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Bounded cohomology via partial differential equations, I

TOBIAS HARTNICK

ANDREAS OTT

We present a new technique that employs partial differential equations in order
to explicitly construct primitives in the continuous bounded cohomology of Lie
groups. As an application, we prove a vanishing theorem for the continuous bounded
cohomology of SL.2;R/ in degree 4 , establishing a special case of a conjecture of
Monod.

20J06; 22E41, 35F35

1 Introduction

Ever since Gromov’s seminal paper [24], bounded cohomology of discrete groups has
proved a useful tool in geometry, topology and group theory. In recent years the scope
of bounded cohomology has widened considerably. An important step was taken by
Burger and Monod [13] and Monod [37], who extended the theory to the category
of locally compact second countable groups under the name of continuous bounded
cohomology. Not only did this lead to a breakthrough in the understanding of bounded
cohomology of lattices in Lie groups [13], but also triggered a series of discoveries
in rigidity theory (eg Burger, Monod and Iozzi [14], Burger and Iozzi [8; 9], Bucher,
Burger and Iozzi [6], Monod and Shalom [41; 42] Chatterji, Fernós and Iozzi [17] and
Hamenstädt [25; 26]), higher Teichmüller theory (eg Burger, Iozzi and Wienhard [10;
11; 12] and Ben Simon, Burger, Hartnick, Iozzi and Wienhard [1]) and symplectic
geometry (eg Polterovich [44] and Entov and Polterovich [19]). At the same time,
our understanding of the second bounded cohomology has improved. In particular,
the approach originally developed for surface groups by Brooks [4], free groups by
Grigorchuk [23] and hyperbolic groups by Epstein and Fujiwara [20] has been extended
to larger classes of groups including mapping class groups by Bestvina and Fujiwara [2]
and acylindrically hyperbolic groups by Hull and Osin [29] and Fujiwara, Bestvina
and Bromberg [21]. Moreover, there has been some progress in constructing bounded
cohomology classes in higher degree due to Mineyev [36], Hartnick and Ott [27],
Bucher and Monod [7] and Goncharov [22].
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On the other hand, our knowledge on vanishing results for bounded cohomology in
higher degree is still very poor. It was already known to Johnson [31] that the bounded
cohomology of an amenable group vanishes in all positive degrees. Here the primitive
of a given cocycle is obtained by applying an invariant mean. In contrast, for non-
amenable groups no general technique for constructing primitives is available so far.
In particular, there is not a single non-amenable group whose bounded cohomology
is known in all degrees. Actually, the situation is even worse. One may define the
bounded cohomological dimension of a group � to be

bcd.�/ WD supfn jH n
b .�IR/¤ 0g;

where H n
b .�IR/ is the nth bounded cohomology of � with coefficients in the trivial

module R. At present we do not even know whether there exists any group � with
bcd.�/ 62 f0;1g.

The few vanishing results we have for the bounded cohomology of non-amenable
groups are all based on the vanishing of all cocycles in the respective degree in some
resolution. The most far-reaching results in this direction were achieved by Monod [39]
by choosing efficient resolutions. However, no such resolutions are known for dealing
with the continuous bounded cohomology H n

cb.H IR/ of non-amenable connected Lie
groups H . For such groups the most efficient resolution that is presently available is
the boundary resolution of Ivanov [30] and Burger and Monod [13]. In this particular
resolution cocycles vanish only in degree at most 3; in degree greater than 3 there will
inevitably be nonzero cocycles and one faces the problem of finding primitives. This
explains why the few existing vanishing results such as in [13; 15] do not go beyond
degree 3.

Our goal in this article is to develop a new approach to the construction of primitives
in continuous bounded cohomology for real semisimple Lie groups. To demonstrate its
effectiveness we settle the following special case of a conjecture due to Monod [38,
Problem A]:

Theorem 1.1 Let G be a connected real Lie group that is locally isomorphic to
SL2.R/. Then

H 4
cb.GIR/D 0:

Actually, for such G , Monod conjectured that bcd.G/D 2, ie that H n
cb.GIR/D 0 for

all n> 2. In degree nD 3 there are no nonzero cocycles in the boundary resolution at
all — see Burger and Monod [15] — but this is no longer true for n> 3. In this sense,
Theorem 1.1 is the prototype of a vanishing theorem that requires the construction
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of primitives. We believe that our method of proof generalizes to arbitrary n> 3 nd
possibly to other Lie groups. This will be addressed in future work.

Monod’s conjecture about the bounded cohomology of SL2.R/ is a special case of a
more general conjecture, which would allow one to compute the continuous bounded
cohomology of arbitrary connected Lie groups. In fact, since continuous bounded
cohomology is invariant under division by the amenable radical [13; 37], it is sufficient
to compute the continuous bounded cohomology of semisimple Lie groups H without
compact factors and with finite center. For such groups it is conjectured — see Dupont
[18] and Monod [38] — that the natural comparison map between the continuous
bounded cohomology and the continuous cohomology is an isomorphism. This would
imply that bcd.H / coincides with the dimension of the associated symmetric space,
thereby providing examples of groups of arbitrary bounded cohomological dimension.
Plenty is known by now about surjectivity of the comparison map — see Dupont [18],
Gromov [24], Bucher [5], Lafont and Schmidt [34], Goncharov [22] and Hartnick
and Ott [27] — while injectivity still remains mysterious in higher degrees. Indeed,
injectivity has so far been established only in degree 2 for arbitrary H by Burger
and Monod [13] and for some rank 1 groups in degree 3 by Burger and Monod [15],
Bloch [3] and Pieters [43]. Theorem 1.1 is the first result in degree greater than 3.
Incidentally, it has an application to the existence of solutions to perturbations of the
Spence–Abel functional equation for Rogers’ dilogarithm, along the lines suggested
in [15]. This will be discussed in our forthcoming [28].

For the proof of Theorem 1.1 we shall reformulate the problem of constructing bounded
primitives in terms of a fixed point problem for the action of G on a certain function
space. The main idea is then to describe the fixed points as solutions of a certain system
of linear first-order partial differential equations. In this way, we obtain primitives by
solving the corresponding Cauchy problem. We show that, for carefully chosen initial
conditions, particular solutions have additional discrete symmetries, which we finally
use to deduce boundedness. We will give a more detailed outline of our strategy of
proof in Section 2.7 after introducing some notation.
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2 Preliminaries on continuous bounded cohomology

2.1 The boundary action of PSL2.R/

The goal of this section is to describe a model for the continuous bounded cohomology
of SL2.R/. Since continuous bounded cohomology of connected Lie groups is invariant
under local isomorphisms by Corollary 7.5.10 of Monod [37], we have

H �cb.SL2.R/IR/ŠH �cb.PSL2.R/IR/ŠH �cb.PU.1; 1/IR/;

where the latter isomorphism is induced by the Cayley transform. We prefer to carry
out our computations in the group G WD PU.1; 1/. The group G acts by fractional
linear transformations on the Poincaré disc D . We can identify G with the group
of orientation-preserving isometries of D , which is an index-2 subgroup in the full
isometry group �G . The actions of G and �G extend continuously to the boundary S1

of D and the corresponding actions on S1 will be referred to as the boundary action
of G and �G , respectively. The action of �G on S1 (but not on D ) may be identified
with the action of PGU.1; 1/ by fractional linear transformations. It is well known that
this action is strictly 3–transitive; see Kerby [32, Theorem 11.1].

Explicitly, elements of PGU.1; 1/ can be represented by matrices of the form

ga;b WD

�
a b
xb xa

�
;
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where a, b 2C with jaj2�jbj2 2 f˙1g. We denote by Œga;b � the equivalence class of
the matrix ga;b in PGU.1; 1/. Given � , s , t 2R, we abbreviate

k� WD Œgei�=2;0�; as WD Œgcosh.�s=2/;sinh.�s=2/�; nt WD Œg1C 1
2

it;� 1
2

it �:

We also set � WD Œg0;1�. Then �G ŠG Ì h�i, where G is given by equivalence classes
of matrices of determinant 1 and � acts on G via

�Œga;b ��
�1
D Œg

xa;xb
�:

Next we observe that K WD fk� j � 2 Rg, A WD fas j s 2 Rg and N WD fnt j t 2 Rg
are subgroups of G . Moreover, K is a maximal compact subgroup of G and A

normalizes N . In particular, P D AN is a subgroup of G , which is in fact a para-
bolic subgroup. The group K can also be described as the stabilizer of 0 under the
G–action on D and, similarly, the group P is the stabilizer of 1 for the boundary
action of G . Since N is the unipotent radical of P we have Fix.N /D f1g, whereas
Fix.A/ D f˙1g. Moreover, we obtain an Iwasawa decomposition G D KAN and
every elliptic (respectively hyperbolic, parabolic) element in G is conjugate to an
element in K (respectively A, N ).

Our parametrization of elements of K , A and N is chosen in such a way that the
maps � 7! k� , s 7! as and t 7! nt define 1–parameter subgroups of G , ie smooth
homomorphisms R!G . (Both the homomorphisms and their images are commonly
referred to as 1–parameter subgroups. We reserve this term for the homomorphisms.)
These parametrizations are not quite standard, but turn out to be convenient for certain
computations in local coordinates; see Lemma 3.2 below.

2.2 Cocycles and strict cocycles

We keep the notation introduced in the last section and denote by �K the unique
K–invariant probability measure on S1 . Given n� 0, we shall write M..S1/nC1/ for
the space of �˝.nC1/

K
–measurable real-valued functions on .S1/n and L1..S1/n/ for

the subspace of bounded functions. The quotients of these spaces obtained by identify-
ing �˝.nC1/

K
–almost everywhere coinciding functions will be denoted by M..S1/nC1/

and L1..S1/nC1/, respectively.

We define the homogeneous differential d WM..S1/nC1/!M..S1/nC2/ by

df .z0; : : : ; znC1/ WD

nC1X
jD0

.�1/j f .z0; : : : ; yzj ; : : : ; znC1/:
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This induces differentials on L1..S1/n/, M..S1/nC1/ and L1..S1/nC1/. Elements
in the kernels of these four differentials are referred to as strict n–cocycles, strict
bounded n–cocycles, n–cocycles and bounded n–cocycles, respectively.

