Some sequence spaces of Invariant means and lacunary defined by a Musielak-Orlicz function over *n*-normed spaces

Sunil K. Sharma¹, Kuldip Raj² and Ajay K. Sharma³

Abstract

In the present paper we introduce some sequence spaces combining lacunary sequence, invariant means over n-normed spaces defined by Musielak-Orlicz function $\mathcal{M} = (M_k)$. We study some topological properties and also prove some inclusion results between these spaces.

2010 Mathematics Subject Classification. 40A05. 40A30, 46A45 Keywords. Paranorm space, Difference sequence space, Orlicz function, Musielak-Orlicz function, Lacunary sequence, Invariant mean.

1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Gähler [4] in the mid of 1960's, while that of n-normed spaces one can see in Misiak [14]. Since then, many others have studied this concept and obtained various results, see Gunawan ([5],[6]) and Gunawan and Mashadi [7]. Let $n \in \mathbb{N}$ and X be a linear space over the field \mathbb{K} , where \mathbb{K} is field of real or complex numbers of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions: \hat{c}

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \cdots, x_n||$ is invariant under permutation;
- 3. $||\alpha x_1, x_2, \dots, x_n|| = |\alpha| \ ||x_1, x_2, \dots, x_n||$ for any $\alpha \in \mathbb{K}$, and
- 4. $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called a *n*-norm on X, and the pair $(X, ||\cdot, \dots, \cdot||)$ is called a *n*-normed space over the field \mathbb{K} . For example, we may take $X = \mathbb{R}^n$ being equipped with the Euclidean *n*-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, ||\cdot, \dots, \cdot||)$ be a *n*-normed space of dimension $d \geq n \geq 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

Tbilisi Mathematical Journal 11(1) (2018), pp. 31–47.

¹Department of Mathematics, Model Institute of Engineering & Technology, Kot Bhalwal 181122, J& K, India

²Department of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J&K, India

³ Department of Mathematics, Central University of Jammu, Rahya-Suchani (Bagla), Samba-181143, J&K, India E-mail: sunilksharma42@gmail.com¹, kuldeepraj68@rediffmail.com², aksju_76@yahoo.com³

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$. A sequence (x_k) in a n-normed space $(X, ||\cdot, \dots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{k \to \infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \text{ for every } z_1, \cdots, z_{n-1} \in X.$$

If every cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

The notion of difference sequence spaces was introduced by Kızmaz [9], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et. and Çolak [2] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$. Let w be the space of all complex or real sequences $x = (x_k)$ and let m, v be non-negative integers, then for $Z = l_{\infty}$, c, c_0 we have sequence spaces

$$Z(\Delta_v^m) = \{ x = (x_k) \in w : (\Delta_v^m x_k) \in Z \},$$

where $\Delta_v^m x = (\Delta_v^m x_k) = (\Delta_v^{m-1} x_k - \Delta_v^{m-1} x_{k+1})$ and $\Delta^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_v^m x_k = \sum_{s=0}^m (-1)^s \begin{pmatrix} m \\ s \end{pmatrix} x_{k+vs}.$$

Taking v = 1, we get the spaces which were introduced and studied by Et. and Çolak [2]. Taking m = v = 1, we get the spaces which were studied by Kızmaz [9].

Let σ be the mapping of the set of positive integers into itself. A continuous linear functional φ on l_{∞} , is said to be an invariant mean or σ -mean if and only if

- 1. $\varphi(x) \ge 0$ when the sequence $x = (x_k)$ has $x_k \ge 0$ for all k,
- 2. $\varphi(e) = 1$, where $e = (1, 1, 1, \dots)$ and
- 3. $\varphi(x_{\sigma(k)}) = \varphi(x)$ for all $x \in l_{\infty}$.

If $x = (x_n)$, write $Tx = Tx_n = (x_{\sigma(n)})$. It can be shown in [31] that

$$V_{\sigma} = \left\{ x \in l_{\infty} : \lim_{k} t_{kn}(x) = l, \text{ uniformly in } n, \ l = \sigma - \lim x \right\},$$

where

$$t_{kn}(x) = \frac{x_n + x_{\sigma^1 n} + \dots + x_{\sigma^k n}}{k+1}.$$

In the case σ is the translation mapping $n \to n+1$, σ -mean is often called a Banach limit and V_{σ} , the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences see[10].

By a lacunary sequence $\theta = (k_r)$ where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted

by $I_r = (k_{r-1}, k_r]$. We write $h_r = k_r - k_{r-1}$. The ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . The space of lacunary strongly convergent sequence was defined by Freedman et al [3].

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$ for all $x \in X$,
- 2. p(-x) = p(x) for all $x \in X$,
- 3. p(x+y) < p(x) + p(y) for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [33], Theorem 10.4.2, pp. 183). For more details about sequence spaces (see [1], [8], [12], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [26], [27], [28], [29], [30], [32]) and reference therein.

An Orlicz function $M:[0,\infty)\to [0,\infty)$ is a continuous, non-decreasing and convex function such that M(0)=0, M(x)>0 for x>0 and $M(x)\longrightarrow\infty$ as $x\longrightarrow\infty$.

Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to define the sequence space,

$$l_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \right\}$$

which is called as an Orlicz sequence space. Also l_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

Also, it was shown in [11] that every Orlicz sequence space l_M contains a subspace isomorphic to $l_p(p \ge 1)$. The Δ_2 - condition is equivalent to $M(Lx) \le LM(x)$, for all L with 0 < L < 1. An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x \eta(t)dt$$

where η is known as the kernel of M, is right differentiable for $t \geq 0, \eta(0) = 0, \eta(t) > 0, \eta$ is non-decreasing and $\eta(t) \to \infty$ as $t \to \infty$.

A sequence $\mathcal{M} = (M_k)$ of Orlicz function is called a Musielak-Orlicz function (see [13],[25]). A sequence $\mathcal{N} = (N_k)$ is called a complementary function of a Musielak-Orlicz function \mathcal{M}

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, \ k = 1, 2, \dots$$

For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \left\{ x \in w : I_M(cx) < \infty, \text{ for some } c > 0 \right\},$$

$$h_{\mathcal{M}} = \left\{ x \in w : I_{\mathcal{M}}(cx) < \infty, \text{ for all } c > 0 \right\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

Let $\mathcal{M}=(M_k)$ be a Musielak-Orlicz function, $(X,||\cdot,\cdots,\cdot||)$ be a n-normed space, $p=(p_k)$ be a bounded sequence of positive real numbers and $u=(u_k)$ be any sequence of strictly positive real numbers. By S(n-X) we denote the space of all sequences defined over $(X,||\cdot,\cdots,\cdot||)$. In this paper we define the following sequence spaces:

$$w_{\sigma}^{0} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}) =$$

$$\left\{x \in S(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I} u_k \left[M_k \left(\left| \left| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} = 0, \right\}$$

uniformly in n for some $\rho > 0$,

$$w_{\sigma} \Big[\mathcal{M}, u, p, ||., .|| \Big]_{\theta} (\Delta_v^m) =$$

$$\left\{ x \in S(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_-} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = 0, \right\}$$

uniformly in n for some l and $\rho > 0$,

and
$$w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||., .|| \Big]_{\theta} (\Delta_{v}^{m}) =$$

$$\left\{ x \in S(n-X) : \sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \infty, \right.$$

uniformly in n for some $\rho > 0$.

If we take $\mathcal{M}(x) = x$, we get the spaces $w_{\sigma}^{0}\left[u,p,||\cdot,\cdots,\cdot||\right]_{\sigma}(\Delta_{v}^{m})=$

$$\left\{x \in S(n-X): \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} u_k \left(\left| \left| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right)^{p_k} = 0, \right\}$$

uniformly in n for some $\rho > 0$,

$$w_{\sigma} \left[u, p, ||., .|| \right]_{\theta} (\Delta_v^m) =$$

$$\left\{ x \in S(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} u_k \left(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \right)^{p_k} = 0, \right\}$$

uniformly in n for some l and $\rho > 0$

and
$$w_{\sigma}^{\infty} [u, p, ||., .||]_{\theta} (\Delta_v^m) =$$

$$\left\{ x \in S(n-X) : \sup_{r,n} \frac{1}{h_r} \sum_{k \in I_n} u_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right)^{p_k} < \infty, \right.$$

uniformly in n for some $\rho > 0$.

If we take $p=(p_k)=1$, we get the spaces $w_{\sigma}^0 \Big[\mathcal{M}, u, ||\cdot, \cdots, \cdot||\Big]_{\rho}(\Delta_v^m)=$

$$w_{\sigma}^{0} \left[\mathcal{M}, u, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}) =$$

$$\left\{ x \in S(n-X) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] = 0, \right.$$

uniformly in n for some $\rho > 0$,

$$w_{\sigma} \Big[\mathcal{M}, u, ||., .|| \Big]_{\theta} (\Delta_v^m) =$$

$$\left\{x \in S(n-X): \lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(\left| \left| \frac{t_{kn} (\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right] = 0, \right.$$

uniformly in n for some l and $\rho > 0$

and
$$w_{\sigma}^{\infty} [\mathcal{M}, u, ||., .||]_{\theta} (\Delta_v^m) =$$

$$\left\{x \in S(n-X) : \sup_{r,n} \frac{1}{h_r} \sum_{k \in I} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right] < \infty, \right.$$

uniformly in n for some $\rho > 0$.

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = H$, $K = \max(1, 2^{H-1})$ then

$$|a_k + b_k|^{p_k} \le K\{|a_k|^{p_k} + |b_k|^{p_k}\} \tag{1.1}$$

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

The main aim of the present paper is to study some topological properties and prove some inclusion relations between above defined sequence spaces.

2 Main results

Theorem 2.1 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers. Then the classes of sequences

$$w_{\sigma}^{0}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m}), \quad w_{\sigma}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m}) \quad and \quad w_{\sigma}^{\infty}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m})$$

are linear spaces over the field of complex numbers \mathbb{C} .

Proof. The proof is obvious, so we omit it.

Q.E.D.

Theorem 2.2 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers. Then $w_{\sigma}^{0} \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_{v}^{m})$ is a topological linear space paranormed by

$$g(x) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, n = 1, 2, \cdots \right\},$$

where $H = \max(1, \sup_k p_k < \infty)$.

