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Abstract. For an extension of number fields, we define the group of relative units, and

determine its rank when the extension is a Galois extension. For this purpose we need to

determine all the finite groups of which every abelian subgroup is cyclic.

Introduction. A finite extension of the rational number field in the complex number

field will be called a number field. For a number field F, we denote by Ef (resp. WF) the

group of units of F (resp. the group of roots of unity in F). For an extension of number fields

L I) K,we define

EL/K = {ε e EL\NL/M(ε) e WM for all M such that K c M C L},

where NL/M is the relative norm mapping for L/M. The elements of EL/K are called relative

units of L over K. The quotient group SL/K = EL/K/WL is a free module over the rational

integer ring Z. The statement (ii) of Theorem in [1] implies that rankz^L/A: =SL/K<P([L : K])

if L / # is cyclic, where φ is Euler's function and SL/K denotes the number of infinite prime

spots of K which are unramified in L. Moreover, by using the statement (i) of the theorem,

we easily see that mnkz£L/κ = 0 if L/K is non-cyclic abelian. Hence the rank is completely

known when L/K is abelian. In this paper we determine the rank when L/K is a Galois

extension.

For two finite groups A and B, we denote by A ix B a semi-direct product of A and

B with A acting on B and by A x B the direct product of A and £. Let Z/nZ denote the

cyclic group of order n and Dn the dihedral group of order n. Let Qn denote the generalized

quaternion group of order n, where n is a power of 2 and n > 8. Let SL(2, Fq) denote the

special linear group of degree 2 over the field Fq of q elements. Let Hp be the subgroup of

SL(2,Fp2) defined by

where p is an odd prime and ω is a generator of the multiplicative group of Fp. Furthermore,

let

Hχm = {(<?, h)eH3x Eh yn I φ(g) = ψ(h)},

where m > 1 and φ (resp. ψ) is an epimorphism of H?> (resp. Di.yn) to
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DEFINITION. If a finite group G satisfies the conditions (1), (2) and (3-z) in Table 1,

then G is said to be of Type i (/ = I, I I , . . . , VI).

TABLE 1

(1) G = ( β x C i ) K C2, where C\ and C2 are cyclic groups

such that (|Ci|, |C 2 |) = (|Ci| |C 2 | , | β | ) = 1.

(2) Every element of prime order of 0 x C\ acts trivially on C2.

(3-1) 0 = {1}.

(3-II) <5 = Qn.

(3-ΠI) 0 = Z/3mZ x β 8 (non-direct) (ra > 1).

(3-IV) 0 = HXm (m > 1).

(3-V) 0 = 5L(2, Fp) (p is a Fermat prime, p > 5).

(3-VI) & = Hp (pisa. Fermat prime, p > 5).

Then we have the following theorem.

THEOREM. Suppose that L/K is a Galois extension and denote by G the Galois group

of L/K. Let φ be Euler's function and sι/κ denote the number of infinite prime spots of K

which are unramified in L. Then we have

mnkzεL/K = sL/KnG ,

where

φ(\G\) if G is of Type I, II, III (m > 2) or IV (m > 2),

-φ(\G\) if G is of Type III (m = 1) or IV (m = 1),

F λ

0 otherwise.

REMARK. If G is cyclic, then it is of Type I because an action of C\ on C2 may be

trivial. In this case the Theorem implies that rankz^L/A: = SL/κψ(\G\). If G is non-cyclic

abelian, then it is not of any of Types I-VI (cf. Proposition 2). In this case, therefore, the

Theorem implies that rankz^L/A: = 0. Hence this is a generalization of the result in the

abelian case.

This paper is organized as follows. In Section 1 an expression of no in terms of the group

ring of G is obtained (Proposition 1). In Section 2 two simple sufficient conditions for no = 0

are given. Then they give a necessary condition for no Φ 0, which is equivalent to that G is

of one of Types I-VI (Proposition 2). It seems remarkable that a modification of Proposition

2 determines all the finite groups of which every abelian subgroup is cyclic (Proposition 2').

In Section 3 we calculate no for G of each type and complete the proof of the Theorem. We

also remark on nsL(2,Fp) for Fermat primes p > 5.
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1. Expression of ΠQ in terms of the group ring of G. For an infinite prime spot φ

of a number field F, we denote by Fφ the completion of F with respect to φ ; namely, Fφ is

the real number field R or the complex number field C according as φ is real or imaginary.

We denote by F£ the multiplicative group of Fφ and define

F/{aeF\\a\ = l],

where \a\ denotes the absolute value of a. Since [F]φ is always isomorphic to J?x/{±1}, it

is regarded as an /^-module by exponentiation. For an infinite prime spot p of a subfield of F,

we define

where φ runs over the infinite prime spots of L above p. We denote by σo the infinite prime

spot of the rational number field and consider a monomorphism

ΨF : EF/ WF 3 ε H

where εφ is the conjugate of ε corresponding to φ, and vφ is equal to 1 or 2 according as ty

is real or imaginary.

Let L D K be an extension of number fields. For K c M C L, we regard the relative

norm mapping NL/M as a mapping of EL/WL to EM/WM Then the definition of

implies that

εL,κ = Π K^WL/M : ELI WL -• EM/WM) ,

where Ker * denotes the kernel of *. We may also regard NL/M as a mapping of [L]oo to

[M]oo, namely,

φ\oo p|σo

where p runs over the infinite prime spots of M. Since

*M o (NL/M : £ L / W L -+ EM/WM) = (NL/M : [L]oo -• [Af ]oo) o

we see that

^L(Ker(ΛrL/M : EL/ WL -> EM/WM)) C

By comparing the dimensions, we have

: EL/WL -+ EM/WM) ®z R =

Moreover, NL/M can be regarded also as a mapping [L]p to [M]p for an infinite prime spot p

of K. Hence we have

Ker(ΛίL/M : [£]«, ^ [M]^) = ^ K e r ( ^ V L / M : [L]p -
p|oo

where p runs over the infinite prime spots of K. Consequently, we have the following lemma.
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LEMMA 1.

SL/K ®z « = 0 ( Π Ker(7VL/M : [L]p -> [M]p) ] ,

where p runs over the infinite prime spots of K.