The group �G acts diagonally on .S1/nC1 and this action commutes with the action
of the symmetric group SnC1 by permutation of the variables. We thus obtain a�G �SnC1 –action on each of the spaces M..S1/nC1/, L1..S1/nC1/, M..S1/nC1/

and L1..S1/nC1/. It is immediate from the explicit formula that all homogeneous
differentials are �G–equivariant; in particular, the �G–action maps cocycles to cocycles.
Given a subgroup H < �G , an H–invariant (strict, bounded) cocycle is simply called a
(strict, bounded) H–cocycle and it is called a (strict, bounded) H–coboundary if it is
contained in the image of the H–invariants under d .

A major technical inconvenience is caused by the failure of surjectivity of the map
M..S1/n/G !M..S1/n/G , which means that a G–cocycle c may not admit an in-
variant representative, ie a strict G–cocycle which coincides with c almost everywhere.
Fortunately, for bounded function classes, existence of invariant representatives follows
from Monod [40, Theorem A].

Lemma 2.1 (Invariant representatives) The maps L1..S1/nC1/G!L1..S1/nC1/G,
n � 0, are surjective. In fact, they admit a family of sections compatible with the
homogeneous differentials.

2.3 Orbitwise smooth functions

We say that a function f 2M..S1/nC1/ is orbitwise smooth if for each .z0; : : : ; zn/

the map G!R given by
g 7! f .g:z0; : : : ;g:zn/

is smooth. We record the following basic properties of such functions for later reference:

Lemma 2.2 (i) Every smooth function is orbitwise smooth. If n � 2, then ev-
ery orbitwise smooth function in M..S1/nC1/ restricts to a smooth function
on .S1/.nC1/ .

(ii) Orbitwise smooth functions in M..S1/nC1/ form an R–algebra.

(iii) If f 2 L1..S1/nC1/ is orbitwise smooth, then so is the function I.f / in
L1..S1/n/ given by

I.f /.z1; : : : ; zn/D

Z
S1

f .z; z1; : : : ; zn/ d�K .z/:

(iv) Every class in L1..S1/nC1/G can be represented by an orbitwise smooth
function.
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Proof The first statement of (i) follows from smoothness of the orbit map of the
diagonal G–action and the second statement follows from the fact that .S1/.nC1/ is a
union of open G–orbits if n� 2. (ii) is obvious. Concerning (iii), we observe that

I.f /.g:z0; : : : ;g:zn/D

Z
S1

f .z;g:z1;g:z2;g:z3/ d�K .z/

D

Z
S1

d.g:�K /

d�K

.z/f .z; z1; z2; z3/ d�K .z/:

Orbitwise smoothness of this function now follows from smoothness of the Radon–
Nikodym derivative (see eg Knapp [33, Proposition 8.43]). Finally, (iv) follows from
Lemma 2.1 and the observation that every constant function is smooth.

We emphasize that, in general, the analog of (iv) fails for classes in M..S1/nC1/G,
since boundedness is essential for the construction of invariant representatives. We will
often apply Lemma 2.2 in the following form, which combines (i)–(iv) of the lemma:

Corollary 2.3 If f 2 L1..S1/nC1/G and h 2 C1..S1/k/, then the class g in
L1..S1/n�kC1/ given by

g.z0; : : : ; zn�k/

WD

Z
.S1/k

h.w1; : : : ; wk/f .w1; : : : ; wk ; z0; : : : ; zn�k/ d�˝k
K
.w1; : : : ; wk/

admits an orbitwise smooth representative.

Convention 2.4 Whenever we are given a function class f in M..S1/nC1/ or
L1..S1/nC1/ that admits an orbitwise smooth representative, we will use the same
letter f to denote an orbitwise smooth representative.

2.4 The boundary model for continuous bounded cohomology

A function class f 2 L1..S1/nC1/ is called alternating provided �:f D .�1/� � f

for all � 2 SnC1 ; we denote by L1alt ..S
1/nC1/ < L1..S1/nC1/ the subspace of

alternating function classes. Since the actions of �G and SnC1 commute, this subspace
is �G–invariant. Moreover, the homogeneous differential maps alternating function
classes to alternating functions classes, whence .L1alt ..S

1/�C1/; d/ is a subcomplex of
.L1..S1/�C1/; d/.

Proposition 2.5 (Boundary model [37, Theorem 7.5.3]) Given a closed subgroup
H < �G , the continuous bounded cohomology of H is given by the cohomology of the
complex .L1alt ..S

1/�C1/H ; d/, ie

H n
cb.H IR/ŠH n.L1alt ..S

1/�C1/H ; d/ for all n� 0:
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2.5 Even and odd cocycles

Given f 2 L1alt ..S
1/nC1/, we denote by f ˙ the projections of f onto the ˙1–

eigenspaces of � . Explicitly, we have f ˙ D 1
2
.f ˙ �:f / and f D f CC f � . We

say that f is even if f D f C and odd if f D f � . Since � normalizes G , the
projections f 7! f ˙ preserve the subspace of G–invariants. They also commute with
homogeneous differentials, since � does. In particular, every G–invariant alternating
(strict) cocycle decomposes uniquely into a sum of a G–invariant alternating (strict)
even cocycle and a G–invariant alternating (strict) odd cocycle, and similarly for
coboundaries. On the level of cohomology this yields a decomposition

H �cb.GIR/ŠH �cb.GIR/ev˚H �cb.GIR/odd:

The first summand H n
cb.GIR/ev can be identified with the continuous bounded coho-

mology H n
cb.
�GIR/ of the extended group �G . Similarly, if we denote by R� the unique

non-trivial 1–dimensional �G–module, then H �cb.GIR/odd ŠH �cb.
�GIR�/, whence the

above decomposition can also be written as

H �cb.GIR/ŠH �cb.
�GIR/˚H �cb.

�GIR�/:
In particular, the vanishing of H �cb.GIR/ is equivalent to the vanishing of both
H �cb.

�GIR/ and H �cb.
�GIR�/. It turns out that the vanishing of H �cb.

�GIR�/ can be
deduced using only combinatorial arguments; see Proposition 2.6 below. The vanishing
of the first summand is considerably harder and its proof will occupy the rest of this
article.

Proposition 2.6 Every alternating G–invariant bounded 4–cocycle is even. In particu-
lar,

H 4
cb.GIR/odd ŠH 4

cb.
�GIR�/D 0:

The proof of Proposition 2.6 will be given in Appendix A. We remind the reader that
non-zero even alternating G–invariant bounded 4–cocycles do exist; see Burger and
Monod [15].

2.6 Primitives in the boundary model

Given a bounded G–cocycle c 2L1..S1/5/G and any closed subgroup H �G , we
denote by

P.c/H WD fp 2M..S1/4/H j dp D cg

the space of H–invariant primitives of c and by

P1.c/H WD fp 2L1..S1/4/H j dp D cg
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the subspace of bounded H–invariant primitives. In view of Proposition 2.5, the proof
of Theorem 1.1 amounts to showing that P1.c/G ¤∅ for any bounded alternating
G–cocycle c and, by Proposition 2.6, we may furthermore assume that c is even. Under
this assumption we will explicitly construct elements in P1.c/G . For this purpose,
we first define an operator

I W L1..S1/nC1/! L1..S1/n/

by

(2-1) I.c/.z1; : : : ; zn/ WD

Z
S1

c.z; z1 : : : ; zn/ d�K .z/:

It induces an operator I W L1..S1/nC1/!L1..S1/n/, which by abuse of notation
we denote by the same symbol. By integrating the cocycle equation dc D 0, we see
that d.I.c//D c for every cocycle c .

From now on we fix a bounded G–cocycle c 2 L1..S1/5/G . For the moment we
do not need to assume that c is either alternating or even. By K–invariance of the
measure �K , we see from formula (2-1) that the function I.c/ is K–invariant, hence a
K–invariant primitive of c . It will, however, in general not be G–invariant. In order to
obtain G–invariant primitives we amend the operator I in the following way.

We denote by .S1/.n/� .S1/n the subset of n–tuples of pairwise distinct points in S1 .
Note in particular that the G–action on .S1/.3/ is free and has two open orbits, given
by positively and negatively oriented triples. We write C1..S1/.3//K for the space
of K–invariant real-valued smooth functions on .S1/.3/ and consider it as a subspace
of M..S1/3/. We then define an operator

(2-2) Pc W C
1..S1/.3//K !M..S1/4/; f 7! I.c/C df:

A key observation is that all G–invariant bounded primitives of c necessarily lie in the
image of the operator Pc . This will allow us to express primitives in terms of smooth
(rather than measurable) solutions to differential equations.

Proposition 2.7 The image of the operator Pc satisfies

P1.c/G � Pc.C
1..S1/.3//K /� P.c/K :

Proof We have already seen that I.c/ 2 P1.c/K . We conclude that Pc.f / 2 P.c/K

for all f 2 C1..S1/.3//K . Concerning the other inclusion, we observe that, if
p 2P1.c/G is any bounded primitive of c , then dpD cD dI.c/, whence p�I.c/ is
a K–invariant cocycle. In particular, if we define f WD I.p�I.c//, then df Dp�I.c/

and thus
p D I.c/C df:
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By Lemma 2.2 the function classes p and c , and hence also f , can be represented by an
orbitwise smooth function. Since G–orbits are open in .S1/.3/ , we infer that this repre-
sentative is actually smooth on .S1/.3/ and thus pDPc.f /2Pc.C

1..S1/.3//K /.

2.7 Strategy of proof

We briefly outline the strategy for the proof of Theorem 1.1. We shall proceed in three
steps:

(1) In Section 3, we show that for any function f 2 C1..S1/.3//K the primitive
Pc.f / is G–invariant if and only if f satisfies a certain system of linear first-
order partial differential equations.

