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Abstract. We estimate the norms of many matrix coefficients of irreducible
uniformly bounded representations of SL(2, R) as completely bounded multi-
pliers of the Fourier algebra. Our results suggest that the known inequality
relating the uniformly bounded norm of a representation and the completely
bounded norm of its coefficients may not be optimal.

1. Introduction

We begin by summarising our results. A representation π, by which we always
mean a continuous representation of a locally compact group G on a Hilbert space
Hπ, is said to be uniformly bounded if π(x) is a bounded operator on Hπ for each
x ∈ G, and there is a constant C, necessarily no less than 1, such that

C−1 ‖v‖Hπ
≤ ‖π(x)v‖Hπ

≤ C ‖v‖Hπ
∀x ∈ G ∀v ∈ Hπ; (1.1)

the two inequalities are equivalent because π is a representation. We write
‖π(x)‖op for the operator norm of π(x) and define the norm of π, written ‖π‖ub,
to be the smallest possible value of C in this inequality.

Suppose that π and σ are uniformly bounded representations of G. A linear
operator from Hπ to Hσ such that σ(x)T = Tπ(x) for all x ∈ G is called an inter-
twiner. We say that π and σ are similar if there is an intertwiner that is bounded
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with bounded inverse, and unitarily equivalent if there is a unitary intertwiner.
Similarity and unitary equivalence are equivalence relations. Similar uniformly
bounded representations may have different norms, and hence not be equivalent.
In general, little seems to be known about similarity classes of uniformly bounded
representations, or about finding uniformly bounded representations in an equiv-
alence class with minimal norm. Of course, if a unitary bounded representation is
similar to a unitary representation, then the unitary representation has minimal
norm in the equivalence class.

Around 1950, a number of researchers looked at uniformly bounded represen-
tations in their studies of amenability. Once it was known that every uniformly
bounded representation of an amenable group is unitarizable, that is, similar to
a unitary representation, J. Dixmier [7] asked whether this was true in general or
whether this characterized amenability.

In 1955, L. Ehrenpreis and F. Mautner [8, 9] showed that SL(2,R) has two
analytic families of representations πζ,ε, where ζ ∈ C and ε is either 0 or 1. These
representations have bounded K-finite matrix coefficients (here K is SO(2)) if
and only if |Re ζ| ≤ 1

2
, and they are uniformly bounded when |Re ζ| < 1

2
; most of

them are not similar to unitary representations. One of the main techniques in the
work of Ehrenpreis and Mautner is the use of generalised spherical functions ϕµ,νζ,ε ,
matrix coefficients of πζ,ε that transform under the left and right actions of K by
imaginary exponentials, and are given on the diagonal subgroup of SL(2,R) by
hypergeometric functions. Harish-Chandra used the natural extensions of these
generalised spherical functions in his studies of harmonic analysis on semisimple
Lie groups. These are known as generalised spherical functions as they extend
the classical spherical functions, which transform trivially under the left and right
actions of K.

Shortly after, R.A. Kunze and E.M. Stein [20] found a use for these uniformly
bounded representations, first realising them on the same Hilbert space, and
then using them to prove what is now called the Kunze–Stein phenomenon for
SL(2,R). Since then, considerable effort has gone into the construction of uni-
formly bounded representations. Apart from their fundamental paper [20], Kunze
and Stein [21, 22, 23], as well as several other authors, constructed analytic fam-
ilies of uniformly bounded representations for many noncompact semisimple Lie
groups in the 1960s and 1970s. In the 1970s and 1980s, uniformly bounded rep-
resentations were constructed for other groups; for example, A. Figà-Talamanca
and M.A. Picardello [12] and shortly after T. Pytlik and R. Szwarc [29] found uni-
formly bounded representations of the free groups. Very recently, K. Juschenko
and P.W. Nowak [19] linked uniformly bounded representations with the exact-
ness of discrete groups.

In the 1970s and 1980s, U. Haagerup and his collaborators (see, for instance,
[15, 6, 5]) showed that completely bounded multipliers of the Fourier algebra have
an important role to play in harmonic analysis. As had already been remarked
by J.E. Gilbert [14] and N. Lohoué [25], each matrix coefficient of a uniformly
bounded representation σ of a group G, more precisely, for every choice of v, w ∈
Hσ, the function x 7→ 〈σ(x)v, w〉, which we abbreviate to 〈σv, w〉, is a completely
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bounded multiplier of the Fourier algebra A(G), and there is a norm estimate

‖〈σv, w〉‖cb ≤ ‖σ‖2
ub ‖v‖Hσ

‖w‖Hσ
. (1.2)

However, it was observed by Haagerup [16], for the case in which G = SL(2,R)
and 〈σv, w〉 is the spherical function associated to πζ,ε, that this inequality is
far from sharp. We show here that similar equalities hold for the generalised
spherical functions ϕµ,νζ,ε , which we define in (3.11) below.

Main Theorem. If −1
2
< Re ζ < 1

2
and µ ∈ 2Z, then∥∥ϕµ,µζ,0 ∥∥cb

≤ sec(πRe ζ).

More generally, if 0 < ξ0 <
1
2
, ε ∈ {0, 1} and µ, ν ∈ 2Z + ε, then

∥∥ϕµ,νζ,ε ∥∥cb
is

uniformly bounded in the strip {ζ ∈ C : |Re ζ| ≤ ξ0}.

Our estimates are not uniform in µ and ν, but this may be an artifact of our
proof. An (unpublished) announcement of V. Losert gives us hope that this might
be true.

In a preceding paper [1], we considered the Kunze–Stein representations πζ,ε;
we proved that if σ is a uniformly bounded representation of SL(2,R) that is
similar to πζ,ε, where |Re ζ| < 1

2
and (ζ, ε) 6= (0, 1), then

‖σ‖ub ≥ ‖πζ,ε‖ub '
(1 + |Im ζ|)|Re ζ|

1
2
− |Re ζ|

(1.3)

when Im ζ is large. (Here and later in this paper, the expression A(ζ) ' B(ζ)
for all ζ ∈ E, where E is some subset of the domains of A and of B, means that
there exist constants C and C ′ such that C A(ζ) ≤ B(ζ) ≤ C ′A(ζ) for all ζ ∈ E.
Our “constants” are all positive real numbers.) This seems to confirm that the
inequality (1.2) is far from optimal, and suggests there may be a sharper version
thereof yet to be unveiled, at least for the group SL(2,R).

We now provide more historical context for our results. In the 1960s, N. Th.
Varopoulos [32, 33, 34] used tensorial methods to answer questions about thin
sets. C.S. Herz [17, 18], inspired by Varopoulos, looked at pointwise multipliers
of the projective tensor product L2(G) ⊗̂ L2(G), and connected these with non-
commutative harmonic analysis, and in particular, with certain pointwise mul-
tipliers of the Fourier algebra that we will call completely bounded multipliers.
M. Bożejko and G. Fendler (see, e.g., [3, 4]) developed Herz’s ideas, and Haagerup
and his collaborators and students demonstrated the central role in harmonic
analysis and operator theory of completely bounded multipliers. Comparatively
recently, G. Pisier [27, 28] has studied uniformly bounded representations, on
the one hand taking giant strides towards the solution of the Dixmier similar-
ity problem and on the other developing the links between uniformly bounded
representations and multipliers of the Fourier algebra.

