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defined by a Musielak-Orlicz function over n-normed spaces
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Abstract

In the present paper we introduce some sequence spaces combining lacunary sequence, invariant
means over n-normed spaces defined by Musielak-Orlicz function M = (Mj). We study some
topological properties and also prove some inclusion results between these spaces.
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1 Introduction and preliminaries

The concept of 2-normed spaces was initially developed by Géhler [4] in the mid of 1960’s, while
that of n-normed spaces one can see in Misiak [14]. Since then, many others have studied this
concept and obtained various results, see Gunawan ([5],[6]) and Gunawan and Mashadi [7]. Let
n € N and X be a linear space over the field K, where K is field of real or complex numbers of
dimension d, where d > n > 2. A real valued function ||-,-- - ,-|| on X™ satisfying the following four
conditions:¢

1. ||z1, 22, -+, 2n|| = 0 if and only if 21, xo,- -+ ,z, are linearly dependent in X;

2. ||z1,z2, -+ ,x,]|| is invariant under permutation;

3. ||04I1,£C27 e 7:L'7l‘| = |O[| ||I1,l‘27 e aan for any o € K7 and

4. ||Z‘ +J3/,$2,' o axn” < ||.13,.I‘2, T 7xn|| + ||.’13/7372,' o amnH
is called a n-norm on X, and the pair (X, ||-,--- ,||) is called a n-normed space over the field K.
For example, we may take X = R"™ being equipped with the Euclidean n-norm ||z1,za, -, Z,||E
= the volume of the n-dimensional parallelopiped spanned by the vectors x1,zs,- - - , z, which may

be given explicitly by the formula

lz1, @2, -+, 2allp = | det(zi;)],
where z; = (241, %2, -+, %in) € R" foreachi=1,2,--- ,n. Let (X,|]-,--- ,||) be a n-normed space
of dimension d > n > 2 and {aj,as, - ,a,} be linearly independent set in X. Then the following
function ||, -+ ,-[|oc on X! defined by
l|x1, 22, Zn_1lloe = max{[|z1, 22, -+ ,2p 1,04 11 =1,2,--- ,n}
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defines an (n — 1)-norm on X with respect to {aj,as, -+ ,an}.
A sequence (x) in a n-normed space (X, ||-,--+,||) is said to converge to some L € X if
lim ||ag — L, 21, ,2n—1|| =0 for every zq1,---,z,-1 € X.
k— o0
A sequence (xy) in a n-normed space (X, ||-,---,-||) is said to be Cauchy if
lim ||z —xp, 21, -, 2n-1]| =0 for every z,---,2,1 € X.
k,p—o0

If every cauchy sequence in X converges to some L € X, then X is said to be complete with respect
to the n-norm. Any complete n-normed space is said to be n-Banach space.

The notion of difference sequence spaces was introduced by Kizmaz [9], who studied the difference
sequence spaces lo(A), ¢(A) and ¢o(A). The notion was further generalized by Et. and Colak [2]
by introducing the spaces lo(A™), ¢(A™) and ¢o(A™). Let w be the space of all complex or real
sequences x = (z1) and let m, v be non-negative integers, then for Z = I, ¢, ¢y we have sequence
spaces

Z(AT) = {2 = (z) € w: (Alay) € Z},

where A"x = (AMzy) = (AT oy, — A™ Lz 1) and A%y, = 2y, for all k € N, which is equivalent
to the following binomial representation

Aznl‘k = Z(—l)s ( 7: ) Th+vs-
s=0

Taking v = 1, we get the spaces which were introduced and studied by Et. and Colak [2]. Taking
m = v = 1, we get the spaces which were studied by Kizmaz [9].