(2) In Section 4, we explicitly construct solutions f of this system of differential
equations, showing that P.c/G ¤∅.

(3) In Section 5, we prove that there exist particular solutions f with certain addi-
tional discrete symmetries. For such functions f we then show boundedness
of Pc.f /, establishing that P1.c/G ¤∅.

While the constructions in (1) and (2) work for arbitrary bounded G–cocycles c , the
construction in (3) relies on c being alternating and even.

3 Partial differential equations

3.1 The boundary action in local coordinates

In order to describe the boundary action of G D PU.1; 1/ explicitly, we introduce
coordinates as follows. We consider S1 as a subset of C and write z 2 S1 for a
complex number z of modulus 1. In addition, it will often be convenient to work with
the angular coordinate � 2 Œ0; 2�/ defined by z D ei� . Correspondingly, on .S1/n we
will use the two sets of coordinates .z0; : : : ; zn�1/ and .�0; : : : ; �n�1/. Note that, in
angular coordinates on S1 , the measure �K is given byZ

S1

f .z/ d�K .z/D �

Z
f .�/ d� WD

1

2�

Z 2�

0

f .�/ d�:

Convention 3.1 Throughout, all operations on angular coordinates will implicitly be
understood modulo 2� . For example, �2� �1 denotes the unique point in the interval
Œ0; 2�/ that is congruent to �2� �1 modulo 2� .
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The G–action on S1 induces a G–action on the interval Œ0; 2�/ by the relation
g:ei� D eig:� . Note that in particular k� :� D � C � .

Lemma 3.2 (Infinitesimal actions in angular coordinates) For every � 2 Œ0; 2�/ we
have

d

ds
.as:�/D sin.as:�/ and

d

dt
.nt :�/D 1� cos.nt :�/:

Proof To prove the first formula, we compute

d

ds

ˇ̌̌̌
sD0

.as:�/D
1

iei�

d

ds

ˇ̌̌̌
sD0

eias :� D
1

iei�

d

ds

�
cosh

�
�

1
2
s
�
ei� C sinh

�
�

1
2
s
�

sinh
�
�

1
2
s
�
ei� C cosh

�
�

1
2
s
��ˇ̌̌̌

sD0

D sin.�/:

Since the map s 7! as is a 1–parameter group we further infer that

d

ds
.as:�/D

d

d�

ˇ̌̌̌
�D0

.asC� :�/D
d

d�

ˇ̌̌̌
�D0

.a� .as:�//D sin.as:�/:

Likewise, for the second formula we compute

d

dt

ˇ̌̌̌
tD0

.nt :�/D
1

iei�

d

dt

ˇ̌̌̌
tD0

eint :�D
1

iei�

d

dt

��
1C 1

2
i t
�
ei� �

1
2
i t

1
2
i tei� C 1� 1

2
i t

�ˇ̌̌̌
tD0

D 1�cos�

and conclude as above.

3.2 Fundamental vector fields

We denote by L
.n/
K

, L
.n/
A

and L
.n/
N

the differential operators that appear as fundamental
vector fields for the infinitesimal action of the 1–parameter groups � 7! k� , s 7! as

and t 7! nt on .S1/.n/ , respectively. By Lemma 3.2, they are given in angular
coordinates by

L
.n/
K
D

n�1X
jD0

@

@�j
; L

.n/
A
D

n�1X
jD0

sin �j
@

@�j
and L

.n/
N
D

n�1X
jD0

.1� cos �j /
@

@�j
:

Note that L
.n/
K
f is well-defined for any orbitwise smooth function f W .S1/n! R,

and similarly for L
.n/
A

and L
.n/
N

. The next lemma is crucial for applications of the
operators L

.n/
K

, L
.n/
A

and L
.n/
N

in cohomology.

Lemma 3.3 Let L.n/ denote one of the operators L
.n/
K

, L
.n/
A

and L
.n/
N

. Then L.n/

commutes with the homogeneous differential in the sense that

dn
ıL.n/ DL.nC1/

ı dn for every n> 0:
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Proof Let � 2 C1.Œ0; 2�// and consider the differential operators

L
.n/

�
WD

n�1X
jD0

�.�j /
@

@�j

for every n> 0. For any orbitwise smooth .n�1/–cochain q we compute

.L
.nC1/

�
.dnq//.�0; : : : ; �n/D

nX
jD0

�.�j /
@

@�j

� nX
`D0

.�1/`q.�0; : : : ; y�`; : : : ; �n/

�

D

nX
`D0

.�1/`
X
j¤`

�.�j /
@q

@�j
.�0; : : : ; y�`; : : : ; �n/

D

nX
`D0

.�1/`.L
.n/

�
q/.�0; : : : ; y�`; : : : ; �n/

D .dn.L
.n/

�
q//.�0; : : : ; �n/:

3.3 Infinitesimal invariance of primitives

We now return to the setting of Section 2.6. In particular, c 2L1..S1/5/G is a cocycle
and the operator

Pc W C
1..S1/.3//K ! P.c/K ; f 7! I.c/C df;

is defined as in (2-2). We will characterize G–invariance of primitives Pc.f / in
terms of differential equations for the function f . First, let us define function classes
c] , c[ 2L1..S1/3/ by

(3-1) c].�0; �1; �2/ WD �

Z
�

Z
cos.'/ c.�; '; �0; �1; �2/ d� d'

and

(3-2) c[.�0; �1; �2/ WD �

Z
�

Z
sin.'/ c.�; '; �0; �1; �2/ d� d':

By Corollary 2.3 the function classes c] and c[ admit orbitwise smooth representa-
tives. By Lemma 2.2(i) they can thus be represented by smooth functions on .S1/.3/ .
Following Convention 2.4, we denote these smooth representatives by the same letters
c] and c[ .

The next proposition achieves the first step in the agenda outlined in Section 2.7.
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Proposition 3.4 Let f 2 C1..S1/.3//K and c]; c[ 2 C1..S1/.3// as above. Then
the primitive Pc.f / 2 P.c/K is G–invariant if and only if there exist functions
v] , v[ 2 C1..S1/.2// such that the triple .f; v]; v[/ satisfies the system of partial
differential equations

(3-3)

(
L
.3/
A
f D c]C dv];

L
.3/
N
f D c[C dv[:

Note that all functions appearing in (3-3) are smooth, so all derivatives can be understood
classically. The proof of Proposition 3.4 relies on the following lemma:

Lemma 3.5 The function class I.c/ 2L1..S1/4/ admits an orbitwise smooth repre-
sentative that satisfies (

L
.4/
A

I.c/D�dc];

L
.4/
N

I.c/D�dc[;

where c] and c[ are orbitwise smooth representatives of the function classes defined in
(3-1) and (3-2).

Proof By Corollary 2.3 the function class I.c/ admits an orbitwise smooth represen-
tative. Fix an invariant representative Qc of c by Lemma 2.1. Using the A–invariance
of Qc and Lemma 3.2, we compute

L
.4/
A
.I.c//.�0; : : : ; �3/D

d

ds

ˇ̌̌̌
sD0

�

Z
Qc.'; as:�0; : : : ; as:�3/ d'

D
d

ds

ˇ̌̌̌
sD0

�

Z
d.as:'/

d'
Qc.'; �0; : : : ; �3/ d'

D �

Z
d

d'

d.as:'/

ds

ˇ̌̌̌
sD0

Qc.'; �0; : : : ; �3/ d'

D �

Z
d

d'
sin.as:'/

ˇ̌̌̌
sD0

Qc.'; �0; : : : ; �3/ d'

D �

Z
cos.'/c.'; �0; : : : ; �3/ d':

On the other hand, the cocycle identity

0D dc.�; '; �0; : : : ; �3/

D c.'; �0; : : : ; �3/� c.�; �0; : : : ; �3/C

3X
jD0

.�1/j c.�; '; �0; : : : ; y�j ; : : : ; �3/
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integrates against cos' to

0D �

Z
�

Z
cos.'/c.'; �0; : : : ; �3/ d� d' � 0C

3X
jD0

.�1/j c].�0; : : : ; y�j ; : : : ; �3/

D �

Z
cos.'/ c.'; �0; : : : ; �3/ d'C dc].�0; : : : ; �3/:

This establishes the first identity. Likewise, to prove the second identity we compute

L
.4/
N
.I.c//.�0; : : : ; �3/D

d

dt

ˇ̌̌̌
tD0

�

Z
Qc.'; nt :�0; : : : ; nt :�3/ d'

D �

Z
d

d'

d.nt :'/

dt

ˇ̌̌̌
tD0

Qc.'; �0; : : : ; �3/ d'

D �

Z
d

d'
.1� cos.nt :'//

ˇ̌̌̌
tD0

Qc.'; �0; : : : ; �3/ d'

D �

Z
sin.'/ Qc.'; �0; : : : ; �3/ d'

and then integrate the above cocycle identity against sin' .

