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Abstract. For an extension of number fields, we define the group of relative units, and
determine its rank when the extension is a Galois extension. For this purpose we need to
determine all the finite groups of which every abelian subgroup is cyclic.

Introduction. A finite extension of the rational number field in the complex number
field will be called a number field. For a number field F, we denote by Ef (resp. Wr) the
group of units of F (resp. the group of roots of unity in F'). For an extension of number fields
L D K, we define

Erjxk ={e € ELINL/m(e) € Wi forall M suchthat K € M C L},

where Ny, is the relative norm mapping for L/M. The elements of E; k are called relative
units of L over K. The quotient group £, /¢ = Er,x /W is a free module over the rational
integer ring Z. The statement (ii) of Theorem in [1] implies that rankz&; /x = s;/ke([L : K])
if L/K is cyclic, where ¢ is Euler’s function and sz /x denotes the number of infinite prime
spots of K which are unramified in L. Moreover, by using the statement (i) of the theorem,
we easily see that rankz€,x = 0if L/K is non-cyclic abelian. Hence the rank is completely
known when L/K is abelian. In this paper we determine the rank when L/K is a Galois
extension.

For two finite groups A and B, we denote by A X B a semi-direct product of A and
B with A acting on B and by A x B the direct product of A and B. Let Z/nZ denote the
cyclic group of order n and D, the dihedral group of order n. Let Q, denote the generalized
quaternion group of order n, where n is a power of 2 and n > 8. Let SL(2, F,;) denote the
special linear group of degree 2 over the field F,; of g elements. Let H, be the subgroup of

SL(2, F ,2) defined by
0
H,,=<< \/ow A ),SL(z,F,,)>,

where p is an odd prime and w is a generator of the multiplicative group of F . Furthermore,
let

Hym ={(9,h) € H3 X Da3m |¢p(9) = ¥ (h)},
where m > 1 and ¢ (resp. ¥) is an epimorphism of Hj (resp. D7.3m) to De.
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DEFINITION. If a finite group G satisfies the conditions (1), (2) and (3-i) in Table 1,
then G is said to be of Type i (( = L1I, ..., VI).

TABLE 1

(1) G = (& x C}) x Cy, where C| and C; are cyclic groups
such that (|C], |C2|) = (IC1]]C2|, |&]) = 1.

) Every element of prime order of & x C; acts trivially on Cs.
@3- G = {1}.
G-I &=Q,.

3-1II) & =Z/3™Z x Qg (non-direct) (m > 1).
B-IV) = H3p (m>1).

(3-V) & =SL(2,F)p) (pis aFermat prime, p > 5).
(3-VI) & = Hj (p is a Fermat prime, p > 5).

Then we have the following theorem.

THEOREM. Suppose that L/ K is a Galois extension and denote by G the Galois group
of L/K. Let ¢ be Euler’s function and sy jx denote the number of infinite prime spots of K
which are unramified in L. Then we have

rankz&; )k = SL/kNG

where
o(1G)) if Gisof Type LILII (m > 2) or IV (m > 2),
1
E(p(lGl) if Gisof Typelll iIm = 1) orIV(m = 1),
"G = NSLQ2.F,)
——2 __0(|G]) if Gisof Type V or VI,
osL kP00 TG of T
0 otherwise .

REMARK. If G is cyclic, then it is of Type I because an action of C| on C; may be
trivial. In this case the Theorem implies that rankzEr x = s1/x¢(IG|). If G is non-cyclic
abelian, then it is not of any of Types I-VI (cf. Proposition 2). In this case, therefore, the
Theorem implies that rankz&; ,x = 0. Hence this is a generalization of the result in the
abelian case.

This paper is organized as follows. In Section 1 an expression of n¢ in terms of the group
ring of G is obtained (Proposition 1). In Section 2 two simple sufficient conditions for ng = 0
are given. Then they give a necessary condition for ng # 0, which is equivalent to that G is
of one of Types I-VI (Proposition 2). It seems remarkable that a modification of Proposition
2 determines all the finite groups of which every abelian subgroup is cyclic (Proposition 2').
In Section 3 we calculate ng for G of each type and complete the proof of the Theorem. We
also remark on nsy (2, Fp) for Fermat primes p > 5.
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1. Expression of ng in terms of the group ring of G. For an infinite prime spot ‘3
of a number field F, we denote by Fi the completion of F with respect to B3; namely, Fip is
the real number field R or the complex number field C according as ‘3 is real or imaginary.
We denote by F‘f; the multiplicative group of Fip and define

[Flp = Fjj/{a € Fys llal = 1},
where |a| denotes the absolute value of a. Since [F]gp is always isomorphic to R* /{£1}, it
is regarded as an R-module by exponentiation. For an infinite prime spot p of a subfield of F,
we define

[Fl, = PIFlp.
Bip
where ‘3 runs over the infinite prime spots of L above p. We denote by oo the infinite prime
spot of the rational number field and consider a monomorphism
Wk Ep/Wr 3 (D lepl™® € [Flx,
Ploo

where &gz is the conjugate of ¢ corresponding to ‘B, and v is equal to 1 or 2 according as P
is real or imaginary.

Let L 2 K be an extension of number fields. For K € M C L, we regard the relative
norm mapping Ny ,u as a mapping of E; /W, to Ep/Wy. Then the definition of &y /k
implies that

ELk = m Ker(Np/m : EL/WL — En/Wn),
KCMCL
where Ker * denotes the kernel of . We may also regard Ny ,» as a mapping of [L]oo to
[M]oo, namely,

Nim i [Lloo 3 @D xp > @ UTppxgp) € (Moo,
Ploo ploo

where p runs over the infinite prime spots of M. Since

Yy o(NLym : EL/WL = Epm/Wy) = (Nym 2 [Lloo = (M) o WL,
we see that

Y (Ker(Npym - EL/Wir — Ey/Wn)) CKer(Np/m i [Lloo = [Moo) -
By comparing the dimensions, we have

Ker(Npjm : EL/ WL — Ep/Wy) ®z R = Ker(Np/y @ [Lloo = [M]oo) .

