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Abstract. We evaluate the intersection numbers of loaded cycles associated with an
n-fold Selberg-type integral. We proceed inductively using high-dimensional local systems.

Introduction. We evaluate the intersection numbers of loaded cycles associated with
then-fold Selberg-type integral

n
/M(t)dtl/\"'/\dtn, u:l_[ l_[ (t; —1))%

i=1 (i<) j

wheret; (n < j) are mutually distinct parameters. L&t= £ be the local system defined
by the integrand on

X'={t=@1,....t) €C" | t; #1t;, 1<i<n, 1=j#i},

and £~ its dual, i.e., the local system ofi defined byu 1. Whent; (n < j) are real, the
real locusX’, of X" breaks into disjoink:-cells. We load each cell, say, with u*lin the

standard way (see 81.4) and make it loaded cydlesthat is, elements of thiecally finite

n-th homology groupH,f (X, £*) with coefficients inC*. There is a natural dual pairing

H"(X, L) x Hy(X, L) > C

called theintersection pairing. Throughout this paper we assume that the exponentare
sufficiently generic so that the natural map

Hy(X, L) — H"(X, L)

is an isomorphism; the inverse map is called tegularization and is denoted by reg. For
general background, refer to [Yo].

The main purpose of this paper is the evaluation of the intersection numbers of these
cycles. The so-called half-turn formula for #eecycles plays a crucial role; this formula is
important for its own sake. To help the reader's understanding, we present the context in
n = 1, 2, 3 before stating in general
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We proceed inductively by utilizing a fibre bundle structure of the spdten order to
fit the notation of the coordinates and the points to induction, we fix them as follows. For each
positive integern and a sequence of mutually distinct numbers

t07 tn+ls tn+2: cee
we consider a domain i@” defined by

X = ) €CM G F 1y, L<i<n, 0<j #1i).

10,1p 41,

The local systent. (of rank 1) onx X" is defined by the function

10,1n 41,

n
U= l_[(t,' — 1g)%i0 l_[ (ti — tj)aij
i=1

(i<)Jj

on X,O,,:'H,m. Via the projection

.yl .
T X,O,,:’+1’___ 351, ..., th) —> 1, € X;g!,m,__. ={ty | tn # to, thy1, .-},

the spac@(}d;;:jﬂ can be regarded as a fibre bundle over the 1-dimensional sfface,
with fibre

1(n—=1) _

7 ) = X =) [ i £ 1, L<i<n—1, 0 ).

Making use of this fibre bundle structure, we express the intersection numbedioen-
sional cycles ok in terms of those of-dimensional cycles oX X | for1 <k <
n—1.

We name the cycles oﬁ}()';;)(l’fjl) in 81, and the half-turn formula, which is the key of
our method, is given in 82. Finally in 83, we give formulae for the intersection numbers. An
application of these formulae is given in 84. 85 recalls a fundamental structure of twisted
(co)homology groups of fibre bundles stated in [OST].

1. Codingthecycles. For indeterminates, 71, ..., we consider domains in real
spaces.

1.1 1D case. On the real-space, we fixg < 12 < t3 < --- and name the intervals
(see Figure 1)

Dyi,.. = Dgip:={t1 € R|to <t1 <12}, Dpyiz. = Dyjzg:={t1lt2<t<ts},....
(1 indicates that; is a variable, i.e., not fixed.) We array these intervals as

1 .
Dgys.. :="(Dgips Doiqg D

oiz» D2iz DPziar---) -

3|

FIGURE 1. Caoding the intervals.
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1.2 2D case. On the redl, r2)-space, we fixg < 13 < 14 < --- and name the
domains (see Figure 2)

. 2 .
Dyizg:={(t1,12) € R | 10 <11 < 12 < 13}, Dppiz:={(t1,12) | to < t2 < 11 < 13},
Dppaia:={{t1,12) | 10 < 12 <13 <11 < ta}, Dyipy:={t1, 02) [lo <1 <13 <f2 <1a},....
(1 and2 indicate that; andr are variables, i.e., not fixed.) We array these domains as
12 ._1/pl 1 1
Do3g.. = (Doé34..’ D03é4...’ Do34é5...’ )
where

1 P .. . . L
D0§34.. ‘=" (Dyizz Dopiz Dopgia Pozadisr-++) -+ -
1.3 3D case. On the reéh, 1, t3)-space, we fixp < 14 < 15 < --- and name the
domains

. 2
Dyiz3,.. 1= {(t1, 2, 13) e R | o <t1 <thr <tz <ta},....

