On λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points

S. Sümer Eker ${ }^{1}$ and Bilal Şeker ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Dicle University, TR-21280 Diyarbakır, Turkey
E-mail: sevtaps35@gmail.com ${ }^{1}$, bilalseker1980@gmail.com ${ }^{2}$

Abstract

In this paper, defining new interesting classes, λ-pseudo bi-starlike functions with respect to symmetrical points and λ-pseudo bi-convex functions with respect to symmetrical points in the open unit disk \mathbb{U}, we obtain upper bounds for the initial coefficients of functions belonging to these new classes.

2010 Mathematics Subject Classification. 30C45. 30C50
Keywords. Coefficient estimates, bi-univalent functions, λ-pseudo starlike with respect to symmetrical points, λ-pseudo convex with respect to symmetrical points..

1 Introduction

Let \mathcal{A} denote the class of functions $f(z)$ which are analytic in the open unit disk $\mathbb{U}=\{z: z \in$ \mathbb{C} and $|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the following form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Also let \mathcal{S} denote the subclass of functions in \mathcal{A} which are univalent in \mathbb{U}.
By the Koebe One-Quarter Theorem, we know that the range of every function of class \mathcal{S} contains the disk $\left\{w:|w|<\frac{1}{4}\right\}$ (see, for example, [5]). Therefore, every univalent function f has an inverse f^{-1} satisfying the following conditions:

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

In fact, the inverse function f^{-1} is given by

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}. The class of all bi-univalent functions in \mathbb{U} having the Taylor-Maclaurin series expansion (1.1) is denoted by Σ.

For a brief history of functions in the class Σ, see [8] (see also [3], [6], and [16]). In fact, judging by the remarkable flood of papers on the subject (see, for example, $[1,4,9,10,11,12,13,14,15$,
$17,18,19]$), the recent pioneering work of Srivastava et al. [8] appears to have revived the study of analytic and bi-univalent functions in recent years.

We denote by \mathcal{S}^{*} and \mathcal{C} the class of starlike functions and the class of convex functions, respectively, where

$$
\begin{gathered}
\mathcal{S}^{*}=\left\{f \in \mathcal{A}: \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq 0, z \in \mathbb{U}\right\} \\
\mathcal{C}=\left\{f \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0, z \in \mathbb{U}\right\} .
\end{gathered}
$$

We note that $f(z) \in \mathcal{C} \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}^{*}$.
A function $f(z)$ of the form (1.1) is said to be starlike functions with respect to symmetrical points if

$$
\operatorname{Re}\left\{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, \quad z \in \mathbb{U} .
$$

We let \mathcal{S}_{s}^{*} denote the set of all such functions. Sakaguchi [7] proved that if $f(z)$ is in \mathcal{S}_{s}^{*} and has the form (1.1), then $\left|a_{n}\right| \leq 1$, for $n=2,3, \ldots$.

The class of starlike functions with respect to symmetrical points obviously includes the class of convex functions with respect to symmetrical points, \mathcal{C}_{s}, satisfying the following condition:

$$
\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right\} \geq 0, \quad z \in \mathbb{U}
$$

It is easily seen that for the classes \mathcal{S}_{s}^{*} and \mathcal{C}_{s}, the Alexander relation is holds, namely $f(z) \in$ $\mathcal{C}_{s} \Leftrightarrow z f^{\prime}(z) \in \mathcal{S}_{s}^{*}$.

Recently, Babalola [2] defined the class \mathcal{L}_{λ} of λ-pseudo-starlike functions as follows:
Let $f \in \mathcal{A}$ and $\lambda \geq 1$ is real. Then $f(z)$ belongs to the class \mathcal{L}_{λ} of λ-pseudo-starlike functions in the unit disc \mathbb{U} if and only if

$$
\operatorname{Re} \frac{z\left(f^{\prime}(z)\right)^{\lambda}}{f(z)}>0, \quad(z \in \mathbb{U})
$$

It is clear that, for $\lambda=1$, we have the class of starlike functions. In the aforementioned work, the author showed that all pseudo starlike functions are univalent in \mathbb{U}.