Let o be the mapping of the set of positive integers into itself. A continuous linear functional ¢ on
lso, is said to be an invariant mean or o-mean if and only if

1. ¢(z) > 0 when the sequence x = (xy) has z; > 0 for all k,
p(e) =1, where e = (1,1,1,---) and

SN

0(zok)) = p(x) for all z € lo.
If v = (2,,), write Tx = Tz, = (T(n)). It can be shown in [31] that

V, = {3: Elo: lilgntlm(aj) =1, uniformlyin n, | =0 — 1imx},

where
Ty + Toip + oo + Toky,

k+1

In the case o is the translation mapping n — n + 1, o-mean is often called a Banach limit and V,
the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent
sequences see[10].

By a lacunary sequence 6 = (k) where kg = 0, we shall mean an increasing sequence of non-
negative integers with k, — k,._1 — oo as r — oo. The intervals determined by 6 will be denoted

tkn(l‘) =
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by I, = (ky—1, k.]. We write h, = k, — k,_1. The ratio k’:il will be denoted by ¢,. The space of

lacunary strongly convergent sequence was defined by Freedman et al [3].
Let X be a linear metric space. A function p : X — R is called paranorm, if

1. p(x) >0 for all z € X,
. p(—z) =p(z) for all z € X,

- p(z+y) <plx) +ply) for all z,y € X,

[ OC R\

. if (Ay,) is a sequence of scalars with A,, — X as n — oo and (x,,) is a sequence of vectors with
p(xn, —x) = 0asn — oo, then p(Apz, — Az) = 0 asn — oo.

A paranorm p for which p(z) = 0 implies z = 0 is called total paranorm and the pair (X, p) is called
a total paranormed space. It is well known that the metric of any linear metric space is given by
some total paranorm (see [33], Theorem 10.4.2, pp. 183). For more details about sequence spaces
(see [1], (8], (12}, [15), [16], [17], (18], [19], [20], [21], [22], (23], [24], [26], [27], [28], [29], [30], [32])
and reference therein.

An Orlicz function M : [0,00) — [0,00) is a continuous, non-decreasing and convex function such
that M(0) =0, M(z) >0 for > 0 and M(z) — oo as © — oo.

Lindenstrauss and Tzafriri [11] used the idea of Orlicz function to define the sequence space,

= {rew: () <o)

which is called as an Orlicz sequence space. Also [ is a Banach space with the norm

. N (el
||x||_1nf{p>0.;M< )31}.

p

Also, it was shown in [11] that every Orlicz sequence space lj; contains a subspace isomorphic to
I,(p > 1). The Ay— condition is equivalent to M(Lz) < LM(z), for all L with 0 < L < 1. An
Orlicz function M can always be represented in the following integral form

where 1 is known as the kernel of M, is right differentiable for ¢ > 0,n(0) = 0,n(t) > 0, n is
non-decreasing and 7(t) — oo as t — 0.

A sequence M = (M) of Orlicz function is called a Musielak-Orlicz function (see [13],[25]). A
sequence N = (N}) is called a complementary function of a Musielak-Orlicz function M

Ni(v) = sup{|v|u — Mi(u) : u >0}, k=1,2,...

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space tq and its subspace
ha are defined as follows

tpm = {x € w: Ip(ex) < oo, for some ¢ > 0},
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hpm = {xe w: Iapm(ex) < oo, for all ¢ > 0},
where I is a convex modular defined by
IM(.’L') = ZMk(CEk),x = (Ik) €itm.
k=1

We consider taq equipped with the Luxemburg norm

I|z]| = inf{k >0 IM(%) < 1}

or equipped with the Orlicz norm

1
lz||0 = inf{E(l +IM(ko:)) k> o}.
Let M = (Mjy) be a Musielak-Orlicz function, (X,||,---,||) be a n-normed space, p = (px) be a
bounded sequence of positive real numbers and u = (ux) be any sequence of strictly positive real
numbers. By S(n — X) we denote the space of all sequences defined over (X, ||-,---,-||). In this
paper we define the following sequence spaces :
wl [ Mowp |- ol (A7) =

