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Global Weyl groups and a new theory
of multiplicative quiver varieties

PHILIP BOALCH

In previous work a relation between a large class of Kac–Moody algebras and mero-
morphic connections on global curves was established; notably the Weyl group gives
isomorphisms between different moduli spaces of connections, and the root system is
also seen to play a role. This involved a modular interpretation of many Nakajima
quiver varieties, as moduli spaces of connections, whenever the underlying graph
was a complete k–partite graph (or more generally a supernova graph). However in
the isomonodromy story, or wild nonabelian Hodge theory, slightly larger moduli
spaces of connections are considered. This raises the question of whether the full
moduli spaces admit Weyl group isomorphisms, rather than just the open parts
isomorphic to quiver varieties. This question will be solved here, by developing a
multiplicative version of the previous approach. This amounts to constructing many
algebraic symplectic isomorphisms between wild character varieties. This approach
also enables us to state a conjecture for certain irregular Deligne–Simpson problems
and introduce some noncommutative algebras (fission algebras) generalising the
deformed multiplicative preprojective algebras (some special cases of which contain
the generalised double affine Hecke algebras).
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1 Introduction

The Nakajima quiver varieties [48; 49] are a large class of hyperkähler manifolds
attached to graphs and some data on the graph. Some early examples arose as ALE
hyperkähler four-manifolds (see Kronheimer [45]), and then (see Kronheimer and
Nakajima [46]) as a way to describe moduli spaces of instantons, ie solutions of
the anti-self-dual Yang–Mills equations, on the ALE spaces, generalising the Atiyah–
Drinfeld–Hitchin–Manin construction of instantons [5]. The underlying graph may be
interpreted as a Dynkin diagram for a (symmetric) Kac–Moody algebra, and the quiver
varieties attached to the graph have proven to be important in the study of Kac–Moody
algebras (see eg Nakajima [50]). In previous work (see Boalch [10; 24]) it was shown
that some special Nakajima quiver varieties arise as moduli spaces M� of meromorphic
connections on the trivial bundle on the Riemann sphere, for example whenever the
quiver is a complete k–partite graph for any k . (This modular interpretation is different
from that of [45; 46], which only involves certain quivers closely related to affine
Dynkin quivers.) In brief, work of Kraft and Procesi [44], Nakajima [48] and Crawley-
Boevey [26] showed that moduli spaces of Fuchsian systems

M� Š O1 � � � � �Om==G

were quiver varieties for star-shaped graphs (where Oi � Lie.G/�; G D GLn.C/)
and this was extended in [10; 24] to some of the more general moduli spaces M� of
Boalch [12] involving irregular connections. This quiver approach to meromorphic
connections is useful since it enables the construction of many isomorphisms between
different moduli spaces M� , often with different ranks and pole divisors, simply by
reordering the symplectic quotient. It also hints at where one might find nonaffine
Kac–Moody algebras in the geometry of connections on global curves (complementing
the standard interpretation of affine Kac–Moody algebras in terms of loop algebras;
see Pressley and Segal [51, page 77]).

However, these moduli spaces M� are open pieces of the full moduli spaces M

of connections on curves that appear in the isomonodromy story [12, Remark 2.1,
Corollary 4.9] or wild nonabelian Hodge theory (see [9; 23]). These are also spaces of
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solutions to the anti-self-dual Yang–Mills equations, but different from those mentioned
above; in brief, Hitchin [37] considered instantons that were invariant under two
translations and found that the resulting “reduced” anti-self-dual Yang–Mills equations
made sense on any compact Riemann surface, where they became equations (the Hitchin
equations) for a pair consisting of a unitary connection together with a Higgs field. As
shown in [37], moduli spaces of solutions to the Hitchin equations are also hyperkähler
manifolds. It has gradually been understood (see [53; 9]) how to extend Hitchin’s work
to the case of noncompact Riemann surfaces, introducing boundary conditions so as
to still obtain finite-dimensional moduli spaces with (complete) hyperkähler metrics
(see the short survey [23]). In brief, this gives a way to attach a hyperkähler manifold
to a Riemann surface and some other data on the surface (eg to specify the boundary
conditions). We will call these hyperkähler manifolds the wild Hitchin moduli spaces.
In one complex structure in the hyperkähler family they are spaces of meromorphic
Higgs bundles, and in another they are spaces of meromorphic connections. As one
might expect, since Riemann surfaces are more complicated than graphs, the wild
Hitchin moduli spaces are more complicated than the Nakajima quiver varieties. More
precisely, there is no known finite-dimensional construction of the metrics on the wild
Hitchin spaces, whereas all the quiver varieties arise as hyperkähler quotients of a
finite-dimensional hyperkähler vector space.