Quite a lot of work has already been done about simple Lie groups of real
rank one, that is members of the families SO(n, 1), SU(n, 1) and Sp(n, 1), as
well as the single exceptional group F4,−20. For the moment, let us just recall
that these groups contain a maximal compact subgroup K, and admit Iwasawa
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decompositions KAN , where A is isomorphic to R and N is nilpotent. The spher-
ical functions ϕζ are K-bi-invariant functions on G (with additional properties)
that are important in harmonic analysis on G; in particular, they are matrix
coefficients of the class-one principal series of representations. J. De Cannière
and Haagerup [6] and M. Cowling and Haagerup [5] estimated the completely
bounded multiplier norms of various spherical functions. T. Steenstrup [30] com-
puted the norms ‖ϕζ‖cb exactly for the bounded spherical functions on SO(n, 1),
and showed that

‖ϕζ‖cb =

∣∣∣∣1 + sec2(πξ) sinh2(πη)

1 + sinh2(πη)

∣∣∣∣1/2 ,
where ζ = ξ + iη. For a fixed ξ, the right hand side is bounded and even,
takes its minimum value 1 when η = 0, and tends to sec(πξ) as η → ±∞.
Steenstrup deduced (following the ideas of Haagerup [16]) that there exist com-
pletely bounded multipliers of A(G) that do not arise as a matrix coefficient of
a uniformly bounded representation, using functional analysis and estimates for
various norms associated to spherical functions. This fact confirms that inequal-
ity (1.2) is far from sharp.

Our aim is to prove the Main Theorem; this paper is structured as follows.
In Section 2, we fix notation and review a few facts on uniformly bounded rep-
resentations and completely bounded multipliers. In Section 3, we describe the
representations of the group SL(2,R), the intertwining operators, and the spher-
ical functions. In Section 4, we study the completely bounded multiplier norm of
the generalised spherical functions, proving the Main Theorem.

2. Background and notation

In this section, we introduce some notation, and prove some preliminary results
about completely bounded multipliers. We also describe some formulae involving
gamma functions that we will use.

Suppose that G is a locally compact group. We equip G with right-invariant
Haar measure (written dx or dy in integrals) and then define the usual Lebesgue
spaces Lp(G). P. Eymard [11] defined the Fourier algebra A(G), a space of con-
tinuous functions on G that vanish at infinity. The functions u : G→ C in A(G)
are the matrix coefficients of the right regular representation ρ of G on L2(G).
More precisely, u ∈ A(G) if and only if there are functions h and k in L2(G) such
that u = 〈ρh, k〉, that is,

u(x) =

∫
G

h(yx) k̄(y) dy ∀x ∈ G.

Eymard showed that A(G) is closed under pointwise operations, which is not
apparent from the definition, and further that A(G) is a Banach algebra, with
the norm given by

‖u‖A = inf {‖h‖2 ‖k‖2 : u = 〈ρh, k〉} .
For future purposes, we note that if G is a locally compact abelian group, written
additively, with dual group Ĝ, then u is in A(G) if and only if its Fourier transform
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û is in L1(Ĝ); further, ‖u‖A =
∥∥û∥∥

1
. Thus if

u(x) =

∫
G

h(y + x) k(y) dy ∀x ∈ G,

where h, k ∈ L2(G), then

‖u‖A =

∫
Ĝ

∣∣∣ĥ(z) (k̂)(−z)
∣∣∣ dz.

If moreover
∣∣ĥ∣∣ =

∣∣(k̂)ˇ∣∣, where m̌(x) = m(−x) for all x ∈ G, then

‖u‖A = ‖h‖2 ‖k‖2 . (2.1)

Eymard also defined the Fourier–Stieltjes algebra B(G) of G, as the space of
all matrix coefficients of “all” unitary representations of G. Then u ∈ B(G) if
and only if there exist a unitary representation σ of G and vectors v and w in
Hσ such that u = 〈σv, w〉. The B(G)-norm of u is the infimum (in fact, the
minimum) of the products ‖v‖Hσ

‖w‖Hσ
over all such representations of u as σ,

v and w all vary.
Note that inversion (the map u 7→ ǔ, where ǔ(x) = u(x−1)) and complex

conjugation of functions are isometries of B(G). Indeed, if u = 〈σv, w〉, then
ūˇ = 〈σw, v〉, while ū is a matrix coefficient of the contragredient representation.

We say that v : G → C is a multiplier of the Fourier algebra, and we write
v ∈ MA(G), if the pointwise product uv lies in A(G) for all u in A(G); the
multiplier norm of v, written ‖v‖MA, is the operator norm of the map u 7→ uv.
Suppose that π is a uniformly bounded representation of G on a Hilbert space
Hπ and v, w ∈ Hπ, and suppose that v = 〈πv, w〉, that is, v(x) = 〈π(x)v, w〉 for
all x ∈ G. Then v ∈MA(G). This may be proved by showing that v satisfies one
of the equivalent conditions for being a completely bounded multiplier of A(G)
in Lemma 2.1 below, which implies the desired result.

The dual of A(G) may be identified with the von Neumann algebra V N(G)
of bounded convolution operators on L2(G) (acting on the right). A completely
bounded multiplier of A(G) is a multiplier of A(G) whose transpose is completely
bounded as a map of V N(G); this means that the transpose extends to a bounded
map of B(L2(G)), or to a bounded map of V N(G) ⊗ B(H) (where the tensor
product is appropriately defined). We refer to V. Paulsen [26] for much more
about completely bounded maps; here we just recall a few well known results. In
what follows, we view the projective tensor product L2(G) ⊗̂L2(G) as a subspace
of L2(G×G) in the natural way.

Lemma 2.1. Given a function v on G, define the function V : G×G→ C by

V (x, y) = v(y−1x) ∀x, y ∈ G. (2.2)

Then the following conditions are equivalent:

(i) v is a completely bounded multiplier of the Fourier algebra A(G);
(ii) V multiplies the projective tensor product L2(G) ⊗̂ L2(G) pointwise;
(iii) V (x, y) = 〈P (x), Q(y)〉 for all x, y ∈ G, where P,Q : G→ H are continuous

norm-bounded Hilbert-space-valued functions on G.
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The natural norms associated to each of these conditions are equal; these norms
are the completely bounded multiplier norm, the multiplier norm and the infimum
of the products ‖P‖∞ ‖Q‖∞, over all representations of V as in item (iii).

We write ‖v‖cb for the norm in item (i). As the terminology suggests, com-
pletely bounded multipliers are multipliers, and moreover

‖v‖MA ≤ ‖v‖cb .

We remark that sometimes completely bounded multipliers are known as Herz–
Schur multipliers, though this latter term may also apply to multipliers of the
tensor product.

In any case, if v = 〈πv, w〉, where π is a uniformly bounded representation of G
and v, w ∈ Hπ are unit vectors, then V (x, y) = 〈π(x)v, π(y−1)∗w〉 for all x, y ∈ G,
and so

‖v‖cb ≤ ‖π‖2
ub .

The question now arises as to whether this inequality is sharp. A related question
is whether the inequality ‖v‖MA ≤ ‖v‖cb is sharp. Similar questions are treated
by [2] and [24].

The main ingredient in the proof of our estimates is the following variant of a
result in [5, p. 516].

Proposition 2.2. Let G be a locally compact group and K be a compact subgroup
of G. Suppose that S is an amenable closed subgroup of G such that G = SK
and S ∩K is trivial. Let χ1 and χ2 be unitary characters of K and suppose that
ϕ is a function on G such that

ϕ(k1xk2) = χ1(k1)χ2(k2)ϕ(x) ∀x ∈ G ∀k1, k2 ∈ K. (2.3)

Then ϕ is a completely bounded multiplier of A(G) if and only if ϕ|S is in B(S);
moreover,

‖ϕ‖cb = ‖ϕ|S‖B(S) .

Proof. Suppose that ϕ|S is in B(S). Then there exist a unitary representation σ
of S and two vectors v and w in Hσ such that

ϕ(s) = 〈σ(s)v, w〉Hσ ∀s ∈ S.
We define P : G→ Hσ and Q : G→ Hσ by

P (sk) = σ(s)(χ2(k)v) = χ2(k)σ(s)v

Q(sk) = σ(s)(χ1(k)w) = χ1(k)σ(s)w

for all s ∈ S and k ∈ K; as G = SK and S ∩ K is trivial, P and Q are well
defined.