{:C €S(n—X): lim hi Z Uk[Mk(HM,zh ’2n71||)rk —0,
" kel

r—00 p

uniformly in n for some p > O},

wy [Moup . ] (AT) =

{:E €Sn—X): lim hi Z uk[Mk(||M,zl,~n ,zn_1||)]pk =0,

rT—> 00
" kel p

uniformly in n for some [ and p > 0,}

and

we [Myup, . ] (A =

1 Pk
{xES(n—X):suph—Zuk{Mk(H ,zl,...,zn_1||>} < 00,

kel,

uniformly in n for some p > 0}.
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If we take M(x) = x, we get the spaces
w(g)- |:’U/,p, ||7 7H:|9(A1)n) =
1 ten (AT P
{a: €S(mn—X): lim — Y uk(HM,zl,--- ,zn_lﬂ) ‘oo,
T—>00 h'f‘ keIr p

uniformly in n for some p > 0},

wy [w.p, |-II] (A7) =

{xGS(n— : lim h—z ( M,Zh--qznfﬂomzov

r—00
kel, P

uniformly in n for some [ and p > 0}

and

wee [, 1.l (A7) =

ten (A p
{JZES(TL—X) SUP § uk( Mazly"'azn—l‘o k<oo’
h kel,. P

uniformly in n for some p > 0}.

If we take p = (px) = 1, we get the spaces
wS[M,u,II-,~-~ ,.HL(AZL) —

{J; eSn—X): rli>1101<)}Li Z uk{Mk“W,zh'” 7Zn—1|‘):| =0,

uniformly in n for some p > O},
w (M, | .JI] (A7) =

{x €S(n—X): lim iT > uk[Mk(HM,Zh... ,Z7H||>} -0,

r—o0
kel, P

uniformly in n for some [ and p > O}

and

we [ Mo, |l (A7) =

{xeS(n—X) Sup ;- Zuk{MkOWazlv”'azn—lo}<OO7

kel,.

35
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uniformly in n for some p > O}.

The following inequality will be used throughout the paper. If 0 < px < suppy = H, K =
max(1,2771) then
|ak+bk‘pk SK{|ak‘pk—|—|bk|pk’} (1.1)

for all k and ay, by, € C. Also |a|P* < max(1, |a|H) for all a € C.

The main aim of the present paper is to study some topological properties and prove some in-
clusion relations between above defined sequence spaces.

2 Main results

Theorem 2.1 Let M = (My) be a Musielak-Orlicz function, p = (px) be a bounded sequence of
positive real numbers and u = (ug) be any sequence of strictly positive real numbers. Then the
classes of sequences

wg{/\/l,u,p,|\~,~~~ 7||}0(AT)a wo | M, u,p,[|5 ] G(Avm) and  wg® | M, u,p, || ] O(A:;n)
are linear spaces over the field of complex numbers C.
Proof. The proof is obvious, so we omit it. Q.E.D.

Theorem 2.2 Let M = (My) be a Musielak-Orlicz function, p = (px) be a bounded sequence
of positive real numbers and v = (ux) be any sequence of strictly positive real numbers. Then

w? [./\/l,u,p, |- ,~||L(AZ,”) is a topological linear space paranormed by
pr 1 trn (AT PrN T
g(l’):lnf{pﬁ<7Zuk|:Mk(‘|M,zl,7Zn71|‘):| k)HS].,’]",n:]_,2,-.,}7
hy = p

where H = max(1,supy px < 00).
Proof. Clearly g(z) >0 for z = (z) € wl [M,u,p, |- ,~||L(A;”). Since My(0) = 0, we get
g(0) = 0. Conversely, suppose that g(x) = 0, then
pr 1 tin A™ PrN\ T
inf {p% : (= 3w {Mk(nw,zl,m )] ) < =120 b =0,
I p
kel
This implies that for a given € > 0, there exists some p.(0 < p. < €) such that

(hi Z (7 [Mk(H%(i?m’Zl’m ’Z"_lH)rk)% s1

" kel,

Thus i l
(w5 )]

