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Bounded cohomology via partial differential equations, I

TOBIAS HARTNICK
ANDREAS OTT

We present a new technique that employs partial differential equations in order
to explicitly construct primitives in the continuous bounded cohomology of Lie
groups. As an application, we prove a vanishing theorem for the continuous bounded
cohomology of SL(2,R) in degree 4, establishing a special case of a conjecture of
Monod.

20J06; 22E41, 35F35

1 Introduction

Ever since Gromov’s seminal paper [24], bounded cohomology of discrete groups has
proved a useful tool in geometry, topology and group theory. In recent years the scope
of bounded cohomology has widened considerably. An important step was taken by
Burger and Monod [13] and Monod [37], who extended the theory to the category
of locally compact second countable groups under the name of continuous bounded
cohomology. Not only did this lead to a breakthrough in the understanding of bounded
cohomology of lattices in Lie groups [13], but also triggered a series of discoveries
in rigidity theory (eg Burger, Monod and lozzi [14], Burger and lozzi [8; 9], Bucher,
Burger and lozzi [6], Monod and Shalom [41; 42] Chatterji, Fernds and lozzi [17] and
Hamenstadt [25; 26]), higher Teichmiiller theory (eg Burger, lozzi and Wienhard [10;
11; 12] and Ben Simon, Burger, Hartnick, lozzi and Wienhard [1]) and symplectic
geometry (eg Polterovich [44] and Entov and Polterovich [19]). At the same time,
our understanding of the second bounded cohomology has improved. In particular,
the approach originally developed for surface groups by Brooks [4], free groups by
Grigorchuk [23] and hyperbolic groups by Epstein and Fujiwara [20] has been extended
to larger classes of groups including mapping class groups by Bestvina and Fujiwara [2]
and acylindrically hyperbolic groups by Hull and Osin [29] and Fujiwara, Bestvina
and Bromberg [21]. Moreover, there has been some progress in constructing bounded
cohomology classes in higher degree due to Mineyev [36], Hartnick and Ott [27],
Bucher and Monod [7] and Goncharov [22].
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On the other hand, our knowledge on vanishing results for bounded cohomology in
higher degree is still very poor. It was already known to Johnson [31] that the bounded
cohomology of an amenable group vanishes in all positive degrees. Here the primitive
of a given cocycle is obtained by applying an invariant mean. In contrast, for non-
amenable groups no general technique for constructing primitives is available so far.
In particular, there is not a single non-amenable group whose bounded cohomology
is known in all degrees. Actually, the situation is even worse. One may define the
bounded cohomological dimension of a group I' to be

bed(T') := sup{n | Hy(T:R) # 0},

where H'(I';R) is the n'™ bounded cohomology of I" with coefficients in the trivial
module R. At present we do not even know whether there exists any group I" with
bed(T) € {0, oo}.

The few vanishing results we have for the bounded cohomology of non-amenable
groups are all based on the vanishing of all cocycles in the respective degree in some
resolution. The most far-reaching results in this direction were achieved by Monod [39]
by choosing efficient resolutions. However, no such resolutions are known for dealing
with the continuous bounded cohomology HJ (H:R) of non-amenable connected Lie
groups H . For such groups the most efficient resolution that is presently available is
the boundary resolution of Ivanov [30] and Burger and Monod [13]. In this particular
resolution cocycles vanish only in degree at most 3; in degree greater than 3 there will
inevitably be nonzero cocycles and one faces the problem of finding primitives. This
explains why the few existing vanishing results such as in [13; 15] do not go beyond
degree 3.

Our goal in this article is to develop a new approach to the construction of primitives
in continuous bounded cohomology for real semisimple Lie groups. To demonstrate its
effectiveness we settle the following special case of a conjecture due to Monod [38,
Problem A]J:

Theorem 1.1 Let G be a connected real Lie group that is locally isomorphic to
SL,(R). Then

H3(G:R) =0.

Actually, for such G, Monod conjectured that bed(G) = 2, ie that H} (G;R) = 0 for
all n > 2. In degree n = 3 there are no nonzero cocycles in the boundary resolution at
all — see Burger and Monod [15] — but this is no longer true for » > 3. In this sense,
Theorem 1.1 is the prototype of a vanishing theorem that requires the construction
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of primitives. We believe that our method of proof generalizes to arbitrary n > 3 nd
possibly to other Lie groups. This will be addressed in future work.

Monod’s conjecture about the bounded cohomology of SL,(R) is a special case of a
more general conjecture, which would allow one to compute the continuous bounded
cohomology of arbitrary connected Lie groups. In fact, since continuous bounded
cohomology is invariant under division by the amenable radical [13; 37], it is sufficient
to compute the continuous bounded cohomology of semisimple Lie groups H without
compact factors and with finite center. For such groups it is conjectured — see Dupont
[18] and Monod [38] —that the natural comparison map between the continuous
bounded cohomology and the continuous cohomology is an isomorphism. This would
imply that bed(H) coincides with the dimension of the associated symmetric space,
thereby providing examples of groups of arbitrary bounded cohomological dimension.
Plenty is known by now about surjectivity of the comparison map — see Dupont [18],
Gromov [24], Bucher [5], Lafont and Schmidt [34], Goncharov [22] and Hartnick
and Ott [27] — while injectivity still remains mysterious in higher degrees. Indeed,
injectivity has so far been established only in degree 2 for arbitrary H by Burger
and Monod [13] and for some rank 1 groups in degree 3 by Burger and Monod [15],
Bloch [3] and Pieters [43]. Theorem 1.1 is the first result in degree greater than 3.
Incidentally, it has an application to the existence of solutions to perturbations of the
Spence—Abel functional equation for Rogers’ dilogarithm, along the lines suggested
in [15]. This will be discussed in our forthcoming [28].

For the proof of Theorem 1.1 we shall reformulate the problem of constructing bounded
primitives in terms of a fixed point problem for the action of G on a certain function
space. The main idea is then to describe the fixed points as solutions of a certain system
of linear first-order partial differential equations. In this way, we obtain primitives by
solving the corresponding Cauchy problem. We show that, for carefully chosen initial
conditions, particular solutions have additional discrete symmetries, which we finally
use to deduce boundedness. We will give a more detailed outline of our strategy of
proof in Section 2.7 after introducing some notation.
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2 Preliminaries on continuous bounded cohomology

2.1 The boundary action of PSL;(R)

The goal of this section is to describe a model for the continuous bounded cohomology
of SL;,(R). Since continuous bounded cohomology of connected Lie groups is invariant
under local isomorphisms by Corollary 7.5.10 of Monod [37], we have

H;,(SLy(R); R) 2 H, (PSLy(R): R) 2 H3, (PU(I, 1); R),

where the latter isomorphism is induced by the Cayley transform. We prefer to carry
out our computations in the group G := PU(1, 1). The group G acts by fractional
linear transformations on the Poincaré disc ID. We can identify G with the group
of orientation- preservmg isometries of D, Wthh is an index-2 subgroup in the full
isometry group G . The actions of G and G extend continuously to the boundary S
of I and the corresponding actions on S will be referred to as the boundary action
of G and G, respectively. The action of G on S! (but not on D) may be identified
with the action of PGU(1, 1) by fractional linear transformations. It is well known that
this action is strictly 3—transitive; see Kerby [32, Theorem 11.1].

Explicitly, elements of PGU(1, 1) can be represented by matrices of the form

_(ab
ga,b L b a ’
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where a, b € C with |a|* —|b|? € {£1}. We denote by [g, 5] the equivalence class of
the matrix g, in PGU(1,1). Given &, s, € R, we abbreviate

ke :=8eier2, 0l as 1= [geosh(—s/2)sinh(—s/) Me =&y 1140 14

We also set € :=[go,1]. Then G =G x (€), where G is given by equivalence classes
of matrices of determinant 1 and € acts on G via

6[ga,b]6_1 = [ga,g]-

Next we observe that K := {kg |§ € R}, A:={as|s € R} and N :={n; |1 € R}
are subgroups of G. Moreover, K is a maximal compact subgroup of G and A
normalizes N . In particular, P = AN is a subgroup of G, which is in fact a para-
bolic subgroup. The group K can also be described as the stabilizer of 0 under the
G-action on D and, similarly, the group P is the stabilizer of 1 for the boundary
action of G. Since N is the unipotent radical of P we have Fix(N) = {1}, whereas
Fix(A4) = {£1}. Moreover, we obtain an Iwasawa decomposition G = KAN and
every elliptic (respectively hyperbolic, parabolic) element in G is conjugate to an
element in K (respectively A, N).

Our parametrization of elements of K, 4 and N is chosen in such a way that the
maps & = kg, s = as and ¢ — n, define 1—parameter subgroups of G, ie smooth
homomorphisms R — G . (Both the homomorphisms and their images are commonly
referred to as 1—parameter subgroups. We reserve this term for the homomorphisms.)
These parametrizations are not quite standard, but turn out to be convenient for certain
computations in local coordinates; see Lemma 3.2 below.

