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Abstract. We show the existence of weak solutions of the Navier-Stokes equations
with test functions in the weak-Ln space. As an application, we give a new criterion on unique-
ness and regularity of weak solutions which covers the previous results.

Introduction. Let Ω be any domain in the Euclidean rc-space Rn (n > 2) with bound-

ary dΩ. Consider the Navier-Stokes equations in Ω x (0, T)\

Δw + u - Vu + V p = 0 inxeΩ,0<t<T,
dt

(N-S) . div w = 0 inxeΩ,0<t<T,

u = 0 on 9ί2 ,

M|r=o = β>

where u = u(x,t) = (uι(x,t), ... ,un(x,t)) and /? = p(x, t) denote the unknown velocity

vector and the pressure of the fluid at a point (x, t) e Ω x (0, Γ), respectively, while a =

a(x) = (a1 (x), . . . , an(x)) is the given initial velocity vector field. For simplicity, we assume

that the external force has a scalar potential and is included into the pressure gradient.

The purpose of this paper is to enlarge the space of test functions in the definition of

weak solutions. In [19] and [13], Leray and Hopf proved the existence of weak solutions

with test functions in C^σ(Ω), where the subscript σ means solenoidal vector fields. By the

density argument, one can extend the space of test functions to HQ σ (Ω). To define the integral

fΩu Vu - φdx for arbitrary weak solutions u with test functions φ, we need φ e Ln(Ω).

Hence, if n < 4, by the Sobolev embedding we have H^σ{Ω) c Lr{Ω) for 2 < r <

2n/(n — 2), so the space H^σ{Ω) suffices to be taken as test functions. In the case n > 5,

however, we need to choose φ in HQ σ(Ω) Π Ln(Ω). On the other hand, from the viewpoint

of scaling invariance introduced by Caffarelli-Kohn-Nirenberg [4], it is important to find a

solution of (N-S) in Ln(Ω). Giga-Miyakawa [8] and Kato [14] constructed a solution u in

C([0, T]; Ln(Ω)), which is necessarily unique and regular. It seems to be reasonable to take

the space of test functions as large as possible so that smooth solutions can be obtained under

minimum additional assumption on weak solutions. Masuda [21] proved the existence of

weak solutions with test functions inC([0, T]; HQ σ(Ω)ΠLn(Ω)) and applied it to generalize
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the uniqueness criterion due to Foias [5] and Serrin [24]. Indeed, it is shown in [21] that, for

each n > 2, if u is a weak solution of (N-S) in Z/(0, T; L^(Ω)) for 2/s + n/q < 1 with

q > n, then w is unique.

Recently, Kozono-Yamazaki [17] constructed a smooth solution in C((0, Γ); L^(ί2)),

where L^(Ω) denotes the weak-L" space. In the present paper, we prove the existence of

weak solutions with test functions in C([0, Γ]; HQ σ (Ω)C\Ln

w(Ω)). As an application, we give

a new criterion on uniqueness and regularity of weak solutions which covers Foias-Serrin-

Masuda's result. Up to the present, the class C([0, Γ]; Ln(Ω)) is the largest space that enables

us to obtain both uniqueness and regularity of weak solutions. More precisely, uniqueness is

ensured in the class L°°(0, T; Ln (Ω)) ([26], [15]), while its regularity is still an open question

([1], [2], [16]). Our class is larger than C([0, T]; Ln(Ω)). The crucial difference between the

usual and the weak Ln-spaces stems from the fact that C™(Ω) is not dense in the latter space.

To get around this difficulty, we impose a certain assumption on the distribution functions

determined by test functions, which plays a substitutive role for the density property.

In Section 1, we shall state our main results. Section 2 is devoted to some lemmas for the

proof of the main theorems. In Section 3, we shall show the existence of our weak solutions.

Finally in Sections 4 and 5, we shall prove the new criterion on uniqueness and regularity,

respectively.

The author would like to express his sincere thanks to the referee for valuable comme-

nents.

1. Results. Before stating our results, we first introduce some function spaces. Let

C£°σ denote the set of all C°° vector functions φ = ( 0 1 , . . . ,φn) with compact support in

Ω, such that divφ = 0. Lr

σ is the closure of C^°σ with respect to the Z/-norm || | | r . ( , •)

denotes the duality pairing between U and Lr, where \/r + \/rr = 1. U stands for the

usual (vector-valued) //-space over Ω, where 1 < r < oo. HQ σ denotes the closure of C^°σ

with respect to the norm

11011*1 = 110112 +II V 0 | | 2 ,

where V</> = (dφ^dxj), i, j = 1, . . . , n.

Uw denotes the weak-Z/ space over Ω with the quasi-norm || ||r>ιϋ defined by

||0| |Γ | U, = sup Rμ{x e Ω\ \φ{x)\ > R}
R>0

\/r

where μ is the Lebesgue measure. For 1 < r < oo, there is another norm equivalent to this

|| \\nw (see Bergh-Lofstrom [3, p. 8]), so we may regard Uw as a Banach space. For an interval

/ in Rι and a Banach space X, Lp(ϊ; X) and Cm(7; X) denote the usual Banach spaces of

functions of Lp and Cm-class on / with values in X, respectively, where 1 < p < oo,

m = 0 , 1,... .

We next introduce an assumption on the initial data a and then state our definition of a

weak solution of (N-S).

ASSUMPTION 1. The initial data a = a(x) is in L2

σ.
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As our space of test functions, we define the space S by

S = {Φ e Hι(0, T; H^σ) Π C([0, Γ]; Ln

w)\ Φ satisfies the following condition (1.1)};

(1.1) l i m ( s u p Rμ{x e Ω ; \ Φ ( x , t ) \ > R } n ) = 0 .
R-^oo \0<t<τ I

Concerning the relation between S and the usual space of test functions, we have

PROPOSITION 1. Every function Φ e C([0, Γ]; Ln) satisfies (1.1).

For the proof, see the Appendix.

DEFINITION. Suppose that Assumption 1 holds. A measurable function u on Ω x

(0, T) is called a weak solution of (N-S) if

(i) « 6 L o o ( 0 , Γ ; L 2 ) n Z , 2 ( 0 , Γ ; f l 0

1

i σ ) ;

(ii) For every Φ e S with Φ(T) = 0,

JO
{-(u, dtΦ) + (VM, VΦ) + (u VM, Φ)}dt = (a, Φ(0)).

REMARKS. (1) For u and Φ as above, the integral f^(u Vw, Φ)dt is well-defined.

Indeed, by Lemma 2.1 below there holds that

τ ίτ

\(u-Vu,Φ)\dt<C sup \\Φ(t)\\n,w /
0<ί<Γ

(2) Masuda [21] defined test functions Φ in H{(0, T\ H^σ Π Lπ). By Proposition 1,

we see that our space S is larger than that of Masuda.

(3) After redefining its value of u(t) on a set of measure zero in the interval (0, Γ), we

see that u(t) is continuous for t in the weak topology of l?σ. By a weak solution we mean a

weak solution redefined in this manner.