Proof. Clearly $g(x) \ge 0$ for $x = (x_k) \in w_{\sigma}^0 [\mathcal{M}, u, p, ||\cdot, \cdots, \cdot||]_{\theta} (\Delta_v^m)$. Since $M_k(0) = 0$, we get g(0) = 0. Conversely, suppose that g(x) = 0, then

$$\inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, n = 1, 2, \cdots \right\} = 0.$$

This implies that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon}(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}u_k\left[M_k\left(||\frac{t_{kn}(\Delta_v^m x_k)}{\rho_\varepsilon},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1.$$

Thus
$$\left(\frac{1}{h_r}\sum_{k\in I_r}u_k\left[M_k\left(||\frac{t_{kn}(\Delta_v^mx_k)}{\varepsilon},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}$$

$$\leq \left(\frac{1}{h_r}\sum_{k\in I}u_k\left[M_k\left(||\frac{t_{kn}(\Delta_v^mx_k)}{\rho_\varepsilon},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1,$$

for each r and n. Suppose that $x_k \neq 0$ for each $k \in \mathbb{N}$. This implies that $t_{kn}(\Delta_v^m x_k) \neq 0$, for each $k, n \in \mathbb{N}$. Let $\varepsilon \to 0$, then $||\frac{t_{kn}(\Delta_v^m x_k)}{\varepsilon}, z_1, \cdots, z_{n-1}|| \to \infty$. It follows that

$$\left(\frac{1}{h_r}\sum_{k\in I}u_k\left[M_k\left(\left|\left|\frac{t_{kn}(\Delta_v^m x_k)}{\varepsilon}, z_1, \cdots, z_{n-1}\right|\right|\right)\right]^{p_k}\right)^{\frac{1}{H}}\to\infty,$$

which is a contradiction. Therefore, $t_{kn}(\Delta_v^m x_k) = 0$ for each k and thus $\Delta_v^m x_k = 0$ for each $k \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{h_r}\sum_{k\in I_r}u_k\left[M_k\left(||\frac{t_{kn}(\Delta_v^m x_k)}{\rho_1},z_1,\cdots,z_{n-1}||\right)\right]^{p_k}\right)^{\frac{1}{H}}\leq 1$$

and

$$\left(\frac{1}{h_r}\sum_{k\in I_r}u_k\left[M_k\left(\left|\left|\frac{t_{kn}(\Delta_v^m y_k)}{\rho_2}, z_1, \cdots, z_{n-1}\right|\right|\right)\right]^{p_k}\right)^{\frac{1}{H}} \le 1$$

for each r . Let $\rho = \rho_1 + \rho_2$. Then by using Minkowski's inequality, we have

$$\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}u_{k}\left[M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}(x_{k}+y_{k}))}{\rho},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
\leq \left(\frac{1}{h_{r}}\sum_{k\in I_{r}}u_{k}\left[M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}x_{k})+t_{kn}(\Delta_{v}^{m}y_{k})}{\rho_{1}+\rho_{2}},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
\leq \left(\frac{1}{h_{r}}\sum_{k\in I_{r}}\left[\frac{\rho_{1}}{\rho_{1}+\rho_{2}}u_{k}M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho_{1}},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
+ \frac{\rho_{2}}{\rho_{1}+\rho_{2}}u_{k}M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}y_{k})}{\rho_{2}},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
\leq \left(\frac{\rho_{1}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}u_{k}\left[M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho_{1}},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \\
+ \left(\frac{\rho_{2}}{\rho_{1}+\rho_{2}}\right)\left(\frac{1}{h_{r}}\sum_{k\in I_{r}}u_{k}\left[M_{k}\left(||\frac{t_{kn}(\Delta_{v}^{m}y_{k})}{\rho_{2}},z_{1},\cdots,z_{n-1}||\right)\right]^{p_{k}}\right)^{\frac{1}{H}}$$

Since ρ 's are non-negative, so we have g(x+y)

1.

$$\begin{split} &=\inf\Big\{\rho^{\frac{p_r}{H}}:\Big(\frac{1}{h_r}\sum_{k\in I_r}\Big[M_k\Big(||\frac{t_{kn}(\Delta_v^mx_k)+t_{kn}(\Delta_v^my_k)}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\Big)^{\frac{1}{H}}\\ &\leq 1,\ r,n=1,2,\cdots\Big\}\\ &\leq \inf\Big\{\rho^{\frac{p_r}{H}}_1:\Big(\frac{1}{h_r}\sum_{k\in I_r}\Big[M_k\Big(||\frac{t_{kn}(\Delta_v^mx_k)}{\rho_1},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\Big)^{\frac{1}{H}}\leq 1,r,n=1,2,\cdots\Big\}\\ &+\inf\Big\{\rho^{\frac{p_r}{H}}_2:\Big(\frac{1}{h_r}\sum_{k\in I}\Big[M_k\Big(||\frac{t_{kn}(\Delta_v^my_k)}{\rho_2},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k}\Big)^{\frac{1}{H}}\leq 1,r,n=1,2,\cdots\Big\}. \end{split}$$

Therefore,

$$g(x+y) \le g(x) + g(y).$$

Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

$$g(\lambda x) = \inf \left\{ \rho^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m \lambda x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, n = 1, 2, \cdots \right\}.$$

Then

$$g(\lambda x_k) = \inf \left\{ (|\lambda|t)^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{t}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{H}} \le 1, r, n = 1, 2, \dots \right\},$$

where $t = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_r} \leq \max(1, |\lambda|^{\sup p_r})$, we have

$$g(\lambda x) \leq \max(1, |\lambda|^{\sup p_r}) \inf \left\{ t^{\frac{p_r}{H}} : \left(\frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{t}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \right)^{\frac{1}{H}} \right\}$$

$$\leq 1, r, n = 1, 2, \cdots \}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof of the theorem. Q.E.D.