The aim of the present article is to show that, nonetheless, a large class of the wild
Hitchin spaces may be considered as precise “multiplicative” versions of quiver varieties,
and then to use this to construct isomorphisms between different wild Hitchin spaces.
In particular, a theory of “multiplicative quiver varieties” will be developed, which will
attach an algebraic symplectic manifold to a graph and some data on the graph. Then
we will show for a special class of graphs, the “supernova graphs” (including all the
complete k–partite graphs for any k ), that the multiplicative quiver variety attached to
the graph is isomorphic to a wild Hitchin moduli space, thereby giving a graphical way
to recover the underlying holomorphic symplectic manifold. Conversely, this shows
that such multiplicative quiver varieties have (complete) hyperkähler metrics. A notion
of multiplicative quiver varieties is also suggested by the work of Crawley-Boevey and
Shaw [30], but beyond the case of star-shaped graphs their approach does not give the
desired spaces, as we will show explicitly by considering the case when the graph is a
triangle (Section 6.1). In particular, it is unclear if the spaces suggested by [30] are
hyperkähler beyond the star-shaped case.

One of the main motivations for developing this approach is to better understand the
automorphisms and isomorphisms between the wild character varieties (ie between
the wild Hitchin spaces in their Betti algebraic structures). As an application of the
graphical approach, we will show that the Weyl group of the Kac–Moody algebra
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attached to the graph acts to give algebraic symplectic isomorphisms between wild
character varieties. This is a multiplicative analogue of the approach of [10; 24];
in essence, the isomorphisms now arise by reordering the multiplicative symplectic
quotients. The fission idea (see Boalch [20; 25]) gives an inductive approach to prove
that such isomorphisms are symplectic, enabling a reduction to the simplest case. Many
(not necessarily affine) Kac–Moody Weyl groups thus arise in the context of the global
geometry of a Riemann surface, in contrast to the familiar local understanding of affine
Weyl groups related to loop groups (ie to gauge theory on a boundary circle).

The results herein hinge on certain developments in the theory of quasi-Hamiltonian
geometry (aka multiplicative Hamiltonian geometry or the theory of group-valued
moment maps) and may be viewed as an exploration of a class of examples. This theory
was introduced in 1997 by Alekseev, Malkin and Meinrenken [2] as an alternative
finite-dimensional approach to construct symplectic moduli spaces of flat connections
on principal K–bundles over Riemann surfaces for compact groups K . Subsequently,
the analogous holomorphic/algebraic theory for complex reductive groups G such as
GLn.C/ was developed starting in 2002 [13] (results published in 2007 in Boalch [16])
and many new examples of quasi-Hamiltonian spaces were constructed in this context.
These examples give great flexibility to construct many new algebraic symplectic man-
ifolds (beyond spaces of representations of fundamental groups of Riemann surfaces)
and the present article explores some of them.

Specifically, this extension made contact with the spaces of algebraic connections
considered both in algebraic geometry and in the classical theory of differential equa-
tions, rather than just the holomorphic or C1 connections familiar in differential
geometry. The key point is that certain connections on algebraic G–bundles on smooth
complex algebraic curves may be classified by topological objects, Stokes G–local
systems. In turn, the moduli spaces of Stokes local systems (the wild character varieties)
have a quite explicit description, which looks like a multiplicative symplectic quotient.
Thus, by extending the theory of multiplicative symplectic quotients to the complex
algebraic world, and then constructing new examples, it is possible to prove that the
wild character varieties are multiplicative symplectic quotients [16; 20; 25]. This led to
an algebro-geometric alternative to the earlier analytic construction of such symplectic
manifolds, à la Atiyah and Bott, in Boalch [11; 12], from which the quasi-Hamiltonian
structures were derived [16, Section 4]. The wild nonabelian Hodge correspondence of
Sabbah [52] and Biquard and Boalch [9] implies that, in one complex structure in the
hyperkähler family, the wild Hitchin moduli spaces are spaces of algebraic connections
on curves (see also the survey [23]), and are thus isomorphic to wild character varieties.