Proof of Proposition 3.4 By Corollary 2.3, the function class

Pc.f /D I.c/C df

admits an orbitwise smooth representative for every f 2 C1..S1/.3//K . This repre-
sentative Pc.f / is then smooth on .S1/.3/ by Lemma 2.2(i), hence G–invariant if and
only if it is infinitesimally G–invariant. Since the subgroups K , A and N generate the
group G , this in turn is equivalent to Pc.f / satisfying the system of partial differential
equations 8̂<̂

:
L
.4/
K

Pc.f /D 0;

L
.4/
A

Pc.f /D 0;

L
.4/
N

Pc.f /D 0:

The first equation is automatically satisfied, since Pc.f / is K–invariant by Proposition
2.7. Writing out the definition of Pc.f / and applying Lemmas 3.3 and 3.5, the
remaining two equations are seen to be equivalent to the system

(3-4)

(
d.L

.3/
A
f /D dc];

d.L
.3/
N
f /D dc[:

If (3-3) admits a solution .f; v]; v[/ 2 C1..S1/.3//�C1..S1/.2//�C1..S1/.2//,
then we see by applying the operator d to both sides of (3-3) that f also satisfies
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(3-4) and thus Pc.f / is G–invariant. Conversely, if Pc.f / is G–invariant, then (3-4)
holds and, if we define measurable function classes v] WD I.L

.3/
A
f � c]/ and v[ WD

I.L
.3/
N
f �c[/, then the triple .f; v]; v[/ satisfies (3-3). Moreover, v]; v[ 2L1..S1/2/

admit smooth representatives on .S1/.2/ , by Corollary 2.3 and Lemma 2.2(i). Thus,
Pc.f / is G–invariant if and only if (3-3) admits a solution

.f; v]; v[/ 2 C1..S1/.3//�C1..S1/.2//�C1..S1/.2//:

3.4 The Frobenius integrability condition

We now turn to the problem of finding solutions of system (3-3). As we shall see in
Proposition 3.7 below, it follows from the classical Frobenius theorem that this system
admits a smooth solution .f; v]; v[/ if and only if the functions v] and v[ satisfy a
certain integrability condition. In order to state the result we define a function class
Lc 2L1..S1/2/ by

(3-5) Lc.�1; �2/ WD �

Z
�

Z
�

Z
sin.��'/ c.�; ';  ; �1; �2/ d� d' d :

Lemma 3.6 The function class Lc 2 L1..S1/2/ can be represented by a smooth
K–invariant function on .S1/.2/ .

Proof Smoothness is immediate from Corollary 2.3 and Lemma 2.2(i). By K–
invariance of c and of the measure, for every � 2 Œ0; 2�� we have

Lc.k� :�1; k� :�2/D �

Z
�

Z
�

Z
sin.��'/ c.�; ';  ; �1C �; �2C �/ d� d' d 

D �

Z
�

Z
�

Z
sin.��'/c.�� �; ' � �;  � �; �1; �2/ d� d' d 

D �

Z
�

Z
�

Z
sin..�C �/� .'C �//c.�; ';  ; �1; �2/ d� d' d 

D Lc.�1; �2/:

Proposition 3.7 (Integrability condition) There exists a solution .f; v]; v[/ to (3-3)
in C1..S1/.3// � C1..S1/.2// � C1..S1/.2// if and only if the pair .v]; v[/ in
C1..S1/.2//�C1..S1/.2// satisfies the system of partial differential equations

(3-6)

8̂<̂
:

d.L
.2/
K
v]C v[/D 0;

d.L
.2/
K
v[� v]/D 0;

d.L
.2/
K
v]�L

.2/
N
v]CL

.2/
A
v[� Lc/D 0:
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The proof of the proposition relies on the Frobenius theorem and will be deferred to
Appendix B. In the sequel, we shall refer to system (3-6) as the Frobenius system. It
will be enough for our purposes to find a function f satisfying system (3-3) for some
pair .v]; v[/. We will hence not attempt to find all solutions of system (3-6). Rather,
we will construct a single special solution .v]; v[/.

Proposition 3.8 Let r 2 C1..0; 2�/;C/ be a smooth complex-valued solution of the
ordinary differential equation

(3-7) .1� e�i�/ �
dr

d�
D i r.�/� Lc.0; �/:

By Convention 3.1, we may define a function v 2 C1..S1/.2/;C/ by

(3-8) v.�1; �2/ WD ei�1 r.�2� �1/:

Then the pair .v]; v[/ WD .Re.v/; Im.v// 2 C1..S1/.2//�C1..S1/.2// is a solution
of the Frobenius system (3-6).

Proof We remind the reader that throughout the proof we adhere to Convention 3.1.
First observe that, if v is a solution of the system

(3-9)

8<: L
.2/
K
v D iv;

e�i�1
@v

@�1

C e�i�2
@v

@�2

D Lc;

then .v]; v[/ WD .Re.v/; Im.v// is a solution of (3-6). Indeed, taking real and imaginary
parts of the first equation in (3-9) we obtain

L
.2/
K
v] D�v[; L

.2/
K
v[ D v];

while taking the real part of the second equation yields

L
.2/
K
v]�L

.2/
N
v]CL

.2/
A
v[ D Lc:

Next consider the transformation

u.�1; �2/ WD e�i�1 v.�1; �2/:

Then the first equation in (3-9) is equivalent to

(3-10) L
.2/
K

uD 0
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and the second equation is equivalent to

(3-11) Lc.�1; �2/D e�i�1
@

@�1

.ei�1u.�1; �2//C e�i�2
@

@�2

.ei�1u.�1; �2//

D iu.�1; �2/C
@u

@�1

C ei.�1��2/
@u

@�2

D iu.0; �2� �1/C .1� ei.�1��2//
@u

@�1

:

Here we used that @�1
uD�@�2

u, by (3-10). Now let r be a solution of (3-7) and set
v.�1; �2/ WD ei�1r.�2 � �1/. Then u.�1; �2/D r.�2 � �1/ obviously satisfies (3-10).
By the K–invariance of Lc from Lemma 3.6, we have Lc.�1; �2/ D Lc.0; �2 � �1/. It
follows that u solves (3-11).

4 Construction of primitives

4.1 Solving the Frobenius system

Throughout this section we fix a bounded G–cocycle c 2L1..S1/5/G and denote by

Pc W C
1
�
.S1/.3/

�K
! P.c/K ; f 7! I.c/C df;

the operator from (2-2). Our goal is to solve the system (3-3) in order to construct
a function f 2 C1..S1/.3//K such that Pc.f / 2 P.c/G is a G–invariant primitive
for c . The first step in the construction of this primitive is to solve the differential
equation (3-7) for the function r . As we have seen in Propositions 3.8 and 3.7, the
function r then gives rise to a special solution .v]; v[/ of the Frobenius system (3-6),
which in turn determines the inhomogeneities in (3-3) in such a way that this system
admits a solution f .

The complex ordinary differential equation (3-7) can be solved by applying the method
of variation of constants. Its general solution r 2 C1..0; 2�/;C/ is given by

r.�/D .1� ei�/ �

�
C0�

1

2

Z �

�

Lc.0; �/

1� cos �
d�

�
;

where C0 is an arbitrary complex constant. Note that different choices of C0 lead to
cohomologous cochains v . We may therefore assume C0 D 0, obtaining

(4-1) r.�/D�1
2

�
1� ei�

�
�

Z �

�

Lc.0; �/

1� cos �
d�:

We shall henceforth be working with the function r defined by this formula. A crucial
observation is the following lemma:
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Lemma 4.1 (Boundedness of the inhomogeneity) The function r 2 C1..0; 2�/;C/
given by (4-1) is bounded. In particular, if .v]; v[/ 2 C1..S1/.2//�C1..S1/.2// are
defined as in Proposition 3.8, then the inhomogeneities in the system (3-3) are bounded.

Proof For all � 2 .0; 2�/ we have

(4-2) jr.�/j � 1
2
j1� ei�

j �

ˇ̌̌̌Z �

�

Lc.0; �/

1� cos �
d�

ˇ̌̌̌
:

To estimate this further, observe that, on the one hand,

(4-3) j1� ei�
j D
p

2 �
p

1� cos�

and, on the other hand, we have

(4-4)
ˇ̌̌̌Z �

�

Lc.0; �/

1� cos �
d�

ˇ̌̌̌
� kLck1 �

ˇ̌̌̌Z �

�

1

1� cos �
d�

ˇ̌̌̌
� kck1 �

p
1C cos�p
1� cos�

:

Here we used that kLck1 � kck1 , as well asZ �

�

1

1� cos �
d� D� cot.1

2
�/

and ˇ̌
cot
�

1
2
�
�ˇ̌
D

p
1C cos�p
1� cos�

:

Note that
p

1C cos� �
p

2. Hence, plugging (4-3) and (4-4) into (4-2) we arrive at

jr.�/j � 1
2

p
2 �
p

1C cos� � kck1 � kck1

for all � 2 .0; 2�/, which proves the lemma.

4.2 Cauchy initial value problem

Recall that solutions to a first-order linear partial differential equation may be con-
structed explicitly by integration along its characteristic curves, with initial values
prescribed on some non-characteristic hypersurface; see Carathéodory [16, Chapter 3].
We shall now apply this principle in order to explicitly construct solutions of the
system (3-3).

Let r 2C1..0; 2�/;C/ be given by (4-1). By Proposition 3.8 and Lemma 4.1, this de-
termines a bounded solution .v]; v[/ WD .Re.v/; Im.v//2C1..S1/.2//�C1..S1/.2//

of the Frobenius system (3-6) by

(4-5) v.�1; �2/ WD ei�1 r.�2� �1/:
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We shall henceforth keep the function v defined that way. Then, by Proposition 3.7,
there exists a function f 2 C1..S1/.3// satisfying the system of equations

L
.3/
K
f D 0;(4-6a)

L
.3/
A
f D c]C dv];(4-6b)

L
.3/
N
f D c[C dv[:(4-6c)

We know from Section 3.2 that the characteristic curves for these equations are precisely
the orbits for the actions of the subgroups K , A and N of G on .S1/.3/ , respectively.
In order to construct the function f we may therefore proceed as follows:

(1) We use (4-6a) in order to construct f with initial values f0 WD f jH0
prescribed

on the hypersurface

H0 WD f.z0; z1; z2/ 2 .S
1/.3/ j z0 D 1g:

Of course, (4-6a) just says that f is constant along the K–orbits in .S1/.3/ . The
hypersurface H0 is non-characteristic for (4-6a), since it intersects transversally with
the K–orbits in .S1/.3/ . Note that, in order for f to be compatible with the remaining
equations (4-6b) and (4-6c), the hypersurface H0 has to be invariant under the actions
of A and N . This, however, is indeed the case since the point 1 remains fixed under
these two actions.

(2) We use (4-6c) in order to construct f0 with initial values f1 WD f0jH1
prescribed

on the union of A–orbits

H1 WD fas:.1; i;�i/ j �1< s <1g[fas:.1;�i; i/ j �1< s <1g�H0:

Note that H1 is non-characteristic for (4-6c) since it intersects transversally with the
N–orbits in H0 . Moreover, in order for f0 to be compatible with the remaining
equation (4-6b), the curve H1 has to be invariant under the action of A, which is
obviously the case.