For a finite group G we denote by R[G] the group ring of G over R. For a subgroup H of

G, we denote by Tr// the element ΣheH /* of R[G]. The left G-endomorphism x \-+ x Tr//

of/?[G] is also denoted by Tr//. Then we have:

PROPOSITION 1. Suppose that L/K is a Galois extension and denote by G the Galois

group of L/K. Let SL/K denote the number of infinite prime spots ofK which are unramified

in L. Then

= sL/KnG ,

where

no = dim/? Q KerTr//.
{1}///CG

PROOF. Lemma 1 says that

(1) τmkzεL/κ = ΣάimR ( Π K e r ^ / M : [L]p -* [M]p)

p|oo /where p runs over the infinite prime spots of K.

We first consider the case where p ramifies in L. Let {^P/}i<ι<|G|/2 be the infinite prime

spots of L above p. We denote by M; the decomposition field of φ/ and by p/ the infinite

prime spot of M/ below φ/. We note that [L]Pi = [L]φ. = Cx/{z e Cx | |z| = 1} and

[M/]p. = Λx/{±1}. Since the norm mapping NC/R : Cx/{z e C x | |z| = 1} -> Rx/{±1} is

isomoφhic, we have

which implies that

[L]Pl. Π Ker(7VL/Mί : [L]p -• [Af/]p) - {1}.

Since [L]p = θ t^Jφ, = θ/t^lp/', we have

(2) Π Ker(7VL/M : [L]p -• [M]p) = {1}.

Secondly, we consider the case where p is unramified in L. Let {φ/}i</<|G| be the

infinite prime spots of L above p. We put φ = *$\. Then we see that {φ/}i</<|G| = {tyg}geG

and that any element of [L]p is written in the form 0 p e G xφg, where xrpg e [L]φg. If we

consider the action of G on [L]p defined by

φgh-ι for /z G G ,
geG
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then we have a G-isomorphism of [L]p to the right G-module R[G]:

φ xφs >-> ^2(}og\xφg\)g.
geG geG

Therefore we know

(3) Π Ktv(NL/M : [L]p -> [M]p) = f | KerTr* .

Consequently, (1), (2) and (3) prove Proposition 1.

We know that R[G] is a Hubert space with respect to the inner product (ΣgeG

ΣgeG b99) = ΣgeG a9b9' S i n C e

Σag = ° for any C e G/H 1 ,

J
KerΊvH = I Σ agg

[geG geC

we have from the definition of orthogonal complement that

ag = ah if g e hH \ = (ΊτH)R[G],

where (*)R[G] denotes the left ideal of R[G] generated by *. Hence

/ \ ^
P | KerTr// = (ΊrH | {1} φ H c G)R[G].

\{1}#//CG /

Therefore nG is expressed as follows:

COROLLARY. Lei the assumptions and notation be as in Proposition 1. Then

where

tG = dim/?(Tr// | {1} φ H c G)/J[G] .

2. Necessary condition for nG φ 0. We start with two simple examples, where the

notation is as in the preceding section.

EXAMPLE 1. If a direct product Z/ IZ x Z/ IZ is contained in G for some prime /, then

1 e (ΎTH I {1} φ H c G)^[G], because the equation

1 = - y I TrZ//zxZ//z - 2Z T r / /

\ {1}///CZ//ZXZ//Z

holds. It implies that tG — \G\ and «G = 0.
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EXAMPLE 2. If a non-direct semi-direct product Z/l\Z ix Z/ I2Z is contained in G for

a pair of primes /1 and I2, then 1 e (Tr# | {1} ^ // c G)^[G], because the equation

(
{\}φHCZ/lλZκZ/l2Z

holds. It implies that ΪQ = \G\ and ΠQ = 0.

Now we are interested in finite groups which are different from the above examples. The

following proposition is the most important part of the proof of the Theorem.

PROPOSITION 2. For a finite group G the following two conditions are equivalent:

(i) G contains neither a direct product Z/ IZ x Z/ IZ for a prime I nor a non-direct

semi-direct product Z/l\Z tx Z/^Zfor a pair of primes l\ and h-

(ii) G is of one of Types I-VI.

The rest of the section is devoted to the proof of Proposition 2.

2.1. Let the notation be as in Introduction. We prove three lemmas for the proof of

Proposition 2. For a finite group G we denote by Z(G) the center of G. For a prime / we

denote by Sι(G) a Sylow /-subgroup of G. We write H <\ G (resp. H char G) when H is a

normal (resp. characteristic) subgroup of G.

LEMMA 2. Let G be a finite group and H a normal subgroup of G. Suppose that

Sι(G/H) < G/H for a prime I. If one of the following two conditions is satisfied, then

Sι(G) < G:

(i) The order ofH is a power of I.

(ii) The order ofH is not divisible by I and H C Z(G).

PROOF. Since Sι(G)H/H is a Sylow /-subgroup of G/H, our assumption implies that

Sι(G)H/H <\ G/H, which is equivalent to Sι(G)H < G. Since the condition (i) implies

that Sι(G) = Sι(G)H and (ii) implies that 5/(G) char Sι(G)H, we have 5/(G) < G.

For a finite group G we denote by Aut G (resp. Inn G) the group of automorphisms (resp.

inner automorphisms) of G.

LEMMA 3. Let

1 - > A ^ 5 - > C X D ^ 1

be an exact sequence of finite groups. Suppose that (\A\ \C\, \D\) = 1. If one of the following

two conditions is satisfied, then B = B' x D, where

is an exact sequence:

(i) A C Z ( U ) .

(ii) ( |AutA | , |D | ) = l.

P R O O F . The exact sequence l ^ A ^ Z ? — ^ C x D - ^ l gives an exact sequence 1 ->

A -> B\ -> D ->• 1, where B\ is the inverse image of D. Since (|Λ|, |Z>|) = 1, the condition
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(i) or (ii) implies that B\ = A x D and that B\ has a characteristic subgroup isomorphic

to D. It implies that B has a normal subgroup isomorphic to D. Since (\B/D\, \D\) =

(I A| \C\, \D\) = 1, we have B = B'KD, where B' = B/D. By restricting the exact sequence

1 ^ A ^ J B - > C X D - ^ 1 to B\ we have an exact sequence 1 - > A — > # ' — > - C — > 1.