Note that if x1 = s1k1 and x2 = s2k2 are in G then

ϕ(x−1
1 x2) = ϕ(k−1

1 s−1
1 s2k2) = χ1(k

−1
1 )χ2(k2)ϕ(s−1

1 s2)

= χ1(k1)χ2(k2) 〈σ(s−1
1 s2)v, w〉Hσ

= χ1(k1)χ2(k2) 〈σ(s2)v, σ(s1)w〉Hσ

= 〈P (x2), Q(x1)〉Hσ .
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Therefore

‖ϕ‖cb ≤ sup
{
‖P (x)‖Hσ

‖Q(y)‖Hσ
: x, y ∈ G

}
= sup

{
‖σ(s2)(χ2(k2)v)‖Hσ

‖σ(s1)(χ1(k1)w)‖Hσ
: s1, s2 ∈ S, k1, k2 ∈ K

}
= ‖v‖Hσ

‖w‖Hσ
.

It follows that

‖ϕ‖cb ≤ inf
{
‖v‖Hσ

‖w‖Hσ
: ϕ = 〈σv, w〉Hσ

σ unitary representation of S
}

= ‖ϕ|S‖B(S) .

The reverse inequality may be proved as in [5]. �

Corollary 2.3. Let G be a locally compact group and ϕ be a function on G which
transforms as in Proposition 2.2. Then

‖ϕ̄‖cb = ‖ϕ̌‖cb = ‖ϕ‖cb .

Proof. This follows immediately from the earlier observation that

‖ϕ̄|S‖B = ‖ϕ̌|S‖B = ‖ϕ|S‖B
and Proposition 2.2. �

We are going to use the methods of Fourier analysis, and define the Fourier
transform Ff or f̂ of a function f on R by

FF (y) = f̂(y) =

∫
R
f(x) e−ixy dx ∀y ∈ R.

Similarly, for a function g on [−π, π], we define the Fourier coefficients g̃(κ) by

g̃(κ) =
1

2π

∫ π

−π
g(θ) e−iκθ dθ ∀κ ∈ Z.

We recall here some gamma function formulae that we shall need later; apart
from the recurrence relation Γ(z + 1) = z Γ(z), we will use the reflection formula
(see [10, p. 3, formula (6)])

Γ(z) Γ(1− z) = π cosec(πz), (2.4)

the duplication formula (see [10, p. 5, formula (15)])

Γ(z +
1

2
) Γ(z) = 21−2z π1/2 Γ(2z), (2.5)

Stirling’s formula (see [10, p. 47, formula (2)])

Γ(z) = (2π)1/2 e−z e(z−
1
2
) log z

(
1 +O(z−1)

)
as z →∞ and |arg z| ≤ w, (2.6)

where 0 ≤ w < π, and Dougall’s formula (see [10, p. 7, formula (1)])∑
k∈Z

Γ(a+ k) Γ(b+ k)

Γ(c+ k) Γ(d+ k)
= π2 cosec(πa) cosec(πb)

Γ(c+ d− a− b− 1)

Γ(c− a) Γ(d− a) Γ(c− b) Γ(d− b)
,

(2.7)
where a, b ∈ C \ Z, c, d ∈ C and Re a+ b− c− d < −1.

Note also that Γ(z̄) = Γ̄(z), so |Γ(z̄)| = |Γ(z)|.
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We will often see certain ratios of gamma functions, and note that if k ∈ Z and
z ∈ C, and all terms are well-defined, then

Γ(1
2

+ z + k
2
)

Γ(1
2
− z + k

2
)

= (−1)k
Γ(1

2
+ z − k

2
)

Γ(1
2
− z − k

2
)
. (2.8)

To see this, suppose that k ≥ 0 and use the recurrence relation expand out the
ratios

Γ(1
2

+ z + k
2
)

Γ(1
2

+ z − k
2
)

and
Γ(1

2
− z + k

2
)

Γ(1
2
− z − k

2
)
,

and note that the factors are equal up to signs. Note also that∣∣∣∣∣Γ(1
2

+ z + k
2
)

Γ(1
2
− z + k

2
)

∣∣∣∣∣ ' |k|2 Re z (2.9)

as k → +∞ from Stirling’s formula; in light of (2.8), this also holds as k → −∞).
We also use an integral formula (see [10, p. 12, formula (30)]):∫ π/2

0

cosα(θ) cos(βθ) dθ = 2−1−α π
Γ(1 + α)

Γ(1 + α
2

+ β
2
) Γ(1 + α

2
− β

2
)
, (2.10)

when Reα > −1 and β ∈ Z, which gives us the following lemma.

Lemma 2.4. Suppose that ε ∈ {0, 1}, Reα > −1, and κ ∈ Z. Then∫ π

−π
eiκθ sgnε(sin(θ)) |sin(θ)|α dθ = σ(κ, ε) 21−α π

Γ(1 + α)

Γ(1 + α
2

+ κ
2
) Γ(1 + α

2
− κ

2
)
,

where σ(κ, ε) = (1− ε) cos(κπ/2) + iε sin(κπ/2).

Proof. If ε = 0, then by parity, a change of variable, and parity,∫ π

−π
eiκθ sgnε(sin(θ)) |sin(θ)|α dθ

= 2

∫ π

0

cos(κθ) |sin(θ)|α dθ

= 2

∫ π/2

−π/2
cos(κ(θ + π/2)) |cos(θ)|α dθ

= 2 cos(κπ/2)

∫ π/2

−π/2
cos(κθ) |cos(θ)|α dθ

= cos(κπ/2) 21−α π
Γ(1 + α)

Γ(1 + α
2

+ κ
2
) Γ(1 + α

2
− κ

2
)
,

by parity and (2.10). This expression is 0 if κ is odd.
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If ε = 1, then similarly∫ π

−π
eiκθ sgnε(sin(θ)) |sin(θ)|α dθ

= 2i

∫ π

0

sin(κθ) |sin(θ)|α dθ

= 2i

∫ π/2

−π/2
sin(κ(θ + π/2)) |cos(θ)|α dθ

= 2i sin(κπ/2)

∫ π/2

−π/2
cos(κθ) |cos(θ)|α dθ

= i sin(κπ/2) 21−α π
Γ(1 + α)

Γ(1 + α
2

+ κ
2
) Γ(1 + α

2
− κ

2
)
,

by parity and (2.10). This expression is 0 if κ is even. �

3. The group SL(2,R)

In this section, we first describe the group SL(2,R), then the principal series
of representations of the group; third, we analyse the intertwining operators for
these representations, and finally we define and discuss the generalised spherical
functions.

We now describe SL(2,R), abbreviated to G for convenience, and various de-
compositions and representations thereof. We present an approach that the
second-named author learnt from R.A. Kunze many years ago. First, define
subgroups K, M , A, N and N̄ of G as follows:

K = {kθ : θ ∈ R} M = {m±} A =
{
as : s ∈ R+

}
N = {nt : t ∈ R} N̄ = {n̄t : t ∈ R} ,

where

kθ =

(
cos θ sin θ
− sin θ cos θ

)
= exp

(
θ

(
0 1
−1 0

))
m± =

(
±1 0
0 ±1

)
as =

(
s 0
0 s−1

)
= exp

(
log(s)

(
1 0
0 −1

))
nt =

(
1 0
t 1

)
= exp

(
t

(
0 0
1 0

))
n̄t =

(
1 t
0 1

)
= exp

(
t

(
0 1
0 0

))
;

we will write w for the rotation kπ/2.
There are a number of standard decompositions of G. The Iwasawa decompo-

sition asserts that every element x of G may be expressed uniquely in the form
x = n̄ak, where n̄ ∈ N̄ , a ∈ A and k ∈ K (this may also be stated with N in
place of N̄).