Our theorem on the existence of weak solutions now reads:

THEOREM 1. Suppose that Assumption 1 holds. Then there exists a weak solution u

of (N-S) such that

(1.2) IKOII2 + 2 f IIVu(τ)\\2

2dτ < \\a\\j , 0 < t < T
Jo

(1.3) \\u(t) - a\\2-^ 0 a s ί φ + 0 .

We next proceed to the uniqueness criterion. To this end, we impose the following as-

sumption.

ASSUMPTION 2. For each m = 1, 2 , . . . , there is a bounded operator Jm on HQ σ ΠL^

such that the following properties (i), (ii) and (iii) hold:

(i) 7m, m = 1, 2 , . . . , are uniformly bounded as

s u p I I Λ l l M
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where || \\B(X) denotes the norm of bounded operators on X\

(ii) For every φ e //J σ Π Ln

w, we have

Jmφ e Ln for all m = 1,2,. . .

with

IIΛ.0II* <Cm\\φ\\2,

where Cm is a constant depending on m = 1, 2 , . . .

(iii) For every φ e H^σ Π Ln

w, {Jmφ}™=ι satisfies

JmΦ -+ Φ in HQO and 7 m 0 -> 0 weakly* in Ln

w

as m -^ oo.

The assumption above is satisfied at least in the following cases.

PROPOSITION 2. Assumption 2 is satisfied if one of the following conditions is satis-

fied.

(0) 2 < n < 4;

(1) ί? is the whole space Rn (n > 2);

(2) ί? is the half space R\ (n > 2);
(3) Ω is a bounded domain in Rn (n > 2) with C2+μ (μ. > ^-boundary dΩ;
(4) Ω is an exterior domain in Rn (n > 2), i.e., a domain having a compact comple-

ment Rn \ Ω with C 2 + μ (μ > 0)-boundary dΩ.

For the proof, see the Appendix.

Our theorems on the uniqueness and regularity of weak solutions now read as follows.

THEOREM 2. Suppose that Assumptions 1 and 2 hold. Then there is an absolute con-

stant £o > 0 with the following property. Let u and v be weak solutions o/(N-S). Suppose

that there is a non-negative L1-function M = M(t) on (0, T) such that

(1.4) sup Rμ{x e Ω; \u(x, t)\ > R}" < εo for almost every t e (0, T).
R>M(t)

Assume that v satisfies the energy inequality

f ||Vυ
Jo

(1.5) \\v(t)\\2

2 + 2 f | |Vυ(τ) | | ^τ < \\a\\\ , 0 < t < T .
Jo

Then we have u = v on [0, T].

REMARKS. (1) The constant £o in (1.4) depends only on n, but not on T and a e L2

σ.

(2) In Theorem 2, v need not fulfill the property (1.4) assumed for w, but satisfies the

energy inequality (1.5). On the other hand, it should be remarked that (1.4) assures a stronger

property than (1.5). Indeed, u satisfies necessarily the energy identity

\\u(t)\\l + 2 ί \\Vu(τ)\\2

2dτ = \\u(s)f2 , 0 < s < t < T .
Js

See (4.18) below.
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As for regularity, we impose the following assumption on the domain Ω:

ASSUMPTION 3. The domain Ω satisfies one of the conditions (1), (2), (3) and (4) in

Proposition 2.

THEOREM 3. Suppose that Assumptions 1 and 3 hold. Then every weak solution u

with the property (1.4) belongs to C2(Ω x (0, T)).

REMARKS. (1) By Serrin [23], [24] and Masuda [21], it is known that if the weak

solution u is in Z/(0, T; Lq) for 2/s + n/q = 1 with q > n, then u = v in Theorem 2 and u

belongs to C2(Ω x (0, T)). For such w, we can define M(t) in (1.4) as

Obviously, there holds

Moreover, by

which yields

Γ M t2dt-
Jo

the Chebischev inequality,

Rμ{x e Ω\ \u(x,t)\ > R

sup Rμ{x e Ω; \u(x,
R>M(t)

/

Λ

4
we

V

01

llnWII
εo

Ί:
have

> R}n

q\ q-n
q \

)

\\u(t)\\s

qd

-ll«(0ll|

< M{tγ

oc.

for all R

and (1.4) is fulfilled. Hence our theorems cover the previous criterion on the uniqueness and

regularity in the class Z/(0, T\ Lq) so far as Assumptions 2 and 3 are satisfied.

(2) von Wahl [29] and Giga [7] showed that, under Assumption 3, if the weak solution

u is in C([0, Γ]; Ln), then u belongs to C2(Ω x (0, T)). For w G C([0, T]; Ln), we obtain

from Proposition 1 a constant /?o depending £o such that

sup Rμ{x e Ω; \u(x, t)\ > /?}« < ε0 for all t e (0, Γ ) .
R>R0

Hence, by taking M(t) = Ro, we see that Theorem 3 covers also the result on regularity

proved by von Wahl and Giga.

(3) It is an open question whether every weak solution u e L°°(0, T; Ln) is regular or

not (see [16]). Struwe [27] showed that if s u p 0 < ί < Γ | |w(0L < εo, then u is a unique smooth

solution. From Theorem 3 we obtain a larger class of smooth solutions, namely, if the weak

solution u satisfies

l imsupί sup Rμ{x e Ω\ \u(x,t)\ > R
R-+00 \0<t<T

then u belongs to C2(Ω x (0, Γ)). This implies that if u{t) lies uniformly in (0, T) near the

closure of Ln

w Π L°° in the norm of L^, then u is the smooth solution. In other words, every
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weak solution in L°°(0, Γ; Ln

w) whose local singularities in Ln

w are uniformly small in (0, T)

becomes regular.

2. Preliminaries. In this section we shall prove some lemmas for later use. In what

follows we shall denote various constants by C. In particular, C = C ( * , . . . , *) denotes

constants depending only on the quantities appearing in the parentheses.

Let us first estimate the nonlinear term of (N-S).

LEMMA 2.1. (i) Let u, υ be in //J σ and φ be in Ln

w. Then the coupling (u Vυ, φ)

of the integral in the definition of a weak solution o/(N-S) is well-defined with

(2.1) |(M Vυ, φ)\ < C|| Vιι||2||Vv

where C = C(n).

(ii) Let u, v, w be in HQ σ . Suppose that u is decomposed as u = uo + u\ with UQ €
andu\ e L°°. Then there holds

(2.2) (u - Vυ, w) = -(u - Viϋ, υ),

(2.3) (υ V « , M ) = 0 .

(iii) Letu,v,w be in L°°(0, Γ; L2

σ) Π L2(0, T\ H^ σ). Suppose that u is decomposed

asu = uo + u\ with u0 e L°°(0, T; Ln

w) and u\ e L2(0, T; L°°). Then there holds

fτ fτ
(2.4) / (u Vυ, w)dτ = - / (u Viϋ, v)dτ ,

Jo Jo

(2.5) ί (v-Vu,u)dτ = 0 .