" kel,

< (hi Z Uk[Mk(Hszh'” ,Zn—1|\)]pk)% <1,

" kel Pe
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for each r and n. Suppose that x, # 0 for each k € N. This implies that tg,(Al'zy) # 0, for each

k,n € N. Let ¢ — 0, then ||M,z1,--- ,Zn—1|| = oo. Tt follows that
1 t A T PEN I
(}TZ |: <|| kn( k)7zla"'7zn—1||):| )H — 00,
" kel,

which is a contradiction. Therefore, t,(Ax)) = 0 for each k and thus Al"xy, = 0 for each k € N.
Let p; > 0 and p2 > 0 be such that

(hir 3w [ag (1 2B )Y <

kel, P1
and A 1
1 tin m PrN &
(230w [an (e )] <
hy kel, P2

for each r . Let p = p1 + p2. Then by using Minkowski’s inequality, we have

£ I IA(RIC LRI ,zn-ln)}“)%

" kel P

E R R, S

T el p1+ P2

< (h Z [p1+p2 (Ht}m(A wk)7zl""’2”*1‘|)

kel,.
(228 ]

pL+p2 p2
tin (AT i\ 7
< ( )( -3 i (P )] )
" kel, P
trn (A™ PR\ 7
(52) G X ot (105 )] )
" kel P2
< 1.
Since p’s are non-negative, so we have
9(x +y)
Py 1 ten (AT thon (AL PrN 7
—int (o + (5 3 [an (e SR B )]
keI, p
§17 T7n71a25' }
e 1 tnA x Pr\ 7
<lnf{p1H (hf Z |: (H u ( k)vzh 7Zn71|‘):| )H < 1,T,TL— 1727 }
kel,
Pr 1 t " A™ L
—&—mf{p;H — M (H kn ”yk), 1, ,zn,1||)} k)H <l,r,n=1,2, }
P2
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Therefore,
gz +y) < g(x)+g(y).

Finally, we prove that the scalar multiplication is continuous. Let A be any complex number. By
definition,

g(Ax) = inf {p% : (hir ’;‘uk[Mkm%(Agl)\xk),Zh“- ,Zn71||)rk)% <l,r,n= 1,2,~-~}.
Then
g(Azk) :inf{(|/\|t)% : (hi Z Ug {Mk(HM,Zh... ,zn_1||>]pk>% <l1l,r,n= 1,2,...}7

" kel

where t = I—/’{‘. Since |A[Pr < max(1, |A[S*PPr), we have

g(Az) < max(1,|A[**PP")inf {t% : (hi Z w [Mk(Hw,zh 7Zn71|‘)}pk)%
" kel,

gLnnzlﬂ,u}

So, the fact that scalar multiplication is continuous follows from the above inequality.
This completes the proof of the theorem. Q.E.D.

Theorem 2.3 Let M = (My,) be a Musielak-Orlicz function, p = (px) be a bounded sequence
of positive real numbers and u = (uy) be any sequence of strictly positive real numbers. Then

wf | Mou,p, [l ol (A7) Cwg [Moup, [l (AF) gt [Moap, [l ] A7),

Proof. The first inclusion is obvious. We will show that

Wo |:Mauap7 H7 e 7||:|9(Avm) C wgo |:M,U,p, H7 ) ||:|9(Avm)
Let x € w, {M, u,p, ||+ ,H] e(A”m)' Then there exists some positive number p; such that

1 tin (A2, — 1 Pk . .
— Z {Mk<||w,zh~~ 7zn,1||>} " L 0asr— oo uniformly in n.
hr kel, P

Define p = 2p;. Since M = (M},) is non-decreasing, convex and so by using inequality (1.1), we
have
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1 Z uk[Mk<|%(Afm,Z1w' ’anlu)rk

hr kel
K tien (A xy — 1) Pk
< n Z Uk[Mk(Hf,Zla'” 7Zn71|‘)i|
kel,.
K l Pk
+ m};uk[Mk(|p1azlv"' ?ZTL—1H>:|
K t Amx —l Pk
< - uk[Mk(HM,le“7Zn—1|\)}
r 14
kel,
I H
+ Kmax{l,uk{Mk(H—,zl,n- ,zn,lH)} }
P1
Thus & € wie [M,u,p, |-+ -] (A, Qx.D.