The Bruhat decomposition affirms first that NAM is a subgroup of G and
each element x of NAM has a unique expression in the form x = n̄am, where
n̄ ∈ N̄ , a ∈ A and m ∈ M ; and second that G is the disjoint union (NAM) t
(NAMwNAM).
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The third frequently used decomposition, the Cartan decomposition, states
that every element of G may be written in the form kθaskϕ, where s ≥ 1; if
x ∈ K then s = 1 and there are many choices for kθ and kϕ; otherwise, the
decomposition is unique up to changes in θ and ϕ by adding (or subtracting) π
to both or 2π to either. This result is derived using the polar decomposition of a
matrix.

Consider R2 as a space of row vectors, and let G act on R2 by right multipli-
cation. Then G fixes the origin and acts transitively on R2 \ {(0, 0)}.

We now consider the space Vζ,ε, where ζ ∈ C and ε ∈ {0, 1}, of smooth
functions on R2 \ {(0, 0)} that satisfy the homogeneity and parity conditions

f(δv) = δ2ζ−1f(v) ∀v ∈ R2 \ {(0, 0)} ∀δ ∈ R ∗+, (3.1)

f(−v) = (−1)εf(v) ∀v ∈ R2 \ {(0, 0)}. (3.2)

We equip Vζ,ε with the topology of locally uniform convergence of all partial
derivatives. The partial derivatives may be taken in polar coordinates; for ho-
mogeneous functions, the radial derivatives are easy to deal with, and questions
of convergence boil down to the behaviour of the angular derivatives on the unit
circle.

Since G acts on R2 \ {(0, 0)} and commutes with scalar multiplication, G acts
on Vζ,ε by the formula

πζ,ε(x)f(v) = f(vx) ∀v ∈ R2 \ {(0, 0)} ∀x ∈ G.

We obtain the “compact picture” of the representation by restricting v to lie on
the unit circle {(s, t) ∈ R2 : s2 + t2 = 1}, and observing that

πζ,ε(x)f(v) = |vx|2ζ−1 f(|vx|−1 vx).

Similarly, we obtain the “noncompact picture” by restricting v to lie on the
vertical line {(1, t) : t ∈ R}, and observing that

πζ,ε(x)f(1, t) = sgnε(a+ tc) |a+ tc|2ζ−1 f(1, x · t),

where

x =

(
a b
c d

)
and x · t =

b+ dt

a+ ct
.

Later we will consider this representation acting on functions on R, and we will
write

πR
ζ,ε(x)f(t) = sgnε(a+ tc) |a+ tc|2ζ−1 f(x · t), (3.3)

where f is a function on R. Clearly some care is required “at infinity” in this
version of the representation. Note that πR

ζ,0 and πR
ζ,1 coincide on N̄A, as when

x ∈ N̄A, a+ tc = a > 0.
The space Vζ,ε is spanned (topologically) by functions whose restrictions to

the unit circle are complex exponentials. We write fζ,µ for the function in Vζ,ε
determined by the condition that

fζ,µ(cos θ, sin θ) =
1

π1/2
eiµθ ∀θ ∈ R, (3.4)
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with the restriction that µ− ε must be even; every function in Vζ,ε is the limit of
finite linear combinations of the functions fζ,µ. It is easy to check that

fζ,µ(1, t) =
1

π1/2
(1 + it)ζ−

1
2
+µ

2 (1− it)ζ−
1
2
−µ

2 , (3.5)

and so in particular, fζ,−µ(1, t) = fζ,µ(1,−t) for all t ∈ R.

Lemma 3.1. Every function in Vζ,ε is a sum
∑

µ∈2Z+ε aµ fζ,µ, where the coeffi-
cients aµ tend to zero faster than any polynomial in µ. Conversely, every such
sum is a function in Vζ,ε.

Proof. Every function in Vζ,ε is determined by its restriction to the unit circle,
and the Fourier series of smooth functions on the unit circle are exactly of this
form. �

Lemma 3.2. Suppose that f ∈ Vζ,ε and g ∈ V−ζ,ε. Then∫
R
f(1, t) g(1, t) dt =

∫ π/2

−π/2
f(cos θ, sin θ) g(cos θ, sin θ) dθ

=
1

2

∫ π

−π
f(cos θ, sin θ) g(cos θ, sin θ) dθ.

We define the pairing (f, g) to be any of the above integrals, then

(πζ,ε(x)f, π−ζ,ε(x)g) = (f, g) ∀x ∈ G, (3.6)

or equivalently,

π−ζ,ε(x)
> = πζ,ε(x

−1) ∀x ∈ G,
where π−ζ,ε(x)

> denotes the transpose of π−ζ,ε(x).

Proof. The first integral is equal to the second by the change of variables t =
tan(θ), and the second is equal to the third because fg is even.

It is obvious that (3.6) holds when x ∈ N̄A from a simple change of variable
in the integral over R and when x ∈ K from a change of variable in the integral
over [−π, π]. By the Iwasawa decomposition, N̄A and K generate G, and so (3.6)
holds for all x ∈ G. This implies that

(π−ζ,ε(x)
>πζ,ε(x)f, g) = (f, g) ∀x ∈ G.

The bilinear form (·, ·) gives us a duality between Vζ,ε and V−ζ,ε. While V−ζ,ε is
smaller than the topological dual space of Vζ,ε, it is weak-star dense in the dual
space, and the set {(f, g) : g ∈ V−ζ,ε} determines f in Vζ,ε. Thus π−ζ,ε(x)

>πζ,ε(x)
is the identity operator on Vζ,ε, and hence π−ζ,ε(x)

> = πζ,ε(x
−1). �

Note that our normalisation of fζ,µ means that (fζ,µ, f−ζ,ν) is equal to 1 if
µ+ ν = 0 and is equal to 0 otherwise.

Corollary 3.3. Suppose that Re ζ = 0. The representation πζ,ε acts unitarily
when Vζ,ε is equipped with the inner product 〈f, g〉 = (f, ḡ) and completed to a
Hilbert space.
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Proof. Evidently, 〈·, ·〉 is an inner product on Vζ,ε. Further, (πζ,εg)¯ = π−ζ,εḡ,
and so

〈πζ,ε(x)f, πζ,ε(x)g〉 = (πζ,ε(x)f, π−ζ,ε(x)ḡ) = (f, ḡ) = 〈f, g〉 ,

and each πζ,ε(x) is unitary. �

This Hilbert space may be identified with the standard L2 space on the unit
circle or on the line {(1, t) : t ∈ R}. We may show similarly that the represen-
tations πζ,ε act isometrically on Lp spaces when p(Re ζ − 1

2
) = 1; see [1] for the

details.

Lemma 3.4. Suppose that f and g are continuous on R2 \ {(0, 0)} and satisfy
the homogeneity condition (3.1), where −1

2
< Re ζ < 0. Then∫

R

∫
R
f(1, t) g(1, u) sgnε(u− t) |u− t|−1−2ζ dt du (3.7)

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) g(cosϕ, sinϕ) sgnε(sin(ϕ− θ)) |sin(ϕ− θ)|−1−2ζ dϕ dθ.

If moreover f and g satisfy the parity condition (3.2), then these double integrals
are both equal to

1

4

∫ π

−π

∫ π

−π
f(cos θ, sin θ) g(cosϕ, sinϕ) sgnε(sin(ϕ− θ)) |sin(ϕ− θ)|−1−2ζ dϕ dθ.