(1, 2, 3indicate thaty, 12, 13 are variables, i.e., not fixed.) We array these intervals as

123 ._t,pl2 12 12
Dggs. :="(Dgg,  Dyse + Dyaeg.n ) s
where
12 ._t/pl 1 1
D0é4w = 0234’ 0§24~’D0f‘3425---’ )
and
1 N N
D0§§4_. '="(Doizaa Doziza Poszia Popiaiss =)o+ -

1.4 nDcase. Nowthereader can easily imagine what the authors would like to define.
For notational simplicity, we put

"mi=n—-2, nmi=n—-1, n:=n+1, n=n+2.

Ontherealrs, ..., 1,)-space, we fixg < t,; < t,» < --- and name the domains
Dyi .. ={t1,....t)) eR" [to<t1 < - <ty <ty},....
15 n=n
Dyi33
D314
D313
3|

nh=n n=rn

FIGURE 2. Coding the 2-domains.
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(1,...,7 indicate thaty, . .., 1, are variables, i.e., not fixed.) We array these intervals induc-
tively as
l.n ._tpl-/n 1..'n 1..'n
Doyrr... ' = (Dog...s Doriayr...s Dognriees -+ s
1 N - s
Dys iw... = Doiz..jin> Pozi..in> Pogai..iin's -+ +» Podaiiins -+ ) »

In this subsection, the numerals with tildes among the sub-indicg3 wfdicate that the
corresponding points are free (not fixed). When it is clear which points are fixed and which
points are free, we often omit the tildes, later.

1.5 Standard loading.  For complex constanjse C — Z, we consider the multi-
valued fuction

w:=[Jw - [T w-t)*,
i=1 (i<) j
and the local systerd defined byu. We load each domaip with the function

u:= [ Jtefot — o)) [T (e — 1)
i=1

(i<)j

wheres 3, sf]? = 41 are so chosen thaf) (1; —t0) andsf]? (t;—t;) are positive on the domaip
(arguments of positve numbers are 0), and regard the domaitoaded cycle. This loading

is said to bestandard. A standardly loaded cycle will often be called just by the name of the
domain which supports the cycle.

1.6 Notation of the exponents.

ajj =aji, rij::= expyrv—laij,

Fijk = Vij - Vijk *Tki s Fij..-k = l_[ Tpq »

e 2 e e 2
Cij =T, Cijok == Tijgs

d,’j = Cij — 1, d,’jk = Cijk — 1, ey d,'j.pq =Cij - Cpg — 1, e

2. The half-turn formulae. Letr, < t, be adjacent points in the sequenge<
th+1 < ---. The two points, andt, were fixed when we defined tlwedimensional domains
in 81 such ady;is. ;> Dozi..jiyrs - - - - IN this section we move, in the complex plane in the
counterclockwise direction aroumg Accordingly the domains deform, and so do the loaded
cycles. We describe the happening when the trave) @ halfway completed, ang, and
tp have exchanged positions. We assume that the resulting infeyyvall contains no other
points in{tg, t,+1, . . . }. Each of the (standardly loaded) cycles with respect to the sequence

<yl < - <lg <tlp <---
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is transformed into a linear combination of the (standardly loaded) cycles with respect to the
sequence

<1< - <lhph<lg<---

This transformation is called the (positiviegif-turn H (ab) with respect to the pointg < ¢5.
If 7, continues traveling back to the original position, by applying the half-turn transformation
(do not forget to exchange the corresponding exponents) again, we deft then transfor-
mationF (ab).

2.1 1D case. Let, < 1, be adjacent points in the sequenge< 12 <3 < ---. The
half-turn H (ab) with respect to the pointg < 1, transforms the cycles as

D1ap — 1ap(D1pa + 115 Dp1a)
Dg1p = —ra1pDpla ,
Dup1 — 7ap(Dpa1 + ra1Dp1a) ,

other intervalsD....;... being sent to,, D...p,.... (See Figure 3.) In this subsection, the tilde
on the letter 1 is omitted.

2.2 2Dcase. Let, < 1, be adjacent points in the sequenge< 13 < t4 < ---. The
half-turn H (ab) with respect to the pointg < 1, transforms the cycles as

D12qp = rap(D12va + r2nD1p2a + r2pr1 Dp124)

D142y — —1a20(D1p2a + 1 Dp124 + r1pr12Dp214)

D14b2 = rab(D1va2 + r1p Dp1a2 + ra2Dib2a + risra2Dpi2q + ripra2r12Dp214)
Da125 = rq125Db21a

D12 = —1a16(Dp1a2 + ra2Dp12a + ra2r12Dp214)

Dap12 = rap(Dpa12 + ra1Dp1a2 + ra1ra2Dp12a) .

(See Figure 4.) If 1 or 2 is away fromandb, then the move reduces to th®4case. In this
subsection, the tildes on the letters 1 and 2 are omitted.