Two exact sequences 1 — > A — • 2 ? / - - > C — > 1 and 1-+A—>B\—>D—>1 imply that

the action of Br on B\ is trivial modulo A, because that of C on D is trivial. In particular, for

b e B' and d e D C B\, there exists a e A such that b~ιdb = da. Since (|A|, | D | ) = 1,

the condition (i) or (ii) implies that (the order of da)=(the order of d) x (the order of a). Since

b~ιdb has the same order as d, we have a = 1. It implies that 5 = B' x D.

We denote by PGL(2,Fp) (resp. PSL(2,Fp)) the projective general (resp. special)

linear group of degree 2 over Fp. For a finite group G we denote by Gc the commutator

subgroup of G.

L E M M A 4. Leί

1 -> Z/2Z -> A -> 5 -» 1

Z?£ β« ^ rac/ sequence of finite groups. Suppose that a direct product Z/2Z x Z/2Z is not

contained in A. Let p be an odd prime.

(i) IfB = P5L(2, F p ) , ίΛen A = 5L(2, F p ) .

(ii) IfB = PGL(2, F p ) , fλ<?/ι A = //p.

PROOF. The image of Z/2Z is contained in Z(A), because it is normal. Then the above

assumption is equivalent to that A has a unique subgroup of order 2, which we denote by Z.

We have an exact sequence 1—> Z -^ A ^ B —> 1.

(i) If p > 3, then we know that PSL(2, Fp) is a non-abelian simple group (Corollary

to (9.10), Chapter 1, [2]). The order of Ac is divisible by that of P5L(2, Fp)
c = PSL(2, Fp),

and hence is even. Then the uniqueness of Z implies Z C Ac. Therefore the restriction of the

above exact sequence to Ac induces Ac = A. The statement (3) of Theorem 9.18 in Chapter

2 of [2] implies that the central extension A is irreducible. Since the multiplier of SL(2, Fp)

is trivial (Example 2, Section 9, Chapter 2, [2]), the statement (6) of the theorem implies that

the multiplier of PSL(2, Fp) is of order 2. Then we know that the central extension A is

primitive (Definition 9.10, Chapter 2, [2]). Hence the statement (5) of the theorem implies

that A is uniquely determined. Since 5L(2, Fp) clearly satisfies the condition on A, we have

A = 5L(2, Fp). If p = 3, we know that PSL(2, F 3 ) = Z/3Z x (Z/2Z x Z/2Z) (non-direct).

Since Lemma 2 implies 52(A) < A and the assumption of the lemma implies 52(A) = Q$,

we have A = Z/3Z x Q% (non-direct) = 5L(2, F 3 ) .

(ii) The exact sequence 1—• Z —* A -* PGL(2, F p ) -> 1 gives an exact sequence

1 -• Z —• A\ —• PSL(2, Fp) -> 1, where Ai is a subgroup of A of index 2 defined as the

inverse image of PSL(2, Fp). Then A is generated by Ai and an element a which does not

belong to Ai. Since (i) implies Ai = 5L(2, Fp), two elements a\ and ai of order p generate

Ai. For example, we can take

Ί
a' = \o
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We note that a~ιaia is determined up to an element of Z. Since Z C Z(A) and (|Z|, p) = 1,

by considering the order, we see that a~xaιa is uniquely determined and that A is uniquely

determined. On the other hand, it is easily proved that Hp has a unique subgroup Z of order

2 such that Hp/Z = PGL(2, Fp), namely,

Therefore we have A = Hp.

COROLLARY. For a prime p > 3,

PROOF. The identity SL(2,Fp)
c = SL(2,Fp) has been seen in the proof of (i) of

Lemma 4. Since Hp/SL(2, Fp) = Z/2Z, we have Hc

p c 5L(2, Fp), which implies #£ =

2.2. We suppose that a finite group G satisfies the condition (i) of Proposition 2. Since

any direct product Z/IZ x Z/IZ for a prime / is not contained in G, every abelian subgroup

of G is cyclic. Then the statement (4.4) in Chapter 4 of [2] implies that 5/(G) is cyclic or

isomorphic to Qn. Moreover, if A is a subgroup or a quotient group of G, then 5/ (A) is cyclic

for any odd prime /. Similarly, if A is a subgroup of G, then 52(A) is cyclic or isomorphic to

Qn. In this section we denote by F the Fitting subgroup (i.e., the maximal nilpotent normal

subgroup) of G. Since F is nilpotent, it is a direct product of its Sylow subgroups (Theorem

2.12, Chapter 4, [2]). For a natural number n, we put Fn = Π(/ w)=i Si(F). Then we can

write F = 52 (F) x F2. Since 5/(F) is cyclic for each odd prime /, we see that F2 is cyclic,

and hence Z(F) = Z(S2(F)) x F2.

By inner automorphisms of G, we obtain a homomorphism of G to AutF. If G is

solvable, then the kernel of the homomorphism is equal to Z(F) (Corollary to Theorem 2.18,

Chapter 4, [2]). Therefore we can regard the homomorphism as a monomorphism of G/Z(F)

to Aut F. Since ( |5 2 (F) | , |F 2 | ) = 1, we have Aut F = Aut 5 2(F) x Aut F 2 , where Aut F 2 is

abelian because F2 is cyclic. Now we define a homomorphism

Φ : G/Z(F) <-+ AutF p r ^ o n Aut5 2 (F).

We denote by ImΦ (resp. KerΦ) the image (resp. kernel) of Φ. Then the above monomor-

phism implies G/Z(F) ^ I m Φ x AutF2.

The case where G is solvable and Im Φ is a 2-group is treated in Section 2.3. The case

where G is solvable and Im Φ is not a 2-group is treated in Section 2.4. The case where G is

non-solvable is treated in Section 2.5.

2.3. We suppose that a finite solvable group G satisfies the condition (i) of Proposition

2 and that Im Φ is a 2-group. Since both Im Φ and Aut F2 are nilpotent, so is Im Φ x Aut F2.