In this paper we have define two new and interesting function classes of $\mathcal{L S}_{s, \Sigma}^{*, \lambda}$ and $\mathcal{N} \mathcal{S}_{s, \Sigma}^{\lambda}$, λ-pseudo bi-starlike functions with respect to symmetrical points and λ-pseudo bi-convex functions with respect to symmetrical points, respectively. Furthermore, we have found estimates for the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions belonging these classes.

In the sequel, it is assumed that φ is an analytic function with positive real part in \mathbb{U}, satisfying $\varphi(0)=1, \varphi^{\prime}(0)>0$ and $\varphi(\mathbb{U})$ is symmetric with respect to real axis. Such a function has a following series expansion

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots,\left(B_{1}>0\right) \tag{1.3}
\end{equation*}
$$

2 Main results

Definition 1. A function $f(z) \in \Sigma$ is said to be in the class $\mathcal{L \mathcal { S } _ { s , \Sigma } ^ { * , \lambda } (\alpha) , (\lambda \geq 1 \text { is real, } 0 \leq \alpha \leq 1) ~ (~}$ if the following subordinations hold:

$$
\begin{equation*}
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}} \prec \varphi(z) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}} \prec \varphi(w) \tag{2.2}
\end{equation*}
$$

where the function g is inverse of the function f given by (1.2).
For functions in the class $\mathcal{L} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$, we obtain the following coefficient inequalities.
Theorem 2.1 If $f(z)$ given by (1.1) be in the class $\mathcal{L S}_{s, \Sigma}^{*, \lambda}(\alpha)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[\left(2 \lambda^{2}+\lambda-1\right)+2 \alpha\left(3 \lambda^{2}-1\right)\right] B_{1}^{2}-4 \lambda^{2}(1+\alpha)^{2}\left(B_{2}-B_{1}\right)\right|}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4 \lambda^{2}(1+\alpha)^{2}}+\frac{B_{1}}{(3 \lambda-1)(1+2 \alpha)} . \tag{2.4}
\end{equation*}
$$

Proof. Let $f \in \mathcal{L} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$ and $g=f^{-1}$. Then there are analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$, with $u(0)=v(0)=0$, satisfying

$$
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}}=\varphi(u(z))
$$

and

$$
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}}=\varphi(v(w)) .
$$

Define the functions p_{1} and p_{2} by

$$
p_{1}(z)=\frac{1+u(z)}{1-u(z)}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

and

$$
p_{2}(z)=\frac{1+v(z)}{1-v(z)}=1+b_{1} z+b_{2} z^{2}+\cdots
$$

or, equivalently

$$
\begin{equation*}
u(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left(c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\cdots\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{p_{2}(z)-1}{p_{2}(z)+1}=\frac{1}{2}\left(b_{1} z+\left(b_{2}-\frac{b_{1}^{2}}{2}\right) z^{2}+\cdots\right) \tag{2.6}
\end{equation*}
$$

It is clear that p_{1} and p_{2} are analytic in \mathbb{U} and $p_{1}(0)=p_{2}(0)=1$. Since $u, v: \mathbb{U} \rightarrow \mathbb{U}$, the functions p_{1} and p_{2} have positive real part in \mathbb{U}, and hence $\left|b_{i}\right| \leq 2$ and $\left|c_{i}\right| \leq 2$. By virtue of (2.1), (2.2) (2.5) and (2.6) we have

$$
\begin{equation*}
(1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}}=\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}}=\varphi\left(\frac{p_{2}(w)-1}{p_{2}(w)+1}\right) . \tag{2.8}
\end{equation*}
$$

Using (2.5) and (2.6) together with (1.3), we easily obtain

$$
\begin{equation*}
\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right)=1+\frac{1}{2} B_{1} c_{1} z+\left(\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2}\right) z^{2}+\cdots \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(\frac{p_{2}(w)-1}{p_{2}(w)+1}\right)=1+\frac{1}{2} B_{1} b_{1} w+\left(\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2}\right) w^{2}+\cdots . \tag{2.10}
\end{equation*}
$$