2.2 Cocycles and strict cocycles

We keep the notation introduced in the last section and denote by g the unique
K—invariant probability measure on S!. Given n > 0, we shall write M ((S')"*1) for
the space of ,u}eg(nﬁ)—measurable real-valued functions on (S!)” and £>®((S1)") for
the subspace of bounded functions. The quotients of these spaces obtained by identify-
ing /L%(”H)—almost everywhere coinciding functions will be denoted by M ((S1)"*1)

and L®((S1)"*T1), respectively.

We define the homogeneous differential d: M((S1)* 1) — M((S1)"*2?) by

n+1
df (zo.....znr1) = Y _(=1) f(z0..... ... 2n11).
j=0
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This induces differentials on £°((S1)"), M((S')"*1) and L>®((S')"*!). Elements
in the kernels of these four differentials are referred to as strict n—cocycles, strict
bounded n—cocycles, n—cocycles and bounded n—cocycles, respectively.

The group G acts diagonally on (S!)"*! and this action commutes with the action
of the symmetric group G,4+1 by permutation of the variables. We thus obtain a
G x &4 1 —action on each of the spaces M((S1)"*1), £2((SH)"t1), M((ST)"+1)
and L°°((S )”‘H) It is immediate from the eXphClt formula that all homogeneous
differentials are G—equlvarlant in particular, the G-action maps cocycles to cocycles.
Given a subgroup H < G, an H-invariant (strict, bounded) cocycle is simply called a
(strict, bounded) H-cocycle and it is called a (strict, bounded) H—coboundary if it is
contained in the image of the H-invariants under d.

A major technical inconvenience is caused by the failure of surjectivity of the map
M(SHME — M((S")™")C, which means that a G—cocycle ¢ may not admit an in-
variant representative, ie a strict G—cocycle which coincides with ¢ almost everywhere.
Fortunately, for bounded function classes, existence of invariant representatives follows
from Monod [40, Theorem A].

Lemma 2.1 (Invariant representatives) The maps £°((S1)"T1)G — Loo((§1)n+1)G,
n > 0, are surjective. In fact, they admit a family of sections compatible with the
homogeneous differentials.

2.3 Orbitwise smooth functions

We say that a function f € M((S1)*T1) is orbitwise smooth if for each (z, ..., zp)
the map G — R given by

g = f(g'Z()?- . »g~Zn)
is smooth. We record the following basic properties of such functions for later reference:

Lemma 2.2 (i) Every smooth function is orbitwise smooth. If n < 2, then ev-
ery orbitwise smooth function in M((S1)**1) restricts to a smooth function
on (S1)+1)

(ii) Orbitwise smooth functions in M((S1)"*1) form an R -algebra.
(ii) If f e £°(S")"*1) is orbitwise smooth, then so is the function I( f) in
L>®((ShH") given by
NGz = [ Gz duk @)

(iv) Every class in L®((S")"*1)C can be represented by an orbitwise smooth
function.
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Proof The first statement of (i) follows from smoothness of the orbit map of the
diagonal G-action and the second statement follows from the fact that (S 1)(”“) isa
union of open G—orbits if n < 2. (ii) is obvious. Concerning (iii), we observe that

10)(g70r-+ g2) = / FGagc1.852.8.23) dug )

_ / d(g.11)

1 dug
Orbitwise smoothness of this function now follows from smoothness of the Radon—
Nikodym derivative (see eg Knapp [33, Proposition 8.43]). Finally, (iv) follows from
Lemma 2.1 and the observation that every constant function is smooth. a

———(2) f(z,21,22,23) dpug (2).

We emphasize that, in general, the analog of (iv) fails for classes in M ((S!)"+1),
since boundedness is essential for the construction of invariant representatives. We will
often apply Lemma 2.2 in the following form, which combines (i)—(iv) of the lemma:

Corollary 2.3 If f € L®(SYH"t1)C and h € C®((S1)¥), then the class g in
L®((SHr—*+1) given by

g(zoy s Zn_i)

::/(Sl)kh(wl,...,wk)f(wl,...,wk,zo,.. y Zp— k)d,uKk(wl,...,wk)

admits an orbitwise smooth representative.

Convention 2.4 Whenever we are given a function class f in M((S1)"*1) or
L®((S1"*1) that admits an orbitwise smooth representative, we will use the same
letter f* to denote an orbitwise smooth representative.

2.4 The boundary model for continuous bounded cohomology

A function class f € L®((S1)"T1) is called alternating provided o. f = (=1)° - f
for all 0 € &,41; we denote by L2((S )”“) < L®((S1H**1) the subspace of
alternating function classes. Since the actions of G and &,,4+1 commute, this subspace
is G-invariant. Moreover, the homogeneous differential maps alternating function
classes to alternating functions classes, whence (L3 ((S 1)**1) d) is a subcomplex of

(LS, d).

Proposition 2.5 (Boundary model [37, Theorem 7.5.3]) Given a closed subgroup
H < G, the continuous bounded cohomology of H is given by the cohomology of the
complex (L3 (SH*™HH a), ie

H! (H:R) = H*(LL(SH*T™HH d)  forall n > 0.
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2.5 Even and odd cocycles

Given f € LY ((S 1yn+1) | we denote by f* the projections of f onto the +1—
eigenspaces of €. Explicitly, we have f* = 2( fEef)and f=fT+ 7. We
say that f is even if f = fT and odd if f = f~. Since € normalizes G, the
projections f + f* preserve the subspace of G—invariants. They also commute with
homogeneous differentials, since € does. In particular, every G—invariant alternating
(strict) cocycle decomposes uniquely into a sum of a G—invariant alternating (strict)
even cocycle and a G-invariant alternating (strict) odd cocycle, and similarly for
coboundaries. On the level of cohomology this yields a decomposition

Hc.b(G; R) = Hc.b(G; R)ev SV Hc.b(G; R)odd-

The first summand H (G:R)ey can be 1dent1ﬁed with the continuous bounded coho-
mology H (G R) of the extended group G. Similarly, if we denote by R the unique
non- tr1v1al l—dlmensmnal G—module then H3 (G:R)odq = b(G R¢), whence the
above decomposition can also be written as

H3(G:R) = H3,(G:R) @ H3,(G: Ro).

In partlcular the Vamshlng of H3(G:R) is equivalent to the Vamshlng of both

b(G R) and Hc’b(G Re¢). It turns out that the vanishing of ch(G R¢) can be
deduced using only combinatorial arguments; see Proposition 2.6 below. The vanishing
of the first summand is considerably harder and its proof will occupy the rest of this
article.

Proposition 2.6 Every alternating G—invariant bounded 4—cocycle is even. In particu-
lar,
H3(G:R)osa = H3(G:Re) =0.

The proof of Proposition 2.6 will be given in Appendix A. We remind the reader that
non-zero even alternating G—invariant bounded 4—cocycles do exist; see Burger and
Monod [15].

2.6 Primitives in the boundary model

Given a bounded G—cocycle ¢ € L®((S1)*)? and any closed subgroup H C G, we
denote by
P = {peM(SHHH |dp=c}

the space of H—invariant primitives of ¢ and by

PR = {pe L=(SHH |dp = ¢}
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the subspace of bounded H—-invariant primitives. In view of Proposition 2.5, the proof
of Theorem 1.1 amounts to showing that P°°(c) # & for any bounded alternating
G—cocycle ¢ and, by Proposition 2.6, we may furthermore assume that ¢ is even. Under
this assumption we will explicitly construct elements in P°°(c)? . For this purpose,
we first define an operator

I: £2°((SH"™) - £2((sh")
by

-1 I(c)(z1,...,2zn) = /Sl c(z,z1...,zn) dug(2).

It induces an operator I: L>®((S1)"*1) — L>°((S!)"), which by abuse of notation
we denote by the same symbol. By integrating the cocycle equation dc = 0, we see
that d(I(c)) = ¢ for every cocycle c.

From now on we fix a bounded G—cocycle ¢ € L((S)%)C. For the moment we
do not need to assume that ¢ is either alternating or even. By K-invariance of the
measure (g , we see from formula (2-1) that the function /(c) is K-invariant, hence a
K-invariant primitive of c¢. It will, however, in general not be G—invariant. In order to
obtain G—invariant primitives we amend the operator I in the following way.

We denote by (S1)" c (S1)” the subset of n—tuples of pairwise distinct points in S .
Note in particular that the G—action on (S1)) is free and has two open orbits, given
by positively and negatively oriented triples. We write C®((S1)®)X for the space
of K—invariant real-valued smooth functions on (S!)(®) and consider it as a subspace
of M((S1)?). We then define an operator

(2-2) Pe: C®((SHYYK = M((SHY), [ I(e)+df.