The further step we are taking in the present article is to notice that in some cases
the wild character varieties look like multiplicative quiver varieties; we then develop
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the requisite theory so that they are multiplicative quiver varieties. As we will show
this enables the construction of many (surprising) algebraic symplectic isomorphisms
between wild character varieties.

As a consequence of this link between graphs and spaces of connections, it is possible
to make a conjecture (Section 11) about when some of the moduli spaces of connections
considered in [12; 9] are nonempty. This conjecture involves the Kac–Moody root
system attached to the graph, and generalises one of Crawley-Boevey [27] to some
cases of the irregular Deligne–Simpson problem. Further, we will define some new
noncommutative algebras (Section 12) which control the multiplicative quiver varieties,
generalising the multiplicative preprojective algebras of Crawley-Boevey and Shaw [30]
(some special cases of which contain the generalised double affine Hecke algebras of
Etingof, Oblomkov and Rains [33]).

1.1 Statement of main results

The first aim is to show that certain wild character varieties are multiplicative analogues
of quiver varieties. Since it is little extra trouble we will set up the general theory
of multiplicative quiver varieties even though it is only a special class that appear as
wild character varieties. (This is analogous to [30], where only the star-shaped case
is used.) Thus the first step is the construction of the multiplicative quiver varieties.
In Definition 5.6 we will define the notion of a coloured quiver, which is a graph �
with nodes I and a colouring of the edges, together with some extra data involving
certain orderings. The colouring is a map  W �! C from the set of edges of � to the
set C of colours. In the simplest case the main property is that each monochromatic
subgraph �1.c/� � consists of a disjoint union of complete k–partite graphs for any
colour c 2 C . The “classical case” is when each monochromatic subgraph is a disjoint
union of individual edges (and in this case the orderings amount to an orientation of
each edge).

Theorem 1.1 Suppose � is a coloured quiver with nodes I and we choose data
d 2ZI

�0 and q 2 .C�/I consisting of an integer and an invertible complex number for
each node. Then this data determines an algebraic variety, the “multiplicative quiver
variety” M.�; q; d/, together with a canonical open subset of stable points

Mst.�; q; d/�M.�; q; d/:

If nonempty, Mst.�; q; d/ is a smooth symplectic algebraic variety of dimension equal
to 2� .d; d/, where . ; / is the bilinear form of the Kac–Moody Cartan matrix of � .
Up to isomorphism, the symplectic varieties Mst.�; q; d/ and M.�; q; d/ only depend
on q; d and the underlying coloured graph and not on any of the choices of ordering.
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In the classical case (where each monochromatic subgraph consists of disjoint edges)
this construction reduces to that suggested by Crawley-Boevey and Shaw [30] and
further studied by Van den Bergh [7] and Yamakawa [57]. We will also prove that if a
graph is star-shaped then up to isomorphism it makes no difference how it is coloured
(see Theorem 6.7 for a more general statement). In general, the multiplicative quiver
varieties do depend on the choice of colouring though:

Proposition 1.2 Suppose � is a triangle. Then there are two inequivalent ways to
colour � , and the resulting multiplicative quiver varieties are not isomorphic in general,
for example if d D .1; 1; 1/ and q is generic.

Further, beyond the star-shaped case, it is the “nonclassical” multiplicative quiver
varieties that appear as wild character varieties, and thus have complete hyperkähler
metrics (via the irregular Riemann–Hilbert correspondence and the wild nonabelian
Hodge theorem [52; 9]). This depends on the consideration of a special class of graphs,
the supernova graphs introduced in [10; 24]; the simplest examples of such graphs
consist of a central core which is a complete k–partite graph, together with a leg glued
on to each node of the core (see Definition 3.2 in general).

Theorem 1.3 Suppose � is a simply laced supernova graph, coloured so that its
core is monochromatic, and q; d are arbitrary. Then the multiplicative quiver variety
Mst.�; q; d/ is isomorphic to a wild character variety, and is thus hyperkähler.