Theorem 2.3 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be any sequence of strictly positive real numbers. Then

$$w_{\sigma}^{0}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m})\subset w_{\sigma}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m})\subset w_{\sigma}^{\infty}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m}).$$

Proof. The first inclusion is obvious. We will show that

$$w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m) \subset w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m).$$

Let $x \in w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m)$. Then there exists some positive number ρ_1 such that

$$\frac{1}{h_r} \sum_{k \in I_r} \left[M_k \left(\left| \left| \frac{t_{kn} (\Delta_v^m x_k - l)}{\rho_1}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \to 0 \text{ as } r \to \infty \text{ uniformly in } n.$$

Define $\rho = 2\rho_1$. Since $\mathcal{M} = (M_k)$ is non-decreasing, convex and so by using inequality (1.1), we have

$$\begin{split} \frac{1}{h_r} \sum_{k \in I_r} u_k \Big[M_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & \leq \frac{K}{h_r} \sum_{k \in I_r} u_k \Big[M_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & + \frac{K}{h_r} \sum_{k \in I_r} u_k \Big[M_k \Big(|| \frac{l}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & \leq \frac{K}{h_r} \sum_{k \in I_r} u_k \Big[M_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & + K \max \Big\{ 1, u_k \Big[M_k \Big(|| \frac{l}{\rho_1}, z_1, \cdots, z_{n-1} || \Big) \Big]^H \Big\}. \end{split}$$

Thus $x \in w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}).$ Q.E.D.

Theorem 2.4 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. If $\sup_k \left[M_k(t) \right]^{p_k} < \infty$ for all t > 0, then

 $w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m) \subset w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m).$

Proof. Let $x \in w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m})$. By using inequality (1.1), we have $\frac{1}{h_{r}} \sum_{k \in I_{r}} u_{k} \Big[M_{k} \Big(|| \frac{t_{kn}(\Delta_{v}^{m} x_{k})}{\rho}, z_{1}, \cdots, z_{n-1}|| \Big) \Big]^{p_{k}}$

$$\leq \frac{K}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(\left| \left| \frac{t_{kn} \left(\Delta_v^m x_k - l \right)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

$$+ \frac{K}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(\left| \left| \frac{l}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}.$$

Since $\sup_k \left[M_k(t) \right]^{p_k} < \infty$, we can take that $\sup_k \left[M_k(t) \right]^{p_k} = T$. Hence we get $x \in w_\sigma^\infty \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot || \right]_\theta(\Delta_v^m)$.

Theorem 2.5 Let $\mathcal{M}=(M_k)$ be a Musielak-Orlicz function which satisfies Δ_2 -condition for all k, then

$$w_{\sigma} \Big[u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m) \subset w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m).$$

Proof. Let $x \in w_{\sigma} [u, p, ||\cdot, \cdots, \cdot||]_{\alpha} (\Delta_v^m)$. Then we have

$$\mathcal{T}_r = \frac{1}{h_r} \sum_{k \in I_r} u_k ||t_{kn}(\Delta_v^m x_k - l), z_1, \cdots, z_{n-1}||^{p_k} \to \infty \text{ as } r \to \infty \text{ uniformly in } n, \text{ for some } l.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M_k(t) < \varepsilon$ for $0 \le t \le \delta$ for all k. So that $\frac{1}{h_r} \sum_{k \in I} u_k \Big[M_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1}|| \Big) \Big]^{p_k}$

$$= \frac{1}{h_r} \sum_{k \in I_r, ||t_{kn}(x-l), z|| \le \delta}^{1} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k}$$

$$+ \frac{1}{h_r} \sum_{k \in I_r, ||t_{kr}(x-l), z|| \ge \delta}^{2} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k}.$$

For the first summation in the right hand side of the above equation, we have $\sum_{k=1}^{\infty} \leq \varepsilon^{H}$ by using continuity of M_k for all k. For the second summation, we write

$$||t_{kn}(\Delta_v^m x_k - l), z_1, \cdots, z_{n-1}|| \le 1 + ||\frac{t_{kn}(\Delta_v^m x_k - l)}{\delta}, z_1, \cdots, z_{n-1}||.$$