° o Py > Py o

1 a b 1 here or 1 here a

FIGURE 3. Half-turn of D1,;.
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b 2 here or 2 here

—_— Py Py

1 a b 2 1 here or 1 here a

FIGURE 4. Half-turn of D1,p5.

2.3 3Dcase. Let, < 1, be adjacent points in the sequenge< 14 < t5 < ---. The
half-turn H (ab) with respect to the pointg < ¢, transforms the cycles as

D1231p = rap(D123pa + 13 D12v3a + r3pr2n D1p23a + r3pranr1s Dp123a)

D1243p = —ra3p(D12p3a + r2n D1p23q + r2pr23D1p320 + r2pr1s Dp123 + rapr1pr23Dp13z
+ropripr23r13Dpsizg)

D124b3 = Tab(D12ba3 + 126 D1b243 + r2p13a D1b230 + r2pr3ar32D16324 + r2nr1s Dp1243
+rapript3a D123 + raprisr3ar32Dp1320 + raprinr3ar32r3iDp3iz)

D1423y = ra23p(D1p23a + r1p Dp123 + riwvr12Dp213 + ripr12r31Dp231a)

D142b3 = —ra2o(D1p243 + 115 Dp1243 + ra3 D152
+ripra3 Y, Dp1o20304 (o @ permutations of 123

Da123 — —ra123 Dp321a

Da12p3, Da123. Dap123: as above.

If 1, 2 or 3 is away fromu, b andc, then the move reduces to the 2D-case. In this subsection,
the tildes on the letters 1, 2 and 3 are omitted.

2.4 nD case. By the examples above, we hope that the reader can imagine what will
happen in high-dimensional cases. Since the situation is fairly complicated, we state the action
of half-turn properly.

A shuffle of the three ordered sets

X={ .. x,xi41....}, Y={..yiyj+1,---}, Z=1{..,2 Zk+1.---}

is a permutaion of the elements &fU Y U Z such that the order of the elementsXf the
order of the elements df, and the order of the elements Bfare preserved. The set of such
shuffles is denoted by(X, Y, Z). For example, if

X ={x1,x2}, Y={y1.y2}, Z=90,
then
S(X,Y, Z) = {x1x2y1y2, X1y1X2y2, X1y1Y2X2, Y1X1X2y2, Y1X1Y2X2, Y1Y2X1X2}.

For two members andy of a shuffles, if x is on the left side of, we denotex < y in s’.
Let Y1 be the order reversed setbfthat is,

Yﬁlz{...,y]url,yj,...}.
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X; a Yi b %% X a

FIGURE 5. Half-turnH (a, b) .

For a shuffles € S(X, Y1, 7), defines, (-, -) as

0 if x;, <y;ins, 0 if yj<zins,

es(xi, yj) = { es(yj, zk) == {

1 if x;>y;ins, 1 if yj >z ins,

and . .
0 if x; <z in s,

& (> 2k) = {1 if x;j>zxins.

Consider am-dimensional domairD,... defined in 81.4. Recall that it is coded by
an arrangement of moving pointsts, ..., t, in the real line divided by fixed onegs <
th+1 < ---. Lett, < 1, be adjacent points in the sequenge< 1,41 < ---, andz, be the
left-adjacent point (if any) ta,, andr, the right-adjacent point tg. Letzy, ty- andtz be the
ordered subsets ¢fy, . . ., t,} situated in the intervdt,,, t,1, [z4, 1] and[ty, 1,/ ], respectively.
The indices of the points iny, 7y» andrz define ordered subsels Y’ andZ of {0, ..., n};
putY = {a, Y’, b}. Thus the domairD,., has the codind...xyz... Now we are ready to
state the move of the half-turn.

PrROPOSITION 1. Leta betheleft extreme element of Y, and b the right extreme. Sup-
posethat X U (Y — {a,b}) UZ C {1,...,n}. Then the half-turn H (ab) with respect to the
pointst, < t, transformsthe cycles

D..xyz. = D...xix;+1...a...yj)'_/+1...b...zkzk+1...
into
Ty Y D,
seS(X,Y=1,2)
where
r) = [Trn a0, =TT .
i,j.k {p.g}cy

PROOF. See Figure 5. Remember thatmove on the left-side af, y; betweer: and
b, andz; on the right-side ob. After the half-turn ofb arounda, let us regard

CXiXig1.. b Yje1yj . A ZRThyL - -

as the ground state. Starting from this ground state, the very right one amgrogn pass
b and they;’s, the very left one amongy,} can pass: and they;’s; then the next right one
among{x;} and so on, and we get shufflesXfY ! and Z. Each time when; passey;,
the argument of,; — 1,; increases byr, sor,,,, is multiplied. This is also the case when
passes;, andz; passey;.
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Since the moves of; are reversed, for the orientation reason, we have the overall factor
(—)*. The other overall factory comes from the factors
l_[ (typ — tyq)“.vm*q
rP<q
of u; note that the half-turn increases the argument of every factar. by |

3. Intersection numbers. Consider for each positive integerand a sequence of
mutually distinct numbers

tO ) tn+l ) tn+2: ceey
a domain inC" defined by

Xt =l ) €CT [ #t, 1<i<n, 0<j#i).