(3) We use (4-6b) in order to construct f1 with initial values f2 WD f1jH2
prescribed

on the set of base points

H2 WD f.1; e
2�i=3; e4�i=3/; .1; e4�i=3; e2�i=3/g �H1:

Note that (4-6b), when restricted to the curve H1 , becomes an ordinary differential
equation, which can be solved directly.

In particular, we see that solutions of the system (3-3) are uniquely determined by the
initial values of f2 on the set of base points H2 and hence form a 2–parameter family.
We will work out the details of (1) in Section 4.3, while the details of (2) and (3) will
be worked out in Section 4.4.
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4.3 Reduction of variables

In angular coordinates, the hypersurface H0 introduced in the previous section is given
by

H0 D f.�0; �1; �2/ 2 Œ0; 2�/
3
j �0 D 0; �1 ¤ �2; �1 ¤ 0¤ �2g:

The canonical projection .�0; �1; �2/ 7! .�1; �2/ identifies H0 with the open subset
� WD .0; 2�/2 n� of the square, where � � .0; 2�/2 denotes the diagonal in the
open square. The coordinates in � will be denoted by .�1; �2/. Moreover, we write
�˙ WD f.�1; �2/ j �1 7 �2g for the open subsets corresponding to the two G–orbits
in .S1/.3/ consisting of positively and negatively oriented triples. The restriction
f0 WD f jH0

is then given by f0.�1; �2/D f .0; �1; �2/. Note that by K–invariance
the function f is recovered from f0 by

(4-7) f .�0; �1; �2/D f0.�1� �0; �2� �0/:

Since the hypersurface H0 is invariant under the actions of A and N , the system (3-3)
restricts to the system

(4-8)

(
L
.2/
A
f0 D c

]
0
C .dv]/0;

L
.2/
N
f0 D c[

0
C .dv[/0:

Here we denote by c
]
0

, c[
0

, .dv]/0 and .dv[/0 the respective restrictions of the functions
c] , c[, dv] and dv[, ie

(4-9) c
]
0
.�1; �2/ WD c].0; �1; �2/; c[0.�1; �2/ WD c[.0; �1; �2/

and

(4-10) .dv]/0.�1; �2/ WD dv].0; �1; �2/; .dv[/0.�1; �2/ WD dv[.0; �1; �2/:

Note that these functions are smooth on �.

4.4 Method of characteristics

We now construct the function f0 by integrating equations (4-6b) and (4-6c) along their
characteristic curves. Recall that the characteristics for these equations are precisely
the orbits for the actions of the subgroups A and N on � (see Figure 1).

It will be convenient to abbreviate the inhomogeneities appearing on the right-hand
side of the system (4-8) by

(4-11) F ]c WD c
]
0
C .dv]/0 and F [c WD c[0C .dv

[/0:
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2��10

�2

2�

2��1
�0

�

�2

2�

Figure 1: A–orbits (left) and N–orbits (right) in the domain ��

If we prescribe the value of f0 on a single point in each of the orbits �C and �� , the
function f0 will be uniquely determined by the relations

f0.aS :�1; aS :�2/�f0.�1; �2/D

Z S

0

F ]c .as:�1; as:�2/ ds

and

f0.nT :�1; nT :�2/�f0.�1; �2/D

Z T

0

F [c .nt :�1; nt :�2/ dt:

More precisely, let us denote by

�op
WD f.�; 2� ��/ j � 2 .0; 2�/ n f�gg ��

the antidiagonal in �, which corresponds to the hypersurface H1 introduced in
Section 4.2. Note that it has two connected components. In order to compute the
function f0 we first introduce new coordinates on � that are adapted to the N–
orbits. For every point .�1; �2/ 2 � we define ˆ.�1; �2/ 2 .0; �/ [ .�; 2�/ in
such a way that .ˆ.�1; �2/; 2� �ˆ.�1; �2// is the point of intersection of the anti-
diagonal with the unique N–orbit passing through the point .�1; �2/. We then define
T .�1; �2/ 2 .�1;1/ by the relation

.�1; �2/D nT .�1;�2/:.ˆ.�1; �2/; 2� �ˆ.�1; �2//:

For later reference we note that

(4-12) T .�1; �2/D�
1
2

�
cot
�

1
2
�1

�
C cot

�
1
2
�2

��
;

which follows from the formula nt :�D 2 arccot.�tCcot.1
2
�//. Integrating the second

equation in (4-8) along the N–orbits in �, with initial values f1 prescribed on the
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.�1; �2/

.ˆ; 2� �ˆ/

!�

2��1�0

�

!C

�op

�

�2

2�

Figure 2: A path traveling along A– and N–orbits from the basepoint !� to
some point .�1; �2/ in ��

antidiagonal �op , we then obtain

(4-13) f0.�1; �2/D f1.ˆ.�1; �2/; 2� �ˆ.�1; �2//

C

Z T .�1;�2/

0

F [c
�
nt :ˆ.�1; �2/; nt :.2� �ˆ.�1; �2//

�
dt

for every .�1; �2/ 2�. It remains to compute the function f1 along the antidiagonal.
Let

!C WD
�

2
3
�; 4

3
�
�

and !� WD
�

4
3
�; 2

3
�
�

be the points in � corresponding to the base points in H2 introduced in Section 4.2.
Note that !C and !� coincide with the barycenters of the triangles enclosing the
domains �C and �� (see Figure 2). Define a new coordinate S.�/ 2 .�1;1/ on
each component of the antidiagonal �op by the relation

.�; 2� ��/D aS.�/:!˙;

depending on whether the point .�; 2� ��/ lies in �C or �� .

Integrating the first equation in (4-8) along the A–orbits in �op , with initial values f2

prescribed on the base points f!C; !�g, we get

(4-14) f1.�; 2� ��/D f2.!˙/C

Z S.�/

0

F ]c .as:!˙/ ds

for every � 2 .0; �/[ .�; 2�/.
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4.5 Explicit primitives

Combining the results from the previous sections, we are now in a position to give the
following explicit characterization of primitives:

Proposition 4.2 (Explicit primitives) Let .v]; v[/ 2 C1..S1/.2//� C1..S1/.2//

be the real and imaginary parts of the function v 2 C1..S1/;C/ defined by (4-5),
where the function r 2 C1..0; 2�/;C/ is as in (4-1). Then the following hold:

(i) Let f 2 C1..S1/.3//K . The primitive Pc.f / 2 P.c/K is G–invariant if and
only if the function f solves the system (3-3).

(ii) There is a one-to-one correspondence between solutions f 2 C1..S1/.3//K of
(3-3) and solutions f0 2 C1.�/ of (4-8) via the relation

f .�0; �1; �2/D f0.�1� �0; �2� �0/:

(iii) Every pair .f0.!C/; f0.!�// 2 R2 of initial values uniquely determines a
smooth solution f0 2 C1.�/ of (4-8) by the formula

(4-15) f0.�1; �2/D f0.!˙/C

Z S.ˆ.�1;�2//

0

F ]c .as:!˙/ ds

C

Z T .�1;�2/

0

F [c
�
nt :ˆ.�1; �2/; nt :.2� �ˆ.�1; �2//

�
dt;

where the functions F
]
c and F [c are as in (4-11). Conversely, any smooth solution

of (4-8) arises in this way.

Proof Let f 2 C1..S1/.3//K . Assertion (i) holds by Proposition 3.4, while (ii) was
proved in Section 4.3. Finally, our considerations in Section 4.4 show that the function
f0 satisfies (4-8) if and only if it is given by formulas (4-13) and (4-14), in terms of
integration along the unique path in � starting at !˙ and traveling to .�1; �2/ along
A– and N–orbits via the point .ˆ.�1; �2/; 2� �ˆ.�1; �2// on the antidiagonal (see
Figure 2), with initial values prescribed at !˙ . This proves (iii).

The proposition achieves the second step in the agenda outlined in Section 2.7. In
particular, it shows that solutions f0 of (4-8) form a 2–parameter family.

5 Boundedness of primitives

5.1 Symmetries

Our construction of primitives in the previous section was valid for arbitrary G–cocycles
c 2L1..S1/5/G . However, for the proof of boundedness of primitives, which we shall
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discuss in this section, it turns out to be essential that c be alternating and even. As
we have seen in Section 2.6, this is not a loss of generality. The following proposition
discusses symmetries of the various functions appearing in the construction of primitives
resulting from these additional assumptions.

Proposition 5.1 (Symmetries) Assume that the cocycle c 2 L1..S1/5/G is al-
ternating and even. Let r 2 C1..0; 2�/;C/ be given by (4-1) and let .v]; v[/
in C1..S1/.2// � C1..S1/.2// be defined as in Proposition 3.8. Then the inho-
mogeneities on the right-hand sides of systems (3-3) and (4-8) have the following
properties:

(i) The functions c]C dv] and c[C dv[ are alternating.

(ii) The function F
]
c D c

]
0
C .dv]/0 is antisymmetric about the antidiagonal �op

in �, ie

F ]c .�1; �2/D�F ]c .��2;��1/

for all .�1; �2/ 2�. In particular, it vanishes along the antidiagonal.

(iii) The function F [c D c[
0
C .dv[/0 is symmetric about the antidiagonal �op in �,

ie

F [c .�1; �2/D F [c .��2;��1/

for all .�1; �2/ 2�.