Since M_k is non-decreasing and convex for all k, it follows that $u_k \left[M_k(||t_{kn}(\Delta_v^m x_k - l), z_1, \cdots, z_{n-1}||) \right]$

$$< u_{k} \left[M_{k} \left(1 + \left| \left| \frac{t_{kn} (\Delta_{v}^{m} x_{k} - l)}{\delta}, z_{1}, \cdots, z_{n-1} \right| \right| \right) \right]$$

$$\leq \frac{1}{2} u_{k} \left(M_{k}(2) \right) + \frac{1}{2} u_{k} \left[M_{k} \left((2) \left| \left| \frac{t_{kn} (\Delta_{v}^{m} x_{k} - l)}{\delta}, z_{1}, \cdots, z_{n-1} \right| \right| \right) \right].$$

Since M_k satisfies Δ_2 -condition for all k, we can write

$$u_{k} \Big[M_{k}(||t_{kn}(\Delta_{v}^{m}x_{k}-l), z_{1}, \cdots, z_{n-1}||) \le \frac{1}{2} L ||\frac{t_{kn}(\Delta_{v}^{m}x_{k}-l)}{\delta}, z_{1}, \cdots, z_{n-1}||M_{k}(2) + \frac{1}{2} L ||\frac{t_{kn}(\Delta_{v}^{m}x_{k}-l)}{\delta}, z_{1}, \cdots, z_{n-1}||M_{k}(\Delta_{v}^{m}x_{k}-l)||$$

So we write

$$\frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k - l)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \le \varepsilon^H + [\max(1, LM_k(2))\delta]^H \mathcal{T}_r.$$

Letting $r \to \infty$, it follows that $x \in w_{\sigma} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m)$. This completes the proof. Q.E.D.

Theorem 2.6 Let $\mathcal{M}=(M_k)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

$$(i) \ w_{\sigma}^{\infty} \Big[u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}) \subset w_{\sigma}^{0} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}),$$

(ii)
$$w_{\sigma}^{0} \left[u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}) \subset w_{\sigma}^{0} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}),$$

(iii)
$$\sup_{r} \frac{1}{h_r} \sum_{k \in I} u_k \left[M_k(t) \right]^{p_k} < \infty \text{ for all } t > 0.$$

Proof. (i) \Longrightarrow (ii) We have only to show that $w_{\sigma}^{0}\left[u,p,||\cdot,\cdots,\cdot||\right]_{\theta}(\Delta_{v}^{m}) \subset w_{\sigma}^{\infty}\left[u,p,||\cdot,\cdots,\cdot||\right]_{\theta}(\Delta_{v}^{m})$. Let $x \in w_{\sigma}^{0}\left[u,p,||\cdot,\cdots,\cdot||\right]_{\theta}(\Delta_{v}^{m})$. Then there exists $r \geq r_{0}$, for $\varepsilon > 0$, such that

$$\frac{1}{h_r} \sum_{k \in I_r} u_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big)^{p_k} < \varepsilon.$$

Hence there exists H > 0 such that

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} u_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big)^{p_k} < H$$

for all n and r. So we get $x \in w_{\sigma}^{\infty} \Big[u, p, ||\cdot, \cdots, \cdot || \Big]_{\theta} (\Delta_{v}^{m})$.

(ii) \Longrightarrow (iii) Suppose that (iii) does not hold. Then for some t>0

$$\sup_{r} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k(t) \right]^{p_k} = \infty$$

and therefore we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

$$\frac{1}{h_{r(m)}} \sum_{k \in I_{r(m)}} u_k \left[M_k(\frac{1}{m}) \right]^{p_k} > m, \quad m = 1, 2, \dots$$
 (2.1)

Let us define $x=(x_k)$ as follows, $x_k=\frac{1}{m}$ if $k\in I_{r(m)}$ and $x_k=0$ if $k\not\in I_{r(m)}$. Then $x\in w^0_\sigma\Big[u,p,||\cdot,\cdots,\cdot||\Big]_\theta(\Delta^m_v)$ but by eqn.(2.1), $x\not\in w^0_\sigma\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_\theta(\Delta^m_v)$, which contradicts (ii). Hence (iii) must hold.

(iii) \Longrightarrow (i) Suppose (i) not holds, then for $x \in w_{\sigma}^{\infty} \Big[u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_v^m)$, we have

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} = \infty.$$
 (2.2)

Let $t = ||\frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \dots, z_{n-1}||$ for each k and fixed n, so that eqn. (2.2) becomes

$$\sup_{r} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k(t) \right]^{p_k} = \infty,$$

which contradicts (iii). Hence (i) must hold.

Q.E.D.

Theorem 2.7 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. Then the following statements are equivalent:

$$(i) \ w_{\sigma}^{0} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}) \subset w_{\sigma}^{0} \Big[u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}),$$

$$(ii)\ w_{\sigma}^{0}\Big[\mathcal{M},u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m})\subset w_{\sigma}^{\infty}\Big[u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m}),$$

(iii)
$$\inf_{r} \sum_{k \in I_r} u_k \left[M_k(t) \right]^{p_k} > 0 \text{ for all } t > 0.$$

Proof. (i) \Longrightarrow (ii) : It is easy to prove.