PROOF, (i) Let us denote by Lp'q (1 < p < oo, 1 < ^ < oo) the Lorentz space over

Ω with the norm || \\LP<I> By the Holder inequality in Lp>q ([18, Proposition 2.1]), there

holds

KM Vυ, 0) | < C||M||L2n/(»-2),2||VV||L2,2||0||L».«>,

where C = C(π). Since H^ is continuously embedded into L2n/(n~2)a ([18, Proposition 2.2])

and since L 2 ' 2 = L2, Lno° = L^, the estimate above yields

(2.6) |(iι Vυ, 0) | < C| |VM|| 2 | |Vυ| | 2 | |0lku;

with C = C(n). This implies (2.1).

(ii) Since C£°σ is dense in Z / ^ , there is a sequence Vk, k = 1, 2, . . . , in C^°σ such that

f£ —> ι>, Vυyt —> VυinL 2 . By integration by parts, we have

(2.7) (u - Vvk, w) = -{u - Ww, Vk) for all k = 1, 2 , . . . .
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By (2.1) there holds

\(u Vι>£, w) — (u Vυ, w)\

- v), w)\ + |(MI V(υ* - v), w)\

< C\\uQ\\n,w\\Vvk - Vυ| | 2 | |Vu;| |2 + C\\ux

—• 0 as k -> oo .

Similarly, we have

\(u - Vw, v/c) — (u - Vw, υ)\

(2.9) < C||«olku;l|Vu;| |2| |VυΛ - Vυ | | 2 + C\\uλ HoollVu;||2||υik - υ | | 2

-> 0 as k -> oo .

Letting k -> oo in (2.7), from (2.8) and (2.9), we obtain (2.2).

In the same manner, we have by integration by parts

(2.10) (vk VM, U) = -(vk VM, M) = 0 for all k = 1, 2 , . . . .

By (2.1) there holds

Kυ* VM,M) - (v • Vu,u)\

< \((vk ~ v) VM, MO)I + |(t>* - υ) VM, MJ) |

-^•0 as k -> oo .

Letting k -> oo in (2.10), we obtain (2.3) from (2.11).

(iii) By (2.1) and the Holder inequality, we have

,T;L"w)(J l|Vυ\(U'Vυ,w)\dτ<C\\uo\\L«>φ

Hence each term of integrals in (2.4) and (2.5) is well-defined. Then the proofs of (2.4) and

(2.5) follow from (ii). D

The following lemma may be regarded as a generalization of the one by Masuda [21,

Lemma 2.5].

L E M M A 2.2 (Masuda). For any ε > 0 and any Φ e S, there exist a constant C =

C(ε, Φ), an integer N and functions ψι,i = 1, 2, . . . , N, in L such that the inequality

pT pT
/ |(M Vv, Φ)\dτ < ε / ( | | V M | | 2 + ||Vv\\2

2 + \\u\\j)dτ
Jo Jo

Γ ί \(u(τ),ψi)\2dτ
7ΞίJo

holds for all M, υ e L 2 (0, T; H^σ).
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PROOF. We follow the argument in Masuda [21, Lemma 2.5]. Let η = η(t) be a

smooth monotone decreasing function on [0, oo) so that 0 < η < 1, η(t) = 1 for 0 < |ί | < 1

and η{t) = 0 for \t\ > 2. We also take ζ e C^(Rn) in such a way that ζ(x) = η(\x\)

for x e Rn. For R > 0 we define ηR and fΛ by ηR(t) = η(t/R) and ζR(x) = ζ(x/R),

respectively.

Let us take Φ e S. By (1.1), for every ε' > 0 there is Rε> > 0 such that

(2.12) Rμ{x e Ω\ \Φ(x, t)\ > R}n < e' for all R > Rε> and all t e (0, T).

Let us fix such Rε. We decompose Φ as

Φ = (1 - w β , ( |ΦU, t)\))Φ(x, t) + ^ ε / ( | Φ ( x , t)\)Φ(x, t)

Then there holds Φ o € L°°(0, Γ; L 2 Π L^) with

(2.14) sup \\Φ0(t)\\n,w < ε'.
0<t<T

In fact, since \Φ(x, t)\ > \Φo(x, t)\ for all (x, t) e Ω x (0, T), we have by (2.12) that

HΦoWIku; = sup Rμ{x e Ω; \Φ0(x, t)\ > R}n
0<R<oo

< max

< max

sup Rμ{x eΩ;\Φo(x,t)\> R}n, sup Rμ{x e Ω;\Φo(x,t)\ >
0<R<Rε, Rεf<R<oo

Rε'μ{x e Ω; |Φ(JC,OI > Rε'}", sup Rμ{x e Ω; |Φ(JC,OI > R}" \

= sup Rμ{x e Ω;\Φ(x,t)\ > R}n < εf

Rε,<R<oo

for all t e (0, Γ), which implies (2.14).

As for Φi, we have

(2.15) Φγ e L°°(0, T\ Lr) for all 2 < r < oo .

Taking m = 1, 2 , . . . , we next decompose Φ\ as

Φl(jC, ί) = (1 - fmW)Φl(jC, ί) + fmWΦlU, 0

Since it holds for every (x, t), (x, tf) e Ω x (0, T) and every m = 1, 2, . . . that

\Φ?t0(x, t) - Φ?t0(x, tf)\ < sup (η(τ) + | τ^(τ) | ) |Φ(x, t) - Φ(x, tr)\,
τeR1

we have Φ ^ o € C([0, Γ]; L^). Using the inequality 1 -fm(jc) > l - f m + ϊ W for all Λ: G /?",

we see that for each fixed t e [0, T], there holds



WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 63

Obviously, (2.15) yields

HΦjyOIU.u; < HΦfyOII/i - » 0 a s m ^ o o for each fixed ί e [ O J ] .

Then it follows from the Dini theorem that there is an integer mε> such that

(2.16) sup \\Φ™ε

0(t)\\n,w <ε>'•
0<r<Γ

Let us fix such mε>. By (2.1), (2.14) and (2.16) we have

(2.17) / |(iι Vυ, Φ 0)l^τ < Cs' / || Vκ||2||Vυ||2rfτ ,
Jo Jo

fτ fτ
(2.18) / \(u.\?υ,Φ?0)\dτ<Cε' ||VW||2||Vi;||2Jr,

JO ' Jo

where C = C(n) is independent of u, υ, ε''.

ί2 Π{|JC| < 2m}

To handle Φ™v notice that

and that Φ™χ e L°°(Ω x (0, T)) with \\φ™{\\L™(ΩX(0,T)) < 2Rε'. Hence by the Schwarz

inequality there holds

fτ ίτ

/ \(u.Vυ,Φ?Λ)\dτ <2Rε> Γ \\u\\L2(Ω2m)\\\7υ\\LHΩ2m)dτ

(2.19) Jo 1°
if ? ί 9

<ε'\ \\Vv\\idτ+ Cε> / ||w||:2,o ,Jτ .
JO J \j

Since Hι(Ω2m) is compactly embedded into L2(ί22m), it follows from the Friedrichs inequal-

ity that there is an integer Nει such that

||2 ) + V .

(2.20)

*,XΩ2mΦi)\2 ,

where {φi}°^\ is the complete orthonormal system in L 2 ( ί 2 2 m ) and XΩ2m is the characteristic

function on ί 2 2 m . Defining ^ = χΩ2mΦi, i = 1,2, ... , Nε', we have ψi e L2 and (2.19)-

(2.20) yield

£ 7
ε

(2.21)

ίτ ίτ

/ \{u.Vv,Φ™χ)\dτ <εf (\\Vv
Jo ' Jo

(u,ψi)\2dτ.