A key observation is that all G—invariant bounded primitives of ¢ necessarily lie in the
image of the operator P.. This will allow us to express primitives in terms of smooth
(rather than measurable) solutions to differential equations.

Proposition 2.7 The image of the operator P, satisfies
Pe()% € Pe(CP((SHHE) c Pk

Proof We have already seen that I(c) € P°(c)X . We conclude that P.(f) € P(c)X
for all f € C((S")®)K . Concerning the other inclusion, we observe that, if
p € P%(c)Y is any bounded primitive of ¢, then dp = ¢ = dI(c), whence p—1I(c) is
a K-invariant cocycle. In particular, if we define f :=I(p—1(c)), then df = p—1I(c)
and thus

p=1(c)+df.
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By Lemma 2.2 the function classes p and ¢, and hence also f', can be represented by an
orbitwise smooth function. Since G—orbits are open in (S')(®), we infer that this repre-
sentative is actually smooth on (S1)3) and thus p = P.(f) € P.(C®((SH)®)K). o

2.7 Strategy of proof

We briefly outline the strategy for the proof of Theorem 1.1. We shall proceed in three
steps:

(1) In Section 3, we show that for any function f € C*°((S 1)(3))K the primitive
P.(f) is G—invariant if and only if f satisfies a certain system of linear first-
order partial differential equations.

(2) 1In Section 4, we explicitly construct solutions f of this system of differential
equations, showing that P(c)¢ # &.

(3) In Section 5, we prove that there exist particular solutions f with certain addi-
tional discrete symmetries. For such functions f we then show boundedness
of P.(f), establishing that P>®(c)¢ # &.

While the constructions in (1) and (2) work for arbitrary bounded G—cocycles c, the
construction in (3) relies on ¢ being alternating and even.

3 Partial differential equations

3.1 The boundary action in local coordinates

In order to describe the boundary action of G = PU(1, 1) explicitly, we introduce
coordinates as follows. We consider S! as a subset of C and write z € S! for a
complex number z of modulus 1. In addition, it will often be convenient to work with
the angular coordinate 6 € [0, 27r) defined by z = ¢?? . Correspondingly, on (S1)” we
will use the two sets of coordinates (zg, ..., z,—1) and (6, ...,0,_1). Note that, in
angular coordinates on S, the measure px is given by

1 2m

/S @ duk ()= ][ 1@ a0 =5 [ r@an

Convention 3.1 Throughout, all operations on angular coordinates will implicitly be

understood modulo 27 . For example, 6, — 6; denotes the unique point in the interval
[0,27) that is congruent to 6, — 6; modulo 2.
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The G-action on S'! induces a G-action on the interval [0,27) by the relation
g.¢'? = ¢8-% Note that in particular ke.0 =0 +E&.

Lemma 3.2 (Infinitesimal actions in angular coordinates) For every n € [0,27) we
have

d ) d
—(as.n) =sin(ag.n) and —(ns.n) =1—-cos(n;.n).
ds dt

Proof To prove the first formula, we compute

. h(—L¢)ei® + sinh(—L
4 (as.) = - 1. d piasd _ .1. i(c?s ( lzs)e' + sinh( fs))
ds |y—o iei® ds|s_ iel® ds Slnh(—gs)e””—}—cosh(—zs) =0

= sin(¢).

Since the map s +— ay is a 1—parameter group we further infer that

(ag(as.n)) = sin(as.n).

o=0

d
(as+o-m) = do

d d
%(as.n) = %

o=0

Likewise, for the second formula we compute

d 1 d . 1 d((1+Lir)e’®—1Lis

AR ] RS (LS T U TR
dt|,— iel® dt|,_ ieldt\ litel®+1—1it )|i=o

and conclude as above. O

3.2 Fundamental vector fields

We denote by L%), Lf:) and Lg\'}) the differential operators that appear as fundamental

vector fields for the infinitesimal action of the 1—parameter groups & = kg, s = as
and 1 — n; on (S1)® respectively. By Lemma 3.2, they are given in angular
coordinates by

n—1 9 n—1 9 n—l d
LY =3 oo L= sin6o and LY =3 (1-cos)--

Note that L%’) f is well-defined for any orbitwise smooth function f: (S!)* — R,
and similarly for L1(4n) and Lg(',). The next lemma is crucial for applications of the
operators L("), L,(:) and Lg\’;) in cohomology.

Lemma 3.3 Let L™ denote one of the operators L%’), L[(‘ln) and LX’,). Then L™
commutes with the homogeneous differential in the sense that

d"o L™ = LD 6 g™ forevery n > 0.
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Proof Let A € C®°([0,27)) and consider the differential operators

L= ZA(Q )ae

for every n > 0. For any orbitwise smooth (n—1)—cochain ¢ we compute

(@@ ) 6o . en)—Zk(G) (Z( Dl o 9"))
{
_Z( 1) ZA(@)M (Bo. ... 0p.....00)
{=0 J#L

= Z(—l)f(Lg”)q)(eo, B0
(d”(L(”’q))wo, oo 6n). o

3.3 Infinitesimal invariance of primitives

We now return to the setting of Section 2.6. In particular, ¢ € L% ((S1)%)% is a cocycle
and the operator

Pe: CO((SHY)KE Pk, [ 1) +df,

is defined as in (2-2). We will characterize G-invariance of primitives P.(f) in
terms of differential equations for the function f. First, let us define function classes
. P e L®((S1)3) by

(3-1) (6o, 01, 63) = ][ ][ cos(¢) c(n. ¢. 8o, 01, 62) dn dp
and
(3-2) " (8o, 61, 6) = ][ ][ sin() ¢(1. @. 0. 61 62) dn dg.

By Corollary 2.3 the function classes c* and ¢” admit orbitwise smooth representa-

tives. By Lemma 2.2(i) they can thus be represented by smooth functions on (S H3,

Following Convention 2.4, we denote these smooth representatives by the same letters
# b

¢ and .

The next proposition achieves the first step in the agenda outlined in Section 2.7.
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Proposition 3.4 Let f € C®((SYHCHK and ¢*, ¢ € € ((S1)?®) as above. Then
the primitive P.(f) € P(c)X is G-invariant if and only if there exist functions
of, vP e C°((S1H@) such that the triple (f, v¥ o) satisfies the system of partial
differential equations

(3-3) {ij>f =t +dot,

L§\3,)f ="+ dv’.

Note that all functions appearing in (3-3) are smooth, so all derivatives can be understood
classically. The proof of Proposition 3.4 relies on the following lemma:

Lemma 3.5 The function class 1(c) € L*®((S')*) admits an orbitwise smooth repre-
sentative that satisfies

LP1(e) = —det,

L%)I(c) = —dc",

where c# and ¢ are orbitwise smooth representatives of the function classes defined in
(3-1) and (3-2).

Proof By Corollary 2.3 the function class /(c) admits an orbitwise smooth represen-
tative. Fix an invariant representative ¢ of ¢ by Lemma 2.1. Using the A—invariance
of ¢ and Lemma 3.2, we compute

LOU) bo..... 05 =2

][ c(p,as.b,...,a5.03)do
§s=0

ds |s_
d d(as.p) .
- Oy,...,03)d
d d(as.p) .
=+ — ,00,...,03)d
do  ds S=OC(§0 0 3)dg
d . .
— fsintag) b0, ) dy
()0 s=0

— f cost@)ct.bo.....65)dy.
On the other hand, the cocycle identity
0=dc(n,¢,0,...,03)

3
=c(¢.00.....03) —c(n.00.....03) + > _(=1)/ c(n.¢.bo. ...,
j=0

>

.63
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integrates against cos ¢ to
3 . ~
0= ff cos(<p)c(<p, 90, e 93) dﬂ d(/) -0+ Z(—I)Jcﬁ(GO, e 9]', ey 93)
j=0

= ][cos((p) (@, 0. ....03)do +dc* (0. ....03).

This establishes the first identity. Likewise, to prove the second identity we compute

d i
LY U)o, ....65) = - ][c(go,nt.@o, cone03)do
t=0

— id(n,.(p)
do dt

E((ﬂ, 90, ey @3) d(p
=0

— f j—q)(l —cos(nr.9))

c(p,6,...,03)dg
=0

- f Sin(@)é(@. 6o, . ... 03) do

and then integrate the above cocycle identity against sin . a

Proof of Proposition 3.4 By Corollary 2.3, the function class

Pe(f) =1I(c) +df

admits an orbitwise smooth representative for every f € C®((S1)®)X  This repre-
sentative P.( /') is then smooth on (S'! )3 by Lemma 2.2(i), hence G—invariant if and
only if it is infinitesimally G—invariant. Since the subgroups K, A and N generate the
group G, this in turn is equivalent to P.( /') satisfying the system of partial differential

equations A
LYr.(f)=o0,

LY P(f) =0,
LG P(f)=0.