 $(ii) \Longrightarrow (iii)$ Suppose that (iii) does not hold. Then

$$\inf_{r} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = 0 \quad \text{for some } t > 0,$$

and we can find a subinterval $I_{r(m)}$ of the set of interval I_r such that

$$\frac{1}{h_r} \sum_{k \in I_{r(m)}} u_k [M_k(m)]^{p_k} < \frac{1}{m}, \quad m = 1, 2, \dots$$
 (2.3)

Let us define $x_k = m$ if $k \in I_{r(m)}$ and $x_k = 0$ if $k \notin I_{r(m)}$. Thus by eqn.(2.3), $x \in w_{\sigma}^0 \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_v^m)$ but $x \notin w_{\sigma}^\infty \left[u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_v^m)$ which contradicts (ii). Hence (iii) must hold.

$$(iii) \Longrightarrow (i)$$
 It is obvious.

Theorem 2.8 Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. Then $w_{\sigma}^{\infty} \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_v^m)$ $\subset w_{\sigma}^0 \left[u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_v^m)$ if and only if

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{k \in I_r} \left[M_k(t) \right]^{p_k} = \infty. \tag{2.4}$$

Proof. Let $w_{\sigma}^{\infty} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}) \subset w_{\sigma}^{0} \left[u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m})$. Suppose that eqn. (2.4) does not hold. Therefore there is a subinterval $I_{r(m)}$ of the set of interval I_{r} and a number $t_{0} > 0$, where $t_{0} = \left| \left| \frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho}, z_{1}, \cdots z_{n-1} \right| \right|$ for all k and n, such that

$$\frac{1}{h_{r(m)}} \sum_{k \in I_{r(m)}} u_k [M_k(t_0)]^{p_k} \le M < \infty, \quad m = 1, 2, \cdots.$$
 (2.5)

Let us define $x_k = t_0$ if $k \in I_{r(m)}$ and $x_k = 0$ if $k \notin I_{r(m)}$. Then, by eqn. (2.5), $x \in w_\sigma^\infty \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_\theta (\Delta_v^m)$. But $x \notin w_\sigma^0 \left[u, p, || \cdot, \cdots, \cdot || \right]_\theta (\Delta_v^m)$. Hence eqn. (2.5) must hold.

Q.E.D.

Conversely, suppose that eqn. (2.5) hold and that $x \in w_{\sigma}^{\infty} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_v^m)$. Then for each r and n

$$\frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \le M < \infty.$$
 (2.6)

Now suppose that $x \notin w_{\sigma}^{0}\left[u, p, ||\cdot, \cdots, \cdot||\right]_{\theta}(\Delta_{v}^{m})$. Then for some number $\varepsilon > 0$ and for a subinterval I_{ri} of the set of interval I_{r} , there is k_{0} such that $||t_{kn}(\Delta_{v}^{m}x_{k}), z_{1}, \cdots, z_{n-1}||^{p_{k}} > \varepsilon$ for $k \geq k_{0}$. From the properties of sequence of Orlicz functions, we obtain

$$u_k \left[M_k \left(\frac{\varepsilon}{\rho} \right) \right]^{p_k} \le u_k \left[M_k \left(\left| \left| \frac{t_{kn} (\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k}$$

which contradicts eqn.(2.5), by using eqn. (2.6). This completes the proof.

Theorem 2.9 Let $m \ge 1$ be a fixed integer. Then

$$(i) \ w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta}^{-} (\Delta_{v}^{m-1}) \subset w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m});$$

$$(ii) \ w_{\sigma} \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_{v}^{m-1}) \subset w_{\sigma} \left[\mathcal{M}, u, p, || \cdot, \cdots, \cdot || \right]_{\theta} (\Delta_{v}^{m});$$

(iii)
$$w_{\sigma}^{\infty} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_v^{m-1}) \subset w_{\sigma}^0 \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_v^m).$$

Proof. The proof of the inclusions follows from the following inequality $\frac{1}{h_r} \sum_{k \in I} u_k \left[M_k(||\frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1}||) \right]^{p_k}$

$$\leq \frac{K}{h_r} \sum_{k \in I_r} u_k \left[M_k || \frac{t_{kn}(\Delta_v^{m-1} x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right]^{p_k}$$

$$+ \frac{K}{h_r} \sum_{k \in I} u_k \left[M_k || \frac{t_{kn}(\Delta_v^{m-1} x_{k+1})}{\rho}, z_1, \cdots, z_{n-1} || \right]^{p_k}.$$

Q.E.D.

Theorem 2.10 Let $\mathcal{M} = (M_k)$ and $\mathcal{M}' = (M'_k)$ are Musielak-Orlicz functions. Then

$$(i) \ w_{\sigma}^{\infty} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}) \cap w_{\sigma}^{\infty} \Big[\mathcal{M}', u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m})$$

$$\subset w_{\sigma}^{\infty}\Big[\mathcal{M}+\mathcal{M}',u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m});$$

(ii)
$$w_{\sigma} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m}) \cap w_{\sigma} \left[\mathcal{M}', u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m})$$

$$\subset w_{\sigma} \Big[\mathcal{M} + \mathcal{M}', u, p, ||\cdot, \cdots, \cdot||\Big]_{\theta} (\Delta_v^m);$$

$$(iii) \ w_{\sigma}^{0} \Big[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m}) \cap w_{\sigma}^{0} \Big[\mathcal{M}', u, p, ||\cdot, \cdots, \cdot|| \Big]_{\theta} (\Delta_{v}^{m})$$

$$\subset w_{\sigma}^{0}\Big[\mathcal{M}+\mathcal{M}',u,p,||\cdot,\cdots,\cdot||\Big]_{\theta}(\Delta_{v}^{m}).$$

Q.E.D.