For f, g ∈ Vζ,ε, write (Iζ,εf, g) for any of the three double integrals above. Then

(Iζ,επζ,ε(x)f, πζ,ε(x)g) = (Iζ,εf, g) ∀x ∈ G. (3.8)

Proof. Since

(tan θ − tanϕ) cos θ cosϕ = sin(θ − ϕ),

we see that sgn(tanϕ − tan θ) = sgn(sin(ϕ − θ)) when θ, ϕ ∈ (−π/2, π/2), and
hence∫

R

∫
R
f(1, t) g(1, u) sgnε(u− t) |u− t|−1−2ζ dt du

=

∫ π/2

−π/2

∫ π/2

−π/2
f(1, tan θ) g(1, tanϕ)

sgnε(tanϕ− tan θ) |tanϕ− tan θ|−1−2ζ sec2 θ sec2 ϕdθ dϕ

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) g(cosϕ, sinϕ)

sgnε(tanϕ− tan θ) |tanϕ− tan θ|−1−2ζ sec1+2ζ θ sec1+2ζ ϕdθ dϕ

=

∫ π/2

−π/2

∫ π/2

−π/2
f(cos θ, sin θ) g(cosϕ, sinϕ)

sgnε(sin(ϕ− θ)) |sin(θ − ϕ)|−1−2ζ dθ dϕ;
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all integrals converge absolutely. If moreover f and g both satisfy the parity
condition, the last integral is equal to

1

4

∫ π

−π

∫ π

−π
f(cos θ, sin θ) g(cosϕ, sinϕ)

sgnε(sin(ϕ− θ)) |sin(θ − ϕ)|−1−2ζ dθ dϕ

for reasons of parity. We write any of the three double integrals above as (Iζ,εf, g);
at this stage, Iζ,εf is given by various single integrals and may be a measurable
function or a distribution.

Now, as in the definition of the pairing, we may show that for f, g ∈ Vζ,ε,

(Iζ,επζ,ε(x)f, πζ,ε(x)g) = (Iζ,εf, g) ∀x ∈ G,

by considering the last integral when x ∈ K and the first when x ∈ N̄A, and
using the Iwasawa decomposition. We are going to prove a similar result later for
x ∈ N̄A, and omit the details here. �

Lemma 3.5. Suppose that −1
2
< Re ζ < 0, ε ∈ {0, 1}, and µ ∈ Z. Then

Iζ,εfζ,µ = b(ζ, µ)f−ζ,µ ,where b(ζ, µ) = σ(µ, ε) 21+2ζ π
Γ(−2ζ)

Γ(1
2
− ζ + µ

2
) Γ(1

2
− ζ − µ

2
)
;

here σ(µ, ε) = (1− ε) cos(µπ/2)+ iε sin(µπ/2). Further, Iζ,ε maps Vζ,ε bijectively
and bicontinuously onto V−ζ,ε, and

Iζ,επζ,ε(x) = π−ζ,εIζ,ε(x) ∀x ∈ G. (3.9)

Proof. We consider the formulae of the previous lemma in more depth. We ob-
serve that

(Iζ,εfζ,µ, fζ,ν) = (Iζ,επζ,ε(kθ)fζ,µ, πζ,ε(kθ)fζ,ν) = ei(µ+ν)θ(Iζ,εfζ,µ, fζ,ν),

and hence this is 0 unless µ+ ν = 0. Thus Iζ,εfζ,µ, which a fortiori is an element
of the dual space of Vζ,ε and so a distribution, is actually a multiple of f−ζ,µ and
hence a smooth function. The multiple b(ζ, µ) is equal to (Iζ,εfζ,µ, fζ,−µ), that is,

1

4π

∫ π

−π

∫ π

−π
eiµθe−iµϕ sgnε(sin(ϕ− θ)) |sin(ϕ− θ)|−1−2ζ dθ dϕ

=
1

2

∫ π

−π
e−iµψ sgnε(sinψ) |sin(ψ)|−1−2ζ dψ

= σ(µ, ε) 21+2ζπ
Γ(−2ζ)

Γ(1
2
− ζ + µ

2
) Γ(1

2
− ζ − µ

2
)
,

from Lemma 2.4.
For a fixed ζ such that −1

2
< Re ζ < 0, the constant bζ,µ does not vanish,

and for a fixed ζ, both the constant and its inverse grow at most polynomially
in µ as µ tends to infinity. In light of Lemma 3.1, the linear map Iζ,ε takes Vζ,ε
bijectively and bicontinuously onto V−ζ,ε. Now (3.9) follows from (3.8) and a
duality argument, as in the proof of Lemma 3.2. �
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We now normalise the intertwining operators, following Kunze and Stein. From
[13, p. 173] or [31, p. 160], we know that

F(sgnε(·) |·|−1−2ζ) = c(ζ, ε) sgnε(·) |·|2ζ ,
where

c(ζ, ε) = iεπ1/22−2ζ Γ( ε
2
− ζ)

Γ(1
2

+ ε
2

+ ζ)
; (3.10)

we define

Jζ,ε =
1

c(ζ, ε)
Iζ,ε.

Lemma 3.6. Suppose that −1
2
< Re ζ < 0 and ε ∈ {0, 1}. Then the following

hold:

(i) Jζ,ε maps Vζ,ε bijectively and bicontinuously onto V−ζ,ε;
(ii) Jζ,εfζ,µ = d(ζ, ε, µ)f−ζ,µ, where

d(ζ, ε, µ) = 22ζ Γ(1
2

+ ζ + µ
2
)

Γ(1
2
− ζ + µ

2
)
;

(iii) Jζ,επζ,ε(x) = π−ζ,ε(x)Jζ,ε for all x ∈ G;
(iv) the map ζ 7→ Jζ,ε extends analytically to the set {ζ ∈ C : −1

2
< Re ζ < 1

2
},

and (i) to (iii) continue to hold for these ζ. Further, J−ζ,εJζ,ε is the identity
map.

Proof. Parts (i) and (iii) follow from the previous lemma and the definition of
Jζ,ε.

Next, from Lemma 3.5, the definition of c(ζ, ε), the duplication formula (2.5),
and the reflection formula (2.4), applied twice, Jζ,εfζ,µ is equal to d(ζ, ε, µ)f−ζ,µ,
where

d(ζ, ε, µ) =
b(ζ, µ)

c(ζ, ε)

= (−i)εσ(µ, ε) 21+4ζ π1/2 Γ(−2ζ) Γ(1
2

+ ε
2

+ ζ)

Γ(1
2
− ζ + µ

2
) Γ(1

2
− ζ − µ

2
) Γ( ε

2
− ζ)

= σ̃(µ, ε) 22ζ Γ(−ζ) Γ(1
2
− ζ) Γ(1

2
+ ε

2
+ ζ)

Γ(1
2
− ζ + µ

2
) Γ(1

2
− ζ − µ

2
) Γ( ε

2
− ζ)

= σ̃(µ, ε) 22ζ Γ(1
2
− ε

2
− ζ) Γ(1

2
+ ε

2
+ ζ)

Γ(1
2
− ζ + µ

2
) Γ(1

2
− ζ − µ

2
)

= σ̃(µ, ε) 22ζ Γ(1
2

+ ζ + µ
2
) sin(π(1

2
− ζ − µ

2
))

Γ(1
2
− ζ + µ

2
) sin(π(1

2
− ε

2
− ζ))

,

where σ̃(µ, ε) = (1− ε) cos(µπ/2)+ ε sin(µπ/2). Unravelling this expression, first
when ε = 0 and then when ε = 1, shows that

d(ζ, ε, µ) = 22ζ Γ(1
2

+ ζ + µ
2
)

Γ(1
2
− ζ + µ

2
)
,

as claimed. �
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Finally we are ready to introduce the generalised spherical functions. Given
integers µ, ν in 2Z + ε, we define

ϕµ,νζ,ε (x) = (πζ,ε(x)fζ,µ, f−ζ,−ν) ∀x ∈ G, (3.11)

where fζ,µ are the functions defined in equation (3.4).

We recall that ϕ0,0
ζ,0 is the well-known bi-K–invariant spherical function, whose

norm was computed in [30], while the generalised spherical functions ϕµ,νζ,ε were
considered by Ehrenpreis and Mautner. We are going to estimate the norm of all
the ϕµ,νζ,ε ; in the particular case where ε = µ = ν = 0, our result agrees with [30].