The first equation is automatically satisfied, since P.(f) is K—invariant by Proposition
2.7. Writing out the definition of P.(f) and applying Lemmas 3.3 and 3.5, the
remaining two equations are seen to be equivalent to the system

d(LY ) = dc,
d(LY ) =de.

If (3-3) admits a solution (£, v¥,v?) € C®((SH®) x C®((SH)P) x C®((SH)?®),
then we see by applying the operator d to both sides of (3-3) that f also satisfies

(3-4)
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(3-4) and thus P.(f) is G—invariant. Conversely, if P.(f) is G—invariant, then (3-4)
holds and, if we define measurable function classes v# := 1 (LS) f —ct) and v° :=
I(Lgs)f—cb), then the triple ( f, v*, v°) satisfies (3-3). Moreover, v¥, 1" € L®((S1)?)
admit smooth representatives on (S'), by Corollary 2.3 and Lemma 2.2(i). Thus,
P.(f) is G—invariant if and only if (3-3) admits a solution

(f, Uﬁ’ Ub) < COO((SI)(3)) % COO((SI)(Z)) % COO((SI)(Z)) O

3.4 The Frobenius integrability condition

We now turn to the problem of finding solutions of system (3-3). As we shall see in
Proposition 3.7 below, it follows from the classical Frobenius theorem that this system
admits a smooth solution ( f, v#, vP) if and only if the functions v# and v satisfy a

certain integrability condition. In order to state the result we define a function class
¢e L®((S1?) by

3-5)  Eér.da) = f ][ f Sin(— @) (1. 9. V. b1 $2) dn dg d.

Lemma 3.6 The function class ¢ € L ((S1)?) can be represented by a smooth
K—invariant function on (S1)®.

Proof Smoothness is immediate from Corollary 2.3 and Lemma 2.2(i). By K-
invariance of ¢ and of the measure, for every £ € [0, 27r] we have

Ekedr. keba) = f ][ f Sin(— ) (0. ¢, Y 1 + E. b + &) dn dp dp
= ][][][ sin(n—@)c(n—&, ¢ =&V —&, ¢1.¢92)dnde dy

_ ][][][ $in((7+ £) — (¢ + ). @. V. 1. b2) dn dp dy
= ¢(¢1. 92). =

Proposition 3.7 (Integrability condition) There exists a solution ( f, b, vb) to (3-3)
in C°°((S1)(3)) X C°°((S1)(2)) X C°°((S1)(2)) if and only if the pair (vﬁ, vb) in
C°((S 1)(2)) x C®((S 1)(2)) satisfies the system of partial differential equations
d(LQ vt +%) =0,
(3-6) a'(ng)vb —vh =0,
d(LPv LY+ LY~ &) =0,
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The proof of the proposition relies on the Frobenius theorem and will be deferred to
Appendix B. In the sequel, we shall refer to system (3-6) as the Frobenius system. It
will be enough for our purposes to find a function f satisfying system (3-3) for some
pair (v¥,v”). We will hence not attempt to find all solutions of system (3-6). Rather,
we will construct a single special solution (v¥, v?).

Proposition 3.8 Let r € C*°((0,27), C) be a smooth complex-valued solution of the
ordinary differential equation

. d
(3-7) (1—eﬂ%-5§=irw)—aa¢>

By Convention 3.1, we may define a function v € C®((S1)®,C) by
(3-8) (01, 6,) := e r (6, — 0)).
Then the pair (v*, v") := (Re(v), Im(v)) € C®((S)P) x C®((§1)@) is a solution

of the Frobenius system (3-6).

Proof We remind the reader that throughout the proof we adhere to Convention 3.1.
First observe that, if v is a solution of the system

L@

K V= iv,
(3-9) it OV e OV
36, 90,

then (v*, v?) := (Re(v), Im(v)) is a solution of (3-6). Indeed, taking real and imaginary
parts of the first equation in (3-9) we obtain

Lg?)vﬁ = —vb, Lg?)vb = vﬁ,
while taking the real part of the second equation yields
L;?)vtt — Lg\?)vﬁ + Ll(f)vb =C.
Next consider the transformation
u(8y,0,) := e~ (64, 6,).
Then the first equation in (3-9) is equivalent to

(3-10) LPu=0
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and the second equation is equivalent to
G-I A1) =T (e“‘)l u(01.6)) + e (e"’l u(6y,62))

du_ | i61—6y) M
—lu(91,92)+87+ @

= iu(0,6, —6;) + (1 —e"<91—92>)8—”.

201
Here we used that dg, u = —dg,u, by (3-10). Now let  be a solution of (3-7) and set
v(0y, 05) := €17 (0, — 6y). Then u(8y,6,) = r(0, —6;) obviously satisfies (3-10).
By the K-invariance of ¢ from Lemma 3.6, we have ¢(61,6,) = ¢(0,60, — 67). It
follows that u solves (3-11). m|

4 Construction of primitives

4.1 Solving the Frobenius system
Throughout this section we fix a bounded G—cocycle ¢ € L°((S1)%)C and denote by
Pe: C®((SHO)E S P)X, fi I(e)+df,

the operator from (2-2). Our goal is to solve the system (3-3) in order to construct
a function 1 € C°((S1)3))K such that P.(f) € P(c)? is a G-invariant primitive
for ¢. The first step in the construction of this primitive is to solve the differential
equation (3-7) for the function . As we have seen in Propositions 3.8 and 3.7, the
function r then gives rise to a special solution (v¥, 1) of the Frobenius system (3-6),
which in turn determines the inhomogeneities in (3-3) in such a way that this system
admits a solution f'.

The complex ordinary differential equation (3-7) can be solved by applying the method
of variation of constants. Its general solution » € C°°((0,27), C) is given by

. ¢ x
r@=-e)- (o= [T ac),

where Cj is an arbitrary complex constant. Note that different choices of Cy lead to
cohomologous cochains v. We may therefore assume Cy = 0, obtaining

i ¢
(4-1) (@) =—L(1-¢ )/ lc_(ocfs)g

We shall henceforth be working with the function » defined by this formula. A crucial
observation is the following lemma:
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Lemma 4.1 (Boundedness of the inhomogeneity) The function r € C°°((0,2x),C)
given by (4-1) is bounded. In particular, if (v*,v?) € C®(S1H@) x C®((S1)P) are
defined as in Proposition 3.8, then the inhomogeneities in the system (3-3) are bounded.

¢0.9)
/,, 1—cost E'

To estimate this further, observe that, on the one hand,

(4-3) —e?=V2-\/1—cos¢

and, on the other hand, we have

Proof For all ¢ € (0,27) we have

(4-2) (@) < 31—

¢ c(O é_) 5 ¢ 1 \/m
(4-4) /ﬂ T zs||c||oo~/7r Tcosg | = Vel ey

Here we used that ||¢||co < ||¢|lco, as well as
¢ 1
| g 46 =—cotde)
b1

1 —cos?¢

V1—cosg

Note that \/m < /2. Hence, plugging (4-3) and (4-4) into (4-2) we arrive at
r(@)] = 372 VT +cos ¢ [lclloo < llclloo

for all ¢ € (0,2x), which proves the lemma. |

and

[cot(3¢)] =

4.2 Cauchy initial value problem

Recall that solutions to a first-order linear partial differential equation may be con-
structed explicitly by integration along its characteristic curves, with initial values
prescribed on some non-characteristic hypersurface; see Carathéodory [16, Chapter 3].
We shall now apply this principle in order to explicitly construct solutions of the
system (3-3).

Let r € C*°((0,2m), C) be given by (4-1). By Proposition 3.8 and Lemma 4.1, this de-
termines a bounded solution (v¥, v°) := (Re(v), Im(v)) € C®((SH)P)x C®((S1)@)
of the Frobenius system (3-6) by

(4-5) v(0;,0,) := €% (6, — 6y).
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We shall henceforth keep the function v defined that way. Then, by Proposition 3.7,
there exists a function f € C°((S')®) satisfying the system of equations

(4-62) LYr=o
(4-6b) LY f=ct+at,
(4-6¢) LY f=c"+a.

We know from Section 3.2 that the characteristic curves for these equations are precisely
the orbits for the actions of the subgroups K, 4 and N of G on (S DIQK respectively.
In order to construct the function f we may therefore proceed as follows:

(1) We use (4-6a) in order to construct f* with initial values fo := f|g, prescribed
on the hypersurface

Ho :={(z0.71.22) € (S")® | zo = 1}

Of course, (4-6a) just says that f is constant along the K—orbits in (S1)®). The
hypersurface H is non-characteristic for (4-6a), since it intersects transversally with
the K—orbits in (S 1)(3) . Note that, in order for f to be compatible with the remaining
equations (4-6b) and (4-6¢), the hypersurface H, has to be invariant under the actions
of A and N . This, however, is indeed the case since the point 1 remains fixed under
these two actions.