The local systent. (of rank 1) is defined by the function

n
wi= [T = TT @i =1
i=1 (<) j
onX;;" . Viathe projection

oyl )
i X Dt ) ety € Xp =t [ty £ T0, g1, b

the sp:'slc(=)(,1o';,"’j+1 can be regarded as a fibre bundle over the 1-dimensional sfface,
with fibre

_ 1o(n—1
7 ) = Xy

As explained in 85, we have the isomorphism
Hy(X3 L) = Hi(Xp, s Hu-1)

10:lp 415+ 10, In41s--
whereH,,_1 is the locally constant sheaf of germs of locally flat sections of the bundle

l~~~(n71) *
U Hn—l(X[O,[n,._. ’ 4 ‘C’) ’
t'7EX;lo,tn+1,m

wherec : X" Xgh  istheinclusion.

Whent < tp41 < thy2 < ---, the SetDéi;;'il).., of loaded cycles form a basis of
H,',f(X,lO')';;’HW, L). Assume that thén — 1)-dimensional intersection numbers of the cycles
. 1.-(n—1)
in D,

on-. and their duals are already known. Then the intersection numbers of the cycles

FIGURE 6. reglgp.
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in D" and their duals can be evaluated as follows. For adjacent ppirts, (a,b €

0(n+1)---
{0,n+1,...}) int,-space, consider the intervil, := (¢,, t5) C X;’OJM’,,, and load it with
a sections of H|'_, to be an element,, ® o of H (X}, . HI' ). We regularize the

cyclel,;, ® o as
reglyy @0 = S(a;a+¢)® (Flan) —id) o+ (a+e,b—e) Q0
— S(b;b—¢)Q (F(nb) —id) 1o,

whereS(a; a + ¢) is a positively oriented circle with centerand radiug starting and ending
ata + ¢ (see Figure 6). Also,

Fnb): HY (X ") o0 — B gy o0

n 105 -estastn thy ... 105 -eslastnslpyens?
is the full-turn operator with respect to the move of the pgjralong the circleS(b; b — ¢).
For adjacent pointg. < ¢4 in the f,-space, consider the loaded cydlg ® ¢ with
support on the intervalz,, t;) and loaded with a sectios of ﬁg_l to be an element of
Hf (X7, . HI ). I (a.b) = (c.d), then the intersection numbek,, ® o) e (g ® &)
is given (85) by
(reglup ® 0) @ (Ieg ® &) =—{(F(an) —id) "o} 8 &|;,—arte

—0 0 & li,—(atbyj2 — ((F(nb) —id) 1o} @ &y, —p ;
recall that we assumed that the— 1)-dimensional intersection numbers are already known.
If b=c,then(l,, ® o) e (I.q ® &) is given by

{(F(nb) —id) " H(nb)o} @ &1, =pe ,
where
Hb) 2 By X 0 e L) = B (X0 L)
is the half-turn operator with respect to the move of the pgirationg the half of the circle
S(b, b — ¢) (note thatF (nb) = H (nb)H (bn)); if d = a, then(I;; ® o) o (I.4 ® &) is given

by

{(F(an) —id) " H(an)}o & 5 li,=a—e ,
otherwise 0.
The following examples show the actual process. We represent the half-turn and full-turn
operatorsH (--) and F (--) by matrices, which will be denoted by roman letters-Hand K--),
respectively.

FIGURE 7. (regl,y ® o) e (Iyp @ 5).
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o LN

a=d

b=c

FIGURE 9. (regl,, ® o) e (Icq ® 7).

FIGURE 8. (regl,, ® o) e (Ipg ® 7).

3.1 1Dcase. The half-turH (1a) of 11 around, is represented by the scala(Xt)
r1q, and the full-turnF (1a) by the scalar Ela) = ¢1, = V12a- For adjacent, < t,, we have

r'ip

_ _ da1.1; _
a1 =D 1= (g — 1L = el T
(ca1— D (c, — 1) dord, (cy — D rw &

The intersection matix is given as

_ doi12 r12 0
doidi12 d12
re1 d2113 13 0
1%, =D}, oD}, = do1 do1d13 di13
0 31 d3iu4
ds1 d3id14
0 )

3.2 2D case. For adjacent < 2 < 1, let us represent the half-turns and the full-
turns of rp aroundz, and#, by matrices with respect to the column vectd)%,a%“ and

D.l..2ab... as
F(a2)D! 5. = Fa2)D .,

H(a2)D?! 5, =H@2D!,,,
F(2b)D? ,, = F(2b)D! ., .