We begin with some identities for the spherical functions. First,

(ϕµ,νζ,ε )¯ = ϕ−µ,−ν
ζ̄,ε

;

this is proved by taking the complex conjugate of the definition. Next,

(ϕµ,νζ,ε )ˇ(x) = (πζ,ε(x
−1)fζ,µ, f−ζ,−ν)

= (fζ,µ, π−ζ,ε(x)f−ζ,−ν)

= ϕ−ν,−µ−ζ,ε (x)

for all x ∈ G. Finally, if −1
2
< Re ζ < 1

2
, then

(πζ,ε(x)fζ,µ, f−ζ,−ν) = d(−ζ, ε, µ)−1(πζ,ε(x)J−ζ,εf−ζ,µ, f−ζ,−ν)

= d(−ζ, ε, µ)−1(J−ζ,επ−ζ,ε(x)f−ζ,µ, f−ζ,−ν)

= d(−ζ, ε, µ)−1(−1)ε(π−ζ,ε(x)f−ζ,µ, J−ζ,εf−ζ,−ν)

= (−1)ε
d(−ζ, ε, ν)
d(−ζ, ε, µ)

(π−ζ,ε(x)f−ζ,µ, fζ,−ν)

=
d(ζ, ε, µ)

d(ζ, ε, ν)
(π−ζ,ε(x)f−ζ,µ, fζ,−ν),

(3.12)

from (2.8). In particular, it follows that ϕµ,µ−ζ,ε = ϕµ,µζ,ε .
In light of Corollary 2.3, these identities lead to some norm equalities for the

uniformly bounded multiplier norms of the generalised spherical functions.

4. Proof of Main Theorem

In this section, we estimate the completely bounded multiplier norms of the
spherical functions ϕµ,νζ,ε , and prove the Main Theorem. The proof requires a num-
ber of steps that we separate out as lemmata, and other steps that are included
in the text as explanation.

Throughout this section, we write ζ = ξ + iη, where ξ, η ∈ R.
First of all, we may restrict to the case where −1

2
< ξ < 0. Indeed, if ξ = 0,

then the generalised spherical functions are matrix coefficients of unitary repre-
sentations and have B(G) norm equal to 1; a fortiori,

∥∥ϕµ,νζ,ε ∥∥cb
≤ 1. Next, if

Re ζ > 0, then (3.12) shows that ϕµ,νζ,ε is a multiple of (ϕµ,ν−ζ,ε), and Re(−ζ) < 0;
the result that we shall prove for the case where Re ζ < 0 will allow us to treat
the general case.
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Next, note that

ϕµ,νζ,ε (kθxkψ) = eiνθ eiµψ ϕµ,νζ,ε (x) ∀x ∈ G ∀θ, ψ ∈ R,

therefore, by Proposition 2.2,∥∥ϕµ,νζ,ε ∥∥cb
=
∥∥ϕµ,νζ,ε |N̄A∥∥B.

To find the B(N̄A) norm, we are going to work on N̄A, and this involves
working with the noncompact version of the representations and the intertwining
operators. We write πR

ζ,ε for the representation πζ,ε acting on functions on R, as in

(3.3). Given a function f on R2 \{(0, 0)}, we write fR for the associated function
on R, that is, fR(t) = f(1, t) for all t ∈ R. We write (·, ·)R for the standard
pairing for functions on R:

(f, g)R =

∫
R
f(t) g(t) dt;

then for functions f and g on R2 \ {(0, 0)}, it follows that

(f, g) = (fR, gR)R.

Finally, we write JR
ζ,ε for the convolution operator on functions on R corresponding

to Fourier multiplication by sgnε(·) |·|2ζ ; these are convolutions with kernels that
are homogeneous of degree−1−2ζ. The transpose of the operator JR

ζ,ε is (−1)εJR
ζ,ε,

for parity reasons.
Consistently with this notation, JR

ζ/2,ε denotes the convolution operator on func-

tions on R corresponding to Fourier multiplication by sgnε(·) |·|ζ . Consideration
of the associated Fourier multipliers shows that

(JR
ζ/2,0)

2 = JR
ζ,0, JR

ζ/2,εJ
R
ζ/2,0 = JR

ζ,ε, and (JR
ζ/2,ε)

2 = JR
ζ,0.

It is now clear that (1

2
(1− i)

(
JR
ζ/2,0 + iJR

ζ/2,ε

))2

= JR
ζ,ε,

so 1
2
(1 − i)

(
JR
ζ/2,0 + iJR

ζ/2,ε

)
is a square root of JR

ζ,ε, which we write Rζ/2,ε; its

transpose, written Sζ/2,ε, is the operator 1
2
(1 − i)

(
JR
ζ/2,0 + (−1)εiJR

ζ/2,ε

)
, which is

a square root of the transpose of JR
ζ,ε.

Lemma 4.1. Suppose that ε ∈ {0, 1} and that −1
2
< ξ < 0. Then

JR
ζ/2,επ

R
ζ,ε(x) = πR

0,ε(x)J
R
ζ/2,ε and Rζ/2,επ

R
ζ,ε(x) = πR

0,ε(x)Rζ/2,ε

for all x ∈ N̄A.

Proof. As Rζ/2,ε is a linear combination of JR
ζ/2,0 and JR

ζ/2,ε, it suffices to show
that both these operators have the desired intertwining property.

Consider equation (3.3). If x ∈ N̄ , then πR
ζ,ε(x) acts on functions on R by

translation, irrespective of the values of ζ and ε; translation commutes with
convolution, so what we need to prove is evident.
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Assume now that x = as ∈ A. Then

JR
ζ/2,επ

R
ζ,ε(x)f(s2u) =

1

c(ζ/2, ε)

∫
R

∣∣s2u− t
∣∣−1−ζ

sgnε(s2u− t)πR
ζ,ε/2(x)f(t) dt

=
1

c(ζ/2, ε)

∫
R

∣∣s2u− t
∣∣−1−ζ

sgnε(s2u− t) s2ζ−1f(s−2t) dt

=
s2ζ+1

c(ζ ′2, ε)

∫
R

∣∣s2u− s2t
∣∣−1−ζ

sgnε(s2u− s2t) f(t) dt

=
s−1

c(ζ/2, ε)

∫
R
|u− t|−1−ζ sgnε(u− t) f(t) dt

= s−1Jζ/2,εf(u),

whence

JR
ζ/2,επ

R
ζ,ε(x)f(u) = πR

0,ε(x)J
R
ζ/2,εf(u) ∀u ∈ R.

Since the desired result holds when x ∈ N̄ and when x ∈ A, it holds for all
x ∈ N̄A. �

Note that∥∥Rζ/2,εf
∥∥

2
=

1

(2π)1/2

∥∥(Rζ/2,εf)ˆ
∥∥

2
=

1

(2π)1/2

∥∥|·|ξ f̂∥∥
2

=
∥∥JR

ξ/2,0f
∥∥

2

and ∥∥Sζ/2,εf∥∥2
=

1

(2π)1/2

∥∥(Sζ/2,εf)ˆ
∥∥

2
=

1

(2π)1/2

∥∥|·|ξ f̂∥∥
2

=
∥∥JR

ξ/2,0f
∥∥

2

for all functions f on R for which the last term is finite, by the Plancherel theorem;
here

∥∥·∥∥
2

indicates the standard L2(R) norm.

For all x ∈ N̄A,

ϕµ,νζ,ε (x) = (πζ,ε(x)fζ,µ, f−ζ,−ν)

= d(ζ, ε,−ν)−1(πζ,ε(x)fζ,µ, Jζ,εfζ,−ν)

= d(ζ, ε,−ν)−1(−1)ε(Jζ,επζ,ε(x)fζ,µ, fζ,−ν)

= d(ζ, ε,−ν)−1(−1)ε(Rζ/2,εRζ/2,επ
R
ζ,ε(x)f

R
ζ,µ, f

R
ζ,−ν)R

= d(ζ, ε,−ν)−1(−1)ε(πR
0,ε(x)Rζ/2,εf

R
ζ,µ, Sζ/2,εf

R
ζ,−ν)R.