Since £r is arbitrarily taken, the desired estimate follows from (2.17), (2.18) and (2.21). This

proves Lemma 2.2.
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Let us assume that the domain Ω is as in Assumption 3. For such Ω, the V -theory of

the Stokes operator Ar is established. Recall first the Helmholtz decomposition:

Lr = Lr

σ 0 Gr (direct sum), 1 < r < oo ,

where Gr = {Vp e U\ p e Lr

hc(Ω)}. For the proof, see Fujiwara-Morimoto [6] and

Simader-Sohr [25]. Let Pr denote the projection operator from U onto Lr

σ along Gr. The

Stokes operator Ar on Lr

σ is then defined by Ar = — PrA with domain D(Ar) = {u e

H2'r(Ω); u\dΩ = 0} Π Lr

σ. We regard D(Ar) as a Banach space with the graph norm

||M||D(ΛΓ) = ||w||Γ + ll^rwllr-It is known that

(2.22) (Lr

σ)* (the dual space of Lr

σ) = Lζ , A* (the adjoint operator of Ar) = Ar<,

where 1/r + \/r' = 1. Moreover, we have

LEMMA 2.3 (Giga-Sohr). Suppose that Assumption 3 holds. Then we have the follow-

ing.

(i) — Ar generates a uniformly bounded holomorphic semigroup {e~tAr}t>o of class

C°inΠσ.

(ii) By (i) above, we can define the fractional power A® for a > 0, and there is a

continuous embedding D(A®) C H2cίJ with

(2.23) \\u\\Hi«,r < C{\\u\\r + | | A > | | r ) for all u e D(Aa

r)

with C = C(n, r, a), where H^r denotes the space of Besselpotentials over Ω.

(iii) Let 1 < s < oo and 1 < r < oo. Suppose that w e L5(0, T; D(Ar)) with

dtw e Z/(0, T\ Uσ) and w(0) = b e D(Ar). Then we have

w eLS0(0,T',Lr

σ°)

for \<s<so<oo,l<r<ro<oo with 2/so + w/rn = 2/s + n/r — 2,

Vu; G L 5 l ( 0 , Γ ; L r i )

/or 1 < 5 < si < oo, l < r < π < oo or 1 < s < s\ < oo, 1 < r < r\ < oo with

2/s\ -f n/ri = 2/s + n/r — 1. Moreover, there hold the estimates

(2.24) IM|L.vO(o,r;z/o) < Codiar^llLUOT LO + II(AΓ +

(2.25) ||Vw;||L.v1(o,r;LΠ) < Cχ(\\dtw\\Ls{Oj,Lr) + ||(ΛΓ

where Cj = Cj(s, r,Sj,rj),j = 0 , 1, is independent ofT.

For the proof, see Giga-Sohr [9, Theorem 3.1] and [10, Lemma 5.2]. Although they

proved the result for 1 < r < n/2, with Ar replaced by Ar -f 1, the above estimates can be

proved for all 1 < r < oo in the same way as in [9] and [10]. In fact, restriction on 1 <

r < n/2 is necessary only for getting (2.24) and (2.25) including the case T = oo in exterior

domains. This is related to the sharp estimate ||£>2w||r < C||A rw|| r for all u e D(Ar) which

holds in exterior domains for 1 < r < n/2. However, the estimate ||Z)2w||r < C||(A r + l)w||r

is true for all 1 < r < oo. It should be noted that the above estimates hold even in the case

so = s and s\ = s provided r < ro, r < r\. (2.25) holds even for r = r\ provided s < s\.
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Let us introduce the space Xs'r(0, T) by

X5 ' r(0, T) = {w e Z/(0, Γ; D(Λ r)); dtw e Z/(0, Γ; Uσ)},

which is a Banach space with the norm

LEMMA 2.4. Suppose that Assumption 3 holds.

(i) Lef wo € L°°(0, Γ; LJ,) W υ € X5 'r(0, Γ)/or 1 < s < oo, 1 < r < n. Then we

have uo Vv e Ls(0, T\ Lr) with

(2-26) \\UQ Vυ||z/(0,;Γ;Z/) < C\\uo\\L™(O,T;Ln

w)\\v\\χ^{OjΌ ,

where C = C(n, s, r) is independent ofT.

(ii) Let ux € L2(0, Γ; L°°) and v e X5 ' r(0, Γ)/or 1 < s < 2, 1 < r < σo with

v(0) e D(Ar). Then we have u\ Vv e Z/(0, Γ; Lr)

(2.27) \\uι

where C = C(n, s, r) is independent ofT.

PROOF, (i) Taking ro and π so that 1 < ro < r < r\ < n, we have \/r = (1 —

θ)/ro + 0/r\ for some 0 < Θ < 1. Let us define gy, y = 0, 1, by \/qj = l/ry — I/ft. By

(2.23) and the Sobolev embedding H2rJ c Hι'qJ, we have

l|M Vi;||Γy.>u, < NU f J |Vv| |^. f M ,

for all u e L^ and all v e D(Arj) with C = C(n, ro, π ) This implies that for each fixed

u e L^, the map

v e D(Arj) \-> u Vv e Lrj , 7 = 0, 1

is a bounded operator with bound < C||M||n>iy. Applying the Marcinkiewicz inteφolation

inequality, we see that

v e D(Ar) ι-> u Vυ € Lr

defines a bounded operator with bound < C||M||WJU;. Hence we have

\\u - Vυ\\r < C||u|U fU,||(Λr + l ) υ | | Γ , υ e D(Ar)

with C = C(n,r). Then (2.26) is an immediate consequence of the above estimate.

(ii) Taking 5*1 e (1, 00) so that l/s\ = l/s — 1/2, we have by the Holder inequality

Applying (2.25) with r = r\ to this estimate, we obtain (2.27). D

3. Existence of weak solutions; Proof of Theorem 1. We shall construct a weak

solution via the method of retarded mollifier according to Caffarelli-Kohn-Nirenberg [4].



66 H. KOZONO

Let h(> 0) e C^iR1) and p(> 0) e C£°(/T) such that

suppΛ c [1,2], / h(τ)dτ = l, supp p c {x e Rn; \x\ < 1}, / p(x)dx = 1,

respectively. For δ > 0 w e set

=**(?)•
2(0 Γ; //JFor M G L2(0, Γ; //J σ ) , we define the retarded mollifier Ψδ[u] by

Ψδ[u](x, t ) = h δ ( t - τ ) ( p δ ( x - y ) ύ ( y , τ ) d y ) d τ ,
J-oo \JRn /

where u(y, τ) = u(y, τ) for ( j , τ) e Ω x (0, Γ), and = 0 otherwise. It is easy to see that for

every u e L°°(0, Γ; L2

σ) Π L2(0, Γ; H^) there holds ^[w] G BC(Rn x Rι), BC denoting

the class of bounded and continuous functions, with div Ψδ[u] = 0 and

(3.1) ( , ; ) ( , ; ) mo,;)

For each m = 1, 2 , . . . , consider the following approximation

Wm + A2um + P2(^δ[um] Vum) = 0, 0 < t < T ,

where S = T/m. It follows from Caffarelli-Kohn-Nirenberg [4, Appendix] that there exists a

solution um of (3.2) such that

(3.3) um € C([0, Γ); L2) n L2(0, Γ; //J^)

(3.4) u'm e L2(0, Γ; ( J ϊ ^ ) ' )

'-f
Jo

(3.5) \\um(t)\\i + 2 \ \ V u m \ \ i d τ = \\a\\i, 0<t<T.
J

By (3.5) we see that the sequence {κm)~= 1 is bounded in L°°(0, Γ; L2) Π L2(0, T\ H^σ).