Moreover, N, u can be regarded also as a mapping [L]y to [M]y, for an infinite prime spot p
of K. Hence we have

Ker(Np/m : [Lloo = [M]oo) = @Ker(NL/M (Ll — M),

ploo

where p runs over the infinite prime spots of K. Consequently, we have the following lemma.
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LEMMA 1.

£k @zR= P ( () Ker(Wem:I[Lly— [M],:)) :

ploo \KSMCL
where p runs over the infinite prime spots of K .

For a finite group G we denote by R[G] the group ring of G over R. For a subgroup H of
G, we denote by Try the element ), _,, h of R[G]. The left G-endomorphism x > x - Try
of R[G] is also denoted by Try . Then we have:

PROPOSITION 1. Suppose that L/ K is a Galois extension and denote by G the Galois
" group of L/K. Let sy /x denote the number of infinite prime spots of K which are unramified
in L. Then
rankZSL/K =SL/KNG
where
ng = dimg m KerTry .

{I}#HSG
PROOF. Lemma 1 says that
(1) rankzEL/x = »_ dimg ( () Ker(Nem: (Ll —> [M]p)> ,
ploo KcMCL

where p runs over the infinite prime spots of K.

We first consider the case where p ramifies in L. Let {3;}1<;<|c|/2 be the infinite prime
spots of L above p. We denote by M; the decomposition field of 3; and by p; the infinite
prime spot of M; below P;. We note that [L]p, = [Llp, = C*/{z € C*||z| = 1} and
[M;]p; = R*/{£1}. Since the norm mapping Nc/g : C*/{z € C* ||z| = 1} — R*/{£l}is
isomorphic, we have

Ker(NL/M,' : [L]p, g [Ml]p,) = {1}9
which implies that
[Llp; NKer(Niym; : [L]p — [Milp) = {1}.
Since [L]p = @;[Lly, = €B;[L]p;, we have
) () Ker(Nsm : [Llp — [M1p) = {1}.
KCMCL

Secondly, we consider the case where p is unramified in L. Let {3;}1<i<|G| be the
infinite prime spots of L above p. We put 8 = 31. Then we see that {B;}1<i<|G| = {PB)gec
and that any element of [L]y is written in the form @geG X9, wWhere xqg € [Llgpe. If we
consider the action of G on [L]y defined by

h
(@xqgg> = @x,mhq forh € G,

geG 9eG
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then we have a G-isomorphism of [L]j, to the right G-module R[G]:

@ Xpo > Z(log lxpal)g.

geG g9eG
Therefore we know
3) (| Ker(Wim:[Llp— [Mlp) = [ KerTry.
KCMGL {1#£HCG
Consequently, (1), (2) and (3) prove Proposition 1.
We know that R[G] is a Hilbert space with respect to the inner product (}_ 9eG 499
dea bg9) = 3 g4eG agbg. Since

KerTry = [ Z agg

Zag=0foranyc € G/H] ,
geG

geC

we have from the definition of orthogonal complement that

(KerTry)* = lZagg

ag=ayifge hH} = (Tra)riGy >
geG

where (*)g[G) denotes the left ideal of R[G] generated by *. Hence

1
( ﬂ KerTrH> = (Try | {1} # H € G)R(G) -
{)#HCSG

Therefore n¢ is expressed as follows:

COROLLARY. Let the assumptions and notation be as in Proposition 1. Then
ng = |G|l -1,
where

t¢ = dimg(Try | {1} # H € G)g(c) -

2. Necessary condition for ng # 0. We start with two simple examples, where the
notation is as in the preceding section.

EXAMPLE 1. IfadirectproductZ/IZ xZ/IZ is contained in G for some prime /, then
1 € (Try | {1} # H < G)R|G), because the equation

1
U=—7\Trzyizxz/12 - Z Try
(11#£HGZ/1ZxZ/1Z

holds. It implies that ¢ = |G| and ng = 0.
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EXAMPLE 2. If anon-direct semi-direct product Z/1,Z x Z/1,Z is contained in G for
a pair of primes /1 and I, then 1 € (Try | {1} # H C G)g|), because the equation

1
1= 7 Trz/1zxz/12 — Z Try
2 {)£HCZ/\ZXZ/ LZ

holds. It implies that tG = |G| and ng = 0.

Now we are interested in finite groups which are different from the above examples. The
following proposition is the most important part of the proof of the Theorem.

PROPOSITION 2. For a finite group G the following two conditions are equivalent:

(1) G contains neither a direct product Z/1Z x Z/1Z for a prime | nor a non-direct
semi-direct product Z/W\Z x Z/12Z for a pair of primes 1| and .

(i1) G is of one of Types I-V1.

The rest of the section is devoted to the proof of Proposition 2.

2.1.  Let the notation be as in Introduction. We prove three lemmas for the proof of
Proposition 2. For a finite group G we denote by Z(G) the center of G. For a prime [ we
denote by S;(G) a Sylow [-subgroup of G. We write H <1 G (resp. H char G) when H is a
normal (resp. characteristic) subgroup of G.

LEMMA 2. Let G be a finite group and H a normal subgroup of G. Suppose that
S;(G/H) < G/H for a prime . If one of the following two conditions is satisfied, then
$1(G) <« G:

(i) The order of H is a power of L.

(ii) The order of H is not divisible by | and H C Z(G).

PROOF. Since S;(G)H/H is a Sylow I-subgroup of G/H, our assumption implies that
S/ (G)H/H < G/H, which is equivalent to S;(G)H < G. Since the condition (i) implies
that $;(G) = S;(G)H and (ii) implies that S;(G) char S;(G) H, we have S;(G) < G.

For a finite group G we denote by Aut G (resp. Inn G) the group of automorphisms (resp.
inner automorphisms) of G.

LEMMA 3. Let
1 A—>B—->CxD-—>1

be an exact sequence of finite groups. Suppose that (|A||C|, |D|) = 1. If one of the following
two conditions is satisfied, then B = B’ x D, where

1-A—->B -C—>1
is an exact sequence:

i) A CZ(B).
(ii) (JAutAl,|D]) = 1.