(4.1)

Now πR
0,ε is a unitary representation on L2(R), and so∥∥ϕµ,νζ,ε ∥∥cb

≤ |d(ζ, ε,−ν)|−1
∥∥Rζ/2,εf

R
ζ,µ

∥∥
2

∥∥Sζ/2,εfR
ζ,−ν
∥∥

2

= |d(ζ, ε,−ν)|−1
∥∥JR

ξ/2,0f
R
ζ,µ

∥∥
2

∥∥JR
ξ/2,0f

R
ζ,−ν
∥∥

2
.

(4.2)

When µ = ν, more may be said. More precisely, from the observation following
(3.5), f̂ R

ζ,µ =
(
f̂ R
ζ,−µ
)
ˇ, so∣∣F(Rζ/2,ε f

R
ζ,µ

)∣∣ =
∣∣(F(Sζ/2,εfR

ζ,−µ
))

ˇ
∣∣.
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Hence from (4.1) and (2.1),∥∥ϕµ,νζ,ε ∥∥cb
=
∥∥ϕµ,νζ,ε ∣∣N̄A∥∥B(N̄A)

≥
∥∥ϕµ,νζ,ε ∣∣N̄∥∥A(N̄)

=
∥∥F(ϕµ,νζ,ε

∣∣
N̄

)
∥∥

1
= |d(ζ, ε,−ν)|−1

∥∥JR
ξ/2,0f

R
ζ,µ

∥∥
2

∥∥JR
ξ/2,0f

R
ζ,−ν
∥∥

2
,

and equality holds in (4.2).
The proof of the theorem now hinges on the estimation of these norms, which

is the subject of the next lemma. First, by considering conjugation and reflection,
we see that ∥∥JR

ξ/2,0f
R
ζ,ν

∥∥
2

=
∥∥JR

ξ/2,0f
R
ζ,−ν
∥∥

2
=
∥∥JR

ξ/2,0f
R
ζ̄,ν

∥∥
2
.

Lemma 4.2. Suppose that −1
2
< ξ < 0 and µ is an integer. Then JR

ξ/2,0f
R
ζ,µ is in

L2(R) and
∥∥JR

ξ/2,0f
R
ζ,µ

∥∥2

2
is equal to

22ξ Re

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)
(1 + i tan(πξ) tanh(πη))

)
when µ is even, and to

22ξ Re

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)
(1 + i tan(πξ) coth(πη))

)
when µ is odd.

Proof. By the Plancherel formula, setting t = tan θ, u = tanϕ, and changing
variables as in (3.8), we obtain∥∥JR

ξ/2,0f
R
ζ,µ

∥∥2

2
=
〈
JR
ξ/2,0f

R
ζ,µ, J

R
ξ/2,0f

R
ζ,µ

〉
=
〈
JR
ξ,0f

R
ζ,µ, f

R
ζ,µ

〉
= (JR

ξ,0f
R
ζ,µ, f̄

R
ζ,µ)R

=
1

c(ξ, 0)
(IR
ξ,0f

R
ζ,µ, f

R
ζ̄,−µ)R

=
1

c(ξ, 0)

∫
R

∫
R
fζ,µ(1, t) fζ̄,−µ(1, u) |t− u|−2ξ−1 dt du

=
1

π c(ξ, 0)

∫ π/2

−π/2

∫ π/2

−π/2
eiµ(θ−φ)

( 1 + tan2 θ

1 + tan2 φ

)iη
|cosec(θ − φ)|1+2ξ dθ dφ;

the inner product here is the L2 inner product on functions on R.
Define the functions mε,µ,η and hξ on the unit circle by the formulae.

mε,µ,η(cos θ, sin θ) = sgnε(cos θ) eiµθ |cos θ|−2iη

hξ(cos θ, sin θ) = |cosec θ|1+2ξ ,

where θ ∈ R. Then mε,µ,η and hξ are π-periodic, so that∥∥JR
ξ/2,0f

R
ζ,µ

∥∥2

2
=

1

4π c(ξ, 0)

∫ π

−π

∫ π

−π
mε,µ,η(θ)hξ(θ − φ) m̄ε,µ,η(φ) dφ dθ,
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and the last double integral may be interpreted as the inner product on the circle
between the functions mε,µ,η and hξ ∗mε,µ,η. Therefore, by the Parseval identity,

∥∥JR
ξ/2,0f

R
ζ,µ

∥∥2

2
=

π

c(ξ, 0)

∑
κ∈Z

|m̃ε,µ,η(κ)|2 h̃ξ(κ),

where the tilde indicates the Fourier coefficients, which we now compute.
By Lemma 2.4,

h̃ξ(κ) =
1

2π

∫ π

−π
|sin θ|−2ξ−1 e−iκθ dθ

=
1

π

∫ π

0

| sin(θ)|−2ξ−1 cos(κθ) dθ

= 21+2ξ cos(κπ/2)
Γ(−2ξ)

Γ(1
2
− ξ + κ

2
) Γ(1

2
− ξ − κ

2
)
,

which is 0 unless κ is even; we assume this for the rest of this computation. Thus
from the duplication formula (2.5) and the reflection formula (2.4), applied twice,

h̃ξ(κ) = cos(κπ/2)π−1/2 Γ(−ξ) Γ(1
2
− ξ)

Γ(1
2
− ξ + κ

2
) Γ(1

2
− ξ − κ

2
)

= cos(κπ/2)π−1/2 Γ(−ξ)
Γ(1

2
− ξ + κ

2
)

Γ(1
2
− ξ)

Γ(1
2
− ξ − κ

2
)

= cos(κπ/2)π−1/2 Γ(−ξ)
Γ(1

2
− ξ + κ

2
)

sin(π(1
2

+ ξ + κ
2
)) Γ(1

2
+ ξ + κ

2
)

sin(π(1
2

+ ξ)) Γ(1
2

+ ξ)

= cos2(κπ/2)π−1/2 Γ(−ξ)
Γ(1

2
+ ξ)

Γ(1
2

+ ξ + κ
2
)

Γ(1
2
− ξ + κ

2
)
.

It is enough to evaluate m̃ε,µ,η(κ) when κ is even. The case where η = 0 is
easier, and we suppose that η 6= 0. By parity, a change of variable, formula (2.10),
and the evenness of ε+ µ and of κ,
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m̃ε,µ,η(κ) =
1

2π

∫ π

−π
|cos θ|−2iη e−i(κ−µ)θ sgnε(cos θ) dθ

=
1

π

∫ π

0

|cos θ|−2iη cos((κ− µ)θ) sgnε(cos θ) dθ

=
1

π

∫ π/2

0

|cos θ|−2iη cos((κ− µ)θ) dθ

+
(−1)ε

π

∫ π

π/2

|cos θ|−2iη cos((κ− µ)θ) dθ

=
1

π

∫ π/2

0

|cos θ|−2iη cos((κ− µ)θ) dθ

+
(−1)ε

π

∫ π/2

0

|cos(π − θ)|−2iη cos((κ− µ)(π − θ)) dθ

=
1

π

∫ π/2

0

|cos θ|−2iη cos((κ− µ)θ) dθ

+
(−1)ε cos((κ− µ)π)

π

∫ π/2

0

|cos θ|−2iη cos((κ− µ)θ) dθ

=
2

π

∫ π/2

0

|cos θ|−2iη cos((κ− µ)θ) dθ

= 22iη Γ(1− 2iη)

Γ(1− iη + κ
2
− µ

2
) Γ(1− iη − κ

2
+ µ

2
)
.

We now apply the duplication formula (2.5) to the gamma function in the numer-
ator, and the reflection formula (2.4) to a gamma function in the denominator to
deduce that

m̃ε,µ,η(κ) = π−3/2 Γ(1
2
− iη) Γ(1− iη) Γ(iη + κ

2
− µ

2
)

Γ(1− iη + κ
2
− µ

2
)

sin(π(iη +
κ

2
− µ

2
)) .