Hence the weak compactness theorem yields a subsequence of {um}™_γ, which we denote

also by {um]™=ι for simplicity, and a limit u such that

(3.6) um-> u weakly-star in L°°(0, T; L2) and weakly in L2(0, T; //J σ ) .

Moreover, for every φ e C£°σ, we have by (3.1) and (3.5)

\ί(Aum,φ)dτ <(j \\Vum\\2

2dτY ( ί \\Vφ\\2

2dτY < ||α

t

(Ψδ[um]-Vφ,um)dτ

for all m = 1, 2 , . . . and all 0 < s < t < T.



WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 67

Integrating (3.2) in time on (s, t), we obtain from these estimates

\(um(t), Φ) ~ (um(s), φ)\ < \\a\\2\\ V0| |2 | ί - s\l2 + || V^lloolHβlf - j |

for all 0 < s < t < T and all φ e C^°σ. Since C^σ is dense in L 2 and since we have
s u P o < r < r llMm(τ)ll2 < ll^lb for all m = 1,2, . . . , the above estimate implies that for each

φ e L 2 the sequence {(um(t), φ)}™=ι forms a uniformly bounded and equi-continuous family

of continuous functions on [0, T]. By the Ascoli-Arzela theorem, we may assume that for

every φ e L 2

(um(t), φ) —• (u(t), φ) uniformly in t e [0, T] as m -+ oo .

By (3.1) and the definition of Ψs[u], we also have for each φ e L2

σ

(3.7) (Ψ&[um\(t)> φ) -> (w(ί), 0) uniformly in ί € [0, Γ] as m -> oo .

To prove that the limit u is the desired weak solution, it suffices to show that

(3.8) / (Ψs[um] - Vum,Φ)dτ -> / (u Vu,Φ)dτ
Jo Jo

Indeed, we have

ί (Ψsίum]-Vum,Φ)dτ- f (u-Vu,Φ)dτ
Jo Jo

(3.9) rτ rτ

< / \((Ψδίum] - u) Vκm, Φ)\dτ + / |(M V(um - u), Φ)\dτ
Jo Jo

By Lemma 2.2, for every ε > 0, there are a constant C = C(ε), an integer N and functions

ψi, i = 1, 2 , . . . , N, in L 2 such that

/l < ε I (||VΦ5[κm] - V«||2 + ||VW||2 + ||Φa[nw] - u\\2)dτ

Σ \(Vδίum]-u,ψi)\2dτ.
i-λ Jo

By (3.1), (3.5) and (3.7), we have

limsup/i < 3(1 + T)\\a\\lε .
m->oo

Since ε > 0 is arbitrary, this implies that

(3.10) lim /i = 0 .

By [18, Proposition 2.2], we have a continuous inclusion HQ C L2"/ ("~2 ) '2 and hence it

follows from the Holder inequality in the Lorentz space ([18, Proposition 2.1]) that

wj = ujΦ G L2(0, T, L2)(= L2(Ω x (0, Γ))

with \\WJ\\LHΩX(0,T)) < cHVwllL2(0,Γ;L2)ll^llL^(0,Γ;n), where M-7' denotes the j-th com-

ponent of u. Since C™(Ω x (0, Γ)) is dense in L2(Ω x (0, Γ)), there is a sequence WJ[,
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k = 1, 2 , . . . , in C™(Ω x (0, T)) such that w{

by integration by parts we have

H. KOZONO

7 -- wj in L2(Ω x (0, T)) as k -> oo. Hence,

h<

/•Γ p n

I I Σ
JO JΩ jT

• 3
j-w]

k)-—(um-u)dxdτ
X

\\ \ Y-±{um-u)dxdτ
\J0 JS2jT[ °xj

( ί I Έ\wJ -™{\2dxdτY( f f \Vum-Vu\2dxdτY
\Jθ JΩjT[ / \Jθ JΩ )

a T p n \ 2 I pT p n βwj

/ Y\wJ -wJ

k\
2dxdτ) + / / Y-±(Um-u)dxdτ

JΩjTί / I Jo JΩ jT[ °xj
for all m, k = 1,2, Since um —> w weakly* in L°°(0, Γ; L 2 ) as m -> oo and since

u;/: -> w; in L 2 ( i ? x (0, Γ)), by letting m ->• oo and then & -• oo in the above estimate, we

obtain

(3.11) lim h = 0.

Then (3.8) follows from (3.9), (3.10) and (3.11). This completes the proof of Theorem 1.

4. Uniqueness of weak solutions; Proof of Theorem 2. Let u be a weak solution of

(N-S) with (1.4). Then u can be decomposed as

(4.1) M = M 0 + Ml,

where w0 G L°°(0, Γ; L2 Π LJ,) and wi G L2(0, Γ; L 2 Π L°°) with

(4.2) sup ||w0(OIU,u; <ε0.

Indeed, we define uo and u\ as

{w(x, 0 on {(*, 0 € ί2 x (0, 7); |w(x, 01 > M(t)},

0 on {(JC, ί ) G β χ (0, Γ); |M(JC, t)\ < Λf (f)},

_ ίO on {(x, 0 € Ω x (0, Γ); |w(x, 01 > M(t)},
W X ' ~ \u(x, 0 on {(x, t) e Ω x (0, Γ); |M(JC, 01 < M(t)}.

Since M G L2(0, Γ), we see easily u\ e L2(0, Γ; L°°) Π L°°(0, Γ; L2) with
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Similarly to (2.14), we have by (1.4)

ll«o(Olku; = sup Rμ{x e Ω; \uo(x, t)\ > R}«
0<R<oo

= max I sup Rμ{x e Ω\ \UQ(X, t)\ > R}n, sup Rμ{x e Ω;\uo(x,t)\ > R]n
[ 0<R<M(t) M(t)<R<oo

< max \M(t)μ{x e Ω\ \u(x,t)\ > M(t)]n, sup Rμ{x e Ω; \u(xj)\ > #}"

= sup Rμ{x e Ω\ |M(JC, t)\ > /?}« < εo

M(t)<R<oo
for all 0 < t < T, which implies (4.2).