More precisely, if the core of � has k parts then there are k C 1 ways to “read”
the multiplicative quiver variety as a wild character variety, typically with different
ranks/pole configurations (see the dictionary in Section 9.3). In particular, this gives an
alternative, graphical, way of thinking about a large class of wild character varieties, in
terms of supernova graphs (rather than the usual perspective involving wild Riemann
surfaces/irregular curves [25]). This new viewpoint is useful since the graph determines
a Kac–Moody algebra in a standard way, and in particular a Kac–Moody root system
and Weyl group (as described in Section 10.1). Passing between the different possible
readings of a multiplicative quiver variety leads to the fact that the Kac–Moody Weyl
group acts to give symplectic isomorphisms, in the following sense:

Theorem 1.4 Suppose � is a simply laced supernova graph with nodes I , coloured so
that its core is monochromatic, q; d are arbitrary, and si 2 Aut.ZI /, ri 2 Aut..C�/I /
are the corresponding simple reflections generating the Kac–Moody Weyl group (see
Section 10.1). Then if qi ¤ 1 the multiplicative quiver varieties

Mst.�; q; d/ and Mst.�; ri .q/; si .d//

are isomorphic smooth symplectic algebraic varieties for any node i 2 I .

Geometry & Topology, Volume 19 (2015)



Global Weyl groups and a new theory of multiplicative quiver varieties 3473

In turn, via Theorem 1.3, this yields many more symplectic isomorphisms between
wild character varieties, the typical orbit being infinite. The Weyl group occurring here
is the global Weyl group of the underlying wild Riemann surface: it fits together the
local Weyl groups at each simple pole (in each reading); the local Weyl groups are
symmetric groups controlling the orders of the eigenvalues of the residues at the simple
poles. In certain special cases (when the core is complete bipartite) similar explicit
isomorphisms are known to arise from the action of the Fourier–Laplace transform
on meromorphic connections; see Balser, Jurkat and Lutz [6] and Malgrange [47].
Even in such special cases, the proof that they are symplectic is new; the approach
here is the first to establish precise algebraic symplectic isomorphisms between the
full symplectic (Betti) moduli spaces. Once lifted up to the quasi-Hamiltonian world,
a nice way to establish such isomorphisms becomes possible (Section 7), purely in
the context of smooth affine varieties, although it will take some effort to set up the
framework for this.

1.2 Simple example

The wild character varieties are a class of symplectic/Poisson algebraic varieties that
generalise the character varieties of Riemann surfaces, ie the spaces of complex fun-
damental group representations of Riemann surfaces. Deligne proved in 1970 [31]
that complex fundamental group representations of punctured smooth algebraic curves
parametrise the connections on algebraic vector bundles which have regular singularities
at each puncture. The wild character varieties parametrise more general, irregular,
connections. The main Poisson manifolds appearing in the theory of quantum groups
are simple examples of wild character varieties (see [22, Section 4]).

A basic fact, known to D–module experts, that we wish to emphasise is that it is not
so easy to delineate between tame and wild character varieties: some of the simplest
wild character varieties are isomorphic to tame character varieties, ie to spaces of
fundamental group representations. A fundamental example of this basic fact is this:

Theorem 1.5 Suppose Mst
tame is a (symplectic) tame character variety parameterising

irreducible representations of the fundamental group of a punctured Riemann sphere
(with arbitrary fixed local conjugacy classes of monodromy on arbitrary, fixed rank vec-
tor bundles). Then there is a wild character variety Mst

2C1 parameterising meromorphic
connections on vector bundles on the Riemann sphere with just two poles of orders 2
and 1 respectively, and an isomorphism

Mst
tame Š Mst

2C1

of algebraic symplectic manifolds. Moreover, all such 2C 1 (untwisted) wild character
varieties are isomorphic to such tame cases.
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On the other hand, there are many wild cases which are not isomorphic to tame cases.
(Due to [9; 11; 12; 25; 52], the wild character varieties enjoy the same key properties
as the tame case, such as having complete hyperkähler metrics with an underlying
algebraic symplectic structure of a topological nature.) This theorem, and several
generalisations, will be proved by showing both sides are isomorphic to the same
multiplicative quiver variety, in Section 9. The (more general) dictionary relating
the ranks of the bundles, number of poles, and local conjugacy classes will also be
explained there. Such isomorphisms may be viewed as multiplicative analogues of
the isomorphisms of [10; 24]. As further concrete motivation, the map appearing in
Theorem 1.5 will be described as directly as possible in the first section below.