P
Theorem 2.4 Let M = (My,) be a Musielak-Orlicz function. If sup, {Mk(t)} <o for all
t >0, then

wy [Mou,p, [l cll] (AT C gt [Mop, [l AT,
Proof. Let z € w, [M,u,p, |- ,~||L(Avm). By using inequality (1.1), we have
1 trn (AT Pk
W 3 Uk[Mk(|k(pvxk),Zl,"' ’Zn_luﬂ *
kel,
K ton (AT 2y — 1 P
< o S Uk[Mk(|k<pk)>Zla"' 7Zn71|‘)i|
kel
K l Pk
+ ﬁi uk[A4k(H772h"'7Zn—1H)] .
T P
kel
Pk Pk
Since sup, {Mk(t)} < o0, we can take that sup, [Mk(t)} = T. Hence we get
336w§°[/\/l,u,p,||~,~-- a||:|9(A:Jn) Q.E.D.

Theorem 2.5 Let M = (M}) be a Musielak-Orlicz function which satisfies As-condition for
all k, then

wy|wp | (AT C o [Mowp ] (AT
Proof. Let x € w, [u,p, -y ,~||L(AT). Then we have
1
T = — Z | [ten (A xk — 1), 21, + , 2n—1]|P* — 00 as r — oo uniformly in n, for some .

" kel
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Let € > 0 and choose 0 with 0 < ¢ < 1 such that My (t) < e for 0 <t < § for all k. So that
1 ten (A — 1 Pk
o Zu’“[MkOk(pk)’Zl’m 7anl”)}

kel

1

1 tin (A2, — 1 Pk
_ 1 2: Uk[Mk(Hszl»”'7Zn71||)}

" kel |thn (w—1),2]| <6 P

2
1 tin(AMx — 1 Pk
- 3 Uk[Mk<|k(vpxk)azl7"' ,Zn71||>} "
k€I, ||tkn(z=1),2]|>0

1
For the first summation in the right hand side of the above equation, we have Z < e by using
continuity of My, for all k. For the second summation, we write

tk Am(ﬂk —1
L N B B e

Since M}, is non-decreasing and convex for all &, it follows that
[ Mi([tin Ay = 1), 21, 2]

< Uk[Mk(]-+ ||M,Zl,~' ,Zn—1‘|>]

é
1 1 ten (Al xy, — 1
< S (@) + s [ (@D L )
Since M)}, satisfies As-condition for all &, we can write
1 ten (A, — 1
g, {Mk(kan(ATIk =1, 21, 0, 20al) < §L||%,Z1w' s 2n—1||Mp(2)
1 ten(A™Mxy —1
+ §L||%7Zh”'azn—l|le(2)
tkn(Aka —l)

= LH 7217"'azn71”Mk(2)-

]

So we write

1 ten (A xy, — 1 Pk
D uk [Mk(|k(pk),zl, o szmeal)] <+ max(1, LM (2))0)7 T
" kel,

Letting r — o0, it follows that @ € w, [/\/L up, ||y H} G(Avm). This completes the proof. q.e.n.

Theorem 2.6 Let M = (My) be a Musielak-Orlicz function. Then the following statements
are equivalent :

(i) wee [, p. [l ell] (AT € wl[Mowp [l ol (A7),
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(ii) wd [, Il 1] (AT € wd [Mou,p, - oIl (A7),

) sup — YAGI t>0

(ZZZ)Slrlph—rZuk[ k()} < oo for allt > 0.

kel,
Proof. (i) = (ii) We have only to show that w2 {u,p, - ,'||L(AT) C wy {u,p, |- ,~\|]0(A;”).
Let z € w? {u,p, - ,~||L(Avm). Then there exists r > rg, for ¢ > 0, such that
tT (Alx Dk
h Z ( hn k)wzlv"'yzn—l”) < €.
keI,

Hence there exists H > 0 such that

tin (Alx Pk
Sup Zuk( M,Zh"',?ﬁn_lH) <H
h kel, P

for all n and r. So we get x € wg°® {u,p, - ,-||L(AT).