Note that, since Γ(z̄) = Γ̄(z), by the reflection formula,∣∣∣∣Γ(
1

2
− iη)

∣∣∣∣2 = Γ(
1

2
− iη) Γ(

1

2
+ iη) = Γ(1− 1

2
− iη) Γ(

1

2
+ iη) =

π

sin(π(1
2

+ iη))
,

and similarly

|Γ(1− iη)|2 = iη Γ(iη) Γ(1− iη) =
iηπ

sin(π(iη))
,

while ∣∣∣∣ Γ(iη + κ
2
− µ

2
)

Γ(1− iη + κ
2
− µ

2
)

∣∣∣∣2 =

∣∣∣∣ Γ(iη + κ
2
− µ

2
)

Γ(1 + iη + κ
2
− µ

2
)

∣∣∣∣2 =
1

η2 +
(
κ
2
− µ

2

)2 .
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Thus

|m̃ε,µ,η(κ)|2 =
1

π

∣∣sin(π(iη − µ
2
))
∣∣2

sinh(πη) cosh(πη)

η

η2 +
(
κ
2
− µ

2

)2
=

1

π
γ(η, µ)

η

η2 +
(
κ
2
− µ

2

)2 ,
say.

Hence when η 6= 0,∥∥JR
ξ/2,0f

R
ζ,µ

∥∥2

2
=

22ξ

π
γ(η, µ)

∑
κ∈Z

η

η2 + (κ−µ)2

4

cos2(κπ/2)
Γ(1

2
+ ξ + κ

2
)

Γ(1
2
− ξ + κ

2
)

=
22ξ

π
γ(η, µ)

∑
κ∈Z

η

η2 + (κ− µ
2
)2

Γ(1
2

+ ξ + κ)

Γ(1
2
− ξ + κ)

.

To evaluate the sum, we note that

η

(κ− µ
2
)2 + η2

= − Im

(
Γ(iη + κ− µ

2
)

Γ(1 + iη + κ− µ
2
)

)
,

and apply Dougall’s formula (2.7) and then the reflection formula (2.4) to deduce
that∥∥JR

ξ/2,0f
R
ζ,µ

∥∥2

2
= −22ξ

π
γ(η, µ) Im

(∑
κ∈Z

Γ(1
2

+ ξ + κ)

Γ(1
2
− ξ + κ)

Γ(iη + κ− µ
2
)

Γ(1 + iη + κ− µ
2
)

)

= −22ξ π γ(η, µ) Im

(
cosec(π(1

2
+ ξ)) cosec(π(iη − µ

2
))

Γ(1
2
− ξ + iη − µ

2
) Γ(1

2
− ξ − iη + µ

2
)

)
= −22ξ γ(η, µ) Im

(
Γ(1

2
+ ζ̄ + µ

2
) sin(π(1

2
+ ζ̄ + µ

2
))

Γ(1
2
− ζ + µ

2
) sin(π(iη − µ

2
)) cos(πξ)

)
= −22ξ

∣∣sin(π(iη − µ
2
))
∣∣2

sinh(πη) cosh(πη)
Im

(
Γ(1

2
+ ζ̄ + µ

2
) cos(π(ζ̄ + µ

2
))

Γ(1
2
− ζ + µ

2
) sin(π(iη − µ

2
)) cos(πξ)

)
= 22ξ Im

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)

sin(π(iη + µ
2
)) cos(π(ζ̄ + µ

2
))

sinh(πη) cosh(πη) cos(πξ)

)
,

which is equal to

22ξ Re

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)
(1 + i tan(πξ) tanh(πη))

)
when µ is even, and to

22ξ Re

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)
(1 + i tan(πξ) coth(πη))

)
(4.3)

when µ is odd. �
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We now have all the ingredients to prove the theorem. We first consider the
case where ε = 0. Observe that∥∥JR

ξ/2,0f
R
ζ,µ

∥∥2

2
=

∣∣∣∣22ξ Re

(
Γ(1

2
+ ζ̄ + µ

2
)

Γ(1
2
− ζ + µ

2
)
(1 + i tan(πξ) tanh(πη))

)∣∣∣∣
≤ 22ξ

∣∣∣∣Γ(1
2

+ ζ̄ + µ
2
)

Γ(1
2
− ζ + µ

2
)

∣∣∣∣ |1 + i tan(πξ) tanh(πη)|

≤ 22ξ sec(πξ)

∣∣∣∣Γ(1
2

+ ζ + µ
2
)

Γ(1
2
− ζ + µ

2
)

∣∣∣∣ .
Hence from (4.2) and (2.8),

∥∥ϕµ,νζ,ε ∥∥cb
≤ sec(πξ)

∣∣∣∣Γ(1
2

+ ν
2
− ζ)

Γ(1
2

+ ν
2

+ ζ)

∣∣∣∣1/2 ∣∣∣∣Γ(1
2

+ µ
2

+ ζ)

Γ(1
2

+ µ
2
− ζ)

∣∣∣∣1/2 . (4.4)

When µ = ν, the two ratios of gamma functions cancel, and we obtain the
estimate ∥∥ϕµ,νζ,ε ∥∥cb

≤ sec(πξ),

which is very similar to Steenstrup’s estimate [30]. In general, from (2.9), we may
write ∥∥ϕµ,νζ,ε ∥∥cb

≤ Cξ0

( |µ|+ 1

|ν|+ 1

)ξ
,

uniformly for ζ such that |Re ζ| ≤ ξ0 <
1
2
. In particular, we can bound the norms

of the spherical functions uniformly when ξ > 0 and |µ| ≤ |ν| and when ξ < 0
and |µ| ≥ |ν|.

Now we consider the case where ε = 1. In this case, a similar argument shows
that ∥∥ϕµ,νζ,ε ∥∥cb

≤ sec(πξ) coth(πη)

∣∣∣∣Γ(1
2

+ ν
2
− ζ)

Γ(1
2

+ ν
2

+ ζ)

∣∣∣∣1/2 ∣∣∣∣Γ(1
2

+ µ
2

+ ζ)

Γ(1
2

+ µ
2
− ζ)

∣∣∣∣1/2 . (4.5)

Again when µ = ν, there is cancellation of the gamma factors. The difficulty is
that the hyperbolic cotangent becomes infinite as η → 0. We can show that the
limit as η approaches 0 of the expression (4.3) is finite, but we have not computed
it exactly. Consequently, we may again assert that

sup
η∈R

∥∥ϕµ,νζ,ε ∥∥cb
<∞

for all µ and η, which again suggests that a sharper inequality for the norm should
exist.
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4. M. Bożejko and G. Fendler, Herz–Schur multipliers and uniformly bounded representations
of discrete groups, Arch. Math. 57 (1991) 290–298.

5. M. Cowling and U. Haagerup, Completely bounded multipliers of the Fourier algebra of a
simple Lie group of real rank one, Invent. Math. 96 (1989), 507–549.

6. J. De Cannière and U. Haagerup, Multipliers of the Fourier algebras of some simple Lie
groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 3, 455–500.

7. J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci.
Math. Szeged 12 (1950), Leopoldo Fejér et Frederico Riesz LXX annos natis dedicatus,
Pars A, 213–227.

8. L. Ehrenpreis and F. Mautner, Uniformly bounded representations of groups, Proc. Nat.
Acad. Sci. USA 41 (1955), 231–233.

9. L. Ehrenpreis and F. Mautner, Some properties of the Fourier transform on semi-simple
Lie groups. I, Annals of Math. (2) 61 (1955), 406–439.
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11. P. Eymard, L’algèbre de Fourier d’un groupe localement compact, (French) Bull. Soc. Math.
France 92 (1964), 181–236.
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R. Acad. Sci. Paris 260 (1965), 5997–6000.

1 Dipartimento di Matematica, via Dodecaneso 35, Università di Genova, 16146
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