have by (2.4) and (2.5) that
@) — u(@II3 +2f0' IVo — Vul3de
< 2/0t{(v -Vv,u)+ (u-Vu,v)}dr
= 2/01((v —u) - Vo, u)dt
=2/0t((v—u)~V(v—u),u)dr, 0<t<T,
which yields

, 0<r<T,

t t
(4.19) |1w(;)||§+2/ IVw|3dt 52’/ (w - Vw, u)dt
0 0
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/here w = v — u. Applying (4.1) and (4.2) to the right hand side of (4.19), we obtain from
2.1) and the Schwarz inequality

t
uw(t)||§+2/0 IVwl2de
t t
< 2/ [(w - Vw, ug)ldt +2f [(w-Vw, uy)ldt
0 0

t t t
< Cs sup [[uo()lInw /0 IVwli3dT + fo IVwl3dt + fo w3l ll2dt

0<o<T
< (Cu0 + 1)/; IVwl3de + /O lwl3llul3dz ,
where Cy, = Cy(n). Let us now define gq in (1.4) as
e=1/Cy.

Then from the above estimate, we get

lw(@®)13 < /0 lw@) B3 lu(D)l2dt, 0<t<T,
and the Gronwall inequality yields that
w113 < [lw(0)[I3 exp (/0, ||u1<r)||§odr) forall 0<r<T.
This implies that

u=v onl0T],

which proves Theorem 2.

5. Regularity of weak solutions; Proof of Theorem 3. In this section, we assume
that the domain §2 satisfies Assumption 3. Let us recall the Stokes operator A, and the Banach
space X*7 (0, T) introduced in Section 2. For u as in (4.1) with (4.2), we first consider the
following Stokes equations with the perturbed convection term u - Vv:

dv
(P-S) = TAvHPR@ V=0, 0<r<T,
v(0) = b.

Then we have

LEMMA 5.1. Suppose that §2 satisfies Assumption 3. For 1 <s <2andn/2 <r <n
with2 < 2/s +n/r < 3, there is a constant gy = go(n, s, r) with the following property. If
u € L®(0,T; L2) N L*(0, T; Hy ) and if u satisfies (1.4), then for every b € D(A,;) N L
there is a unique solution v of (P-S) in X" (0, T). Moreover, such v has the additional
properties:

5.1 veL®0,T;LY)
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forl <s<sp<oo,l<r<rg<oowith2/so+n/ro=2/s+n/r—2;

(5.2) ve C(0,T); L) NL*(0,T; Hy )

t

(5.3) lv(o)|3 +2/ IVu(z)l|3dT = ||b|3 forall 0 <t <T.

0

PROOF. Representing v as v(z) = e’ w(¢) in (P-S), we may solve the following equation

for w:
dw -
71?+Arw+P,(u-Vw)=0, O0<t<T,
w(0) =b,

(P-S')

where A = A + 1. ,
We shall make use of the following successive approximation {w ; }?‘;O:

(54) LUO(I) — e—tA~,b ,
a’wj+1 ~

(5.5) — - AW ==P@-Vuy, 0<r<T,
wj1(0) = b.

For each j = 0,1, ..., we can find a unique solution w;4; of (5.5) in X*"(0, T). In fact,
for j = 0, since b € D(A,), there holds wo € X*" (0, T) with |[wollxsr0,7) < 2lbliD(A,)-
Suppose that w; € X% (0, T'). Since u can be decomposed as in (4.1) with (4.2), we have by
Lemma 2.4 that
lu - Vwjllzso,1;Lr)

< C(lluo - VwjliLso,1;0ry + llur - VwjllLso,1;L7)

(5.6) < C{lluoliLe©,1;Ln)lwjllxsr0,1)
Hluill 2, 7: Loy lwjll xsr,7) + 181l D(A,))}

< C(eo + llutllL20,7;200)) Ulwjll xsr 0,7y + 161l D(A,)) 5
where C = C(n, s, r) is independent of j and 7. Then it follows from Giga-Sohr [10,
Theorem 2.9] that there exists a unique solution w4 of (5.5) in X*" (0, T') with

lw;illxsr,1)

(5.7)
< Ci{(eo + lutll 20,7100 Nlwjll xsr0,7) + 1BlID(A)) + 1BlID(A)}

where C, = Cx(n, s, r) is independent of j and T.
Now we take &g in (4.2) and § > O in such a way that