H(2b)D?! ,, =HE»D! ,, .

Our convention on the product of operators is from the left to the right; for exame) =
H (a2)H (2a) operatesH (a2) first and thenH (2a); so we have 2) = H(a2)H(2a). Put

F(a2b):= —(F(a2) —id)~1 —id — (F(2p) — id) "1,
G(2b) = (F(2b) — id)"IH(2p).
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The 2D-intersection matrix is given as

D (1)23,..
12.=D% oD =| Dogy. |e¢DL, DL ...
F(023 G(23) 0 e 13,5, 0 0
G2 F(3B24 G4 O 0 Ilgps. O 0
| o G4y Fazy - 0 0 Il ’
0 : 0
wherell, are already evaluated 1D-intersection matrices:
Dyjs... Dyiza..
1y = | Poziz | e (Dyjp.r..)s Idgps. = | Posiza- | e(Dyigpgs-)s---

3.3 3D case. For adjacent < 13 < t, let us represent the half-turns and the full-
turns ofrz aroundr, andz, by matrices with respect to the column vectd)é;flsb__ and
D2

...3ab---

H@3)DY?, =H@3D%, ., F@3)D¥?, =Fa3)D?,

H@Bb)D¥2, =H@h)DY2,, ., F@h)D2, =F@EhDY2,, .

Put
F(a3b) := —(F@3) —id)~1 —id — (F(3p) — id) 1,

G(3b):= (F(3b) —id)"1H3b).
The 3D-intersection matrix is given as

Desa.
153 = D3 e D533 = | D% |e(DE, D ..
F(034 GB34 0 .- %, 0 0
G(43 F435 G35 0 0 132, 0 0
| o o3 FE39 - 0 0 12 ’
0 : 0

wherel? are already evaluated 2D-intersection matrices.
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3.4 nDcase. Nowthereader can easily imagine what will happenin high-dimensional

cases. For adjacent < 1, < 1, let us represent the half-turns and the full-turng,airound
t, andt, by matrices with respect to the column vect@rﬁ;ﬁ},m and .l.ﬁ;;;’;,... :

H(an)DY;",  =H@n)DY", . F(am)D¥;",  =Fan)D",
H(nb)DY",  =Hmb)DYY . Fmb)DY",  =Fmnb)DXM, .
Put
F(anb) := —(F(an) —id)~1 —id — (F(nb) —id)~1,
G(4b) := (F(4b) — id)~1H(4b) .
PROPOSITION 2. The nD-intersection matrix is given as
1.1
Dggi...
12n . 12 5120 _ 1.7y 51 51
IOn’---n T DOII/”Tl ® DOM/»»{1 - DOn’ﬁ:’l”~~~ ® (IDOﬁn’r-l--’ tDOn’ﬁrilz”»»»’ v )
F(Onn'y G(nn') 0 e I&nn//n 0 0
/ !l " 1.
B G('n) F(n'nn”) Gmn”) 0 0 Iyt 0 0
" [N/ AN 1./ . ’
0 G(l’l }’l) F(}’l nn . 0 0 Ion/nr/l/nn///,,,
0 0

where 11" are already evaluated (n — 1)D-intersection matrices.

4. An application to the Selberg integral. To show that our inductive method can
serve as practical use, we derive the result obtained in [MiY1] and [MiY2] as applications of

our method in 1,2 and 3-dimensional cases.
So far, we considered infinitely mamys, and the exponentg; were independent. Now
we work in(z1, .. ., t,)-space with the three kinds of hyperplanes

(t0=)0=1tj, tj=1(=tyy1), fti=t; (1<i,j=<n)
with respective exponents
co1=:-=coqmp=4a, Cl(n+l):"':Cn(n+1):b1 rij =9 (1§l,]51’l)

The integral in question is the Selberg integral

N " b )
U 1 u=[]e#a-m" ] 1—-4.
[Tt —1) i1

The symmetric group acts on the coordinates. ., , of
X" ={(t1,....tn) €C" | t; #0,1,t; (i # j)}.