(2) We use (4-6¢) in order to construct fo with initial values f := fo|q, prescribed
on the union of A—orbits

Hy :={as.(1,i,—i) | —oco < s < oo} U{as.(1,—i,i) | —oo <5 < o0} C Hp.

Note that H; is non-characteristic for (4-6¢) since it intersects transversally with the
N-orbits in Hy. Moreover, in order for f; to be compatible with the remaining
equation (4-6b), the curve H; has to be invariant under the action of A, which is
obviously the case.

(3) We use (4-6b) in order to construct f; with initial values f, := fi|n, prescribed
on the set of base points

H2 = {(1’827“'/3’847“'/3)’ (1,€4ﬂi/3,€2ﬂi/3)} C Hl'
Note that (4-6b), when restricted to the curve H;, becomes an ordinary differential
equation, which can be solved directly.

In particular, we see that solutions of the system (3-3) are uniquely determined by the
initial values of f> on the set of base points H, and hence form a 2—parameter family.
We will work out the details of (1) in Section 4.3, while the details of (2) and (3) will
be worked out in Section 4.4.
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4.3 Reduction of variables

In angular coordinates, the hypersurface Hj introduced in the previous section is given
by
Hy = {(6o,61,02) €[0,21)° [ o = 0, 0) # 02, 61 # 0 # 6,}.

The canonical projection (6, 61, 65) — (01, 6,) identifies Hy with the open subset
Q := (0,27)% \ A of the square, where A C (0,27)? denotes the diagonal in the
open square. The coordinates in 2 will be denoted by (¢, ¢»). Moreover, we write
Qi :={(¢1,02) | ¢1 S ¢} for the open subsets corresponding to the two G—orbits
in (§H® consisting of positively and negatively oriented triples. The restriction

Jo := f|H, is then given by fo(¢1,¢2) = f(0,¢1,¢2). Note that by K—invariance
the function f is recovered from fy by

4-7) S (00, 61,02) = fo(01 — 6o, 02— 0).

Since the hypersurface Hj is invariant under the actions of 4 and N, the system (3-3)
restricts to the system

(4-8) {Lﬁf)f" = cb + (dvh),,
L fo = b+ (dvb),.
f

Here we denote by ¢,
c#, b dvfand dv’, ie

4-9) Cg(¢17¢2) i=ch0.¢1.02). (1. 92) =" (0.41.¢2)

and

@-10)  (dvh)o(¢1, ¢2) 1= dv(0, b1, h2),  (dv")o(¢1, P2) 1= dv’(0, b1, $2).

Note that these functions are smooth on 2.

cg , (dv?)o and (dv”)¢ the respective restrictions of the functions

4.4 Method of characteristics

We now construct the function fy by integrating equations (4-6b) and (4-6¢) along their
characteristic curves. Recall that the characteristics for these equations are precisely
the orbits for the actions of the subgroups 4 and N on 2 (see Figure 1).

It will be convenient to abbreviate the inhomogeneities appearing on the right-hand
side of the system (4-8) by

4-11) Fi=cf 4 (@vh)y and F):=c)+ (dv’),.
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2 2w
2 2
F14
0 T ¢ 2r 0 ¢1 27

Figure 1: A-orbits (left) and N—orbits (right) in the domain 2_

If we prescribe the value of f on a single point in each of the orbits Q4 and Q_, the
function fy will be uniquely determined by the relations

S

Jolasbrras.ds)— foldr.d2) = /O Fl(as b1, as.bs) ds

and .
fonr 1. )= fodr. o) = [ Fotun gy dr
0
More precisely, let us denote by

A% :={(¢.2m —¢) | ¢ € (0.27) \{m}} C Q

the antidiagonal in €2, which corresponds to the hypersurface H; introduced in
Section 4.2. Note that it has two connected components. In order to compute the
function fy we first introduce new coordinates on 2 that are adapted to the N-
orbits. For every point (¢1,¢,) € Q we define ®(¢1,¢,) € (0,7) U (7r,27) in
such a way that (®(¢1, ¢2), 2w — P(¢1, ¢2)) is the point of intersection of the anti-
diagonal with the unique N-orbit passing through the point (¢, ¢). We then define
T(¢1,¢2) € (—00, 00) by the relation

(1, 92) = nT(¢),85)-(P(P1, P2), 271 — P(1, P2)).

For later reference we note that
(4-12) T($1.¢2) = —5(cot(5¢1) + cot(562)).

which follows from the formula 7n;.¢p = 2 arccot(—t + cot(%q&)). Integrating the second
equation in (4-8) along the N-orbits in €2, with initial values f; prescribed on the
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2
AP
» 2 (@1, 42)
- (@27 — ®)
A w-
0 T ¢1 27

Figure 2: A path traveling along A— and N—-orbits from the basepoint w_ to
some point (¢, ¢,) in Q2_

antidiagonal A°P, we then obtain

4-13)  fo(¢1.¢2) = f1(P(¢1,P2), 2 — D(¢1, P2))
T(¢1.92) A
+ /0 F (0. 0(1, 62), n1.(27 — By, $2)) dt

for every (¢1, ¢2) € . It remains to compute the function f; along the antidiagonal.

Let

wy = (%n, %n) and w_ = (%n, %n)

be the points in 2 corresponding to the base points in H, introduced in Section 4.2.
Note that w4+ and w_ coincide with the barycenters of the triangles enclosing the
domains 2 and Q_ (see Figure 2). Define a new coordinate S(¢) € (—o0, c0) on
each component of the antidiagonal A°P by the relation

(¢,2m — @) = ag(¢).w+,
depending on whether the point (¢, 2w — ¢) lies in Q24 or Q2_.

Integrating the first equation in (4-8) along the A—orbits in A°P, with initial values f,
prescribed on the base points {w4,w—}, we get

S(¢)
(4-14) S 2m—$) = fr(ww) + /0 Fiag.os) ds

for every ¢ € (0, 7) U (r, 27).
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4.5 Explicit primitives

Combining the results from the previous sections, we are now in a position to give the
following explicit characterization of primitives:

Proposition 4.2 (Explicit primitives) Let (v#,1°) € C®((SHP) x C°((SH)@)
be the real and imaginary parts of the function v € C®((S!), C) defined by (4-5),
where the function r € C*°((0, 2rr), C) is as in (4-1). Then the following hold:
(i) Let f e C®(SHP)K  The primitive P.(f) € P(c)X is G—invariant if and
only if the function f solves the system (3-3).

(ii) There is a one-to-one correspondence between solutions f € C®((S1)®)K of
(3-3) and solutions fy € C°°(£2) of (4-8) via the relation

S (6o, 01,02) = fo(61 — 6o, 62— bp).
(iii) Every pair (fo(w+), fo(w—)) € R? of initial values uniquely determines a
smooth solution fo € C°°(2) of (4-8) by the formula

S(®(p1,92))
@-15)  folbrd2) = folww) + /0 Fi(as.ww) ds

T(¢1,92)
+/0 F2(n.®(p1, h2), nr.(2m — D(p1, $2))) dt,

where the functions Fcti and F Cb are as in (4-11). Conversely, any smooth solution
of (4-8) arises in this way.

Proof Let f e C®((S1)B3)X  Assertion (i) holds by Proposition 3.4, while (ii) was
proved in Section 4.3. Finally, our considerations in Section 4.4 show that the function
fo satisfies (4-8) if and only if it is given by formulas (4-13) and (4-14), in terms of
integration along the unique path in €2 starting at w+ and traveling to (¢, ¢,) along
A—and N-orbits via the point (O(¢y, ¢2), 27 — P(¢1, ¢»)) on the antidiagonal (see
Figure 2), with initial values prescribed at w+ . This proves (iii). |

The proposition achieves the second step in the agenda outlined in Section 2.7. In
particular, it shows that solutions fy of (4-8) form a 2—parameter family.

5 Boundedness of primitives

5.1 Symmetries

Our construction of primitives in the previous section was valid for arbitrary G—cocycles
c e L®((S1)%)C . However, for the proof of boundedness of primitives, which we shall
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discuss in this section, it turns out to be essential that ¢ be alternating and even. As
we have seen in Section 2.6, this is not a loss of generality. The following proposition
discusses symmetries of the various functions appearing in the construction of primitives
resulting from these additional assumptions.

Proposition 5.1 (Symmetries) Assume that the cocycle ¢ € L®((S1)*)? is al-
ternating and even. Let r € C®((0,27),C) be given by (4-1) and let (v*,v°)
in C®((SHP) x C°((S1)?®) be defined as in Proposition 3.8. Then the inho-
mogeneities on the right-hand sides of systems (3-3) and (4-8) have the following
properties:

(i) The functions c* + dv* and ¢® + dv® are alternating.