(ii) = (iil) Suppose that (iii) does not hold. Then for some ¢ > 0

L 3 3] = o0

kel

and therefore we can find a subinterval I,.(,,) of the set of interval I,. such that

! Z uk[Mk(%)rk >m, m=1,2,---. (2.1)

hr(m) kel

r(m)

Let us define © = (x) as follows, zp = i it k € Ign and zx = 0 if k € I.(n). Then
z e wllup| - ,-\|L(A;7) but by eqn.(2.1), @ & w? [M u,p, ||, - ,~||L(A;”), which contra-
dicts (ii). Hence (iii) must hold.

(iii) = (i) Suppose (i) not holds, then for x € w3° [u,p, - ,H} (A7), we have
0
tin (AT P
up ;- Zuk[Mk(HW,zh--~,zn_1||)] "= o (2.2)
kel
Let t = ||M,zl, -+, zp—1|| for each k and fixed n, so that eqn. (2.2) becomes

sup hi Z U [Mk(t)rk = o0,

T kel

which contradicts (iii). Hence (i) must hold. Q.E.D.
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Theorem 2.7 Let M = (My) be a Musielak-Orlicz function. Then the following statements
are equivalent:

(i) wd [Mou,p, [l oAl (AT €l [up el (A7),
(ii) wl [ My, |l oll] (AF) € wge [wp, [l ] (A
(iii) inf > uy {Mk(t)}pk >0 for all t > 0.

kel,

Proof. (i) = (ii) : It is easy to prove.
(ii) = (iil) Suppose that (iii) does not hold. Then
mf— Z [Mk ] =0 for some t >0,
" kel
and we can find a subinterval I,y of the set of interval I, such that

1
— =1,2,---. 2.3
ma m ) &y ( )

1
7 > up[My(m)r <
" k€l (m)
Let us define 2, = m if & € Iy, and 2, = 0 if k& & Iy,. Thus by eqn.(2.3),
T € wl [M,u,p, [|-,- - ,-||L(A?U") but = ¢ w° [u,p, |- ,-H]g(Ag“) which contradicts (ii). Hence
(iil) must hold.

(iii) = (i) It is obvious. Q.E.D.
Theorem 2.8 Let M = (M},) be a Musielak-Orlicz function. Then wS® [./\/l, w, P, ||y G(AT)

c wl|u,p, ||, G(AT) if and only if

. 1 Pk

Jim - 3 [Mk(t)] = 0. (2.4)
kel,
Proof. Let wi® [M.up,||--+ ,+[I| (A7) € wllup,|l--,-lI| (AT). Suppose that eqn. (2.4)
does not hold. Therefore there is a subinterval I,.(,,,) of the set of interval I and a number ¢y > 0,
where ¢y = ||W721, -+ zp—1]|| for all k and n, such that
1
up[ My (to)]?* <M < oo, m=1,2,---. (2.5)
irtm) 17

r(m)

Let us define xx = to if & € Iy and 2 = 0 if & & I.(). Then, by eqn. (2.5), = €
> \M,u,p, ||, ,~||L(AL”). But z ¢ w? [u,p, |- ,-||L(A’v”). Hence eqn. (2.5) must hold.
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Conversely, suppose that eqn. (2.5) hold and that x € w2 [./\/l,u,p, |- ,-||L(Am). Then for

v

each r and n

Zuk[Mk(|W,zl,~-7zn1|)}pk<M<oo. (2.6)
hr keI,

Now suppose that & w, [u,p, [, \] (A7"). Then for some number € > 0 and for a subinterval

I,.; of the set of interval I, there is kg such that ||tg, (ATzk), 21, -, 2n—1]|[P* > € for k > ko. From
the properties of sequence of Orlicz functions, we obtain