Proof. Let
$$x \in w_{\sigma}^{\infty} \left[\mathcal{M}, u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_v^m) \cap w_{\sigma}^{\infty} \left[\mathcal{M}', u, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_v^m)$$
. Then

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \infty \text{ uniformly in } n$$

and

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_n} u_k \left[M_k' \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \right]^{p_k} < \infty \text{ uniformly in } n.$$

Thus by using inequality (1.1) we have

$$u_{k} \Big[(M_{k} + M'_{k}) \Big(|| \frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho}, z_{1}, \cdots, z_{n-1}|| \Big) \Big]^{p_{k}} \leq K \Big[u_{k} \Big[M_{k} \Big(|| \frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho}, z_{1}, \cdots, z_{n-1}|| \Big) \Big]^{p_{k}} \Big]$$

$$+ K \Big[u_{k} \Big[M_{k} \Big(|| \frac{t_{kn}(\Delta_{v}^{m}x_{k})}{\rho}, z_{1}, \cdots, z_{n-1}|| \Big) \Big]^{p_{k}} \Big]$$

$$\begin{split} \Longrightarrow \frac{1}{h_r} \sum_{k \in I_r} u_k \Big[(M_k + M_k') \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & \leq \frac{K}{h_r} \sum_{k \in I_r} u_k \Big[M_k \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \\ & + \frac{K}{h_r} \sum_{k \in I_r} u_k \Big[M_k' \Big(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \quad \text{uniformly in } n. \end{split}$$

This completes the proof. Similarly, we can prove (ii) and (iii).

Theorem 2.11 Let $0 < p_k \le q_k$ for each k and $\left(\frac{q_k}{p_k}\right)$ be bounded. Then

$$(i) \ w_{\sigma}^{\infty} \Big[\mathcal{M}, q, ||\cdot, \cdots, \cdot||\Big]_{\theta} (\Delta_{v}^{m}) \subset w_{\sigma}^{\infty} \Big[\mathcal{M}, p, ||\cdot, \cdots, \cdot||\Big]_{\theta} (\Delta_{v}^{m});$$

(ii)
$$w_{\sigma} \left[\mathcal{M}, q, ||\cdot, \cdots, \cdot|| \right]_{\sigma} (\Delta_{v}^{m}) \subset w_{\sigma} \left[\mathcal{M}, p, ||\cdot, \cdots, \cdot|| \right]_{\sigma} (\Delta_{v}^{m});$$

(iii)
$$w_{\sigma}^{0} \left[\mathcal{M}, q, ||\cdot, \cdots, \cdot|| \right]_{\theta}^{1} (\Delta_{v}^{m}) \subset w_{\sigma}^{0} \left[\mathcal{M}, p, ||\cdot, \cdots, \cdot|| \right]_{\theta}^{1} (\Delta_{v}^{m}).$$

Proof. (i) Let $x \in w_{\sigma}^{\infty} \Big[\mathcal{M}, q, ||\cdot, \cdots, \cdot||\Big]_{\theta} (\Delta_v^m)$. Then

$$\sup_{r,n} \frac{1}{h_r} \sum_{k \in I_r} u_k \left[M_k \left(|| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{q_k} < \infty \text{ uniformly in } n.$$

Write $\mu_{k,n} = u_k \left[M_k \left(\left| \left| \frac{t_{kn}(\Delta_v^m x_k)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{q_k}$ and $\lambda_k = \frac{p_k}{q_k}$. Since $p_k \leq q_k$ therefore $0 < \lambda < \lambda_k \leq 1$. Define $y_{k,n} = \mu_{k,n}, \ y_{k,n} = 0$ if $\mu_{k,n} \geq 1$ and $z_{k,n} = \mu_{k,n}, \ z_{k,n} = 0$ if $\mu_{k,n} \geq 1$. So $\mu_{k,n} = y_{k,n} + z_{k,n}$ and $\mu_{k,n}^{\lambda_k} = y_{k,n}^{\lambda_k} + z_{k,n}^{\lambda_k}$. Now it follows that $y_{k,n}^{\lambda_k} \leq y_{k,n} \leq z_{k,n}$ and $z_{k,n}^{\lambda_k} \leq z_{k,n}^{\lambda}$. Therefore

$$\frac{1}{h_r} \sum_{k \in I_r} \mu_{k,n}^{\lambda_k} = \frac{1}{h_r} \sum_{k \in I_r} \left(y_{k,n}^{\lambda_k} + z_{k,n}^{\lambda_k} \right) \leq \frac{1}{h_r} \sum_{k \in I_r} y_{k,n} + \frac{1}{h_r} \sum_{k \in I_r} z_{k,n}^{\lambda}.$$