Now taking amoHifier Ph(τ) = (l/h)p(τ/h), (h > 0,τ e Rι), we define uh,m by

Jo
Uh,m(τ) = / Ph(τ ~ σ)Jmu(σ)dσ , m = 1, 2, . . . , 0 < t < T ,

Jo

where {Jm}™=ι is the family of bounded operators on HQ σ Π Ln

w in Assumption 2. Since u =

UQ + u\ e L2(0, Γ; LJ^), we have by Assumption 2(i)-(ii) and Proposition 1 that Uh,m € S

for all /z > 0 and all m = 1, 2 , . . . . Choosing «/j?m as a test function associated with the weak

solution υ, we obtain

) + (Vυ, VwΛ,m) + (υ Vυ, MΛfm)Wτ

Let us define ŵ  be as

uh(τ)= / ph(τ - σ)u(σ)dσ .
Jo

Since M^ G C([0, ί]; //Qσ Π L^), we have by Assumption 2(ii) that for each /ι > 0 and

τ e [0, ί]

l |V^,m(τ) - VιιΛ(τ)| | 2 < (M + l)(| |MΛ(r)| |^i + ||MΛ(τ)||ΠfU,)

with

IIVιiΛ,m(τ) - VM Λ (T) | |2 < \\JmUh(τ) ~ u.h(τ)\\Hι -> 0 as m -> oo.

By the Lebesgue convergence theorem, there holds

(4.4) / (Vυ, Vuh,m)dτ -> / (Vυ, Vuh)dτ as m -> σo .

We obtain from (2.1) and Assumption 2 (i) that for every τ e [0, ί] and every m = 1, 2, . . .

| ( υ . V υ ( τ ) , i ι Λ f W ( τ ) - « Λ ( τ ) ) |

<C(M+l)( sup lliiΛίσ)!^!^ sup
0<σ<ί 0<σ<ί
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with C = C(n). Furthermore, by Assumption 2 (iii), there holds

Uh,m(τ) —• Uh(τ) weakly* in Ln

w as m —• oo

for each fixed τ e [0, t]. In the same way as in (2.6), we have v Vι (τ) e L" ' 1 and hence

from the above convergence we obtain

(v Vυ(τ), uh,m(τ) - uh(τ)) ^ 0 as m -> oo

for almost every τ e [0, t]. Then the Lebesgue convergence theorem yields

(4.5) I (υ Vv,Uh,m)dτ -• / (v -Vv,Uh)dτ as m -^ CXD .
Jo ' JO

Letting m ->• CXD in (4.3), we obtain from (4.4) and (4.5) that

(4.6) ί {-(υ, aτ«/,) + (Vυ, Vw )̂ + (υ Vυ, iιΛ)}dτ = -(υ(ί), MΛ(0) + (a, iιΛ(0)).
Jo

For the weak solution ι>, there is a sequence υ^, k = 1, 2 , . . . , in Hι(0, T; HQ σ Π LΛ)

such that Vk -^ v in L2(0, Γ; ^ J (see Masuda [21]). Let us define Vk,h and vπ by

w u ( τ ) = / ph(τ - σ)vk(σ)dσ , vh(τ) = / ph(τ - σ)v(σ)dσ .
Jo Jo

Similarly to (4.3), we have

) + (w VII,
(4.7)

= — (u(t), ι>£,/z(O) "l~ (β? ^&,/z(0)).

By (2.1) and (4.1), there holds

K M - 1/
Jo

VM, vk,h - vh)\dτ< / I (MO VM, vk,h - υh)\dτ + / |(
Jo Jo

1 1a* 2 W V 2 V

HVMII^Γ I I / ||Vι>it,Λ ~ Vυ/ϊl^αr I
/ \Jo /

( V 2 V ί Γ ,2, V
+ sup ||f^,/i(tτ) — f/z(σ)||2l / ||wi lloo"T 1 I I | |VM||2«r I .

0<σ<ί ' \Jθ / \Jθ /

Since υk,h -^ ^h in Hι(0, t; HQ σ) as k -> oo, the above estimate yields

i (M VM, Vk,h)dτ -+ I (u VM, υ^)^ ! as ^ —• oo .
Jo ' Jo

Hence, letting k -> oo in (4.7), we see easily

(4.8) ί {-(iι, 3τvΛ) 4- (VM, VVΛ) + (M VM, υh)}dτ = -(iι(f), VΛ(O) + (fl, «Λ(0)) .
Jo
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By the symmetry of p/,, we have /Q (υ, dτuh)dτ = — /Q

r (M, dτvh)dτ, and hence adding (4.6)

and (4.8), we obtain

(4.9)
ί {(Vυ,

Jo
Vuh) + (VM, Vvh) + (υ - Vυ, uh) + (u Vw, υΛ)}dτ

Let MO,Λ and wi^ be as

= / Ph(τ -σ)ui(σ)dσ , i = 0, 1 ,

where wo and MI are as in (4.1). Since wo € L°°(0, Γ; L^), wehaveMo,/* ^^ «oinL r(O, ί; L^)

for all 1 < r < oo. Hence there is a subsequence of {uo,h}h>o> which we denote also by

{uo,h)h>o for simplicity, such that wo,/*(τ) ^^ κo(τ) in L^ for almost every τ G [0, ί] as

h -+ 0, which yields by (2.1)

(υ Vι (r), wo,/z(τ)) -^ (υ Vι (r), wo(τ)) for almost every τ e [0, ί] as h -> 0.

Moreover, by (4.2)

Vυ(τ), < C\\Vυ(τ)\\l\\uo,h(τ)\\n,w <

for all h > 0 and all τ e [0, t]. Hence the Lebesgue convergence theorem states

(4.10) / (v Vυ, uo,h)dτ -+ / (υ Vυ, wo)^τ as h -> 0.
Jo ' JO

Since

(4.11)

u\ in L2(0, T; L°°) as h ->• 0, we have by the Schwarz inequality

/ (υ Vυ, u\,h)dτ — I (υ -Vυ,u\)dτ
Jo ' JO

< sup
0<σ<t U

-> 0 as Λ -> 0.

Then (4.10) and (4.11) yield

(4.12) / (υ Vυ, Uh)dτ -> / (υ Vυ, u)dτ as h

Jo Jo
v in L2(0, t; HQG), we have by (2.1) and (4.2) that

i, Vh)dτ - (MO VM, v)dτ
Jo

\\Vu\\ldx\ (f \\Vvh-Vv\\2

2dτ

0 as h -> 0 .

0.

Since

(4.13)

(MO VM,
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Furthermore, there is a subsequence of {vh]h>o> which we denote also by {vh}h>o f° r sim"

plicity, such that tVz(τ) —> v(τ) in //J σ for almost every r e [0, t] as h —> 0, which yields

|(m Vιι(τ), υΛ(τ) - υ(τ)| < ||Mi(r)||oo||V«(τ)||2 | |t;Λ(τ) - υ(τ) | | 2 -* 0

as h -> 0 for almost every τ e [0, t] together with the uniform estimate with respect to h:

Km Vn(τ), vΛ(τ) - υ(τ)| < 2| |u | | L oo ( 0 , Γ ; L 2 ) | |Mi(τ) | | o o | |VM(T)| | 2 , 0 < τ < t.

Since the right hand side of the above is summable on (0, t), the Lebesgue convergence theo-

rem yields

(4.14) / (MI Vκ(τ), vh(τ))dτ -> / (m Vn(τ), υ(τ))Jτ as Λ -+ 0.
Jo Jo

By (4.13) and (4.14), we have

(4.15) ί (u VM(T), υΛ(τ))dτ -> ί (M Vκ(τ), υ(τ))Jτ as A -> 0.