The rough layout of this article is as follows. The core of the article is Section 7,
which establishes some quasi-Hamiltonian isomorphisms. The three isomorphism
theorems there relate incredibly complicated explicit expressions for the multiplicative
symplectic forms. (Perhaps the main discovery of the article is that one can establish
such isomorphisms inductively using the fission and fusion operations to reduce to the
simplest case, which is still highly nontrivial.) The earlier sections prepare the way,
describing a language in which to make such inductive arguments, and sets up the
theory of multiplicative quiver varieties. Later sections give some applications of these
isomorphisms, and discuss some related topics.

Acknowledgements The author’s line of thought here can be traced back to a question
of N Hitchin [38] about how to remove the Stokes data from the theory of Frobenius
manifolds, using the Fourier–Laplace transform (cf [11, Section 8]). This tempted the
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2 Example explicit isomorphism

We will sketch here a direct construction of a map between the spaces in the example
of Theorem 1.5, as an illustration of the more general results to be proved. The proof
that such maps, and generalisations, are symplectic is one of the main motivations, and
will appear in Section 9.

In this example, such a map arises by computing the action of Fourier–Laplace on Betti
data [6; 47]. The space Mtame may be described as follows. There is an integer m, a
complex vector space V and conjugacy classes C1; : : : ;Cm;C1 � GL.V / so that

Mtame Š f.T1; : : : ; Tm/ 2 GL.V /m j Ti 2 Ci ; Tm � � �T2T1 2 C1g=GL.V /;

and a point .T1; : : : ; Tm/ is stable if there is no proper nontrivial subspace U � V with
Ti .U /� U for all i . The corresponding Stokes data may be constructed as follows.
Given Ti 2 Ci , let di D rank.Ti � 1/ and set Wi D Cdi for i D 1; : : : ; m. Then Ti
may be written as Ti D 1C biai for linear maps ai W V !Wi and bi W Wi ! V such
that ai is surjective and bi is injective. Moreover, the injectivity/surjectivity conditions
imply (see the appendix) that the conjugacy class of Ti is uniquely determined by (and
uniquely determines) the conjugacy class of

hi WD 1C aibi 2 GL.Wi /:

Let MCi �GL.Wi / denote the inverse conjugacy class, of h�1i , and define W D
L
Wi to

be the (external) direct sum of the spaces Wi . Let U˙�GL.W / be the block-triangular
unipotent subgroups determined by the ordered grading of W . Then define elements
u˙ 2 U˙ by the prescription

huC�u� D Œaibj � 2 End.W /;

where aibj 2 Hom.Wj ; Wi /, and h 2 H WD
Q

GL.Wi / has components hi . The
remarkable algebraic fact then (see Section 7.1) is that

1CAB D u�1� huC 2 GL.W /; Tm � � �T2T1 D 1CBA 2 GL.V /;

where AW V !W and BW W ! V are the maps with components .aiTi�1 � � �T1/ 2
Hom.V;Wi / and bi 2Hom.Wi ; V /, respectively. Moreover, the fact that .T1; : : : ; Tm/
is stable implies that B is surjective and A is injective. Thus, fixing the conjugacy
class C1 of Tm � � �T2T1 is equivalent to fixing the conjugacy class C of u�1� huC (see
the appendix). Thus, by defining S1 2 UC; S2 2 U� so that hS2S1 D u�1� huC , we
obtain a point of the wild character variety

M2C1 Š f.S1; S2; h/ 2 UC �U� �H j h
�1
i 2

MCi ; hS2S1 2 Cg=H;
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where H acts by diagonal conjugation, and one may check that the stability conditions
match up, and so obtain a genuine isomorphism of moduli spaces of stable points.

Now, both sides have natural holomorphic symplectic structures. On the tame side it
essentially goes back to Atiyah and Bott [4], and may be obtained as the multiplicative
symplectic reduction

Mtame Š .Cm~ � � �~C2~C1/ ==
C1

GL.V /

of the product of the conjugacy classes. On the irregular side the symplectic structure
goes back to the extension of the Atiyah–Bott construction in [12], and may be obtained
as the multiplicative symplectic reduction

M2C1 ŠG nn
C
GAH==

MC

H

of the fission space GAH ŠG �UC�U��H of [16; 20], where G DGL.W /. The
theorem asserts that these two algebraic symplectic structures match up under the given
isomorphism (of stable points). Our proof of this (and its generalisations) involves
showing that both spaces arise as the same multiplicative symplectic quotient, and are
just two ways to “read” a certain multiplicative quiver variety.