Proof We begin with the following observation. The function Lc defined in (3-5) is
alternating since c is assumed to be alternating. By Lemma 3.6, the function Lc is
K–invariant. Hence

Lc.0; �/D Lc.��; 0/D�Lc.0;��/:

By Convention 3.1, replacing � by 2� � � we infer from this that

(5-1)
Z �

�

Lc.0; �/

1� cos �
d� D�

Z 2���

�

Lc.0;��/

1� cos.��/
d� D

Z ��
�

Lc.0; �/

1� cos �
d�

for every �2 .0; 2�/. Recall moreover from Section 4.2 that .v]; v[/ WD .Re.v/; Im.v//,
where

v.�1; �2/D ei�1r.�2� �1/
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and r is as in (4-1). Let us prove (i). Since c is alternating, it is immediate from (3-1)
and (3-2) that c] and c[ are alternating. By (4-1) and (5-1) we have

(5-2) v.�1; �2/D ei�1r.�2� �1/

D�
1
2
.ei�1 � ei�2/ �

Z �2��1

�

Lc.0; �/

1� cos �
d�

D
1
2
.ei�2 � ei�1/ �

Z �1��2

�

Lc.0; �/

1� cos �
d� D�v.�2; �1/:

It follows that dv , and hence dv] and dv[ , are alternating. This proves (i). For the
proof of (ii) and (iii) we have to show that

(5-3) F ]c .�1; �2/D�F ]c .��2;��1/ and F [c .�1; �2/D F [c .��2;��1/:

To this end, we first note that, by (4-9) and since c is even, we have

(5-4) c
]
0
.��2;��1/D �

Z
�

Z
cos.'/c.�; '; 0;��2;��1/ d� d'

D �

Z
�

Z
cos.'/c.��;�'; 0; �2; �1/ d� d'

D �

Z
�

Z
cos.�'/c.�; '; 0; �2; �1/ d� d'

D��

Z
�

Z
cos.'/c.�; '; 0; �1; �2/ d� d'

D�c
]
0
.�1; �2/

and, similarly,

(5-5) c[0.��2;��1/D �

Z
�

Z
sin.'/c.�; '; 0;��2;��1/ d� d'

D �

Z
�

Z
sin.�'/c.�; '; 0; �2; �1/ d� d'

D �

Z
�

Z
sin.'/c.�; '; 0; �1; �2/ d� d' D c[0.�1; �2/:

Applying (5-1) as in the proof of (i) above, we obtain

v.��1;��2/D�
1
2
.e�i�1 � e�i�2/ �

Z ��2C�1

�

Lc.0; �/

1� cos �
d�

D�
1
2
.e�i�1 � e�i�2/ �

Z �2��1

�

Lc.0; �/

1� cos �
d� D v.�1; �2/:
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Combining this with (5-2) we arrive at

v.�1; �2/D�v.��2;��1/:

Consider the function .dv/0.�1; �2/ WD dv.0; �1; �2/. The previous two identities
imply that

.dv/0.�1; �2/D v.�1; �2/� v.0; �2/C v.0; �1/

D�.v.��2;��1/� v.0;��1/C v.0;��2//

D�.dv/0.��2;��1/:

Recall from (4-10) that .dv]/0 and .dv[/0 are the real and imaginary parts of .dv/0 .
Hence we conclude that

(5-6)
.dv]/0.�1; �2/D�.dv

]/0.��2;��1/;

.dv[/0.�1; �2/D .dv
[/0.��2;��1/:

The identities (5-3) now follow from (5-4), (5-5) and (5-6), which proves (ii)–(iii).

Next we consider symmetries of the solutions of (4-8). We introduce some notation
first. The S3 –action on .S1/.3/ commutes with the K–action, whence it descends to
an action on �. To describe this action explicitly, we denote by s1 and s2 the Coxeter
generators of S3 that act on .S1/.3/ by swapping coordinates in the pairs .�0; �1/

and .�1; �2/, respectively. Then, with respect to the coordinates .�1; �2/ on �, the
actions of s1 and s2 are given by

s1:.�1; �2/D .��1; �2��1/ and s2:.�1; �2/D .�2; �1/:

A function h0 2 C1.�/ will be called alternating under the action of S3 if s:h0 D

.�1/sh0 for all s 2S3 . Thus a function h0 2 C1.�/ is alternating under the action
of S3 if and only if the function h 2 C1..S1/.3//K defined by

h.�0; �1; �2/D h0.�1� �0; �2� �0/

is alternating in the usual sense.

Proposition 5.2 (Alternating solutions) Assume that the cocycle c 2L1..S1/5/G

is alternating and even. A solution f0 2 C1.�/ of (4-8) is alternating under the action
of S3 if and only if

(5-7) f0.!C/D�f0.!�/:

In this case the primitive Pc.f / 2 P.c/G , where f 2 C1..S1/.3//K is defined
by (4-7), is alternating.
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Proof First of all, we observe that S3 acts on the base points f!C; !�g by

(5-8) s1:!˙ D !�; s2:!˙ D !�:

Hence, if f0 is alternating under the action of S3 it follows that

f0.!C/D .�1/s1f0.s1:!C/D�f0.!�/:

Conversely, let f0 be a solution of system (4-8) that satisfies (5-7). We will prove that
f0 coincides with its antisymmetrization under the action of S3 . By Proposition 4.2(ii),
the function f0 corresponds to a solution f 2 C1..S1/.3//K of (3-3) via

f .�0; �1; �2/D f0.�1� �0; �2� �0/:

Now let
yf WD

1

6
�

X
s2S3

.�1/s s:f

be the antisymmetrization of f . Then yf 2 C1..S1/.3//K , and we further claim
that yf solves (3-3) as well. To see this, observe that in (3-3) the operators L

.3/
A

and
L
.3/
N

are symmetric, while by Proposition 5.1(i) the inhomogeneities c]C dv] and
c[Cdv[ are alternating. Now, by K–invariance, the function yf gives rise to a function
yf0 2 C1.�/ via

yf .�0; �1; �2/D yf0.�1� �0; �2� �0/:

Then Proposition 4.2(ii) implies that yf0 solves the system (4-8). Moreover, we have

yf0 D
1

6
�

X
s2S3

.�1/s s:f0;

whence yf0 is alternating under the action of S3 . It follows from (5-7) and (5-8) that
yf0.!˙/D f0.!˙/. The uniqueness statement in Proposition 4.2(iii) implies that yf0

coincides with f0 .

The proposition shows that solutions f0 of (4-8) that are alternating under the action
of S3 form a 1–parameter family.

5.2 Boundedness

In order to complete the proof of Theorem 1.1 it remains to show that, among the
G–invariant primitives we constructed in Section 4, there actually exist bounded ones.
This is the content of the next proposition, which crucially relies on the symmetries
unveiled in the previous section.
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Proposition 5.3 (Boundedness) Assume that the cocycle c 2L1..S1/5/G is alter-
nating and even. Let f0 2 C1.�/ be a solution of (4-8) that is alternating under the
action of S3 . Define f 2 C1..S1/.3//K by (4-7). Then the corresponding primitive
Pc.f / 2 P.c/G is bounded.

The proof of the proposition relies on the following three basic observations:

Lemma 5.4 Let the function f0 2 C1.�/ be defined by (4-15). If f0 is bounded
along the line segments �

0; 2
3
�
�
[
�

2
3
�; 2�

�
3 � 7!

�
2
3
�; �

�
and �

0; 4
3
�
�
[
�

4
3
�; 2�

�
3 � 7!

�
4
3
�; �

�
;

and f 2 C1..S1/.3//K is given by (4-7), then the corresponding primitive Pc.f / in
P.c/G is bounded.

Proof By Proposition 4.2, Pc.f /D I.c/C df is G–invariant. By 3–transitivity of
the G–action on S1 and since I.c/ is bounded, we therefore deduce that Pc.f / is
bounded if and only if the function

z 7! df .1; e2� i=3; e4�i=3; z/

is bounded. Writing z D ei� , we may express this function as

� 7! f
�

2
3
�; 4

3
�; �

�
�f

�
0; 4

3
�; �

�
Cf

�
0; 2

3
�; �

�
�f

�
0; 2

3
�; 4

3
�
�

D f0

�
2
3
�; � � 2

3
�
�
�f0

�
4
3
�; �

�
Cf0

�
2
3
�; �

�
�f0

�
2
3
�; 4

3
�
�
:

The lemma follows.

Lemma 5.5 Let C be a compact subset of the open square .0; 2�/2 . If the function
f0 2 C1.�/ defined by (4-15) is bounded along the antidiagonal �op in �, then it is
bounded on the subset C \� of �.

Proof By Lemma 4.1 the function F [c D c[
0
C .dv[/0 is bounded. Moreover, by

assumption, the function f0 is bounded along the antidiagonal �op in �, ie there
exists a number M > 0 such that jf0j�op j �M . Hence we obtain from (4-15) the
estimate

jf0.�1; �2/j �M CkF [ck1 � j�1; �2/j

for all .�1; �2/ 2 �. It remains to show that the function T is bounded on C \�.
By compactness of C it will be enough to prove that the function T W �!R extends
to a continuous function on the open square .0; 2�/2 . This, however, is immediate
from (4-12).
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2�4
3
��1

2
3
�0

�2

2�

Figure 3: The images of the line segments � 7! .2
3
�; �/ and � 7! .4

3
�; �/

under the S3 –action on � that are contained in a fundamental domain
(shaded) for this action

Lemma 5.6 Assume that the cocycle c 2 L1..S1/5/G is alternating. Then the
function f0 2 C1.�/ defined by (4-15) is locally constant along the antidiagonal �op

in �.

Proof Since c is alternating, the inhomogeneity F
]
c vanishes along the antidiagonal

�op by Proposition 5.1(ii). The lemma now follows from (4-15).

Example 5.7 Assume that the cocycle c is alternating. Consider the special solu-
tion f0 determined by the initial values f0.!˙/ D 0. It is alternating under the
action of S3 by Proposition 5.2. Moreover, by Lemma 5.6 it vanishes along the
antidiagonal �op . Since under the action of S3 the components of �op get identified
with the medians of the triangles enclosing the domains �C and �� , we further
infer that f0 also vanishes along these medians. Moreover, by Proposition 5.1(iii)
the function F [c is symmetric about the antidiagonal. Thus we see from (4-15) that
the special solution f0 is antisymmetric with respect to the antidiagonal and, hence,
antisymmetric with respect to all medians.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3 By Proposition 4.2(iii) the function f0 is given by (4-15).
Hence, by Lemma 5.4 it suffices to show that f0 is bounded along the line segments
� 7! .2

3
�; �/ and � 7! .4

3
�; �/. Since f0 is alternating under the action of S3 , it

suffices to prove that f0 is bounded along the images of these line segments in any
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fundamental domain for the S3 –action on �. In fact, we may choose the fundamental
domain in such a way that the image line segments lie inside a compact subset of
.0; 2�/2 (see Figure 3). By Lemmas 5.5 and 5.6, the function f0 is then bounded on
these line segments.