(i) The function Fcﬁ = cg + (dv*)g is antisymmetric about the antidiagonal A°P
in 2, ie
FE($1.42) = —F(~b2.—1)
for all (¢, ¢,) € Q. In particular, it vanishes along the antidiagonal.

(iii) The function FL’ = cg + (dvb)o is symmetric about the antidiagonal A°P in €2,
ie
F(¢1.92) = F(—$2.—¢1)
for all (¢, ) € Q.

Proof We begin with the following observation. The function ¢ defined in (3-5) is
alternating since ¢ is assumed to be alternating. By Lemma 3.6, the function ¢ is
K—invariant. Hence

¢(0.¢) = ¢(=¢.0) = —¢(0.=%).

By Convention 3.1, replacing ¢ by 2w — ¢ we infer from this that

¢ 0,0 0, ¢ 0,0
5-1) /,, l—cosé‘ {——/7; l—cos( 0) t = / 1—cos§ dt

forevery ¢ € (0, 27r). Recall moreover from Section 4.2 that (v, v") := (Re(v), Im(v)),
where

(01, 6) = e®1r (6, —6))
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and r is as in (4-1). Let us prove (i). Since c¢ is alternating, it is immediate from (3-1)
and (3-2) that ¢# and ¢ are alternating. By (4-1) and (5-1) we have

(5-2) v(01,65) = 17 (0, — 6y)
001 x
:—%(eiel _el'@z),[ 2 ¢(0,9) dc

1—cos?¢

91—92 )4
_ %(eiez _eiel)./ Mdé‘ = —v(6,, 01).

. 1 —cos¢

It follows that dv, and hence dv¥ and dvb, are alternating. This proves (i). For the
proof of (ii) and (iii) we have to show that

(5-3)  FH¢1.¢2) = —FH—pa,—¢1) and  F2(¢1,h2) = F2(—¢a2,—b1).

To this end, we first note that, by (4-9) and since ¢ is even, we have

(5-4) Cg(—qﬁz, —¢1) = ][][ cos(p)c(n, ¢, 0, —pa, —¢p1) dndy
~ Ff costrecn=¢.0.65. 00 dndy
= ][][ cos(=p)c(n,9,0,¢2,¢1) dnde

= —][][ cos(@)c(n,¢,0,¢1,¢2) dndy
= —cj(@1.¢2)
and, similarly,
55 ch-gr—p0) = [ sin@)e(n.9.0.~g2.~g) dndy
= ][][ sin(—@)c(n, 9.0, ¢z, ¢1) dndg
= ][][ sin(@)c (. ¢, 0. d1, ¢2) dnde = ci(¢1. $2).

Applying (5-1) as in the proof of (i) above, we obtain

0.9 ,

) " " —6>+6;
1.0 =4 =)

) i 62—01 (0 -
=_%(e—191 _e—zez),/ f(_’g)dgzv(el,ez),
- —cos¢{
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Combining this with (5-2) we arrive at
V(6. 62) = —v(—b;,—6,).
Consider the function (dv)o(¢1, ¢2) := dv(0, ¢, ). The previous two identities
imply that
(dv)o(¢1.92) = v(P1. ¢2) — (0, ¢2) + v(0, $1)
= —(V(=¢2, —¢1) —v(0, —¢1) + v(0, —¢))
= —(dv)o(—=¢2, —¢1).

Recall from (4-10) that (dv¥)y and (dv®), are the real and imaginary parts of (dv)g.
Hence we conclude that

(dv*)o(¢1, 92) = —(dv?)o(—¢2, — 1),

(dv")o($1.$2) = (dv")o(—¢2. —1).
The identities (5-3) now follow from (5-4), (5-5) and (5-6), which proves (ii)—(iii). O

(5-6)

Next we consider symmetries of the solutions of (4-8). We introduce some notation
first. The G3—action on (S')® commutes with the K—action, whence it descends to
an action on £2. To describe this action explicitly, we denote by s; and s, the Coxeter
generators of G5 that act on (S1)®) by swapping coordinates in the pairs (6, 6)
and (61, 6,), respectively. Then, with respect to the coordinates (¢q, ¢,) on €2, the
actions of s; and s, are given by

51.(¢1,92) = (—=p1.¢2—¢1) and  57.(¢1,¢P2) = (P2, ¢1).

A function kg € C®°(Q2) will be called alternating under the action of &3 if s.hy =
(—1)%hg for all s € &3. Thus a function sy € C°°(L2) is alternating under the action
of &3 if and only if the function & € C®((S1)®)X defined by

h(6o, 01,62) = ho(01 — 6o, 02 — 6o)
is alternating in the usual sense.
Proposition 5.2 (Alternating solutions) Assume that the cocycle ¢ € L®((S1)%)¢

is alternating and even. A solution fy € C°°(2) of (4-8) is alternating under the action
of &3 if and only if

(5-7) Jo(wt) = — fo(w-).

In this case the primitive P.(f) € P(c)?, where f € C®(SHCNHK s defined
by (4-7), is alternating.
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Proof First of all, we observe that &3 acts on the base points {w4,w—_} by
(5-8) S1.04 = W, 2.0+ = OF.
Hence, if fj is alternating under the action of &3 it follows that

folo1) = (=D fo(s1.04) = — fo(w-).

Conversely, let fo be a solution of system (4-8) that satisfies (5-7). We will prove that
Jo coincides with its antisymmetrization under the action of &3. By Proposition 4.2(ii),
the function f; corresponds to a solution f € C®((SH)P)K of (3-3) via

S(0o,01,02) = fo(01 — 0o, 02— 0).

=4 Y s s

SEG3

Now let

be the antisymmetrization of f. Then f € C®°((S1)®)K and we further claim
that fA solves (3-3) as well. To see this, observe that in (3-3) the operators LEIS and
Lg) are symmetric, while by Proposition 5.1(i) the inhomogeneities c* 4+ dv* and
¢ b+ dvb are alternating. Now, by K-invariance, the function f gives rise to a function
fo € C*(Q) via

J (8. 61,62) = Jo(61 — o, 6> — bo).
Then Proposition 4.2(ii) implies that ﬁ) solves the system (4-8). Moreover, we have
1 s
=5 2D’ fo,
SES3

whence fo is alternating under the action of G3. It follows from (5-7) and (5-8) that
fo (w+) = fo(w+). The uniqueness statement in Proposition 4.2(iii) implies that fo
coincides with fj. a

The proposition shows that solutions f; of (4-8) that are alternating under the action
of &3 form a 1—parameter family.

5.2 Boundedness

In order to complete the proof of Theorem 1.1 it remains to show that, among the
G—invariant primitives we constructed in Section 4, there actually exist bounded ones.
This is the content of the next proposition, which crucially relies on the symmetries
unveiled in the previous section.
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Proposition 5.3 (Boundedness) Assume that the cocycle ¢ € L ((S1)*)C is alter-
nating and even. Let fy € C°°(2) be a solution of (4-8) that is alternating under the
action of G5. Define f € C®((S1)®)K by (4-7). Then the corresponding primitive
P.(f) € P(c)C is bounded.

The proof of the proposition relies on the following three basic observations:

Lemma 5.4 Let the function fy € C*°(2) be defined by (4-15). If fqy is bounded
along the line segments

(0.3m)U (37 27) 3§ > (37.6)
and

(0.37) U (37.27) 3 & = (37.),
and f € C®((SYH)CNHK js given by (4-7), then the corresponding primitive P.(f) in
P(c)C is bounded.

Proof By Proposition 4.2, P.(f) = I(c) + df is G—invariant. By 3—transitivity of
the G—action on S! and since /(c) is bounded, we therefore deduce that P.(f) is
bounded if and only if the function

7 df(l, eZni/3’ e47‘ri/3’ Z)
is bounded. Writing z = e we may express this function as

Ers f(3m 3m.8) - f(0,§n§)+f(o,§n§)—f(0 Fm.57)
= fo(3m.6—3n)— fo(37.6) + fo(37.8) — fo(3m. %m).

The lemma follows. O

Lemma 5.5 Let C be a compact subset of the open square (0, 27)?. If the function
Jfo € C*°(R2) defined by (4-15) is bounded along the antidiagonal A°P in 2, then it is
bounded on the subset C N2 of 2.

Proof By Lemma 4.1 the function FE = cg + (dv”)g is bounded. Moreover, by
assumption, the function fy is bounded along the antidiagonal A°P in €, ie there
exists a number M > 0 such that | fo|ae| < M . Hence we obtain from (4-15) the
estimate

| fo(@1,02)| < M + | Fllloo - |61, 62)]

for all (¢1,¢,) € Q. It remains to show that the function 7" is bounded on C N .
By compactness of C it will be enough to prove that the function 7: 2 — R extends
to a continuous function on the open square (0,27)2. This, however, is immediate
from (4-12). O
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21

2

2. 4.
0 §7T ¢1 §7T 2z

Figure 3: The images of the line segments & (%n, &) and £ (%n, &)
under the Gj3—action on £2 that are contained in a fundamental domain
(shaded) for this action

Lemma 5.6 Assume that the cocycle ¢ € L®((S')*)Y is alternating. Then the
function fy € C*°(2) defined by (4-15) is locally constant along the antidiagonal A°P
in Q.