Jo Jo

Now letting h —> 0 in (4.9), we obtain from (4.12), (4.15) and the standard argument that

rt

(4.16) / {2(Vw, Vυ) + (v Vυ, M) + (u - VM, υ ) μ τ = - ( υ ( ί ) , « ( 0 ) + ll^lli
Jo

For every 0 € / /J σ , we have by (2.1) and (2.2)

KM VM, 0 ) | = |(ιι V0, M ) | = \(u V0, w0 + m)l

<C(||Vll| |2 | |Mθllι.,u; + l|M||2l|llllloo)l|V0||2,

which yields u-Vu e L 2 (0, Γ; (//o σ )*) , X* denoting the dual space of X. Then it follows

from Temam [28, Chapter 3, Lemma 1.2] that u satisfies the energy identity:

(4.18) \\u(t)\\j + 2 [ \\Vu(τ)\\ldτ = \\a\\l, 0 < t < T .
J

Adding (4.16) (multiplied by -2), (4.18) and (1.5), we have by (2.4) and (2.5) that

[
Jo

2), (

\\υ(t)-u(t)\\2

2 + 2 ί \\Vv-Vu\\2

2dτ
Jo

< 2 / {(v Vυ, u) + (u VM, υ)}dτ
Jo

= 2 I ((v-u) Vv,u)dτ
Jo

= 2 / ((υ - u) V(υ - M), M)^T , 0 < t < T ,
Jo

which yields

(4.19) 11̂ (0112 + 2 / \\Vw\\ldτ<2

Jo

f
Jo

(w - Vw, ύ)dτ 0<t < Γ,
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rtiere w = v — u. Applying (4.1) and (4.2) to the right hand side of (4.19), we obtain from

Z.I) and the Schwarz inequality

\\Vw\\2dτf
Jo

\\w{t)\\l < [ ||u;(r)||l||Mi(r)||2orfr , 0 < t < T ,
J

<2 \(w Vw,uo)\dτ + 2 / \(w-Vw,u\)\dτ
Jo Jo

< C * sup ||MOC^)IU,U; I ||Vu;||lrfr H- f \\Vw\\2dτ + ί
0<σ<Γ Jo Jθ Jθ

<(C»εo + D I \\Vw\$dτ + f
Jo Jo

where C* = C*(w). Let us now define £o in (1.4) as

ε = 1/C* .

Then from the above estimate, we get

< [
Jo

and the Gronwall inequality yields that

IMOII2 < \\w{0)\\Wv(f Wuxiτ^dΛ for all 0 < t < T .

This implies that

u = v on [0, T],

which proves Theorem 2.

5. Regularity of weak solutions; Proof of Theorem 3. In this section, we assume

that the domain Ω satisfies Assumption 3. Let us recall the Stokes operator Ar and the Banach

space Xs'r(0, T) introduced in Section 2. For u as in (4.1) with (4.2), we first consider the

following Stokes equations with the perturbed convection term u Vυ:

dvI
+ Arv + Pr(uVv) = 0, 0<t < T,

dt
vφ)=b.

Then we have

LEMMA 5.1. Suppose that Ω satisfies Assumption 3. For 1 < s < 2 andn/2 < r < n

with 2 < 2/s + n/r < 3, there is a constant SQ = εo(n, s, r) with the following property. If

u e L°°(0, Γ; L2

σ) Π L2(0, T; H^σ) and ifu satisfies (1.4), then for every b e D(Ar) Π L2

σ

there is a unique solution v of (PS) in Xs'r(0, T). Moreover, such υ has the additional

properties:
(5.1) υ e Z / ° ( 0 , T;Lr

σ°)
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for 1 < s < so < oo, 1 < r < ro < oo with 2/so + n/ro = 2/s + n/r — 2;

(5.2) υ € C([0, Γ); 4 ) n L2(0, Γ; tf^)

(5.3) HvCOIli H-2 / \\Vυ(τ)\\2

2dτ = \\b\\2

2 for all 0 < t < T .

PROOF. Representing ι> as υ(t) = elw(t) in (P-S), we may solve the following equation

for w:

m Q,, I - ^ + Arw + Pr(w Viy) = 0 , 0 < ί < T ,
(r-b < at

[w(0)=b,
where A = A + 1.

We shall make use of the following successive approximation {wj}JL0:

(5.4)

I - ^ - + Arκ;7 + i = - P Γ ( M Vwj), 0 < t < T ,

[u; y-+i(O)=ft.

For each j = 0, 1, . . . , we can find a unique solution tUy+i of (5.5) in Xs*r(0, T). In fact,

for j = 0, since b e D(Ar), there holds w0 e X5 ' r(0, T) with ||u;ollx^(o,Γ) < 2\\b\\D{Ar).

Suppose that Wj e Xs'r(0, T). Since u can be decomposed as in (4.1) with (4.2), we have by

Lemma 2.4 that

\\u Vwy||z/(0,Γ;Z/)

< C(||MO Vw;7 | |L.(o,r;Lθ + \\u\

(5.6)

< C(εO J ( 0 , Γ ; ) y (

where C = C(n,s,r) is independent of y and Γ. Then it follows from Giga-Sohr [10,

Theorem 2.9] that there exists a unique solution Wj+\ of (5.5) in X i > r (0, Γ) with

where C* = C*(n, 5, r) is independent of 7 and Γ.

Now we take εo in (4.2) and δ > 0 in such a way that

(5.8)

(5.9) I / ||Mi(T)||^dT I < 1/4C* for all 0 < t < T.
/ rt+δ

( i "•
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Set Wj = Wj — Wj-\(w-\ = 0). Similarly to (5.7), we obtain from (5.8) and (5.9)

<^\\Wj\\x' >

which yields

\\Λj\\x-r(0,δ)<(J) \\b\\D(Ar), 7 = 0 , 1 , . . . .

Notice that Wj(0) = 0 for all j = 1, 2, Since Wj = ΣJ

k=0 ώ&, there exists a limit w of

iϋ; as y —> oo in Z 5 ' r (0, δ). Letting j —> oo in (5.5), we see easily that if is a solution of

(P-S') on the interval (0, 8).

Next, we proceed to solve (P-S') beyond <5. Since w e X5 ' r(0, 8), we can take σ G

(δ/2, <5) so that w(σ) e D(Ar). Since (P-S') is a linear equation for w, as in the similar

manner to the above, we can construct a solution w of (P-S') in X 5 r (σ, σ + 8) with w (σ) =

w(σ). By the uniqueness, there holds w = w on [σ, <5], which yields a solution u; of (P-S')

in Xs'r(0, 38/2). Proceeding this argument inductively, within finitely many steps, we get the

solution w of (P-S') in Z 5 ' r (0, T).

Finally we shall show that the solution w satisfies

(5.10)

with

(5.11) IMOII2 + :

w

2(\

eC([0

:i|Vu;||?

,τy,L

+ II«Ί

l)n

\l)dτ

L2(0,

' = llέ to
 t

o

for

)

all 0 < t < T.