(5.8) ‘g0 = 1/4C,,

1
t+46 2
(5.9) (/ ||u1(r)||§odr) <1/4C, forall 0<t<T.
t
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Set w; = w; —wj_1(w—; =0). Similarly to (5.7), we obtain from (5.8) and (5.9)
Nj+1llxsr©.8) < Cx(eo + llurllL2(0,5: Lo 1 Wl x57 0.5)

I .
< Sljllxsr ) -
2“ jllxsr,8)

which yields
. /!
Il xsr©,8 < (5) Iblipa,y, 7=0,1,....
Notice that w;(0) = Oforall j = 1,2,.... Since w; = Eizo Wy, there exists a limit w of

w; as j — oo in X*"(0, §). Letting j — oo in (5.5), we see easily that w is a solution of
(P-S’) on the interval (0, 8).

Next, we proceed to solve (P-S’) beyond 8. Since w € X' (0, §), we can take o0 €
(8/2, 8) so that w(c) € D(A,). Since (P-S’) is a linear equation for w, as in the similar
manner to the above, we can construct a solution w of (P-S’) in X*7 (0, o + 8) with w(o) =
w(o). By the uniqueness, there holds W = w on [0, 8], which yields a solution w of (P-S’)
in X5 (0, 38/2). Proceeding this argument inductively, within finitely many steps, we get the
solution w of (P-S’) in X*" (0, T).

Finally we shall show that the solution w satisfies

(5.10) w e C([0,T); LZ) N L*(0, T; Hy )
with
t
(5.11) lw(®)l3 +2/ (Vw3 + lwl3)dr = ||b||3 forall 0 <t < T.
0

To this end, we need to return to the approximation solution {w j}?°=0 in (5.5). Since b € L?,,
we see easily that wo satisfies (5.10). Suppose that w; is in the class of (5.10). Then by (4.17),
we have P(u - Vw;) € L*(0, T; (H; ,)*) and again by Temam [28, Chapter 3, Lemma 1.2],
w;+1 belongs to the class of (5.10). Moreover, by (2.2) and (2.3), there holds

t
||w,+,<r)n%+2/0 (Vw13 + llwj1l3)de = Ibl3, 0<t<T.

By the weak compactness, there is a limit w of a subsequence of {w j}?io in L, T; L(Z,) N
L*(0, T, Hy ;). Itis easy to see that w = w. Since P(u - Vw) € L?(0, T; (Hy ,)*), we have
w e C(0,T]; L?,), which yields (5.10) and (5.11). Defining v(t) = e'w(¢), we conclude
from the investigation above and (2.24) that v is the desired solution of (P-S). This proves
Lemma 5.1.

LEMMA 5.2. Suppose that §2 satisfies Assumption 3. For 2 < r < 00, there is a
constant g9 = go(n, r) such that if u is a weak solution of (N-S) with (1.4), then there holds
u(t) € L2 N D(A,) for almost all t € (0, T).
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PROOF. Let us take g so that max{n, r} < g < 0o. By (4.1) and (4.2), there is a subset
J C [0, T] with u(J) = O such thatif r € (0, T) \ J, then

u(t) = uo(t) +u(2),

where ug(t) € L2 N L7, , with [[uo(t)lln,w < €0 and u;(z) € L2 N LY. Here L",  is defined
by the real interpolation as L, , = (L5°, L5")g.00 for 1/n = (1-6)/po+6/p1,0 <6 < 1.
Then it follows from Kozono-Yamazaki [17, Theorem 2] that under the suitable choice of
&0, there exist t, = t,(#) and a smooth solution v of (N-S) on the interval (¢, t + t,) with
v(t) = u(t) such that

(5.12) veC((t,t +1); D(Ap)), 2=<p=<gq;
(5.13) veC([t,t+t): LYy, 2<p<n
with the energy identity

’

t
||v<t/>||§+2/ IVuli3de = lu@)|?, t<t <t+1,..
t

By Theorem 2, we have u = v on [, ¢ +1,), from which together with (5.12)—(5.13) it follows
that u(s) € D(A,) N L?, forall s € (¢, ¢ + t4). Since ¢ can be taken arbitrarily in (0, T) \ J,
we get the desired result. O

Completion of the proof of Theorem 3. We shall reduce our problem to the classical
regularity criterion of Serrin [23]. Let s and r be as in Lemma 5.1. By Lemma 5.2, for every
o > 0, thereis 0 < § < o such that u(8) € D(A,) N L(z,, Then it follows from Lemma 5.1
that there exists a unique solution v of (P-S) in X" (8, T') with v(8) = u(8). By (5.1) we have

(5.14) ve L%, T;L™) for 2/so+n/ro <1 with ro > n.