1<i<j<n
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So it acts also on the homology gromjf (X", £). Its S,-invariant subspace is 1-dimensional,
and is generated by

Cn = Z Dot5 55 .77 (n41) -

geS,
Note thatDgz55 .7 ,1-1) IS @ standardly loaded cycle with support on the simplex
{(f1, ..., 1) ER" |0 < t1o0 < -+ < tyo < 1}.
In this section we evaluate th®-intersection number, :=C, én forn=1,2,3.
4.1 1D case.
. do1.12 1—ab
J1=Dyi, e Dyi, = — = .
012 = ro12 doidiz  (1—a)(1—b)

4.2 2Dcase. We evaluate = (Dyj35+ Dysig) ® (Dyizs + Dyzis)- Recall that these
intersection numbers are computed as

M M D5 M M
12._ pl2. /12 _ pl 1 _ 0123 . »
Io3 = Do ® Do5 = D@ ' Dy = <D - ) * Dotz Dozia)
0213
= F(023)1},s,
where
dor12 12
. D . v do1di2 di2
Il ::Dl .IDl :< 0:'.2‘?>>.(D,~ 7D ~):— )
023 023 023 osia 0123 ~0213 _ra1 dr>1.13
d21  dodiz
and
F(02) := H(02)H(20) =( —ro1z 0 )( —roiz 0 ) :
ro2ro1 102 r20r2 120

F(023 := —(F(02) —id)"1 —id — (F(23) —id)~1

-1 _1
__( co2—1 0 Cid_ [ 28— 1 —coaradis
—co2rizdor co2—1 0 c123—1

1 T4 1 c23r12d13 doi223  c23r12d13

_ do12 da3 d23d123 _ | doixdzz  da3diz3
B co2ri2dol 1,01 B cozriedor  do2123
do12do2 do2 di123 doido2  do2d123

Now put
cor=co2=a, ci3=c3=b, rio=g,
and add the entries of

1—a292b gb
(1—a?¢® (1 —b) 1— ¢%b?
F(023 = g 92 ,
ag 1—agb

1—4a%¢? 1—a)(1— ¢?b?
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vertically:

1—agb 1—agb )

(f1, f2) = <(1_ ag)(1—b)" (1—a)(1— gb)

and add the entries of

1-ag® g
| a-aa-g 1- g2
023 ; 1— 2
1-¢*>  (A-gHA-b)
horizontally:
. ! ag+1 gb+1
(91, 92) == , .
l-a)g+1 (+DHA-D)

We thus have

Jo= fig1+ fag2 = A-—a)l-bg+D\ag—1 " 1—gb

3 2(1—agb)(1—ag?b)
S (A-a)d-agp)A-b)A—-gb)(g+ 1D’

1l—agb <ag+1 gb—i—l)

which agrees with the result in [MiY1].
4.3 3Dcase. We evalualg := C3e C3, whereCs = > sess Dotr57574- Recall that
these intersection numbers are computed as

1

123. _ 123, 9123 _ pl2 o15512 _ 0234 Lt
lo3™:= D3 Dgy™ = Doz o' D 034_( 1 ) CPozap Doz
0324

Doiz34

goém

D24 | e (Doizas Dogisa Dozsia Doizas Dosize Dozid)
01324

Do3izg

Dozzi4

= F(034132,.
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All data needed are evaluated already; we a¢fieem as follows. The action of the half-turn
H(03): D§2, — D13, is given by

D
D
D023l4
Dy
D
D

0iz3a = 70123D35704-

02134 — 70213037504

—1023(Dg50i4 1 701D35704 + 101721 D37504) -
—1013(Dgigp4 + 702D3i304 + 1027120337 4) -
0giza = 703(D3gizg + 101D3i54 + r01702D37504) -

0apia = 103(D3gpig + 702D 35074 + 702701 D3350,) -

the full-turn £(03) : D3, — DE3, by the matrix F03) = H(03)H(30):
€0123 0 0 0 0 O
0 0213 0 0 0 0
—co23r31r21do1l —c023°31d01.21 €023 0 0 O
—co1332do212  —C01332r12d02 0 €013 0 O
—co3r31r3zdol  €03c01r123d02 0 —co3razdor co3 O
cosco2r213dolr —co3r3araido2  —co3r3do2 0 0 co3
The full-turn matrix £34) can be expressed in a similar way:
cz4 O 0 —c34r23dos  —c34r23r13daa €34C247123d14
0 3¢ —c3ar13dia 0 c34c14r123d24  —c34r13r23d14
0 O €314 0 —C31472321d24  —c314r23d24.21
0 O 0 €324 —c324r13d1412  —C324r13712d14
0 0 0 0 3124 0
0 0 0 0 0 3214
Since they are triangular matrices,
F(034) = —(F(03) —id)™* — id — (F(34) —id)~*!
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can be computed without much difficulty as

do12334
_— 0 0
do123134
0 do12334 c34r13d14
do12934 d3ad134
co2313r12d01 €02313do1.12 do23314
do23d0123 do23do123 do23d314
N €01323d02.12 €01323r12d02 0
do13d0123 do13do123
d01d0130212€03713723 1123902403 13€01€03 0
doado13do123 doado13do123
_ r123d01d2303¢02¢03  d02d02301.12€0371323 03723402
dozdo23do123 dozdo23d0123 doado23
c3ara3dzq  d2adp341214c34723r13  r123d14d2334C24C34
d34dp34 d3adr34d1234 d3ad3ad1234
0 _ r123d24d1334c34c14  d14d13412.24C3472313
d3ady34d1234 d3ad134d1234
0 c134r23r12d24 c13423d2412
d134d1234 d134d1234
do13324 €234r13d1412 c234r13r12d14
do13d324 do3ad1234 do3ad1234
coar13dol do3 3124 0
doado13 dozd3124
doz 3214
0 0 _—
doadsz14