Since

$$
\begin{align*}
& (1-\alpha) \frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}+\alpha \frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}} \\
& \quad=1+2 \lambda(1+\alpha) a_{2} z+\left[2 \lambda(\lambda-1)(1+3 \alpha) a_{2}^{2}+(3 \lambda-1)(1+2 \alpha) a_{3}\right] z^{2}+\cdots \tag{2.11}
\end{align*}
$$

and

$$
\begin{align*}
& (1-\alpha) \frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}+\alpha \frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}} \\
& \left.=1-2 \lambda(1+\alpha) a_{2} w+\left\{\left[2\left(\lambda^{2}+2 \lambda-1\right)+2 \alpha\left(3 \lambda^{2}+3 \lambda-2\right)\right] a_{2}^{2}-(3 \lambda-1)(1+2 \alpha) a_{3}\right]\right\} w^{2}+\cdots \tag{2.12}
\end{align*}
$$

it follows from (2.7)-(2.12) that

$$
\begin{gather*}
2 \lambda(1+\alpha) a_{2}=\frac{1}{2} B_{1} c_{1}, \tag{2.13}\\
2 \lambda(\lambda-1)(1+3 \alpha) a_{2}^{2}+(3 \lambda-1)(1+2 \alpha) a_{3}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} \tag{2.14}\\
-2 \lambda(1+\alpha) a_{2}=\frac{1}{2} B_{1} b_{1}, \tag{2.15}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[2\left(\lambda^{2}+2 \lambda-1\right)+2 \alpha\left(3 \lambda^{2}+3 \lambda-2\right)\right] a_{2}^{2}-(3 \lambda-1)(1+2 \alpha) a_{3}=\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2}, \tag{2.16}
\end{equation*}
$$

From (2.13) and (2.15), we get

$$
\begin{equation*}
c_{1}=-b_{1} \quad \text { and } \quad 8 \lambda^{2}(1+\alpha)^{2} a_{2}^{2}=\frac{1}{4} B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{2.17}
\end{equation*}
$$

Also, from (2.14) and (2.16), we obtain

$$
\begin{equation*}
\left[2\left(2 \lambda^{2}+\lambda-1\right)+4 \alpha\left(3 \lambda^{2}-1\right)\right] a_{2}^{2}=\frac{1}{2} B_{1}\left(b_{2}+c_{2}\right)+\frac{1}{4}\left(b_{1}^{2}+c_{1}^{2}\right)\left(B_{2}-B_{1}\right) \tag{2.18}
\end{equation*}
$$

Using (2.17) in (2.18), we obtain

$$
a_{2}^{2}=\frac{B_{1}^{3}\left(b_{2}+c_{2}\right)}{4\left[\left(2 \lambda^{2}+\lambda-1\right)+2 \alpha\left(3 \lambda^{2}-1\right)\right] B_{1}^{2}-16 \lambda^{2}(1+\alpha)^{2}\left(B_{2}-B_{1}\right)}
$$

Since $\left|b_{i}\right| \leq 2$ and $\left|c_{i}\right| \leq 2(i=1,2)$, for functions with positive real part, this gives us estimate on $\left|a_{2}\right|$ as asserted in (2.3).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.16) from (2.14) and using (2.17) we get

$$
a_{3}=\frac{B_{1}^{2} c_{1}^{2}}{16 \lambda^{2}(1+\alpha)^{2}}+\frac{B_{1}\left(c_{2}-b_{2}\right)}{4(3 \lambda-1)(1+2 \alpha)}
$$

and applying $\left|b_{i}\right| \leq 2$ and $\left|c_{i}\right| \leq 2(i=1,2)$ again, we get

$$
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4 \lambda^{2}(1+\alpha)^{2}}+\frac{B_{1}}{(3 \lambda-1)(1+2 \alpha)}
$$

This completes the proof of Theorem.
Q.E.D.