Proof Since c is alternating, the inhomogeneity Fﬁ vanishes along the antidiagonal
A°P by Proposition 5.1(ii). The lemma now follows from (4-15). O

Example 5.7 Assume that the cocycle c¢ is alternating. Consider the special solu-
tion fy determined by the initial values fo(wi) = 0. It is alternating under the
action of G3 by Proposition 5.2. Moreover, by Lemma 5.6 it vanishes along the
antidiagonal A°P. Since under the action of &3 the components of A°P get identified
with the medians of the triangles enclosing the domains €24 and Q_, we further
infer that f; also vanishes along these medians. Moreover, by Proposition 5.1(iii)
the function F f is symmetric about the antidiagonal. Thus we see from (4-15) that
the special solution fj is antisymmetric with respect to the antidiagonal and, hence,
antisymmetric with respect to all medians.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3 By Proposition 4.2(iii) the function fj is given by (4-15).
Hence, by Lemma 5.4 it suffices to show that fy is bounded along the line segments
£ (%n, £) and £ — (%n, £). Since fy is alternating under the action of &3, it
suffices to prove that f; is bounded along the images of these line segments in any
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fundamental domain for the G3—action on 2. In fact, we may choose the fundamental
domain in such a way that the image line segments lie inside a compact subset of
(0,2m)? (see Figure 3). By Lemmas 5.5 and 5.6, the function fj is then bounded on
these line segments. a

Theorem 1.1 follows by combining Propositions 4.2, 5.2 and 5.3.

Appendix A: Vanishing of odd cocycles

The goal of this appendix is to prove Proposition 2.6, which states that every bounded
alternating G—invariant 4—cocycle is necessarily even. Our strategy here is inspired
by Burger and Monod [15] in that we consider Fourier transforms of cocycles and
study the conditions imposed on them by G—invariance. Given n € Ny, we denote by
c(Z"*+1) the space of complex-valued sequences indexed by Z”*1 and by £2(Z"*1)
the subspace of square-summable sequences. We denote by ey, ..., e, the standard
basis of Z"*! and use the multi-index notation

n
k= (ko.....kn):=)_kje;.
j=0

We then write ¢,(Z"!) and Eilt(Z”"' 1), respectively, for the corresponding subspaces
of alternating sequences and define two linear operators AE{:’) : Eilt(Z”‘H) — ca(Z" T
by

(AP FY(k) =Y (ki + 1) F(k +¢)),
j=0

(AP F)(k) =Y (kj—1)- Fk —¢)).

j=0
Definition A.1 An element C € {2 (Z"*!) is called a combinatorial n—cocycle if
the following hold:
(i) C(ko,...,kn) =0 unless kj =0 for precisely one j € {0,...,n}.

(i) C(kg,...,ky) =0 unless kg +---+k, =0.

(ii) C €ker(4%”) Nker(4™).
According to [15, Section 3.1], the Fourier transform ¢ of a G—invariant alternating
bounded n—cocycle ¢ is a combinatorial n—cocycle. Observe that ¢ is even if and

only if ¢ is even in the sense that ¢(—k) = ¢(k). Proposition 2.6 will therefore be a
consequence of the following combinatorial result:
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Proposition A.2 Every combinatorial 4—cocycle is even.

For the proof of Proposition A.2 we need two preparatory lemmas. Given a com-
binatorial n—cocycle C we let supp(C) := {k € Z"*1 | C(k) # 0} be the support
of C.

Lemma A.3 Let C be a combinatorial 4—cocycle and (kg, k1, k2, k3, k4) € supp(C).
Then there exists o € G5 such that

ka(O) < ka(l) < kg(z) =0< k0(3) < k0(4).

Proof Since C is alternating and vanishes unless precisely one of its entries is 0, it
suffices to show that C vanishes on those k € Z°> which satisfy either

(A-l) k0>k120>k2>k3>k4

or kg <ky =0 < ky < k3z < kyq. We are going to show C(kg,0,k;,k3,k4) =0
whenever k satisfies (A-1) and leave the second, analogous case to the reader. Our
proof will be by induction on k.

If kg <5 then the condition k, + k3 + k4 = —ko cannot be satisfied for k satisfy-
ing (A-1), hence C(k) = 0. Otherwise, we use C € ker(AE:)) to deduce that

0= (4PC) (ko —1,0, k2, k3, ka)
=ko-C(ko,0,ka, k3, k) + 0+ (ky +1)-C(ko—1,0,kz + 1, k3, k4)
+(k3+1)-Clko—1,0,ka, k3 +1,kq)+(ka+1)-C(ko—1,0, k2, k3, kg +1).

The third summand on the right-hand side vanishes by antisymmetry if k, +1 =0,

and by the induction hypothesis otherwise. Similarly, the last two summands vanish.

Now the assumption ko # 0 implies C(kg, 0, k, k3,k4) = 0. =

Lemma A4 Let C and D be combinatorial 4—cocycles such that
C(-n—1,-n,0,n,n+1)=D(n—-1,-n,0,n,n+1)

holds foralln > 0. Then C = D.

Proof Since the space of combinatorial cocycles is linear, we may assume D = 0 and
hence

C(—n—-1,—-n,0,n,n+1)=0 forall n>0.
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We have to show that C = 0. Using that C is alternating and Lemma A.3, it suffices
to prove that C(kg, k1,0, k3,k4) = 0 whenever kg < k1 < 0 < k3 < kgq. Since
Ce ker(AS‘_‘)) we have

0= (AP C)(ko, k1,0, k3, kg —1)
=(ko+1)-Clko+1,ky,0,k3,kg—1)+ (k1 +1)-C(ko, k1 +1,0,k3,kg—1)+0
+ (k3 +1)-Clko, k1,0, k3 + 1, kg —1) + kg -C(ko, k1,0, k3, ks).

We may rewrite this as

k 1
(A2)  Clhoky.0. ks k) = — 2T Clhko + 1. k1. 0. k3. ks — 1)
4
k 1
I Clhe ke + 1.0,k ks — 1)
4
k 1
4

Now we iterate this recursion. In each step we get a sum of terms of the form
C(kg, k1,0, k3, ky4), where the distance between k3 and k4 is smaller than in the
previous step. We can thus run the iteration until we arrive at terms of the form
C(ko,k1,0,n,n+1) with 0 < n. We may furthermore assume that ko < k{ <0, since
C is alternating. It then remains to show that

(A-3) C(ko,k1,0,n,n+1)=0 forall kg <k; <0<n.
We prove this by a double induction on 7 and |kg].

If n = 1 then the condition k¢ + k; = —2n — 1 forces (kgo,k1) = (—2,—1) and
we are done by hypothesis. Now assume that n > 1 is arbitrary. The condition
ko+ky=—-2n—1 forces |ko| >n+1.1If |kg| =n+1 then (ko, k1) = (—n—1,—n)
and we are again done by hypothesis. It thus remains to show (A-3) for n > 1
and |ko| > n + 1, where we assume

C(k(/),kl,O,n/,n’—i— 1)=0
if either n’ <n, or n =n’ and |k{| < |kol.
Now since C € ker(A®) we have

0=(AWC) (ko +1.k1,0,n,n+1)
:ko-C(ko,kl,O,n,n+1)+(k1—1)-C(k0+1,k1—1,0,n,n+1)+0
+m—=1)-Clko+1,k;,0,n—1,n+1)+n-Clkg+1,k,0,n,n).
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The second of the five summands on the right-hand side vanishes by induction hypothesis
of the inner induction on kg, while the last summand vanishes by antisymmetry. Since
ko <—n—1 < —2 we have k¢ # 0 and thus

—1
C(ko,kl,o,n,nﬂ)=—”k—.C(k0+1,k1,o,n—1,n+1).
0

To deal with the expression on the right-hand side we again apply (A-2) with k3 =n—1
and k4 = n + 1. We thereby find

(n—1)-(kog+1)

C(ko,kl,O,n,n+1): ko(n-l—l) C(ko+1,k1,0,l’l—1,l’l)
(n—1)-(ky +1)
C(ko. k 1,0,n—1,
k-t <Kokt l.0m=ln)
n—1)-n

—~Cl(ko,k1,0,n,n).
ko (it D) (ko.k1.,0,n,n)

Here, the first two summands vanish by the induction hypothesis of the outer in-
duction on 7 and the last summand vanishes by antisymmetry. This shows that
C(kg,k1,0,n,n+ 1) = 0 and finishes the proof of the lemma. O

Proof of Proposition A.2 Given a combinatorial 4—cocycle C we define a function
D:7° — C by D(ky, ..., ks):=C(—kg,...,—ks). We claim that D is a combina-
torial cocycle. Since C is alternating and in £2, D is alternating and in £2 as well.
Conditions (i) and (ii) are obvious. Since C € ker(4®)) we have

4 4
(AL DY) = 3k + D) Dk -¢j) == 37~k = 1) Cl(k +¢))
j=0 j=0

4
== (~kj =1 Cl—k —¢j) = ~(AWC)(ko.....~ks) = 0.
j=0

which shows that D € ker(4). Dually, C € ker(4%") implies D € ker(4®), which
finishes the proof that D is a combinatorial cocycle.