The intersection matrix}2, can be computed by

2 _ (F023  G(23) I35, O
0347\ G(32) F(329 0 1}/’
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where
_ dor12 r2 0
do1di12 di2
r21 d21.13 r13 1
13, = = - = . 1%, exchange 2 and 3,
0234 don dordys 13 0324 g
0 31 _ d3114
d31 dz1dia

and the matrix-representation of the operators

F(023) : Djyas— Dgpas

are given as follows.

G(23) = (F(23) —id)"1H(23) : D34 — Diso4

H(02) H(20)
Doipzqs =  —71012D3ig34 = c012Dpizas
Doyizs =  102(Dppigs+101Dgigz) > €02Dpgizs — 02721401 Dqi 934
Doozia = 102D3034 = c02Dppzis;
H(23) H(32
Dyigzs = 123(Dyigpst113D0z100) > €28Dgigz4— €23712d13D 5134,
Doziza —  —72138Dgzipg = c213Dpzi34,
Dopzig = 128(Dogpig +112Dggi00)  —>  €23Dpzig — 2373141205734,
do12 o o0\ d23 —co3r1od1z O
F(023 = | —coorizdor do2 O +id+| O d123 0
0 0 do2 0 —coarsidiz dos
doiz223  c23r12d13 0
do12d>3 d23d123
_ cozridor do2123 0
do12do2 do2d123 ’
0 c23r31diz  doz23
di2xd23  doad23
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—G(23)= (H(23)H(32) —id)"1H(23) = {H(32) — H(23) 1}
1 1 -1
r32 — — r32r12 — 0
123 723121
1
= 0 —r3rawriz+ ———— 0
723721713
1 1
0 r32r13 — r32 — —
723113 123
r23  d23217123
dp3  ri2d23d123
-l o 2= 9
d123
d23137123 123
r13daadi23  do3

The matrix-representation of the operators
F(324) : Dgp4— Dizoa:

are given as follows.

G(32) = (F(32) —id)"*H(32) : D304 — Diras

H (32 H(23)
Dyigog = 132(Dygiggatr12Dgpzs) = €32Dgi354— €32r13d12D 5704
Dogigs  —  —7312D05i34 = ¢312D03794-
Dosgia = 132(Dgpgia +713Dgp3) = €32D03574 — €32721d31Dqg704»
H(24) H(42)
Dyigps =  124Dgizap = c2aDyizon
Dozigs =  124(Dggigy+ 114003450 = c24Dygipg — c24r12d14D 351,
03dia —  —T214Dyz4, = c214Dp35,
-1 -1
dp3 —co3r1zdiz O ds O 0
F(324 = 0 da12 0 +id+| O doa —coar12dia
0 —c3or21da1  do3 0 O dr14
dozoa  c23r13d12 0
dozdzs  dozdsio
_ 0 dz1224  coar12dia
d312d24 d24dr14
0 c3or21d31l  d23214
d312d23 d23dr14

G(32) being obtained from @3) by exchanging 2 and 3.

Now we put

€01 =Cp2=cC03=4a,

Cl4=C4=1C34=C,

r2=1r23=r31=4g.
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The vertical sums of the entries of034) are(f1, f1, f2, f2, f3, f3), where

1 1 1
, f2, f3) = (L —ag®p ( , , )
o f2 9= A=arD G 20— A—apd-6b) Q- ad-¢%)

Let us honestly compute

(ha, ..., he) == (f1, f1. ..., 13 G32) F(324

< F(023 G(23 )
Then we have
(1—ag’b)(1— ag®b)

CA-—ag)(1-a®dA—b)A—gh)(g+1)’

ho =
_(L—ag’h)(1—ag’h)(abg® — (a+b)g® + 2abg® — (a+b)g* — (a+b)g+29+1)
(1-a)l—ag)L—ag®>)L—b)L— gh)(L— g°b)(g+D(¢*+g+1)

B (1—ag®h)(1—agp)
(1-a)l—ag)(l—gh)(1—g°b)(g+ 1)

h3 =

h4a =hy, hs=hy, he=h3.
On the other hand, the horizontal sums of the entriefg.pf, are

1 ag+1 gb—i—l)
I, Ip,13) = —— 1 .
(I, I2, I3) g+1(

1—a' " P12

We have
11— ¢°p)(g*+ g+ Dag+ 1)

+ (acg® = (a+b)g® + 2abg® — (a +b)g? — (@ +b)g+29 + D1 — g)

+(1—ag)(g®+ g+ Db+ 1) =31—ag*h)(g+1),
and so the suniz can be computed, and factors as

31(1 — g%ab)(1 — ¢ab)(1 — g2ab)

CA-a)l-ag@—ag)A-b)(L— gb)L—¢?b)(g+ V(P +g+D’
which agrees with the result obtained geometrically in [MiY2].