PROOF. Theexactsequencel - A - B — C x D — 1 gives an exact sequence 1 —
A — B} — D — 1, where Bj is the inverse image of D. Since (|A|, |D|) = 1, the condition
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(i) or (ii) implies that By = A x D and that B) has a characteristic subgroup isomorphic
to D. It implies that B has a normal subgroup isomorphic to D. Since (|B/D|, |D|) =
(JA||C]|, |D|) = 1, we have B = B’ x D, where B’ = B/D. By restricting the exact sequence
1> A—> B— CxD — 1toB’, we have an exact sequence 1 - A - B’ - C — 1.
Two exact sequences 1 - A - B’ —> C — land1 - A - B} —» D — 1 imply that
the action of B’ on B is trivial modulo A, because that of C on D is trivial. In particular, for
be B andd € D C By, there exists a € A such that b~'db = da. Since (|A|, |D]) = 1,
the condition (i) or (ii) implies that (the order of da)=(the order of d) x (the order of a). Since
b~1db has the same order as d, we have a = 1. It implies that B = B’ x D.

We denote by PGL(2,F)) (resp. PSL(2,F,)) the projective general (resp. special)
linear group of degree 2 over F,. For a finite group G we denote by G¢ the commutator
subgroup of G.

LEMMA 4. Let
1>2Z2/2Z - A—~ B—1
be an exact sequence of finite groups. Suppose that a direct product Z/2Z x Z/2Z is not
contained in A. Let p be an odd prime.

(i) IfB=PSLQ2,Fp),then A= SL(2,F)).

(i) IfB=PGLQ,F,), then A= H,.

PROOF. The image of Z/2Z is contained in Z(A), because it is normal. Then the above
assumption is equivalent to that A has a unique subgroup of order 2, which we denote by Z.
We have an exact sequence | - Z - A — B — 1.

(1) If p > 3, then we know that PSL(2, F ) is a non-abelian simple group (Corollary
to (9.10), Chapter 1, [2]). The order of A€ is divisible by that of PSL(2, F,)° = PSL(2,F)),
and hence is even. Then the uniqueness of Z implies Z C A€. Therefore the restriction of the
above exact sequence to A€ induces A° = A. The statement (3) of Theorem 9.18 in Chapter
2 of [2] implies that the central extension A is irreducible. Since the multiplier of SL(2, F )
is trivial (Example 2, Section 9, Chapter 2, [2]), the statement (6) of the theorem implies that
the multiplier of PSL(2, F)) is of order 2. Then we know that the central extension A is
primitive (Definition 9.10, Chapter 2, [2]). Hence the statement (5) of the theorem implies
that A is uniquely determined. Since SL(2, Fp) clearly satisfies the condition on A, we have
A=SLQ2,Fp). If p =3, weknow that PSL(2, F3) = Z/3Z x (Z/2Z x Z/2Z) (non-direct).
Since Lemma 2 implies S2(A) < A and the assumption of the lemma implies S2(A4) = Qs,
we have A = Z/3Z x Qg (non-direct) = SL(2, F3).

(ii) The exact sequence 1 - Z — A — PGL(2,Fp,) — 1 gives an exact sequence
l1—-Z— A — PSL(2,Fp,) — 1, where A is a subgroup of A of index 2 defined as the
inverse image of PSL(2, F). Then A is generated by A| and an element a which does not
belong to Aj. Since (i) implies A; = SL(2, F)), two elements a; and a; of order p generate
A|. For example, we can take

(11 (10
“a=lo 1) 2=\ 1)
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We note that a~'a;a is determined up to an element of Z. Since Z C Z(A) and (|Z], p) = 1,
by considering the order, we see that a~'g;a is uniquely determined and that A is uniquely
determined. On the other hand, it is easily proved that H), has a unique subgroup Z of order
2 suchthat H,/Z = PGL(2, F ), namely,

2=((5 %))

COROLLARY. Fora prime p > 3,
H; =SL(Q2,F,)° =SL(2,Fp).

PROOF. The identity SL(2, F,)¢ = SL(2,F),) has been seen in the proof of (i) of
Lemma 4. Since H,/SL(2,F,) = Z/2Z, we have H; C SL(2, Fp), which implies HIC, =
SL2, Fp).

2.2.  We suppose that a finite group G satisfies the condition (i) of Proposition 2. Since
any direct product Z/IZ x Z/IZ for a prime [ is not contained in G, every abelian subgroup
of G is cyclic. Then the statement (4.4) in Chapter 4 of [2] implies that S;(G) is cyclic or
isomorphic to Q,. Moreover, if A is a subgroup or a quotient group of G, then S;(A) is cyclic
for any odd prime /. Similarly, if A is a subgroup of G, then S>(A) is cyclic or isomorphic to
Q. In this section we denote by F the Fitting subgroup (i.e., the maximal nilpotent normal
subgroup) of G. Since F' is nilpotent, it is a direct product of its Sylow subgroups (Theorem
2.12, Chapter 4, [2]). For a natural number n, we put F,, = H(Ln)._.l S;(F). Then we can
write F = Sp(F) x F,. Since Sj(F) is cyclic for each odd prime /, we see that F; is cyclic,
and hence Z(F) = Z(5,(F)) x F;.

By inner automorphisms of G, we obtain a homomorphism of G to Aut F. If G is
solvable, then the kernel of the homomorphism is equal to Z(F') (Corollary to Theorem 2.18,
Chapter 4, [2]). Therefore we can regard the homomorphism as a monomorphism of G/Z(F)
to Aut F. Since (|S2(F)|, |F2]) = 1, we have Aut F = Aut Sp(F) x Aut F,, where Aut F; is
abelian because F; is cyclic. Now we define a homomorphism

Therefore we have A = H,,.