On the other hand, antisymmetry of C yields
D(-n—1,—n,0,n,n+1)=Cn+1,n,0,—n,—n—1)=C(—n—1,—n,0,n,n+1).

Now Lemma A.4 implies that C(k) = D (k) = C(—k), which means that C is even. O

This finishes the proof of Proposition 2.6.
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Appendix B: The Frobenius integrability condition

The goal of this appendix is to prove Proposition 3.7. We have to show that the system

LYr=o,
(B-1) LY f=ct+avt,

Lg)f =+ dvP,

admits a solution (f,v¥,v?) if and only if the pair (v¥,v?) satisfies the Frobenius
system (3-6). Here we consider f and v#, v” as smooth functions on the domains
D :=]0, 27)3) and [0, 27m)@, respectively. It will be convenient to replace (B-1) by
the equivalent system

LY f =0,
(B-2) LY f=ct+arf,

LY 1P ="+ av'
Consider the product D x R. We denote the coordinates on D by (6, 6, 65) and the

coordinate on R by 63. The graph I'r :={((6p. 01, 62), f (6o, 01,6,))} of the function
f is a 3—dimensional submanifold of D x R. Define vector fields on D xR by

— 703
X =Ly,
Y = L,(43) + (cﬁ + dvﬁ) dgs.
3 3

Z = Lgv) — Lg() + (" + dv") dg,.
Since G acts strictly 3—transitively on D, it follows that these vector fields span a
distribution E of constant rank 3 on D x R. Then a triple (f, v¥, 1) is a solution
of (B-2) if and only if the graph I'f is an integral manifold for £'. Hence the Frobenius
theorem (see eg Lee [35, Chapter 11]) implies that (B-2) admits a solution ( f, LT

if and only if the distribution E is integrable, ie the vector fields X', ¥, Z form an
involutive system. Note that

LD, LP1=09 -, Q@ LQ-rP1=19, 9. LY=L
Hence the vector fields X', Y, Z form an involutive system if and only if

(B-3) (X, Y]|=-Z, [X,Z]=Y, [V.Z]=X.

We shall now make these conditions explicit. We start with two preliminary lemmas.
Lemma B.1 The functions ¢* and ¢” defined in (3-1) and (3-2) satisty

ng)c# =—c", Lg)cb =¥
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Proof More generally, we prove that, for any function A € C*°((0, 27r)), the function
1 (60.61.62) == | f 19) c1..60.61.62) g

satisfies Lg)cx = ¢)s. Indeed, by K-invariance of the cocycle ¢ and the measure, we
have

LY cr(80.61.62) =

dg L=0][][ M@)e(n, 9,00 +E,01 +&,60,+&)dndg

- d_§‘$=0][][)‘((ﬂ)c(n—g,¢—5,60’91’92) dndy

d
_ ][][ _‘ Mg +E)c1. 9. 0. 01 62) dy dy
d€ =g

- ][][ M (@)e(n, @, 00,01, 02) dndg. =

Lemma B.2 The function ¢ defined in (3-5) satisfies
(B-4) LOcH LDt 4 LD = —ac.

Proof Let us consider the left-hand side of (B-4). In a first step, using G—invariance
of ¢ and K-invariance of the measure, we compute

®) d
LD 6y, 61, 6,) = ‘
07 dégo

][][ cos(p + é)l c(m,¢.60,01,62)dndg

][][ cos(p)c(n, ¢, 00 +&,01 +&,0, + &) dndy

and
LS)Cﬁ(Qo, 01, 62)

d
= d_ ff COS((P)C(TI,gﬁ,nt.eo,nt‘el,nt‘gz) d?’]d@
=0

][][ ( d(n, @) d(n;. ’7))
cos(n;.@
de dn
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and, similarly,

LY (0. 61.62)

d )
— ][][ sin(p)c(n, ¢, as.0p, as.01,as.0,) dnde
s=0

S Lotz

Second, using Lemma 3.2 we compute the derivatives appearing in the above formulas.
Firstly, we have d cos(p + &)/d§& | f=0 =" sin(¢). Moreover,

iGmn)ﬂw@ﬂwm)
di P00 dn

c(n,¢,6p,01,62) dndg.
s=0

t=0
d(n;.@) d(n;.p) d(ng.n)
dt do dn

d d(n;.@)d(n;.n)
tzo—i—cos(nt ) do  di an

d(”t-(ﬂ)id(nt-ﬂ)
de dn dt

—sin(ns.)

t=0

+ cos(n;.¢)

d(n:.@) d(ns.n)
de dn

t=0

= —sin(n,.9)(1 — cos(n;.¢))

t=0
d(ng.n)
dn =0
("t @) d

d
+ COS(nz-fp)%(l —cos(ns.¢))

+ cos(ny.9) —(1 —cos(ny.n))

t=0
= —sin@(l —cos @) + cos ¢ sin ¢ + cos ¢ sin 7y

= 2sin@ cos ¢ + cos ¢ sinn — sin ¢.

Lastly,

i(sin(a )d(as~(P) d(as-n))
ds O 00 dn )]
d(as.p) d(as.@) d(as.n)

ds do dn

. d d(as.g) d(as.n)

+ sin(a )——

s=0 a ds dT] s=0
d(as-‘/’) d d(as.n)

d(pd_nds

d(a
+sin(as. go)— sin(ag.p) (as5.)
s=0 T] s=0

(as p) d
) do i sin(as.n)

= cos(as.p)

+ sin(as.¢)

d (as @) d(as.n)
dn

=cos(as.p) sin(as.@)

+ sin(as.@
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= 2sin@ cos ¢ + sin¢ cos 7.
Summing up, we obtain

B-5) LY c*(60,61,02) — L c* (00,61, 62) + L (65,61, 6,)

= ][][(Smw cos 1) —cos @ sinn)c(n, ¢, b, 01.62) dndg

= —][][ sin(n —@)c(n, @, 0y, 61,02) dnde.

Now we turn to the computation of the right-hand side of (B-4). The cocycle identity
for ¢ yields

0=dc(n, @, ¥, 00,01,02)=c(e, ¥, 0, 01,02)—c(n, ¥, 00,01, 02)+c(n, @, 00, 01, 05)

2
N e o . b0.....0.....0).

j=0

We multiply this identity by sin(n — ¢) and integrate over the variables 7, ¢ and V.
Integrating the first term, we get

][][][ sin(n — @)c(@, ¥, 0o, 01, 62) dn de dyr

- ][][(][sin(n—w) dn)c(w, Y. 60.61.67) dp dy = 0.

Likewise, the integral of the second term vanishes. We are thus left with

][][ sin(n —@)c(n, ¢, 0o, 01, 62) dndy
2
_ ][][][ sin(n—(p)(Z(—l)jc(n,(p, N 92))dn dg dy
j=0

2
= (—1)j sin(n —@)c(n, @, ¥, 0 ,...,5-,...,9 Ydnde dy
S fff S

=dc(6o.6,.06,).

Comparing this with (B-5) above, formula (B-4) follows. |

We are now in a position to finish the proof of Proposition 3.7 by spelling out the
integrability conditions (B-3). Consider the first identity in (B-3). We have

XY=L, LOT+ L@+ avh) dg, = LY — LD + (LY (¢F + dvt)) 3.
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Recall from Lemma B.1 and Lemma 3.3 that

ng)cﬁ =", Lg)dvtt = dLg?)v#.
Thus,
X, Y=L - LY + (=" +aLPvF) 8y,

Comparing this to —Z we find
(B-6) X, Y]=-Z < d(LPv +)) =0
Likewise, for the second identity in (B-3) we have
(B-7) [X,Z]=Y < d(LPv" —vf) =0.
Finally, observe that
1V, 21 =1L LD — L1+ (LD (" + av®) 9] - [LY) — LY, (c* + dv?) 5,
=L@+ @@ L)t + LY o+ @ — L)+ LD ) b,
By Lemma B.2 and Lemma 3.3, this becomes
¥, Z1= LY + @(LQ — L) + dL P’ — a) by,
We deduce that
(B-8) ¥, Z]= X = d(LQvV - LPv + LPw - =0

Combining (B-6), (B-7) and (B-8), Proposition 3.7 now follows from (B-3).
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