J3 =

5. General theory on the twisted (co)homology groups on fibred spaces ([OST)].
Letn : X — B be afibre bundle, and a local system oX. Assume pure (co)dimensionality
of the total space and the fibres:

Hi(X,L£)=0, Hi(X,L£)=0, if i #n:=dimcX,
Hi(n=Yb),0) =0, H'(x 1), L) =0, if i#f:=dimcrx 1),
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wherey;, : 771(b) — X is the inclusion map. Then we have the natural isomorphisms
Hy(X, L) = Hy_y(B,Hy), H"(X.L)=H"/(B,H'),

whereH ¢ andH/ are local systems oA defined as the locally constant sheaves of germs of
locally flat sections of the bundles

U Hrx ). g0 and | H 7). L),
beB beB
respectively.
Lety € H,(X, L) be represented by the finite sum
Zai&' Qui, aeC,
where$; € H,_ (B, Z), andu; is a section ofH{ s along the supporis;| of §;. Lety’ €
HY (X, £) be represented by the locally finite sgfa/s; ® u}, wheres/ € H'"_ /(B,Z),and
u; is a section oﬂ?'}, which is defined as the locally constant sheaf of germs of horizonatal
sections of the bundle
U Hf a0, L)
beB
along the suppor;| of §;. Then the intersection number- y’ is equal to

> adi- 8 b)Y - u)b).
{b}=[8:1N18;1
where(§; ~8;.)(b) is the topological intersection number atand (u; ~uf,.)(b) is defined by

the intersection pairing betweéy (x ~1(b), (L) andH',f (b)), ;L)
Let f € H!(X, £) be represented by the finite sum

Zaig,-(X)vi, a; € C,

whereg; is a compactly supporte@d — f)-form on B andv; is a section OH‘I, thatis,v; isa
compactly supported-form with values inZ and with parametes on the generic fibre. Let
f € H*(X, ) be represented by the finite sUma; g/ ® v}, whereg/ is an(n — f)-form on
B andv; is a section oft/, that is,v; is an f-form with values in and with parameter on
the generic fibre. The intersection number f” is equal to

> aid f (0 V) BYg A g
where (v; - v;)(b) is defined by the intersection pairing betwes (x~1(b), ;L) and
HY (z=Yb), L).

The de Rham theorem and the Fubini theorem imply the assersion for cohomology
groups. The intersection form for homology groups is defined ([KY]) through that of co-
homology groups (this is the compatibility of the two intersection theories). So the assersion
for the cohomology groups leads to that for the homology groups.



INTERSECTION NUMBERS FOR LOADED CYCLES 551

REFERENCES

[KY] M. K ITA AND M. Y OSHIDA, Intersection theory for twisted cycles, Math. Nach. 166 (1994), 287—-304.

[MiY1] K. M IMACHI AND M. Y OSHIDA, Intersection numbers of twisted cycles and the correlation functions of
the conformal field theory, Comm. Math. Phys. 234 (2003), 339-358.

[MiY2] K. M IMACHI AND M. Y OSHIDA, Intersection numbers of twisted cycles with the Selberg integral and an
application to the conformal field theory, Comm. Math. Phys. 250 (2004), 23-25.

[Oh] K. OHARA, Intersection forms on twisted cohomology growgssociated with Selberg-type integrals,

preprint 2002.

[OST] K. OHARA, Y. SUGIKI AND N. TAKAYAMA , Quadratic relations for generalized hypergeometric func-
tions , F, 1, Funk. Ekvac. 46 (2003), 213-252.
[Yo] M. Y OSHIDA, Hypergeometric Functions, My Love, Vieweg Verlag, Wiesbaden, 1997.

DEPARTMENT OFMATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY
Tokyo 152-8551

JAPAN

E-mail address: mimachi@math.titech.ac.jp

DEPARTMENT OFMATHEMATICS

KYUSHU UNIVERSITY

Fukuoka 810-8560

JAPAN

E-mail address: myoshida@math.kyushu-u.ac.jp

DEPARTMENT OFCOMPUTATIONAL SCIENCE
KANAZAWA UNIVERSITY

KANAZAWA 920-1192
JAPAN

E-mail address: ohara@air.s.kanazawa-u.ac.jp