Since v satisfies (5.3) with O and b replaced by § and u(§), respectively, as in the proof of
Theorem 2, it is easy to conclude that u = v on [§, T). Now by (5.14), the regularity criterion
of Serrin [23] assures that u € C 2([2 x (o0, T)). Since o > 0 can be taken arbitrarily small,
we obtain the desired regularity. This proves Theorem 3.

6. Appendix.

PROOF OF PROPOSITION 1. Let @ € C([0,T]; L"). We take a function x €
C®([0,00)), 0 < x < 1with x(r) = 1forr > 1, x(r) = 0for0 < r < 1/2, and

Ix'(r)] <3.For R > 0weset xg(r) = x(r/R). Obviously there holds

| D (x, t)l"dx) '

1
n

Rulx € 2:10(x.1)| > R}7 < (f
{xef2;|¢(x,1)|>R)

©.1) < (/ lxR(iqb(x,r)w(x,t)l"dx)
22

= | xr(PC, DD, Dlln
= fr(t)
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for all R > 0. For each fixed R > 0, fr is a continuous function on [0, T]. Indeed, we have

|fr(@®) = fRED] = [Ixr(UPCHODDPC, Dlln = I XRUPC IDPC, 1)l

6.2
©2 < IxrUPCODPC 1) = xr(PC DD ) -

Since

Ixr(IENE — xr(EDE| < Sug(x(r) +rx'(NDIg — &'|
forall £, £’ € R" and all R > 0, we obtain from (6.2)
IfrR@) — fREN < CIPC 1) = P, 1) In

forall R > Oandall¢, ¢’ € [0, T]. Since @ € C([0, T]; L"), there holds fg € C([0, T]) for
all R > 0. Clearly, for each fixed ¢ € [0, T], fr(¢) is monotone decreasing with respect to R
and by the Lebesgue convergence theorem there holds

fr(t) > 0 as R — oo.
Now it follows from the Dini theorem that
fr = 0 wuniformlyon [0,T] as R — oo,
from which and (6.1) we obtain

lim sup (Rulx € 2;|®(x,1)| > R}7) = 0.

R—>00 g<<T
This proves Proposition 1.

PROOF OF PROPOSITION 2. By the Sobolev embedding H' ¢ L? N L?"/=2) when
2 <n<4,wehave H' C L", so we may define J,, = identity form = 1,2, ... .

Let £2 be as in (1)—(4). In such cases, the L"-theory of the Stokes operators A, is estab-
lished and we may choose {J,,}5_, as

Ly
JmE<l+—A2> , m=1,2,....
m

Since we have Ay = A, ¢ for ¢ € D(Az) N D(A,), we may regard A; as an operator also

defined on L], even on L}, .. Then by Lemma 2.3 (i) and the real interpolation, {J,x}_,

is a family of bounded operators on Ly, , with sup,,_; IJmlB(L7,) = N < oo. For

¢ € Holﬁ N L7, there holds ¢ = P¢ and we have
1Jm@ln,w < Nldlnw,
1
1Jm@ll gt = 1 Im@l2 + 1A2 T2

< 1mlrquz) (18112 + A2 8]12)
<1l

forallm =1, 2, .... Hence (i) follows from the resonance theorem.
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n=2
To show (ii), we make use of the continuous embedding D(A2“ ) C L"*, which is derived
from (2.23). For every ¢ € H(},U N LY, such an embedding yields J,,¢ € L" with the estimate

—2

n=2 ;
[Jm@lln < CUITm@ll2 +1Ay* Tm@ll2) < C(1+m 7)1l

with a constant C independent of ¢ and m.
Finally, we prove (iii). Obviously, there holds

|Jn® — Py > 0 as m — oco.

Since we may regard A as a densely-defined, m-accretive operator on L(’j,", the closure of
C$° in L""! there holds

Jmy = ¥ in L"™! for every ¥ € Lﬁ,'] .
Hence for every ¢ € Hol‘o N L7 and every ¢ € L™, we have
(Um@, V) = (U@, PY) = (@, InPY) > (¢, PY) = (¢, V),

which implies
Jn® = ¢ weakly*in L7, .

This proves Proposition 2.
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