Since $\lambda < 1$ so that $\frac{1}{\lambda} > 1$, for each n and by using Holder's inequality, we have

$$\frac{1}{h_r} \sum_{k \in I_r} z_{k,n}^{\lambda} = \sum_{k \in I_r} \left(\frac{1}{h_r} z_{k,n}\right)^{\lambda} \left(\frac{1}{h_r}\right)^{1-\lambda} \\
\leq \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r} z_{k,n}\right)^{\lambda}\right]^{\frac{1}{\lambda}}\right)^{\lambda} \left(\sum_{k \in I_r} \left[\left(\frac{1}{h_r}\right)^{1-\lambda}\right]^{\frac{1}{(1-\lambda)}}\right)^{1-\lambda} \\
= \left(\frac{1}{h_r} \sum_{k \in I_r} z_{k,n}\right)^{\lambda}.$$

Thus, we have

$$\frac{1}{h_r} \sum_{k \in I_r} \mu_{k,n}^{\lambda_k} \leq \frac{1}{h_r} \sum_{k \in I_r} \mu_{k,n} + \left[\frac{1}{h_r} \sum_{k \in I_r} z_{k,n} \right]^{\lambda}.$$

Hence $x \in w_{\sigma}^{\infty} \left[\mathcal{M}, p, ||\cdot, \cdots, \cdot|| \right]_{\theta} (\Delta_{v}^{m})$. This completes the proof of (i). Similarly, we can prove (ii) and (iii).

References

- M. Aldhaifallah, K. S. Nisar, H. M. Srivastava and M. Mursaleen, Statistical Λ-convergence in probabilistic normed spaces, J. Function spaces, 2017 (2017), Article ID 3154280, 1-7.
- [2] M. Et and R. Çolak, On generalized difference sequence spaces, Soochow J. Math. 21 (1995), 377-386.
- [3] A. R. Freedman, J. J.Sember and M. Raphael, *Some Cesaro-type summability spaces*, Proc. London Math. Soc., **37** (1978), 508-520.
- [4] S. Gähler, Linear 2-normietre Rume, Math. Nachr., 28 (1965), 1-43.
- [5] H. Gunawan, On n-Inner Product, n-Norms, and the Cauchy-Schwartz Inequality, Sci. Math. Jap., 5 (2001), 47-54.
- [6] H. Gunawan, The space of p-summable sequence and its natural n-norm, Bull. Aust. Math. Soc., 64 (2001), 137-147.
- [7] H. Gunawan and M. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci., 27 (2001), 631-639.
- [8] U. Kadak, N. L. Braha and H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput., 302 (2017), 80-96.
- [9] H. Kızmaz, On certain sequence spaces, Canad. Math-Bull., 24 (1981), 169-176.
- [10] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80 (1948), 167-190.
- [11] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 345-355.

- [12] E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta. Math. Sinica, 23 (2007), 521-532.
- [13] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [14] A. Misiak, n-inner product spaces, Math. Nachr., **140** (1989), 299-319.
- [15] S. A. Mohiuddin, H. M. Srivastava and A. Alotaibi, Application of measures of noncompactness to the infinite systems of second order differential equations in ℓ_p spaces, Adv. Difference Equations, 2016 (2016), Article ID 317, 1-13.
- [16] M. Mursaleen, Generalized spaces of difference sequences, J. Math. Anal. Appl., 203 (1996), 738-745.
- [17] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9 (1983), 505-509.
- [18] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34 (1983), 77 86.
- [19] M. Mursaleen, M. A. Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demanstratio Math. Vol. XXXII(1999), 145-150.
- [20] M. Mursaleen, S. K. Sharma and A. KiliÇman, Difference sequence spaces defined by Orlicz functions, Abstarct and Applied Analysis, Volume (2013).
- [21] M. Mursaleen, H. M. Srivastava and S. K. Sharma, Generalized statistically converegnt sequence of fuzzy numbers, J. Intell. Fuzzy systems, 30 (2016), 1511-1518.
- [22] M. Mursaleen, Md. Nasiruzzaman and H. M. Srivastava, Approximation by bicomplex beta operators in compact BC-disks, Math. Meth. Appl., 39 (2016), 2916-2919.
- [23] M. Mursaleen and S. K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iranain Journal of Science & Technology, Transaction A, Volume 38 (2014), 105-109.
- [24] M. Mursaleen, S. K. Sharma, S. A. Mohiuddine and A. KiliÇman, New difference sequence spaces defined by Musielak-Orlicz function, Abstarct and Applied Analysis, Volume (2014).
- [25] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983).
- [26] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by Musielak-Orlicz functions, Int. J. Pure Appl. Math., Vol. 67(2011), 475-484.
- [27] K. Raj, S. K. Sharma and A. K. Sharma, Some difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function, Armenian J. Math., 3 (2010), 127-141.
- [28] K. Raj and S. K. Sharma, Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz function, Acta Univ. Sapientiae Math., 3 (2011), 97-109.

- [29] W. Raymond, Y. Freese and J. Cho, Geometry of linear 2-normed spaces, N. Y. Nova Science Publishers, Huntington, (2001).
- [30] A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, Ideal Convergence in 2-normed spaces, Taiwanese J. Math., 11 (2007), 1477-1484.
- [31] P. Schaefer, Infinite martices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
- [32] H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly summable function of order α , FILOMAT, **31** (2017), 1573-1582.
- [33] A. Wilansky, summability through Functional Analysis, North-Holland Math. Stud., (1984).