@ :G/Z(F) = AutF "5 Aut$y(F).
We denote by Im @ (resp. Ker @) the image (resp. kernel) of @. Then the above monomor-
phism implies G/Z(F) — Im ® x Aut F;.

The case where G is solvable and Im @ is a 2-group is treated in Section 2.3. The case
where G is solvable and Im @ is not a 2-group is treated in Section 2.4. The case where G is
non-solvable is treated in Section 2.5.

2.3. We suppose that a finite solvable group G satisfies the condition (i) of Proposition
2 and that Im @ is a 2-group. Since both Im @ and Aut F; are nilpotent, so is Im @ x Aut F3.
Since G/Z(F) — Im @ x Aut F,, we see that G/Z(F) is nilpotent.

Since Im @ is a 2-group, the number of G-conjugates of a subgroup of S»(F) is a
power of 2. On the other hand, the number of subgroups of Z(S>(F)) of index 2 is odd
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because Z(S(F)) is an abelian 2-group. Therefore there exists a G-invariant subgroup E|
of Z($>(F)) of index 2. Moreover we can prove recursively that there exists a series of G-

invariant subgroups
Z(S2(F)=EyDEIDEyD-- D E—1 D E ={1},

where the index of E; in E;_; is 2. Then G/(E; x F) is an extension of G/(E;_; x F) by
Z/2Z, which is automatically central. Therefore the fact that G/Z(F) = G/(Ey x F;) is
nilpotent implies that G/ F> = G/(E; x F3) is nilpotent.

We put k = |G/ F;|. Then we have the following lemma.

LEMMA 5.

1—> Fz/sz - G/ng e G/F2 — 1

is a central extension

PROOF, Since F, is abelian, an action of G/Fy; on F»/Fy; is determined by that of
G/F, on F,/Fy,. Since Fp/Fyy = H, S;(F), where [ runs over the odd prime divisors
of k, it suffices to show that G/F, acts trivially on S;(F) for all those /. Since G/F, is
nilpotent and S;(G/ F>) is cyclic, we have S;(G/F,) C Z(G/F) and that the homomorphism
of G/ F; to Aut S;(G/ F>) induced by inner automorphisms is trivial. Since $;(G/F>) < G/ F;
and F,/Fy is an [-group, Lemma 2 implies that $;(G/Fy)) < G/F,. We denote by u
the homomorphism of G/Fy; to Aut S;(G/F;) induced by inner automorphisms and by v
the epimorphism of Aut S;(G/ Fy;) to Aut S;(G/F>) induced by considering modulo F>/ F5;.
Then the following diagram is commutative.

G/Fy —=— AutS;(G/Fy)

l L

G/F, ™M AuwS(G/F)

It implies that the image of w is contained in the kernel of v. Since both S;(G/F>;) and
S;(G/F,) are nontrivial cyclic /-groups and v is surjective, the order of the kernel of v
is a power of /. Hence the order of the image of w is a power of /. On the other hand,
since S;(G/Fy;) is abelian, we can regard u as a homomorphism of (G/F3;)/S;(G/F»;) to
Aut S;(G/ Fy). Since the order of (G/F2;)/Si(G/Fy) is prime to [, so is the order of the
image of u. Consequently, u is trivial and G/ Fy; acts trivially on S;(G/Fy;). In particular,
G/ Fy; acts trivially on Fp/Fy C S;(G/Fy). Then G/F, acts trivially on F,/F,; because
F,/ F,; is abelian. Therefore the fact F»/Fp; = S;(F) completes the proof.

Since G/ F; is nilpotent, Lemma 5 implies that G/ Fy; is nilpotent. Since S;(G/Fax) is
cyclic for every odd prime [ and S>(G/ Fa;) = S2(G), we have

G/Fy = $(G) x C,
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where C is a cyclic group of odd order. Since both |G/ F,|(= k) and |F,/ Fy| are prime to
| Far |, so is |G/ Fpi|. Then we have

G =G/Fy X For = (52(G) x C) X Fy,

where C and Fy; are cyclic groups of odd order such that (|C|, |F]) = 1. Let x be an
element of prime order /; of G/Fy. If x acts nontrivially on Fy, then it acts nontrivially
on S;,(F) = Z/1,"Z for some prime divisor I of |Fa;|. Since the order of the kernel
of an epimorphism of AutZ/l,"Z to AutZ/I,Z is a power of I, and is prime to the order
[y of x, we have that x acts nontrivially on Z//,Z. It implies that a non-direct semi-direct
product Z/1,Z x Z/I>Z is contained in G, which contradicts the condition (i) of Proposition
2. Consequently, any element of prime order of G/ Fy; acts trivially on Fy. In the case where
$2(G) is cyclic, by putting & = {1}, C; = S2(G) x C and C, = Fy, we see that G is of
Type 1. In the case where S2(G) = Q,, by putting & = S;(G), C; = C and Cy = Fyi, we
see that G is of Type II.
We summarize the result of this subsection.

PROPOSITION 3. Let G be a finite group satisfying the condition (i) of Proposition 2.
If G is solvable and Im @ is a 2-group, then G is of Type I or 11.

2.4. We suppose that a finite solvable group G satisfies the condition (i) of Proposition
2 and that Im @ is not a 2-group. Then Aut S(F) is not a 2-group. Since S(F) is cyclic or
isomorphic to Q,, we conclude that S;(F) = Qg and Aut S;(F) = &4, where G4 denotes
the symmetric group of degree 4. Since S>(F) char F < G, we have S>(F) < $2(G) and
$2(G) = Qg or Q6. Then, by noting that Inn S, (F) = Z/2Z x Z/2Z C Im @, we easily
obtain Im @ = 24 or G4 according as S>(G) = Qg or Q¢, where 24 denotes the alternating
group of degree 4. On the other hand, Ker @ is abelian because Ker @ < {1} x Aut F5. Since
S2Z(F)) = Z(S2(F)) = Z(Qs) = Z/2Z, we have |S2(G/Z(F))| = 4 or 8 according as
S$(G) = Qg or Q6. It implies that [S2(G/Z(F))| = |So(Im @)| and that |Ker @] is odd.
Then Ker @ is a cyclic group of odd order because S;(Ker @) is cyclic for every odd prime
. Therefore we can write Ker@ = S3(Ker @) x C, where C is a cyclic group such that
(ICl,6) =1. Weput X = (G/Z(F))/C. Then G/Z(F) = X x C because a prime divisor of
|X|=|Im®||Ker@|/|C| = ImP||S3(Ker®)|is 2 or 3. Since G/Z(F) — Im® x Aut F;
and Ker @ — {1} x Aut F,, we see that G/Z(F) acts trivially on Ker @ and that G/Z(F) =
X xC.