For $\alpha=0$ the class $\mathcal{L} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$ reduced to the class of λ - pseudo bi-starlike functions with respect to symmetrical points. For functions belong to this class we have the following corollary:

$$
\left|a_{2}\right| \leqq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left(2 \lambda^{2}+\lambda-1\right) B_{1}^{2}-4 \lambda^{2}\left(B_{2}-B_{1}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4 \lambda^{2}}+\frac{B_{1}}{(3 \lambda-1)}
$$

Also, for $\alpha=1$ the class $\mathcal{L} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$ reduced to the class of λ - pseudo bi-convex functions with respect to symmetrical points. For functions belong to this class we have the following corollary :

Corollary 2.3 If $f(z)$ given by (1.1) be in the class $\mathcal{L} \mathcal{S}_{s, \Sigma}^{*, \lambda}(1)$, then

$$
\left|a_{2}\right| \leqq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left(8 \lambda^{2}+\lambda-3\right) B_{1}^{2}-16 \lambda^{2}\left(B_{2}-B_{1}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{16 \lambda^{2}}+\frac{B_{1}}{3(3 \lambda-1)}
$$

Definition 2. A function $f(z) \in \Sigma$ is said to be in the class $\mathcal{N} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha),(\lambda \geq 1$ is real, $\alpha \geq 0)$ if the following subordinations hold:

$$
\begin{equation*}
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}}\right)^{1-\alpha} \prec \varphi(z) \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}}\right)^{1-\alpha} \prec \varphi(w) \tag{2.20}
\end{equation*}
$$

where the function g is inverse of the function f given by (1.2).
For functions in the class $\mathcal{N} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$, we obtain the following coefficient inequalities.
Theorem 2.4 If $f(z)$ given by (1.1) be in the class $\mathcal{N} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left|\left[2 \lambda^{2}(\alpha-2)^{2}+(\lambda+2 \alpha-3)\right] B_{1}^{2}-4 \lambda^{2}(\alpha-2)^{2}\left(B_{2}-B_{1}\right)\right|}} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4 \lambda^{2}(\alpha-2)^{2}}+\frac{B_{1}}{(3 \lambda-1)|3-2 \alpha|} \tag{2.22}
\end{equation*}
$$

Proof. Let $f \in \mathcal{N} \mathcal{S}_{s, \Sigma}^{*, \lambda}(\alpha)$ and $g=f^{-1}$. Then there are analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$, with $u(0)=v(0)=0$, such that

$$
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}}\right)^{1-\alpha}=\varphi(u(z))
$$

and

$$
\left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}}\right)^{1-\alpha}=\varphi(v(w))
$$

Since

$$
\left(\frac{2 z\left[f^{\prime}(z)\right]^{\lambda}}{f(z)-f(-z)}\right)^{\alpha}\left(\frac{2\left[\left(z f^{\prime}(z)\right)^{\prime}\right]^{\lambda}}{(f(z)-f(-z))^{\prime}}\right)^{1-\alpha}
$$

$$
\begin{equation*}
=1-2 \lambda(\alpha-2) a_{2} z+\left\{\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(3 \alpha-4)\right] a_{2}^{2}+(3 \lambda-1)(3-2 \alpha) a_{3}\right\} z^{2}+\cdots \tag{2.23}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\frac{2 w\left[g^{\prime}(w)\right]^{\lambda}}{g(w)-g(-w)}\right)^{\alpha}\left(\frac{2\left[\left(w g^{\prime}(w)\right)^{\prime}\right]^{\lambda}}{(g(w)-g(-w))^{\prime}}\right)^{1-\alpha} \\
& =1+2 \lambda(\alpha-2) a_{2} w+\left\{\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(5-3 \alpha)+2(2 \alpha-3)\right] a_{2}^{2}+(3 \lambda-1)(2 \alpha-3) a_{3}\right\} w^{2}+\cdots \tag{2.24}
\end{align*}
$$

from (2.9), (2.10), (2.23) and (2.24), it follows that

$$
\begin{align*}
&-2 \lambda(\alpha-2) a_{2}=\frac{1}{2} B_{1} c_{1} \tag{2.25}\\
& {\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(3 \alpha-4)\right] a_{2}^{2}+(3 \lambda-1)(3-2 \alpha) a_{3}=\frac{1}{2} B_{1}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} c_{1}^{2} } \tag{2.26}\\
& 2 \lambda(\alpha-2) a_{2}=\frac{1}{2} B_{1} b_{1} \tag{2.27}
\end{align*}
$$

and

$$
\begin{equation*}
\left[2 \lambda^{2}(\alpha-2)^{2}+2 \lambda(5-3 \alpha)+2(2 \alpha-3)\right] a_{2}^{2}+(3 \lambda-1)(2 \alpha-3) a_{3}=\frac{1}{2} B_{1}\left(b_{2}-\frac{b_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} b_{1}^{2} \tag{2.28}
\end{equation*}
$$