Theorem 1.1 follows by combining Propositions 4.2, 5.2 and 5.3.

Appendix A: Vanishing of odd cocycles

The goal of this appendix is to prove Proposition 2.6, which states that every bounded
alternating G–invariant 4–cocycle is necessarily even. Our strategy here is inspired
by Burger and Monod [15] in that we consider Fourier transforms of cocycles and
study the conditions imposed on them by G–invariance. Given n 2N0 , we denote by
c.ZnC1/ the space of complex-valued sequences indexed by ZnC1 and by `2.ZnC1/

the subspace of square-summable sequences. We denote by e0; : : : ; en the standard
basis of ZnC1 and use the multi-index notation

k WD .k0; : : : ; kn/ WD

nX
jD0

kj ej :

We then write calt.ZnC1/ and `2
alt.Z

nC1/, respectively, for the corresponding subspaces
of alternating sequences and define two linear operators A

.n/
˙
W `2

alt.Z
nC1/! calt.ZnC1/

by

.A
.n/
C F /.k/ WD

nX
jD0

.kj C 1/ �F.kC ej /;

.A.n/� F /.k/ WD

nX
jD0

.kj � 1/ �F.k � ej /:

Definition A.1 An element C 2 `2
alt.Z

nC1/ is called a combinatorial n–cocycle if
the following hold:

(i) C.k0; : : : ; kn/D 0 unless kj D 0 for precisely one j 2 f0; : : : ; ng.

(ii) C.k0; : : : ; kn/D 0 unless k0C � � �C kn D 0.

(iii) C 2 ker.A.n/C /\ ker.A.n/� /.

According to [15, Section 3.1], the Fourier transform yc of a G–invariant alternating
bounded n–cocycle c is a combinatorial n–cocycle. Observe that c is even if and
only if yc is even in the sense that yc.�k/D yc.k/. Proposition 2.6 will therefore be a
consequence of the following combinatorial result:
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Proposition A.2 Every combinatorial 4–cocycle is even.

For the proof of Proposition A.2 we need two preparatory lemmas. Given a com-
binatorial n–cocycle C we let supp.C / WD fk 2 ZnC1 j C.k/ ¤ 0g be the support
of C .

Lemma A.3 Let C be a combinatorial 4–cocycle and .k0; k1; k2; k3; k4/ 2 supp.C /.
Then there exists � 2S5 such that

k�.0/ < k�.1/ < k�.2/ D 0< k�.3/ < k�.4/:

Proof Since C is alternating and vanishes unless precisely one of its entries is 0, it
suffices to show that C vanishes on those k 2 Z5 which satisfy either

(A-1) k0 > k1 D 0> k2 > k3 > k4

or k0 < k1 D 0 < k2 < k3 < k4 . We are going to show C.k0; 0; k2; k3; k4/ D 0

whenever k satisfies (A-1) and leave the second, analogous case to the reader. Our
proof will be by induction on k0 .

If k0 � 5 then the condition k2C k3C k4 D �k0 cannot be satisfied for k satisfy-
ing (A-1), hence C.k/D 0. Otherwise, we use C 2 ker.A.4/C / to deduce that

0D .A
.4/
C C /.k0� 1; 0; k2; k3; k4/

D k0 �C.k0; 0; k2; k3; k4/C 0C .k2C 1/ �C.k0� 1; 0; k2C 1; k3; k4/

C.k3C1/�C.k0�1; 0; k2; k3C1; k4/C.k2C1/�C.k0�1; 0; k2; k3; k4C1/:

The third summand on the right-hand side vanishes by antisymmetry if k2C 1D 0,
and by the induction hypothesis otherwise. Similarly, the last two summands vanish.
Now the assumption k0 ¤ 0 implies C.k0; 0; k2; k3; k4/D 0.

Lemma A.4 Let C and D be combinatorial 4–cocycles such that

C.�n� 1;�n; 0; n; nC 1/DD.�n� 1;�n; 0; n; nC 1/

holds for all n> 0. Then C DD .

Proof Since the space of combinatorial cocycles is linear, we may assume DD 0 and
hence

C.�n� 1;�n; 0; n; nC 1/D 0 for all n> 0:
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We have to show that C D 0. Using that C is alternating and Lemma A.3, it suffices
to prove that C.k0; k1; 0; k3; k4/ D 0 whenever k0 < k1 < 0 < k3 < k4 . Since
C 2 ker.A.4/C / we have

0D .A
.4/
C C /.k0; k1; 0; k3; k4� 1/

D .k0C1/ �C.k0C1; k1; 0; k3; k4�1/C .k1C1/ �C.k0; k1C1; 0; k3; k4�1/C0

C .k3C 1/ �C.k0; k1; 0; k3C 1; k4� 1/C k4 �C.k0; k1; 0; k3; k4/:

We may rewrite this as

(A-2) C.k0; k1; 0; k3; k4/D �
k0C 1

k4

�C.k0C 1; k1; 0; k3; k4� 1/

�
k1C 1

k4

�C.k0; k1C 1; 0; k3; k4� 1/

�
k3C 1

k4

�C.k0; k1; 0; k3C 1; k4� 1/:

Now we iterate this recursion. In each step we get a sum of terms of the form
C.k0; k1; 0; k3; k4/, where the distance between k3 and k4 is smaller than in the
previous step. We can thus run the iteration until we arrive at terms of the form
C.k0; k1; 0; n; nC1/ with 0< n. We may furthermore assume that k0 < k1 < 0, since
C is alternating. It then remains to show that

(A-3) C.k0; k1; 0; n; nC 1/D 0 for all k0 < k1 < 0< n:

We prove this by a double induction on n and jk0j.

If n D 1 then the condition k0 C k1 D �2n � 1 forces .k0; k1/ D .�2;�1/ and
we are done by hypothesis. Now assume that n > 1 is arbitrary. The condition
k0Ck1D�2n�1 forces jk0j � nC1. If jk0j D nC1 then .k0; k1/D .�n�1;�n/

and we are again done by hypothesis. It thus remains to show (A-3) for n > 1

and jk0j> nC 1, where we assume

C.k 00; k1; 0; n
0; n0C 1/D 0

if either n0 < n, or nD n0 and jk 0
0
j< jk0j.

Now since C 2 ker.A.4/� / we have

0D .A.4/� C /.k0C 1; k1; 0; n; nC 1/

D k0 �C.k0; k1; 0; n; nC 1/C .k1� 1/ �C.k0C 1; k1� 1; 0; n; nC 1/C 0

C .n� 1/ �C.k0C 1; k1; 0; n� 1; nC 1/C n �C.k0C 1; k1; 0; n; n/:
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The second of the five summands on the right-hand side vanishes by induction hypothesis
of the inner induction on k0 , while the last summand vanishes by antisymmetry. Since
k0 < �n� 1< �2 we have k0 ¤ 0 and thus

C.k0; k1; 0; n; nC 1/D�
n� 1

k0

�C.k0C 1; k1; 0; n� 1; nC 1/:

To deal with the expression on the right-hand side we again apply (A-2) with k3D n�1

and k4 D nC 1. We thereby find

C.k0; k1; 0; n; nC 1/D
.n� 1/ � .k0C 1/

k0 � .nC 1/
C.k0C 1; k1; 0; n� 1; n/

C
.n� 1/ � .k1C 1/

k0 � .nC 1/
C.k0; k1C 1; 0; n� 1; n/

C
.n� 1/ � n

k0 � .nC 1/
C.k0; k1; 0; n; n/:

Here, the first two summands vanish by the induction hypothesis of the outer in-
duction on n and the last summand vanishes by antisymmetry. This shows that
C.k0; k1; 0; n; nC 1/D 0 and finishes the proof of the lemma.

Proof of Proposition A.2 Given a combinatorial 4–cocycle C we define a function
D W Z5!C by D.k0; : : : ; k4/ WD C.�k0; : : : ;�k4/. We claim that D is a combina-
torial cocycle. Since C is alternating and in `2, D is alternating and in `2 as well.
Conditions (i) and (ii) are obvious. Since C 2 ker.A.4/� / we have

.A
.4/
C D/.k/D

4X
jD0

.kj C 1/ �D.kC ej /D�

4X
jD0

.�kj � 1/ �C.�.kC ej //

D�

4X
jD0

.�kj � 1/ �C.�k � ej /D�.A
.4/
� C /.�k0; : : : ;�k4/D 0;

which shows that D 2 ker.A.4/C /. Dually, C 2 ker.A.4/C / implies D 2 ker.A.4/� /, which
finishes the proof that D is a combinatorial cocycle.

On the other hand, antisymmetry of C yields

D.�n�1;�n; 0; n; nC1/DC.nC1; n; 0;�n;�n�1/DC.�n�1;�n; 0; n; nC1/:

Now Lemma A.4 implies that C.k/DD.k/DC.�k/, which means that C is even.