Since G/Z(F) π l m Φ x Aut F2, we see that G/Z(F) is nilpotent.

Since ImΦ is a 2-group, the number of G-conjugates of a subgroup of 52(F) is a

power of 2. On the other hand, the number of subgroups of Z(52(F)) of index 2 is odd
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because Z(S2(F)) is an abelian 2-group. Therefore there exists a G-invariant subgroup E\

of Z(S2(F)) of index 2. Moreover we can prove recursively that there exists a series of G-

invariant subgroups

Z(S2(F)) = Eo D Eι D E2 D D Et-χ D Et = {1},

where the index of E[ in E[-\ is 2. Then G/(£; x F) is an extension of G/(Zs, _i x F) by

Z/2Z, which is automatically central. Therefore the fact that G/Z(F) = G/(E0 x F2) is

nilpotent implies that G/F2 = G/(Et x F2) is nilpotent.

We put k = \G/F2\. Then we have the following lemma.

LEMMA 5.

1 -* F2/F2k -> G/F2k -> G/F 2 -> 1

w a central extension

PROOF, Since F2 is abelian, an action of G/F2k on F2/F2k is determined by that of

G/F2 on F2/F2k. Since F2/F2k = Π/ ^/(^)» where / runs over the odd prime divisors

of k, it suffices to show that G/F2 acts trivially on S/(F) for all those /. Since G/F2 is

nilpotent and Sι(G/F2) is cyclic, we have Sι(G/F2) c Z(G/F2) and that the homomorphism

of G/F2 to Aut Si(G/F2) induced by inner automorphisms is trivial. Since Sι(G/F2) <\ G/F2

and F2/F2ι is an /-group, Lemma 2 implies that Sι(G/F2ι) < G/F2ι. We denote by μ

the homomorphism of G/F2ι to Aut Si (G/F2ι) induced by inner automorphisms and by v

the epimorphism of Aut Sι(G/F2ι) to Aut Sι(G/F2) induced by considering modulo F2/F2ι.

Then the following diagram is commutative.

G/F21 - J L ^ AutS,(G/F2/)

I l
G/F 2 - ^ - > AutSι(G/F2)

It implies that the image of μ is contained in the kernel of v. Since both Sι(G/F2ι) and

Sι(G/F2) are nontrivial cyclic /-groups and v is surjective, the order of the kernel of v

is a power of /. Hence the order of the image of μ is a power of /. On the other hand,

since Sι(G/F2ι) is abelian, we can regard μ as a homomorphism of (G/F2ι)/Sι(G/F2ι) to

Aut Sι(G/F2ι). Since the order of (G/F2ι)/Sι(G/F2ι) is prime to /, so is the order of the

image of μ. Consequently, μ is trivial and G/F2/ acts trivially on Sι(G/F2ι). In particular,

G/F2/ acts trivially on F2/F2ι C Sι(G/F2ι). Then G/F2 acts trivially on F2/F2ι because

F2/F2ι is abelian. Therefore the fact F2/F2ι = 5/(F) completes the proof.

Since G/F2 is nilpotent, Lemma 5 implies that G/F2k is nilpotent. Since Sι(G/F2k) is

cyclic for every odd prime / and S2(G/F2k) = S2(G), we have

= S2(G)xC,
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where C is a cyclic group of odd order. Since both \G/F2\(= k) and \F2/F2k\ are prime to

I F2k I, so is I G/F2k I Then we have

G = G/F2k K F2k = (S2(G) x C) x F2k,

where C and F2k are cyclic groups of odd order such that (|C|, \F2k\) = 1. Let x be an

element of prime order l\ of G/F2k. If x acts nontrivially on F2&, then it acts nontrivially

on Sι2(F2k) = Z/l2

nZ for some prime divisor l2 of \F2k\- Since the order of the kernel

of an epimorphism of Aut Z/l2

nZ to Aut Z/12Z is a power of l2 and is prime to the order

l\ of x, we have that x acts nontrivially on Z/12Z. It implies that a non-direct semi-direct

product Z/l\Z ix Z/12Z is contained in G, which contradicts the condition (i) of Proposition

2. Consequently, any element of prime order of G/F2k acts trivially on F2k. In the case where

S2(G) is cyclic, by putting 0 = {1}, C\ = S2(G) x C and C2 = F2*, we see that G is of

Type I. In the case where S2(G) = Qn,by putting 0 = S2(G), C\ = C and C2 = F2k, we

see that G is of Type II.

We summarize the result of this subsection.

PROPOSITION 3. Let G be a finite group satisfying the condition (i) of Proposition 2.

If G is solvable and Im Φ is a 2-group, then G is of Type I or II.

2.4. We suppose that a finite solvable group G satisfies the condition (i) of Proposition

2 and that Im Φ is not a 2-group. Then Aut S2(F) is not a 2-group. Since S2(F) is cyclic or

isomorphic to Qn, we conclude that S2(F) = Q% and Aut S2(F) = Θ4, where Θ4 denotes

the symmetric group of degree 4. Since S2(F) char F < G, we have £ 2 ^ ) < ^2(G) and

S2(G) = G8 or <2i6 Then, by noting that Inn S2(F) = Z/2Z x Z/2Z C ImΦ, we easily

obtain Im Φ = 2U or 64 according as S2(G) = Q% or βi6, where 2I4 denotes the alternating

group of degree 4. On the other hand, Ker Φ is abelian because Ker Φ c ^ {1} x Aut F2. Since

S2(Z(F)) = ZCS^F)) = Z ( β 8 ) = Z/2Z, we have \S2(G/Z(F))\ = 4 or 8 according as

S2(G) = β 8 or β i 6 . It implies that \S2(G/Z(F))\ = |5 2 (ImΦ)| and that |KerΦ| is odd.

Then Ker Φ is a cyclic group of odd order because 5/(Ker Φ) is cyclic for every odd prime

/. Therefore we can write KerΦ = S3 (Ker Φ) x C, where C is a cyclic group such that

(|C|, 6) = 1. We put X = (G/Z(F))/C. Then G/Z(F) = X x C because a prime divisor of

|X| = | I m Φ | | K e r Φ | / | C | = |ImΦ| |5 3(KerΦ)| is 2 or 3. Since G/Z(F) ^ ImΦ x AutF 2

and Ker Φ ^+ {1} x Aut F 2 , we see that G/Z(F) acts trivially on Ker Φ and that G/Z(F) =

X x C.