We would like to determine X. Since G/Z(F) acts trivially on Ker @, X acts trivially
on S3(Ker @). Then we have a central extension.

@ 1> S3(Kerd) > X > Im® — 1.

We can write S3(X) = Z/3”’/Z for a natural number m’. If $5(G) = Qg, then Im @ = 2.
Since S>(2A4) < 4 and (4) is central, Lemma 2 implies that S>(X) < X. Since the or-
der of X/S>(X) is a power of 3, we have X/S$(X) = S3(X) and X = S3(X) x S2(X).
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Since $(X) = $(y) = Z/2Z x Z/2Z, we have X = Z/3’"/Z X (Z/2Z x Z/2Z) (non-
direct). If $2(G) = Qi6, then In® = GS4. The central extension (4) gives a central ex-
tension 1 — S3(Ker®) — X; — InnS,(F) — 1, where X; is a normal subgroup of
X defined as the inverse image of Inn Sy(F). Since InnS;(F) = Z/2Z x Z/2Z, we have
X1 = S3(Ker®) x (Z/2Z x Z/2Z). Weput X' = X/(Z/2Z x Z/2Z). Then X'/ S3(Ker ®) =
X/X; = Im®/Inn Sp(F) = Dg. Since S3(Dg) <1 Dg, Lemma 2 implies that S3(X’) < X'.
The image of X’ — Aut $3(X’) = AutZ /3’”/Z is of even order, because the image of Dg —
Aut S3(Dg) is of order 2. On the other hand, since X acts trivially on S3(Ker @) = Z/3’"/_1Z,
so does X’. We know that the kernel of an epimorphism of AutZ/ 3"'Zto AutZ/ 3m' =17 is of
even order only if m’ = 1. It implies that S3(Ker @) is trivial. Hence we have from (4) that
X = &4. Now we have
G/Z(F) =X xC,
where
X = [2/3’"/2 X (Z/2Z x Z/2Z) (non-direct) if S>(G) = QOg,
G4 if $2(G) = Q16
and C is a cyclic group such that (|C|, 6) = 1.
Since Z(S2(F)) = Z(Qg) = Z/2Z, we have a central extension 1 - Z/2Z — G/F>, —
G/Z(F) — 1. Since (|C|,6) = 1, Lemma 3 implies that G/F, = Y x C and that

1> Z)2Z—>Y - X — 1

is a central extension. If S,(G) = Qg, then we have proved that S(X) < X. Hence Lemma
2 implies that Sp(Y) < Y. Since the order of Y/S,(Y) is a power of 3, we have Y/S;(Y) =
S3(Y)and ¥ = S3(Y) x S2(Y). Since $2(Y) = $(G) = Qg, we have ¥ = Z/3’”’Z X Qg
(non-direct). If S$,(G) = Q16, then X = &4 = PGL(2, F3). Since $2(Y) = $2(G) = Qi
Lemma 4 implies Y = H3. Now we have

G/F, =Y xC,

where
Z/3"'Z x Qg (non-direct) if S»(G) = Qg,

H; if $2(G) = Qs

Yy =

and C is as above.

Since F, = S3(F) x Fg, we have an exact sequence 1 — S3(F) - G/Fg - G/F, —
1. Since S3(F) is cyclic, a prime divisor of |Aut S3(F)| is 2 or 3. Since (|C|, 6) = 1, Lemma
3 implies that G/ Fg = U x C and that

(5) 1> S3(F)>U—=>Y —>1

is an exact sequence. We can write S3(U) = Z/3™Z for a natural number m. Since S3(F)
is cyclic, the action of U on S3(F) is determined by that of ¥ on S3(F). If $2(G) = Qs,
then ¥ = S3(Y) x Qg (non-direct). Clearly S3(Y) acts tribially on S3(F) because a cyclic
group S3(U) acts trivially on its subgroup S3(F). On the other hand, since AutS3(F) is
abelian, we see that the kernel of ¥ — Aut S3(F') contains Y = Qg. It implies that Y acts
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trivially on S3(F) and that (5) is a central extension. Since S>(Y) < Y, Lemma 2 implies
that Sp(U) < U. Since the order of U/S;(U) is a power of 3, we have U/S,(U) = S3(U)
and U = S3(U) x $(U) = Z/3™Z x Qg (non-direct). If $2(G) = Qi6, then Y = Hz. We
note that H3 D SL(2, F3) = Z/3Z x Qg (non-direct). As noted in the proof of Lemma 4,
Hj3 is generated by SL(2, F3) and an element a which does not belong to SL(2, F3). Since
SH(H3) = $(G) = Q16, We can take a so that a‘nga C Qg. It implies that Qg < H3.
Then the exact sequence (5) gives an exact sequence 1 — S3(F) — U; — Qg — 1,
where U is a normal subgroup of U defined as the inverse image of Qg. Since the kernel of
H3 — Aut S3(F) contains Hy and Hy D SL(2, F3)° = Qg, we see that Uy = Qg x S3(F)
and that Qg char U;. Therefore we have Qg <1 U. Since U/Qs is of order 2 - 3™ and has a
cyclic Sylow 3-subgroup, we obtain an exact sequence 1 — Qg — U — Dj3» — 1. By this
exact sequence and the exact sequence (5), we can define a monomorphism U — H3 X Dj.3m.
Then it is easily proved that U = H3 ,,. Now we have
G/Fs=Ux C,

where

| Z/3™Z x Qg (non-direct) if $2(G) = Qs,

- H3 m if $2(G) = Qs
and C is as above.