This finishes the proof of Proposition 2.6.
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Appendix B: The Frobenius integrability condition

The goal of this appendix is to prove Proposition 3.7. We have to show that the system

(B-1)

8̂<̂
:

L
.3/
K
f D 0;

L
.3/
A
f D c]C dv];

L
.3/
N
f D c[C dv[;

admits a solution .f; v]; v[/ if and only if the pair .v]; v[/ satisfies the Frobenius
system (3-6). Here we consider f and v] , v[ as smooth functions on the domains
D WD Œ0; 2�/.3/ and Œ0; 2�/.2/ , respectively. It will be convenient to replace (B-1) by
the equivalent system

(B-2)

8̂<̂
:

L
.3/
K
f D 0;

L
.3/
A
f D c]C dv];

L
.3/
N
f �L

.3/
K
f D c[C dv[:

Consider the product D �R. We denote the coordinates on D by .�0; �1; �2/ and the
coordinate on R by �3 . The graph �f WD f..�0; �1; �2/; f .�0; �1; �2//g of the function
f is a 3–dimensional submanifold of D �R. Define vector fields on D �R by

X WDL
.3/
K
;

Y WDL
.3/
A
C
�
c]C dv]

�
@�3
;

Z WDL
.3/
N
�L

.3/
K
C
�
c[C dv[

�
@�3
:

Since G acts strictly 3–transitively on D , it follows that these vector fields span a
distribution E of constant rank 3 on D �R. Then a triple .f; v]; v[/ is a solution
of (B-2) if and only if the graph �f is an integral manifold for E . Hence the Frobenius
theorem (see eg Lee [35, Chapter 11]) implies that (B-2) admits a solution .f; v]; v[/
if and only if the distribution E is integrable, ie the vector fields X , Y , Z form an
involutive system. Note that

ŒL
.3/
K
;L

.3/
A
�DL

.3/
K
�L

.3/
N
; ŒL

.3/
K
;L

.3/
N
�L

.3/
K
�DL

.3/
A
; ŒL

.3/
A
;L

.3/
N
�L

.3/
K
�DL

.3/
K
:

Hence the vector fields X , Y , Z form an involutive system if and only if

(B-3) ŒX;Y �D�Z; ŒX;Z�D Y; ŒY;Z�DX:

We shall now make these conditions explicit. We start with two preliminary lemmas.

Lemma B.1 The functions c] and c[ defined in (3-1) and (3-2) satisfy

L
.3/
K

c] D�c[; L
.3/
K

c[ D c]:
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Proof More generally, we prove that, for any function � 2 C1..0; 2�//, the function

c�.�0; �1; �2/ WD �

Z
�

Z
�.'/ c.�; '; �0; �1; �2/ d� d'

satisfies L
.3/
K

c� D c�0 . Indeed, by K–invariance of the cocycle c and the measure, we
have

L
.3/
K

c�.�0; �1; �2/D
d

d�

ˇ̌̌̌
�D0

�

Z
�

Z
�.'/c.�; '; �0C �; �1C �; �2C �/ d� d'

D
d

d�

ˇ̌̌̌
�D0

�

Z
�

Z
�.'/c.�� �; ' � �; �0; �1; �2/ d� d'

D �

Z
�

Z
d

d�

ˇ̌̌̌
�D0

�.'C �/c.�; '; �0; �1; �2/ d� d'

D �

Z
�

Z
�0.'/c.�; '; �0; �1; �2/ d� d':

Lemma B.2 The function Lc defined in (3-5) satisfies

(B-4) L
.3/
K

c]�L
.3/
N

c]CL
.3/
A

c[ D�d Lc:

Proof Let us consider the left-hand side of (B-4). In a first step, using G–invariance
of c and K–invariance of the measure, we compute

L
.3/
K

c].�0; �1; �2/D
d

d�

ˇ̌̌̌
�D0

�

Z
�

Z
cos.'/c.�; '; �0C �; �1C �; �2C �/ d� d'

D �

Z
�

Z
d

d�
cos.'C �/

ˇ̌̌̌
�D0

c.�; '; �0; �1; �2/ d� d'

and

L
.3/
N

c].�0; �1; �2/

D
d

dt

ˇ̌̌̌
tD0

�

Z
�

Z
cos.'/c.�; '; nt :�0; nt :�1; nt :�2/ d� d'

D �

Z
�

Z
d

dt

�
cos.nt :'/

d.nt :'/

d'

d.nt :�/

d�

�ˇ̌̌̌
tD0

c.�; '; �0; �1; �2/ d� d'
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and, similarly,

L
.3/
A

c[.�0; �1; �2/

D
d

ds

ˇ̌̌̌
sD0

�

Z
�

Z
sin.'/c.�; '; as:�0; as:�1; as:�2/ d� d'

D �

Z
�

Z
d

ds

�
sin.as:'/

d.as:'/

d'

d.as:�/

d�

�ˇ̌̌̌
sD0

c.�; '; �0; �1; �2/ d� d':

Second, using Lemma 3.2 we compute the derivatives appearing in the above formulas.
Firstly, we have d cos.'C �/=d�

ˇ̌
�D0
D� sin.'/. Moreover,

d

dt

�
cos.nt :'/

d.nt :'/

d'

d.nt :�/

d�

�ˇ̌̌̌
tD0

D� sin.nt :'/
d.nt :'/

dt

d.nt :'/

d'

d.nt :�/

d�

ˇ̌̌̌
tD0

Ccos.nt :'/
d

d'

d.nt :'/

dt

d.nt :�/

d�

ˇ̌̌̌
tD0

C cos.nt :'/
d.nt :'/

d'

d

d�

d.nt :�/

dt

ˇ̌̌̌
tD0

D� sin.nt :'/.1� cos.nt :'//
d.nt :'/

d'

d.nt :�/

d�

ˇ̌̌̌
tD0

C cos.nt :'/
d

d'
.1� cos.nt :'//

d.nt :�/

d�

ˇ̌̌̌
tD0

C cos.nt :'/
d.nt :'/

d'

d

d�
.1� cos.nt :�//

ˇ̌̌̌
tD0

D� sin'.1� cos'/C cos' sin'C cos' sin �

D 2 sin' cos'C cos' sin �� sin':

Lastly,

d

ds

�
sin.as:'/

d.as:'/

d'

d.as:�/

d�

�ˇ̌̌̌
sD0

D cos.as:'/
d.as:'/

ds

d.as:'/

d'

d.as:�/

d�

ˇ̌̌̌
sD0

C sin.as:'/
d

d'

d.as:'/

ds

d.as:�/

d�

ˇ̌̌̌
sD0

C sin.as:'/
d.as:'/

d'

d

d�

d.as:�/

ds

ˇ̌̌̌
sD0

Dcos.as:'/ sin.as:'/
d.as:'/

d'

d.as:�/

d�

ˇ̌̌̌
sD0

Csin.as:'/
d

d'
sin.as:'/

d.as:�/

d�

ˇ̌̌̌
sD0

C sin.as:'/
d.as:'/

d'

d

d�
sin.as:�/

ˇ̌̌̌
sD0
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D 2 sin' cos'C sin' cos �:

Summing up, we obtain

(B-5) L
.3/
K

c].�0; �1; �2/�L
.3/
N

c].�0; �1; �2/CL
.3/
A

c[.�0; �1; �2/

D �

Z
�

Z
.sin' cos �� cos' sin �/c.�; '; �0; �1; �2/ d� d'

D��

Z
�

Z
sin.��'/c.�; '; �0; �1; �2/ d� d':

Now we turn to the computation of the right-hand side of (B-4). The cocycle identity
for c yields

0Ddc.�; ';  ; �0; �1; �2/Dc.';  ; �0; �1; �2/�c.�;  ; �0; �1; �2/Cc.�; '; �0; �1; �2/

�

2X
jD0

.�1/j c.�; ';  ; �0; : : : ; y�j ; : : : ; �2/:

We multiply this identity by sin.��'/ and integrate over the variables �, ' and  .
Integrating the first term, we get

�

Z
�

Z
�

Z
sin.��'/c.';  ; �0; �1; �2/ d� d' d 

D �

Z
�

Z �
�

Z
sin.��'/ d�

�
c.';  ; �0; �1; �2/ d' d D 0:

Likewise, the integral of the second term vanishes. We are thus left with

�

Z
�

Z
sin.��'/c.�; '; �0; �1; �2/ d� d'

D �

Z
�

Z
�

Z
sin.��'/

� 2X
jD0

.�1/j c.�; ';  ; �0; : : : ; y�j ; : : : ; �2/

�
d� d' d 

D

2X
jD0

.�1/j �

Z
�

Z
�

Z
sin.��'/c.�; ';  ; �0; : : : ; y�j ; : : : ; �2/ d� d' d 

D d Lc.�0; �1; �2/:

Comparing this with (B-5) above, formula (B-4) follows.

We are now in a position to finish the proof of Proposition 3.7 by spelling out the
integrability conditions (B-3). Consider the first identity in (B-3). We have

ŒX;Y �D ŒL
.3/
K
;L

.3/
A
�C .L

.3/
K
.c]C dv]// @�3

DL
.3/
K
�L

.3/
N
C .L

.3/
K
.c]C dv]// @�3

:
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Recall from Lemma B.1 and Lemma 3.3 that

L
.3/
K

c] D�c[; L
.3/
K

dv] D dL
.2/
K
v]:

Thus,
ŒX;Y �DL

.3/
K
�L

.3/
N
C .�c[C dL

.2/
K
v]/ @�3

:

Comparing this to �Z we find

(B-6) ŒX;Y �D�Z () d.L
.2/
K
v]C v[/D 0:

Likewise, for the second identity in (B-3) we have

(B-7) ŒX;Z�D Y () d.L
.2/
K
v[� v]/D 0:

Finally, observe that

ŒY;Z�D ŒL
.3/
A
;L

.3/
N
�L

.3/
K
�C ŒL

.3/
A
; .c[C dv[/ @�3

�� ŒL
.3/
N
�L

.3/
K
; .c]C dv]/ @�3

�

DL
.3/
K
C ..L

.2/
K
�L

.2/
N
/ dv]CL

.3/
A

dv[C .L
.3/
K
�L

.3/
N
/c]CL

.3/
A

c[/ @�3
:

By Lemma B.2 and Lemma 3.3, this becomes

ŒY;Z�DL
.3/
K
C .d.L

.2/
K
�L

.2/
N
/v]C dL

.2/
A
v[� d Lc/ @�3

:

We deduce that

(B-8) ŒY;Z�DX () d.L
.2/
K
v]�L

.2/
N
v]CL

.2/
A
v[� Lc/D 0:

Combining (B-6), (B-7) and (B-8), Proposition 3.7 now follows from (B-3).
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