We would like to determine X. Since G/Z(F) acts trivially on KerΦ, Z acts trivially

on S3 (Ker Φ). Then we have a central extension.

(4) 1 -+ S3(KerΦ) -• X -> ImΦ -> 1.

We can write S3(X) = Zβm'z for a natural number m'. If 52(G) = β 8 , then ImΦ = 2U.

Since £2(^4) < ^4 and (4) is central, Lemma 2 implies that S2(X) < X. Since the or-

der of X/S2(X) is a power of 3, we have X/S2(X) = S3(X) and X = S3(X) K S2(X).
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Since S2(X) = S2(2l4) = Z/2Z x Z/2Z, we have X = Z/3m'Z \κ (Z/2Z x Z/2Z) (non-

direct). If S2(G) = Q\β, then ImΦ = 64. The central extension (4) gives a central ex-

tension 1 -• ^ ( K e r Φ ) ->• X\ -» Inn S 2(F) -• 1, where Xi is a normal subgroup of

X defined as the inverse image of InnS 2 (F). Since InnS^F) = Z/2Z x Z/2Z, we have

Xi = 53(Ker Φ) x (Z/2Z x Z/2Z). We put X' = X/(Z/2Z x Z/2Z). Then X7S3(Ker Φ) =

X/Xι = ImΦ/Inn S 2(F) = D6. Since S3(D6) < D6, Lemma 2 implies that S3(X') < Xf.

The image of X' —• Aut S3(Xf) = AutZ/3m Z is of even order, because the image of Dβ ->

Aut S3(D6) is of order 2. On the other hand, since X acts trivially on S3(Ker Φ) = Z / 3 m " 1 Z ,

so does X''. We know that the kernel of an epimorphism of AutZ/3m Z to AutZ/3m '~λZ is of

even order only if m' = 1. It implies that S3(Ker Φ) is trivial. Hence we have from (4) that

X = 64. Now we have

G/Z(F) = X x C,

where

_ ί Z/3m 'Z x (Z/2Z x Z/2Z) (non-direct) if S2(G) = Qs ,
= ( ©4 i f5 2 (G) = Qi6,

and C is a cyclic group such that (|C|, 6) = 1.

Since Z(S2(F)) = Z(Q$) = Z/2Z, we have a central extension 1 -> Z/2Z -^ G/F 2 ->

G/Z(F) -> 1. Since (|C|, 6) = 1, Lemma 3 implies that G/F 2 = 7 x C and that

1 -» Z/2Z -> y -^ X -> 1

is a central extension. If S2(G) = Qs, then we have proved that S2(X) < X. Hence Lemma

2 implies that S2(Y) < Y. Since the order of Y/S2(Y) is a power of 3, we have Y/S2(Y) =

S3(Y) and Y = S3(Y) x S2(Y). Since 5 2(F) = 52(G) = βs , we have F = Zβm'Z tx Q 8

(non-direct). If S2(G) = Q\β, then X = 64 = PGL(2,F3). Since 5 2(7) = 5 2(G) = Qϊ6,

Lemma 4 implies Y = H3. Now we have

G/F 2 = Y x C,

where

ί Z/3m /Z tx Q 8 (non-direct) if S2(G) = β s ,

" I H3 i fS 2 (G) = β i 6 ,

and C is as above.

Since F2 = S3(F) x Fβ, we have an exact sequence 1 —> S3(F) —> G/Fβ -> G/F2 —>

1. Since 53(F) is cyclic, a prime divisor of |Aut 53(F)| is 2 or 3. Since (|C|, 6) = 1, Lemma

3 implies that G/Fβ = U x C and that

(5) 1 -+ S3(F) -> C/ -^ y -> 1

is an exact sequence. We can write 5*3(£/) = Z/3mZ for a natural number m. Since 53(F)

is cyclic, the action of U on 53(F) is determined by that of Y on S3(F). If 5 2(G) = Qs,

then y = 53(y) x βs (non-direct). Clearly 53(y) acts tribially on S3(F) because a cyclic

group S3(U) acts trivially on its subgroup S3(F). On the other hand, since Aut S3(F) is

abelian, we see that the kernel of Y —> Aut S3 (F) contains Yc = βs . It implies that Y acts
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trivially on S3(F) and that (5) is a central extension. Since S2(Y) < Y, Lemma 2 implies

that S2(U) < U. Since the order of U/S2(U) is a power of 3, we have U/S2(U) = S3(£/)

and ί/ = S3(U) x S2(U) = Z/3mZ K β 8 (non-direct). If S2(G) = β i 6 , then F = # 3 . We

note that H3 D 5L(2, F 3 ) = Z/3Z x β 8 (non-direct). As noted in the proof of Lemma 4,

H3 is generated by SL(2, F3) and an element α which does not belong to SL(2, F3). Since

S2(H?>) = S2(G) = βi6, we can take α so that tf~^8tf C βs It implies that β 8 < 7/3.

Then the exact sequence (5) gives an exact sequence 1 —> S$(F) —> U\ —> β 8 -+ 1,

where C/i is a normal subgroup of ί/ defined as the inverse image of β 8 . Since the kernel of

H3 -> AutS3(F) contains Hξ and H% z) 5L(2, F 3 ) c = β 8 , we see that U\ = Qs x 5 3 (F)

and that Qs char C/i. Therefore we have Qs < U. Since ί//βs is of order 2 3 m and has a

cyclic Sylow 3-subgroup, we obtain an exact sequence 1 -> βs -^ ί/ -> D2.3m -+ 1. By this

exact sequence and the exact sequence (5), we can define a monomorphism U —• H$x D2.yn.

Then it is easily proved that U = //3,m. Now we have

G/Fβ = U x C,

where

I Z/3mZ K β 8 (non-direct) if S2(G) = β 8 ,

Hχm if 5 2 ( G ) ^ β i 6 ,

and C is as above.