We put k = |G/ Fg|. Since a prime divisor of |U| is 2 or 3, we know that S;(G/Fs) C
Z(G/Fg) for a prime I > 3. Therefore we can use the same argument as in the proof of
Lemma 5 and prove that 1 — Fg/Fet — G/Fep — G/Fg — 1 is a central extension.
Since (|Fg/Fek],6) = (|C|,6) = 1, Lemma 3 implies that G/Fg; = U x C; and that
1 —» Fg/Fg¢x — C; — C — 1 is a central extension. It implies that C| is nilpotent and that
(IC11, 6) = 1. Moreover C is cyclic because every Sylow subgroup of C| is cyclic. Now we
have

G/Fer = U x Cy,
where U is as above and C| is a cyclic group such that (|Cy|, 6) = 1. Since both |G/ Fg|(= k)
and | Fg/ Fer| are prime to | Fe|, so is |G/ Fek|. Then we have

G = G/Fex X Fop = (U x C1) X Fer .

We note that C and Fgy are cyclic groups such that (|Cy|, | Fex|) = (|Cy| | Fek|, 6) = 1. Since
no non-direct semi-direct product Z/11Z x Z/I3Z is contained in G for any pair of primes /|
and /5, the same argument as in the preceding subsection implies that each element of prime
order of G/ Fey acts trivially on Fg. By putting = U and C, = Fg, we now know that G
is of Type III or IV according as $2(G) = Qg or Qjs.

We summarize the result of this subsection.

PROPOSITION 4. Let G be a finite group satisfying the condition (i) of Proposition 2.
If G is solvable and Im @ is not a 2-group, then G is of Type 111 or IV.

2.5. We suppose that a finite non-solvable group G satisfies the condition (i) of Propo-
sition 2. Then G is of even order (Theorem 3.1, Chapter 6, [2]). If S>2(G) is cyclic, then
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Corollary 1 to Theorem 2.10 in Chapter 5 of [2] implies that there exists a normal subgroup
N of G such that G/N = S,(G). Since N is of odd order, it is solvable and so is G, which is
a contradiction. Therefore we have S$>(G) = Q,. We denote by O the maximal normal sub-
group of G of odd order. Then Theorem 8.7 in Chapter 6 of [2] implies that G has a normal
subgroup Gy of odd index such that Go D O and

1> Z/2Z - Go/O -V —> 1

is a central extension, where V. = PSL(2,F;), PGL(2, F;) or 27 (the alternating group of
degree 7) and ¢ is an odd prime power and bigger than 3. Since we know that PGL(2, F 2) D
PSL(2,F,2) O F ,»(additive) = Z/pZ x Z/ pZ for a prime p and that 27 D Z/3Z x Z/3Z,
we must have V = PSL(2,F,) or PGL(2, Fp,), where p is a prime bigger than 3. Since
$(Go/0) C $2(G/0) = $2(G) = Qp, adirect product Z/2Z x Z/2Z is not contained in
Go/O. Therefore Lemma 4 implies that

Go/O =SL(Q2,F,) or H,,

where p is a prime bigger than 3.

We suppose that Go # G. Since G/Gy is of odd order, it is solvable. Since each
Sylow subgroup of G/Gy is cyclic, the same argument as in the preceding subsections im-
plies that G/ Gy is of Type I, II, III or IV. (Here we do not know whether the condition (2)
in Table 1 is satisfied or not, because we do not know whether any non-direct semi-direct
product Z/11Z x Z/12Z is contained in G/Gyo for any pair of primes /; and /;.) More-
over, since G/Gy is of odd order, we see that G/Gy is of Type I. Therefore G/ Gy has a
normal subgroup N/Go of odd prime order. We denote by [ the order of N/Gp. Since
Go/O < N/O, both (Go/O)¢ and Z((Go/O)) are normal subgroups of N/O. We de-
note by p the homomorphism of N/O to Aut((Go/0)¢/Z((Go/O))) which assigns re-
strictions of inner automorphisms. Since Corollary to Lemma 4 implies that (Go/O)¢ =
SL(2,Fp), we can regard p as a homomorphism of N/O to Aut PSL(2, F). We denote
by Ker p (resp. Im p) the kernel (resp. image) of p. We note that Ker p N Go/O is a nor-
mal subgroup of Go/O and contains Z((Go/0)¢) = Z/2Z. Since PSL(2, F)) is simple
and PGL(2,F)) has only 3 normal subgroups {1}, PSL(2,F),) and PGL(2,Fp) (Theo-
rem 9.9, Chapter 1, [2]), Lemma 4 implies that Kerp N Go/O = Z/2Z, SL(2,F)) or H),.
Since SL(2,Fp) acts nontrivially on PSL(2, F,), we see that Kerp N Go/O = Z/2Z.
Hence Imp D p(Go/0) = (Go/0O)/(Kerp N Go/O), which implies that [Go/O| divides
2|Im p|. Since Imp C Aut PSL(2,F,) = PGL(2,F)p) ((8.8), Chapter 6, [2]), we see
that |Im p| divides |Go/O|. Therefore |Go/O|/|Im p| = 1 or 2. Since |Ker p| is even and
|Kerp| = |[N/O|/IImp| =1 -|Go/O|/|Imp|, we see that |[Ker p| = 2I. It implies that
Kerp =Z/I1Z x Z/2Z, because Ker p > Kerp N Go/O = Z/2Z. Then S;(Kerp) < N/O.
Since Kerp N Go/O = Z/2Z implies that S;(Ker p) N Go/O = {1}, we conclude that
N/O = Si(Kerp) x Go/O =Z/1Z x Go/O. Since S;(N/O) is cyclic, the order of Go/ O is
not divisible by /. It implies that N /O has a characteristic subgroup of order / and that G/ O
has a normal subgroup of order /, a contradiction to the definition of O. Therefore we have
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proved that Go = G, which implies that
G/O =SL(2,Fp,) or Hp,

where p is a prime bigger than 3.