N IYC A (L )

which contradicts eqn.(2.5), by using eqn. (2.6). This completes the proof. Q.E.D.
Theorem 2.9 Let m > 1 be a fized integer. Then

(i) wiE [ Mo 1] () ww{M,u,p,||-,-~- ] am:
(ii) wa [ My, |1 HL (A7) Cwy [Moup, |l oIl (AT):
(i) w3 [ Moap, || oIl (A1) € 0l [Moup |- ,-||}9< o)

Proof The proof of the inclusions follows from the following inequality

h Zuk[ tknA Ik),Zh“.,zn_lH)}:ﬂk

kel,
K ten( Am71$k) Pk
< . Z [M HT,ZL"' azn—1||:|
K tin Am 1y Pk
n fTZ [ |’€p’““),zl,~-~ 2]
el,.

Q.E.D.

Theorem 2.10 Let M = (M) and M’ = (M]) are Musielak-Orlicz functions. Then

(i) w | Mou,p, [l ol (AR N M p -l (A7)
W Mt M|l (A

(i1) wa [ Mo, [l cll] (A) ey [ Mool (AT
C w, [M + M up || »-H]G(AZ‘);

(i) w | Mo, 1] (A7) g (Ml (A

wl M M ] (AT,
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PTOOf. Let x € wgo |:M,U,p, ||a 7H:|9(A2n) ﬂwgo |:Ml7uap7 ||7 a||:|0(A'T) Then

1 t A'ﬂl P
sup — Z U, {Mk(HM,zl, ,zn,1||)} ' < 0o uniformly in n
rn Iy kel, pP

and
1 ten (AT P . .
sup o— E U [M,Q(Hk(p”xk),zl, ,zn_lﬂﬂ * < 0o uniformly in n.

nr ke,

Thus by using inequality (1.1) we have

uk[<Mk+M,;)(||t’“"<A ) | I S L YA (LS AN

p
trn (AT Dk
4 K{Uk[Mk(HM,Zh“' ,Zn—lH)} }
p
1 Ay Dk
— = > e[+ (1228 )]
" kel P
K tkn(AUmek) Pr
Fz; [ ( fvzla"'vzn—lH)}
tin (A p
+ Zuk{Mk(HM,zl,--- 7zn,lﬂ)} * uniformly in n.
" kel, P
This completes the proof. Similarly, we can prove (ii) and (iii). Q.E.D.

Theorem 2.11 Let 0 < pi < qi for each k and (%) be bounded. Then

(i) w [ Mgl (AR € wg [Mp - ol (AT
(ii) w, [qu,n-,--- ,-||} (A7) Cwe [ Mop |-l (AT
(iii) wl [ M, .||, II}Q(A?>Cw2[M,p7II-7---,-H]Q(AT)-
Proof. (i) Let z € wg® [./\/l,q,||~,~-- ,-HL(AZJ”). Then

ten (AT q . )
sup Z Uk [Mk(HM,zl, ,zn_lﬂﬂ ’ < oo uniformly in n.
h kel, P

ax
Write pgn, = ug [Mk(”szlv'” ,zn,1||)} and N\, = %. Since p, < g therefore 0 <

A < A < 1. Define yi r —,ukn7 Yk,n —Oifuk’n > 1 and 2kpn = lkn, Zkn —Oif,ukn > 1. So

Wk = Ykn + 2k,n and uzn = yk ot z . Now it follows that y;"“n < Yn < 2k,n and zk’“ <z -
Therefore

Zu = Zykn fn Zykn szn

" kel, " kel, " kel, " kel,
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Since A < 1 so that % > 1, for each n and by using Holder’s inequality, we have

Ly = Y () ()

" kel kel
< ( Z [(hier’n)A] X)A( Z [(%)17A} (1—?))1—>\
kel kel
S
kel,

Thus, we have

" kel, kel, " kel,

Hence x € w3 [./\/l,p7 -y \} g(AUm). This completes the proof of (i). Similarly, we can prove (ii)

and (iii). Q.E.D.
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