We put k = |G/F6|. Since a prime divisor of \U\ is 2 or 3, we know that Sι(G/Fβ) C

Z(G/Fβ) for a prime / > 3. Therefore we can use the same argument as in the proof of

Lemma 5 and prove that 1 -> F^/Fβk -^ G/Fβk -> G/Fβ -> 1 is a central extension.

Since ( |F 6/F 6^|,6) = (|C|,6) = 1, Lemma 3 implies that G/F6k = U x C\ and that

1 -^ Fβ/Fβk -> C\ -^ C -• 1 is a central extension. It implies that Ci is nilpotent and that

(|Ci I, 6) = 1. Moreover C\ is cyclic because every Sylow subgroup of C\ is cyclic. Now we

have

G/F6k = U x Ci ,

where U is as above and C\ is a cyclic group such that (\C\ |, 6) = 1. Since both |G/F6|(= k)

and |F6/F6fc| are prime to |F6fc|, so is \G/Fβk\ Then we have

G = G/Fβk x F6k = (U x Ci) x F6^ .

We note that C\ and Fβk are cyclic groups such that (\C\ |, |F6Λ|) = (|Cj | |F6^|, 6) = 1. Since

no non-direct semi-direct product Z/l\Z x Z/12Z is contained in G for any pair of primes l\

and l2, the same argument as in the preceding subsection implies that each element of prime

order of G/Fβk acts trivially on F^k By putting 0 = U and C2 = Fβk, we now know that G

is of Type III or IV according as S2(G) = β 8 or Q\β.

We summarize the result of this subsection.

PROPOSITION 4. Let G be a finite group satisfying the condition (i) of Proposition 2.

IfG is solvable and Im Φ is not a 2-group, then G is of Type III or IV.

2.5. We suppose that a finite non-solvable group G satisfies the condition (i) of Propo-

sition 2. Then G is of even order (Theorem 3.1, Chapter 6, [2]). If S2(G) is cyclic, then
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Corollary 1 to Theorem 2.10 in Chapter 5 of [2] implies that there exists a normal subgroup

N of G such that G/N = S2(G). Since N is of odd order, it is solvable and so is G, which is

a contradiction. Therefore we have 52 (G) = Qn. We denote by O the maximal normal sub-

group of G of odd order. Then Theorem 8.7 in Chapter 6 of [2] implies that G has a normal

subgroup Go of odd index such that Go D O and

+ Go/O -> V -> 1

is a central extension, where V = PSL(2,Fq), PGL(2, Fq) oΐ^i-j (the alternating group of

degree 7) and q is an odd prime power and bigger than 3. Since we know that PGL(2, Fpi) D

PSL(2, F / ? 2) D Fp2 (additive) = Z/pZ x Z/pZ for a prime p and that » 7 D Z/3Z x Z/3Z,

we must have V = PSL(2, Fp) or PGL(2, Fp), where /? is a prime bigger than 3. Since

S2(G0/6>) C S2(G/O) = S2(G) = Qn, a direct product Z/2Z x Z/2Z is not contained in

Go/O. Therefore Lemma 4 implies that

G0/O = SL(2,Fp) or Hp,

where p is a prime bigger than 3.

We suppose that Go φ G. Since G/Go is of odd order, it is solvable. Since each

Sylow subgroup of G/Go is cyclic, the same argument as in the preceding subsections im-

plies that G/Go is of Type I, II, III or IV. (Here we do not know whether the condition (2)

in Table 1 is satisfied or not, because we do not know whether any non-direct semi-direct

product Z/l\Z ex Z/faZ is contained in G/Go for any pair of primes l\ and fa.) More-

over, since G/Go is of odd order, we see that G/Go is of Type I. Therefore G/Go has a

normal subgroup N /Go of odd prime order. We denote by / the order of N/Go. Since

Go/O < N/O, both (Go/Of and Z((G0/O)c) are normal subgroups of N/O. We de-

note by p the homomorphism of N/O to Aut((Go/ O)c / Z((Go/ O)c)) which assigns re-

strictions of inner automorphisms. Since Corollary to Lemma 4 implies that (Go/O)c =

SL(2, Fp), we can regard p as a homomorphism of N/O to Aut PSL(2, Fp). We denote

by Kerp (resp. Imp) the kernel (resp. image) of p. We note that Kerp Π Go/O is a nor-

mal subgroup of Go/O and contains Z((G0/O)c) = Z/2Z. Since PSL(2,Fp) is simple

and PGL(2,FP) has only 3 normal subgroups {1}, PSL(2,Fp) and PGL(2,Fp) (Theo-

rem 9.9, Chapter 1, [2]), Lemma 4 implies that Kerp Π G 0 /O = Z/2Z, SL(2, Fp) or Hp.

Since SL(2,Fp) acts nontrivially on PSL(2,Fp), we see that Kerp Π G 0 /O = Z/2Z.

Hence Imp D p(G0/O) = (G0/O)/(Kerp Π Go/O), which implies that | G 0 / O | divides

2|Imp|. Since Imp c AutP5L(2, F p ) = PGL(2,Fp) ((8.8), Chapter 6, [2]), we see

that | Imp| divides \GQ/O\. Therefore |Go/0 | / | Imp | = 1 or 2. Since |Kerp| is even and

|Kerp| = |Λ^/0|/|Imp| = / | G 0 / O | / | I m p | , we see that |Kerp| = 21. It implies that

Kerp =Z/lZx Z/2Z, because Kerp > Kerp Π Go/O = Z/2Z. Then 5/(Kerp) < N/O.

Since Kerp Π Go/O = Z/2Z implies that Si (Kerp) Π G 0 /O = {1}, we conclude that

N/O = Si (Kerp) xG0/O =Z/lZxG0/O. Since 5/ (W/0) is cyclic, the order of G 0 /O is

not divisible by /. It implies that N/O has a characteristic subgroup of order / and that G/O

has a normal subgroup of order /, a contradiction to the definition of O. Therefore we have



50 Y. ODAI AND H. SUZUKI

proved that Go = G, which implies that

G/O = SL(2,Fp) or Hp,

where p is a prime bigger than 3.