Since O is of odd order and any Sylow subgroup of O is cyclic, we have shown above
that O is of Type I; namely, O = C; x C;, where Cy and C; are cyclic groups such that
(C1l, IC2]) = 1. If S;(Cy) acts trivially on C; for a prime divisor / of |C|, we can replace
C) (resp. C3) by a subgroup isomorphic to C;/S;(Cy) (resp. C2 x S;(Cy)). Therefore we may
assume that every nontrivial Sylow subgroup of C; acts nontrivially on C>. We examine the
exact sequence

(6) 1-C - G/C,— G/O — 1.

Since C| is cyclic, an action of G/C, on C| is determined by that of G/O on C|. We denote
by o the homomorphism of G/O to AutC; induced by inner automorphisms. Then, since
Aut C| is abelian, the kernel of o contains (G/0)¢ = SL(2, F,), which implies that the index
of the kernel of o in G/ O is 1 or 2. We suppose that there exists an element y of G/O which
acts nontrivially on Cy. Then y acts nontrivially on S;, (C;) for a prime /;. We denote by x a
generator of S;, (C1). Then y~xy = x~! because the order of o (y) is 2. It is assumed that x
acts nontrivially on S, (C») for a prime /. Here we may regard x and y as elements of G/C>.
We denote by 7 the homomorphism of G/C3 to Aut S, (C2) induced by inner automorphisms.
Since Aut S}, (C5) is abelian, we have 7(x) = t(y~'xy) = r(x~!). Since 7 (x) is not trivial, it
implies that the order of 7 (x) is 2, which contradicts the fact that O is of odd order. Therefore
G /O acts trivially on C; and (6) is a central extension. It gives a central extension 1 —
C; - Gy — SL(2,F,) — 1, where G is a normal subgroup of G/C, defined as the
inverse image of SL(2, F),). Since we know that any central extension of SL(2, F ) splits
(Section 9, Chapter 2, [2]), we conclude that G; = SL(2,F,) x C;. Since any Sylow
subgroup of G has to be cyclic or isomorphic to Q,, we have (|[SL(2, Fp)|, [Ci|) = 1 and
(|G/ 0], |C1]) = 1. Therefore the central extension (6) implies that

G/C; =G/O x C.

An exact sequence 1 - C, - G — G/C; — 1 gives an exact sequence 1 —
C, - G, — SL(2,F,) — 1, where G, is a subgroup of G defined as the inverse im-
age of SL(2,F,). Since C; is cyclic, an action of G on C is determined by that of
SL(2,Fp) on C,. It is trivial because AutC; is abelian and SL(2, F)¢ = SL(2,F)p).
Hence 1 - C; — G, — SL(2,F,) — 1 is a central extension and splits, namely,
G, = SL(2,Fp) x C,. Since any Sylow subgroup of G, has to be cyclic or isomorphic
to Qn, we have (|ISL(2, F)p)|, |C2[) = 1 and (|G/C|, |C2|) = 1. Therefore we have

G=G/CaxCa=(G/O xC)x Ca.

We note that C} and C; are cyclic groups such that (|Cy|, |C2|) = (IC1]1C2|, |G/0]) = 1.
Since no non-direct semi-direct product Z/[1Z x Z/I>Z is contained in G for any pair of



RANK OF THE GROUP OF RELATIVE UNITS 51

primes /1 and /,, the same argument as in the preceding subsections implies that every element
of prime order of G/C, acts trivially on C,. If there exists an odd prime / dividing p — 1, then
o 0 1 1\\ o .
SL(2,Fp) D <(O a_1> , <0 1>> =Z/IZ x Z/pZ (non-direct) ,
where « is an element of the multiplicative group of F, of order /. It contradicts the condition
(i) of Proposition 2. Therefore p is a Fermat prime. By putting & = G /O, we know that G
is of Type V or VI.
We summarize the result of this subsection.

PROPOSITION 5. Let G be a finite group satisying the condition (i) of Proposition 2.
If G is non-solvable, then G is of Type V or V1.

2.6. Combining Propositions 3, 4 and 5, we see that the condition (ii) follows from the
condition (i) in Proposition 2. To prove the converse, we suppose that G is a finite group
satisfying the condition (ii), namely, that G is of one of Types I-VI. Clearly, Q, has a unique
element of order 2. As noted in the proof of Lemma 4, both SL(2, F ) and H, have the same
property. Then it is also proved that H3 ,, has the same property. Consequently, the number
of elements of order 2 of & x C| is at most one. It implies that no direct product Z/2Z x Z/2Z
is contained in G. Moreover, no non-direct semi-direct product Z/2Z x Z/IZ is contained in
G for any prime /, because every element of prime order of ® x C acts trivially on C,. On
the other hand, since all subgroups of SL(2, F) are obtained in Theorem 6.17 in Chapter 3
of [2], we see that every subgroup of odd order of SL(2, F) is cyclic if p is a Fermat prime.
Then H), has the same property because each subgroup of odd order of H, is contained in
SL(2, Fp). Itis also proved that H3 ,, has the same property. Consequently, every subgroup
of odd order of & x Cj is cyclic. It implies that no direct product Z/IZ x Z/IZ is contained
in G for any odd prime [. Moreover, no non-direct semi-direct product Z/1}Z x Z/I1,Z is
contained in G for any pair of odd primes /; and /5, because every element of prime order
of & x C acts trivially on C,. Now we have proved that the condition (i) follows from the
condition (ii). The proof of Proposition 2 is complete.

REMARK. Asnoted above, the condition that no non-direct semi-direct product Z/ [ Zx
Z/1,Z is contained in G for any pair of primes /1 and /; follows from two conditions that ev-
ery element of prime order of & x C; acts trivially on C; and that p is a Fermat prime. As
was shown in the preceding subsection, the converse is also true. Therefore we can state a
modification of Proposition 2.

PROPOSITION 2'.  For a finite group G the following two conditions are equivalent:

(i) Every abelian subgroup of G is cyclic.