From (2.25) and (2.27), we get

$$
\begin{equation*}
c_{1}=-b_{1} \quad \text { and } \quad 8 \lambda^{2}(\alpha-2)^{2} a_{2}^{2}=\frac{1}{4} B_{1}^{2}\left(b_{1}^{2}+c_{1}^{2}\right) \tag{2.29}
\end{equation*}
$$

Also, from (2.26) and (2.28), we obtain

$$
\begin{equation*}
\left[4 \lambda^{2}(\alpha-2)^{2}+2(\lambda+2 \alpha-3)\right] a_{2}^{2}=\frac{1}{2} B_{1}\left(b_{2}+c_{2}\right)+\frac{1}{4}\left(b_{1}^{2}+c_{1}^{2}\right)\left(B_{2}-B_{1}\right) \tag{2.30}
\end{equation*}
$$

Using (2.29) in (2.30), we obtain

$$
a_{2}^{2}=\frac{B_{1}^{3}\left(b_{2}+c_{2}\right)}{4\left\{\left[2 \lambda^{2}(\alpha-2)^{2}+(\lambda+2 \alpha-3)\right] B_{1}^{2}-4 \lambda^{2}(\alpha-2)^{2}\left(B_{2}-B_{1}\right)\right\}}
$$

Since $\left|b_{i}\right| \leq 2$ and $\left|c_{i}\right| \leq 2(i=1,2)$, for functions with positive real part, this gives us estimate on $\left|a_{2}\right|$ as asserted in (2.21).

Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting (2.28) from (2.26) and using (2.29) we get

$$
a_{3}=\frac{B_{1}^{2} c_{1}^{2}}{32 \lambda^{2}(\alpha-2)^{2}}+\frac{B_{1}\left(c_{2}-b_{2}\right)}{4(3 \lambda-1)(3-2 \alpha)}
$$

and applying $\left|b_{i}\right| \leq 2$ and $\left|c_{i}\right| \leq 2(i=1,2)$ again, we get

$$
\left|a_{3}\right| \leq \frac{B_{1}^{2}}{4 \lambda^{2}(\alpha-2)^{2}}+\frac{B_{1}}{(3 \lambda-1)|3-2 \alpha|}
$$

This completes the proof of Theorem.
Q.E.D.

Acknowledgement

The authors would like to thank the referees for their valuable comments which helped to improve the manuscript.

References

[1] G. Akın and S. Sümer Eker, Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative, C. R. Acad. Sci. Sér. I 352 (2014), 1005-1010.
[2] K. O. Babalola, On λ-pseudo-starlike functions, Journal of Classical Analysis, 3 (2) (2013), 137-147.
[3] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, in: S. M. Mazhar, A. Hamoui, N. S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60; See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[4] M. Çaglar, E. Deniz and H.M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J.Math., 41 (2017), 694-706.
[5] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[7] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1) (1959), 72-75.
[8] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[9] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23, (2015) 242-246.
[10] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.
[11] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia, 36, Issue 3, (2016), 863-871.
[12] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Africa Mathematica, 28, (2017) 693-706.
[13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m -fold symmetric bi-univalent functions, Acta Universitatis Apulensis, 41, (2015), 153-164.
[14] H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar,. Coefficient Estimates for Certain Subclasses of Meromorphically Bi-Univalent Functions. Palestine Journal of Mathematics, 5, (2016), 250-258.
[15] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Mathematical Journal 7 (2) (2014), 1-10.
[16] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[17] H. Tang, H.M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegö Functional Problems For Some Subclasses of m-Fold Symmetric Bi-Univalent Functions, Journal of Mathematical Inequalities, 10 (4), (2016) 1063-1092.
[18] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[19] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), 11461-11465.