Since O is of odd order and any Sylow subgroup of O is cyclic, we have shown above

that O is of Type I; namely, O = C\ tx C2, where C\ and C2 are cyclic groups such that

(ICi I, IC2I) = 1. If Sι(C\) acts trivially on C2 for a prime divisor / of \C\ |, we can replace

C\ (resp. C2) by a subgroup isomorphic to C\/S\{C\) (resp. C2 x Sι(C\)). Therefore we may

assume that every nontrivial Sylow subgroup of C\ acts nontrivially on C2. We examine the

exact sequence

(6) 1 -> Ci -> G/C2 -> G/O -> 1.

Since C\ is cyclic, an action of G/C2 on C\ is determined by that of G/O on C\. We denote

by σ the homomoφhism of G/O to AutCi induced by inner automorphisms. Then, since

Aut C\ is abelian, the kernel of σ contains (G/O)c = SL(2, Fp), which implies that the index

of the kernel of σ in G/O is 1 or 2. We suppose that there exists an element y of G/O which

acts nontrivially on C\. Then 3; acts nontrivially on 5/, (C\) for a prime l\. We denote by x a

generator of Sι} (C\). Then y~ιxy = x~ι because the order of σ(y) is 2. It is assumed that x

acts nontrivially on 5/2 (C2) for a prime I2. Here we may regard x and y as elements of G/C2.

We denote by τ the homomoφhism of G/C2 to Aut 5/2 (C2) induced by inner automoφhisms.

Since Aut 5/2(C2) is abelian, we haver (x) = τ(-y~1jc}>) = r ( x - 1 ) . Since τ(x) is not trivial, it

implies that the order of τ(x) is 2, which contradicts the fact that O is of odd order. Therefore

G/O acts trivially on C\ and (6) is a central extension. It gives a central extension 1 ->

Ci -> Gi ->• SL(2,Fp) -> 1, where Gi is a normal subgroup of G/C2 defined as the

inverse image of SL(2, Fp). Since we know that any central extension of SL(2, Fp) splits

(Section 9, Chapter 2, [2]), we conclude that G\ = SL(2,FP) x C\. Since any Sylow

subgroup of G\ has to be cyclic or isomoφhic to Qn, we have (\SL(2, Fp)\, \C\ |) = 1 and

(|G/O|, |Ci I) = 1. Therefore the central extension (6) implies that

G/C2 = G/O x Cx .

An exact sequence 1 - > C 2 - > G - > G / C 2 ^ 1 gives an exact sequence 1 ->

C2 -^ G2 -> SL(2,Fp) -> 1, where G2 is a subgroup of G defined as the inverse im-

age of SL(2,Fp). Since C2 is cyclic, an action of G2 on C2 is determined by that of

SL(2,Fp) on C 2. It is trivial because AutC2 is abelian and SL(2,Fp)
c = SL(2,FP).

Hence 1 -^ C2 -^ G2 -> SL(2,Fp) -+ 1 is a central extension and splits, namely,

G2 = SL(2, Fp) x C2. Since any Sylow subgroup of G2 has to be cyclic or isomoφhic

to β π ,wehave( |5L(2,F / ,) | , |C 2 | ) = 1 and( |G/C 2 | , |C 2 | ) = 1. Therefore we have

G = G/C2 x C2 = (G/O x Ci) x C 2 .

We note that Cx and C2 are cyclic groups such that (|Ci |, |C 2 | ) = (|Ci | |C 2 | , \G/O\) = 1.

Since no non-direct semi-direct product Z/l\Z x Z/I2Z is contained in G for any pair of
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primes l\ and I2, the same argument as in the preceding subsections implies that every element

of prime order of G/C2 acts trivially on C2. If there exists an odd prime / dividing p — 1, then

5L(2, Fp) D IfZ a°λ , (I lλ\ = Z/IZ x Z/pZ (non-direct),

where a is an element of the multiplicative group of Fp of order /. It contradicts the condition

(i) of Proposition 2. Therefore p is a Fermat prime. By putting 0 = G/O, we know that G

is of Type V or VI.

We summarize the result of this subsection.

PROPOSITION 5. Let G be a finite group satisying the condition (i) of Proposition 2.

If G is non-solvable, then G is of Type V or VI.

2.6. Combining Propositions 3, 4 and 5, we see that the condition (ii) follows from the

condition (i) in Proposition 2. To prove the converse, we suppose that G is a finite group

satisfying the condition (ii), namely, that G is of one of Types I-VI. Clearly, Qn has a unique

element of order 2. As noted in the proof of Lemma 4, both SL(2, Fp) and Hp have the same

property. Then it is also proved that H^m has the same property. Consequently, the number

of elements of order 2 of 0 x Ci is at most one. It implies that no direct product Z/2Z x Z/2Z

is contained in G. Moreover, no non-direct semi-direct product Z/2Z x Z/IZ is contained in

G for any prime /, because every element of prime order o f β x C i acts trivially on C2. On

the other hand, since all subgroups of SL(2, Fp) are obtained in Theorem 6.17 in Chapter 3

of [2], we see that every subgroup of odd order of SL(2, Fp) is cyclic if p is a Fermat prime.

Then Hp has the same property because each subgroup of odd order of Hp is contained in

SL(2, Fp). It is also proved that H^m has the same property. Consequently, every subgroup

of odd order of 0 x C\ is cyclic. It implies that no direct product Z/IZ x Z/IZ is contained

in G for any odd prime /. Moreover, no non-direct semi-direct product Z/l\Z x Z/I2Z is

contained in G for any pair of odd primes l\ and I2, because every element of prime order

of (5 x C\ acts trivially on C2. Now we have proved that the condition (i) follows from the

condition (ii). The proof of Proposition 2 is complete.

REMARK. AS noted above, the condition that no non-direct semi-direct product Z/ /iZx

Z/I2Z is contained in G for any pair of primes l\ and I2 follows from two conditions that ev-

ery element of prime order of 0 x C\ acts trivially on C2 and that p is a Fermat prime. As

was shown in the preceding subsection, the converse is also true. Therefore we can state a

modification of Proposition 2.