(ii) G satisfies the conditions (1) and one of (3-1)~(3-VI) in Table 1. (A prime p is not
necessarily “Fermat”.)

3. Calculation of ng. Proposition 2 implies that it is sufficient for the proof of the
Theorem to calculate ng for the finite groups G of Types I-VI. We carry out the calculation
in this section. We start with some simple examples, where the notation is as in Section 1.
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EXAMPLE 3. If G isacyclic group of prime order /, then (Try [ {1} # H C G)riG] =
(Trg)RiG)- It implies that tc = 1 and ng =1 — 1 = ¢(|G)).

For two subgroups H; and H; of G, it is clear that Ker Try, C KerTry, if Hy C Hj.
Hence it suffices to consider only minimal subgroups H of G in the definition of ns in Propo-
sition 1. Therefore we have the following lemma.

LEMMA 6. Let Gg be a subgroup of G such that the set of minimal subgroups of G
is equal to that of G. Then
nG =[G : Golng, ,
where [G : Go] denotes the index of Gg in G.
PROOF. The assumption implies that

Ker Try = ﬂ Ker Try
{1#£HCSG {}#HSGo

= @g . ( ﬂ Ker(Try : R[Go] — R[GO])> ,
g9

{1}#H<Go
where g runs over a complete system of representatives of left cosets of Go in G. Hence
ng =[G : Golng,-

EXAMPLE 4. If G is a cyclic group of prime power order /"™, then we can take the
subgroup of order / as Go. Hence Lemma 6 and Example 3 imply that ng = I"~'(l — 1) =
e(IGD.

LEMMA 7. IfG = G| x Gy and (|G}, |G2|) = 1, then

nG = ngG,ngG, -

PROOF. Under the assumption every subgroup H of G is written in the form H| x Hp,
where H; is a subgroup of G;. Then a minimal subgroup of G is either that of G; or of
G,. Because R[G] is naturally isomorphic to a tensor product R[G|] ®r R[G>] as a right
R[G]-module, we see that

KerTrH=< ﬂ KerTrH>ﬂ( ﬂ KerTrH)
{ {

()£HSG N£HCG, N£HSG,
=~ ﬂ Ker(Try : R[G1] — R[G1])
(#HSG,
® [ Ker(Try : RIG2) —> RIG,)).
(}£HSG,

Hence ng = ngng,.

EXAMPLE 5. If G is a cyclic group, then Lemma 7 and Example 4 imply that ng =
(G).

Now we can calculate ng for G of Types I-VI by using Lemmas 6 and 7 and Example
5. From now on, let G be the subgroup of G generated by all of the elements of prime order.
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Then Gy satisfies the assumption of Lemma 6. We also remark that [G : Gole(|Gol) =
¢(|G|), because the set of prime divisors of |Gy| is equal to that of |G|. The conditions (1)
and (2) in Table 1 imply that every element of prime order of G belongs to &, C; or C; and
that

Go =g x (C1)o x (C2)o-

We calculate & for each type.

Type I: & = {1}. ¢ = {1}.

Type II: & = Q,. B9 = Z/2Z.

Type II: & = Z/3™Z x Qg (non-direct). If m > 2, then every element of order 3
of Z/3™Z belongs to the kernel of (Z/3"Z — AutQg = G4). Hence we have &g =
Z/3Z x Z/2Z = Z/6Z. If m = 1, then ® = Z/3Z x Qg (non-direct) = SL(2, F3). Since
SL(2,F3)g = SL(2, F3), we have &y = SL(2, F3).

Type IV: & = Hj3,,. If m > 2, then the definition of H3 , implies that H3 ,, has a
unique subgroup of order 3 (because so dose D».3»). As was noted in Section 2.6, H3 , has
a unique subgroup of order 2. Hence we have &g = Z/3Z x Z/2Z = Z/6Z. If m = 1, then
® = H3,, = Hi. Since SL(2, F3)o = SL(2, F3), we have (H3)p D SL(2, F3). Since every
element of prime order of H3 belongs to SL(2, F3), we have &y = SL(2, F3).

Type V: & = SL(2, F)). Since SL(2, Fp)o = SL(2, F),), we have &g = SL(2, F).

Type VI: & = H,,. Since SL(2, Fp)o = SL(2,Fp), we have (H,)o D SL(2, F)). Since
every element of prime order of H), belongs to SL(2, Fp), we have &9 = SL(2, F)).

Therefore we have the following consequence. For Types I, II, III (m > 2) and IV
(m > 2), Go is cyclic. Lemma 6 and Example 5 imply that

ng =[G : Golp(IGol) = ¢(IG)) .

For Types Il (im = 1) and IV (m = 1), we have Go = SL(2, F3) x C, where C is a cyclic
group and (|SL(2, F3)|, |C|) = 1. Lemmas 6 and 7 and Example 5 imply that

nG =[G : GolnsLe,F3)@(C))

9(IGol)
=[G:G ¢(ISL(2, F3)))
[ O]nSL(2,F3)¢(|SL(2,F3)|)
n
—_SLeF) a6y,

~@(ISL(2, F3)))
By using computer, we obtain that ngy (2 ;) = 4. Since ¢(|SL(2, F3)|) = 8, we have

1
= =p(IG)).
nG = 5¢(GD
For Types V and VI, we have Go = SL(2,F),) x C, where C is a cyclic group and
(ISL(2,Fp)|, |C]) = 1. Lemmas 6 and 7 and Example 5 imply that

_ NSLQFy)
e(ISL2, Fp)))

as above. The proof of the Theorem is complete.

nG PG,
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REMARK. We have proven that the calculation of ngy (2 F,) for every Fermat prime p
completes the calculation of ng for every finite group G. For example, by using computer,
we obtain ngy (2, r;) = 8. Since ¢(|SL(2, Fs)|) = 32, we then have

1
ng = Z(p(lGl) ifGisof Type V(p=5)orVI(p=5).

We do not yet calculate ng,(2,F,) for Fermat primes p > 17.
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