To this end, we need to return to the approximation solution {WJ}^J_Q in (5.5). Since b e L^,

we see easily that WQ satisfies (5.10). Suppose that Wj is in the class of (5.10). Then by (4.17),

we have P(μ Vtu,-) e L2(0, Γ; (//J σ )*) and again by Temam [28, Chapter 3, Lemma 1.2],

Wj+ι belongs to the class of (5.10). Moreover, by (2.2) and (2.3), there holds

ί
Jo

= H * l l 2 > 0 < r < τ .

By the weak compactness, there is a limit ti; of a subsequence of {WJ]°?_Q in L°°(0, T\ L%) Π

L2(0, Γ, # d σ ) . It is easy to see that w = w. Since P(w Vu;) G L2(0, Γ; (H^σ)*), we have

u; G C([0, Γ]; L 2 ) , which yields (5.10) and (5.11). Defining u(ί) = efw(t), we conclude

from the investigation above and (2.24) that v is the desired solution of (P-S). This proves

Lemma 5.1.

LEMMA 5.2. Suppose that Ω satisfies Assumption 3. For 2 < r < 00, there is a

constant £0 = εo(n, r) such that if u is a weak solution of (N-S) with (1.4), then there holds

u(t) e Lin D(Ar) for almost all t e (0, T).
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PROOF. Let us take q so that max{/i, r] < q < oo. By (4.1) and (4.2), there is a subset

7 C [0, T] with μ(7) = 0 such that if t e (0, T) \ /, then

u{t) = uo(t) + uι(t),

where uo(t) e L2

σ Π L^ σ with ||κo(Olku> < εo and ux(t) e L2

σ Π L | . Here Ln

wσ is defined

by the real interpolation as Ln

wσ = (L£° , L ^ 1 ) ^ for 1/Λ = (1 - θ)/po + θ/p\,O < θ < 1.

Then it follows from Kozono-Yamazaki [17, Theorem 2] that under the suitable choice of

εo, there exist f* = ί*(0 and a smooth solution i; of (N-S) on the interval (t, t + ί*) with

v(ί) = u(t) such that

(5.12) v e C((ί, ί + ί*); ^(A^)), 2<p<q;

(5.13) t>€C([r , f+ ί*);L£), 2 < p < n

with the energy identity

\\v(tf)\\l + 2] \\Vv\\2

2dτ = \\u(t)\\2

2

By Theorem 2, we have u = v on [ί, ί + /*), from which together with (5.12)—(5.13) it follows

that u(s) e D(Ar) Π L2

σ for all s e (t,t + r*). Since ί can be taken arbitrarily in (0, T) \ J,

we get the desired result. D

Completion of the proof of Theorem 3. We shall reduce our problem to the classical

regularity criterion of Serrin [23]. Let s and r be as in Lemma 5.1. By Lemma 5.2, for every

σ > 0, there is 0 < δ < σ such that u(δ) e D(Ar) Π L2

σ. Then it follows from Lemma 5.1

that there exists a unique solution υ of (P-S) in Xs>r(δ, T) with v(δ) = u(δ). By (5.1) we have

(5.14) v e Z/°(S, T; Z/°) for 2/s0 + n/r0 < 1 with r 0 > n .

Since v satisfies (5.3) with 0 and b replaced by δ and w(<5), respectively, as in the proof of

Theorem 2, it is easy to conclude that u = υ on [δ, T). Now by (5.14), the regularity criterion

of Serrin [23] assures that u e C2(Ω x (σ, Γ)). Since σ > 0 can be taken arbitrarily small,

we obtain the desired regularity. This proves Theorem 3.

6. Appendix.

PROOF OF PROPOSITION 1. Let Φ e C([0, Γ]; L"). We take a function χ e

C°°([0, oo)), 0 < χ < 1 with χ(r) = 1 for r > 1, χ(r) = 0 for 0 < r < 1/2, and

\χ'(r)\ < 3. For R > 0 we set χΛ(r) = χ(r/R). Obviously there holds

Or
\Φ(x,t)\ndx

{xeΩ;\φ(x,t)\>R}

< ( ί \χR(\Φ(x,t)\)Φ(x,t)\"dx
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for all R > 0. For each fixed R > 0, /R is a continuous function on [0, T]. Indeed, we have

IΛW - /*(*')! = I llx*(|Φ( , OI)Φ( , OIU -
(6.2)

Since

\XR(\ξ\)ξ ~ XJ?(I£Ί)£Ί < s u p ( χ ( r ) 4- \rχ(r)\)\ξ - ξ'\
r>0

for all ξ, £' e Rn and all R > 0, we obtain from (6.2)

IΛW - fR{tf)\ < C||Φ( , o - Φ( , f')IU

for all /? > 0 and all t, t' e [0, T]. Since Φ G C([0, Γ]; L Π ) , there holds / Λ G C([0, Γ]) for

all R > 0. Clearly, for each fixed ί G [0, T], //?(ί) is monotone decreasing with respect to /?

and by the Lebesgue convergence theorem there holds

fR(t) -+ 0 as R -+ oo.

Now it follows from the Dini theorem that

/R^O uniformly on [0, T] as R —> oo ,

from which and (6.1) we obtain

lim sup (/?μ{x 6 β ; |Φ(JC, 01 > ^}") = 0.
R^oo o<t<T

This proves Proposition 1.

PROOF OF PROPOSITION 2. By the Sobolev embedding Hλ c L2 Π L2n/{n~2\ when

2 < n < 4, we have i/1 C Lrt, so we may define 7m = identity for m = 1, 2 , . . . .

Let Ω be as in (l)-(4). In such cases, the ZZ-theory of the Stokes operators Ar is estab-

lished and we may choose {Jm}™=ι as

m

Since we have A2Φ = Arφ for 0 G £>(A2) Π D(A r), we may regard Λ2 as an operator also

defined on Lr

σ, even on Lr

w σ . Then by Lemma 2.3 (i) and the real interpolation, {7m}^=1

is a family of bounded operators on Ln

wσ with sup m = 1 \\Jm\\B(Ln

wσ) Ξ IV < 00. For

φ e //J σ Π Ln

w, there holds φ = Pφ and we have

for all m = 1, 2 , . . . . Hence (i) follows from the resonance theorem.
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To show (ii), we make use of the continuous embedding D(A2

4 ) c L " , which is derived

from (2.23). For every φ e H^ΠL1^, such an embedding yields Jmφ e Ln with the estimate

WJmΦWn < C(\\Jmφ\\2 + I|A2

4 Jmφ\\2) <

with a constant C independent of φ and m.

Finally, we prove (iii). Obviously, there holds

\\Jmφ-φ\\Hi -+ ° as m -> σo.

Since we may regard A as a densely-defined, m-accretive operator on L"''1, the closure of

C™σ in Z / 1 , there holds

JmΨ —• Ψ in L" ?1 for every τ/r e Ln^λ .

Hence for every φ e i/J σ ΠLJ^ and every ^ e Ln ' 1, we have

(7W0, VO = (7m0, Pψ) = (0, 7mPτA) ^ (0, PΨ) = (Φ, Ψ),

which implies

Jmφ -> φ weakly* in Ln

w .

This proves Proposition 2.
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