PROPOSITION 2!. For a finite group G the following two conditions are equivalent:

(i) Every abelian subgroup ofG is cyclic.

(ii) G satisfies the conditions (1) and one 6>/(3-I)-(3-VI) in Table 1. (A prime p is not

necessarily "Fermat".)

3. Calculation of nc Proposition 2 implies that it is sufficient for the proof of the

Theorem to calculate no for the finite groups G of Types I-VI. We carry out the calculation

in this section. We start with some simple examples, where the notation is as in Section 1.
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EXAMPLE 3. If G is a cyclic group of prime order /, then (Tr# | {1} φ H c G)j?[G] =

(TΓG)Λ[G]. It implies that fσ = 1 and n G = I ~ 1 = ψ(\G\).

For two subgroups //j and Hi of G, it is clear that KerTr//, C KerTr//2 if H\ C #2-

Hence it suffices to consider only minimal subgroups H of G in the definition of nG in Propo-

sition 1. Therefore we have the following lemma.

LEMMA 6. Let Go be a subgroup of G such that the set of minimal subgroups of Go

is equal to that of G. Then

nG = [G :

where [G : Go] denotes the index of Go in G.

PROOF. The assumption implies that

KerTr//= p | KerTr//

= Θ 9 ( Π )
9 \{l)φH£Go /

where g runs over a complete system of representatives of left cosets of Go in G. Hence

nG = [G : G0]«G0

EXAMPLE 4. If G is a cyclic group of prime power order /m, then we can take the

subgroup of order / as Go- Hence Lemma 6 and Example 3 imply that nG = lm~{(l — I) =

<p(\G\).

LEMMA 7. IfG = G\ x G 2 and (|Gi |, |G 2 | ) = 1, ίAβn

nG = nGχnGl .

PROOF. Under the assumption every subgroup H of G is written in the form H\ x H2,

where /// is a subgroup of G,. Then a minimal subgroup of G is either that of Gi or of

G2. Because Λ[G] is naturally isomoφhic to a tensor product R[G\] 0/? Λ[G2] as a right

R[G]-module, we see that

p | KerTr// = ( p | KerTr// ] Π ( f | KerTr//)
{iμ//cG \{l}#//cGi / \{1}̂ //CG2 /

= p | Ker(Tr/f : Λ [ G I ] - > « [ G I ] )

p | Ker(Tr// : Λ[G2] -+ R[G2]).

Hence «G — nGιnGl.

EXAMPLE 5. If G is a cyclic group, then Lemma 7 and Example 4 imply that «G =

Ψ(\G\).

Now we can calculate nG for G of Types I-VI by using Lemmas 6 and 7 and Example

5. From now on, let Go be the subgroup of G generated by all of the elements of prime order.
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Then Go satisfies the assumption of Lemma 6. We also remark that [G : Go]φ(\Go\) —

φ(\G\), because the set of prime divisors of |Gol is equal to that of \G\. The conditions (1)

and (2) in Table 1 imply that every element of prime order of G belongs to 0, C\ or Ci and

that

Go = <3o x (Ci)o x (C2)o-

We calculate 0o for each type.

Type I: 0 = {1}. 0 O = {1}.

Type 11:0 = Qn.(30=Z/2Z.
Type III: 0 = Z/3mZ x g 8 (non-direct). If m > 2, then every element of order 3

of Z/3mZ belongs to the kernel of (Z/3mZ -> Aut β 8 = 64). Hence we have 0 O =

Z/3Z x Z/2Z = Z/6Z. If m = 1, then 0 = Z/3Z x β 8 (non-direct) = 5L(2,F 3 ). Since

SL(2, F 3 ) o = SL(2, F 3 ) , we have 0 O = SL(2, F 3 ) .

Type IV: 0 = H3m. If m > 2, then the definition of H3m implies that H3m has a

unique subgroup of order 3 (because so dose £>2.3

W) As was noted in Section 2.6, H3m has

a unique subgroup of order 2. Hence we have 0o = Z/3Z x Z/2Z = Z/6Z. If m = 1, then

0 = H3m = //3. Since SL(2, F 3 ) o = SL(2, F 3 ) , we have ( # 3 ) 0 D SL(2, F 3 ) . Since every

element of prime order of H3 belongs to 5L(2, F 3 ) , we have 0o = SL(2, F 3 ) .

Type V: 0 = 5rL(2, F p ) . Since 5L(2, Fp)0 = SL(2, Fp), we have 0 O = 5L(2, F p ) .

Type VI: 0 = //p. Since SL(2, Fp)0 = SL(2, F p ) , we have (7/^)0 D SL(2, Fp). Since

every element of prime order of Hp belongs to SL(2, Fp), we have 0o = SL(2, Fp).

Therefore we have the following consequence. For Types I, II, III (m > 2) and IV

(m > 2), Go is cyclic. Lemma 6 and Example 5 imply that

nG = [G : Go]φ(\Go\) = φ(\G\).

For Types III (m = 1) and IV (m = 1), we have G o = SL(2, F 3 ) x C, where C is a cyclic

group and (\SL(2, F 3 ) | , \C\) = 1. Lemmas 6 and 7 and Example 5 imply that

nG =[G : Go]nsL(2,F3)ψ(\C\)

φ(\G0\)

φ(\G\).

By using computer, we obtain that ΠSL(2,F3) = 4. Since φ(\SL(2, F 3 ) | ) = 8, we have

1

For Types V and VI, we have Go = SL(2,Fp) x C, where C is a cyclic group and

(|5L(2, Fp)\, \C\) = 1. Lemmas 6 and 7 and Example 5 imply that

nSL(2,Fp)

no =

as above. The proof of the Theorem is complete.
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REMARK. We have proven that the calculation of ΠSL(2,FP) f° r every Fermat prime p

completes the calculation of ΠQ for every finite group G. For example, by using computer,

we obtain ΠSL(2,F5) = 8. Since φ(\SL(2, Fs)\) = 32, we then have

nG = -φ(\G\) if G is of Type V (/? = 5) or VI (/? = 5).

We do not yet calculate ΠSL(2,FP) for Fermat primes p > 17.
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