3 Nakajima quiver varieties

We will recall the complex symplectic approach to Nakajima quiver varieties [48; 49],
in a way that is convenient for the multiplicative analogue we have in mind.

3.1 Representations of graphs

Suppose � is a graph with nodes I (and edges � ). (We will always suppose both I
and � are finite sets and, unless otherwise stated, that every edge connects two distinct
nodes.) Let x� be the set of oriented edges of � , ie the set of pairs .e; o/ such that
e 2 � is an edge of � and o is a choice of one of the two possible orientations of e .
Thus, if a 2 x� is an oriented edge, the head h.a/ 2 I and tail t .a/ 2 I nodes of a
are well defined. For our purposes it is convenient to define a representation � of the
graph � to be the following data:

(1) An I –graded vector space V D
L
i2I Vi .

(2) For each oriented edge a 2 x� , a linear map �.a/D vaW Vt.a/! Vh.a/ between
the vector spaces at the head and the tail of a .
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Thus, the data in (2) amounts to choosing a linear map in both directions along each edge
of � . (Equivalently, x� may be viewed as a quiver, the double of � with any orientation,
and a representation of the graph � is the same thing as a quiver representation of
x� .) A subrepresentation of a representation V of � consists of an I –graded subspace
V 0 � V which is preserved by the linear maps, ie such that va.V 0t.a//� V

0
h.a/

for each
oriented edge a 2 x� . A representation V is irreducible if it has no proper nontrivial
subrepresentations. Given an I –graded vector space V , we may consider the set
Rep.�; V / of all representations of � on V . This is just the vector space

Rep.�; V /D
M
a2x�

Hom.Vt.a/; Vh.a//

of all possible maps in each direction along each edge of � . (In the present article, the
notation Rep.�; V / always denotes the representation of the graph � , even if � has
the additional structure of a quiver.)

Given a graph � and an I –graded vector space V , the group H D
Q

GL.Vi / acts
on Rep.�; V / via its natural action on V preserving the grading. Further, a choice of
orientation of the graph � determines a holomorphic symplectic structure on Rep.�; V /,
and then the action of H is Hamiltonian with a moment map

�W Rep.�; V /! h� D Lie.H/� Š
Y
i2I

End.Vi /:

3.2 Additive/Nakajima quiver varieties

The Nakajima quiver varieties are defined by choosing a central value � 2CI of the
moment map and taking the symplectic quotient:

N.�; �; d/D Rep.�; V /==
�

H D f� 2 Rep.�; V / j �.�/D �g=H;

where � is identified with the central element
P
�i IdVi

of Lie.H/� . Here the symbol
d 2 ZI denotes the dimension vector, the vector of dimensions of the components of
V : di D dim.Vi /, and the quotient is the affine quotient, taking the variety associated
to the ring of H –invariant functions. Further, one can consider the open subset of
stable points Rep.�; V /st � Rep.�; V / for the action of H (defined as the points
whose H –orbit is closed of dimension dim.H/� 1). By results of King [41], a graph
representation � is stable if and only if it is irreducible. Considering stable orbits
defines Nst.�; �; d/�N.�; �; d/.

Remark 3.1 More generally, one can consider other geometric invariant theory (GIT)
quotients: given a weight � 2QI with

P
�idi D 0, consider the nontrivial linearisation
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LD Rep.�; V /�C! Rep.�; V / by lifting the H –action (to the total space of the
trivial line bundle L) via the character h 7!

Q
det.hi /�m�i , for a positive integer m so

that m�i 2 Z for all i 2 I . Taking the proj of the graded ring of H –invariant sections
of powers of L restricted to ��1.�/ yields a more general (quasi-projective) quiver
variety N.�; �; �; d/, and we can also consider its open subset of � –stable points
Nst.�; �; �; d/. More explicitly, � determines the � –stable and � –semistable points
Rep.�; V /� -st/� -ss � Rep.�; V /, and via [41] a representation .�; V / of � is � –stable
if and only if any nontrivial proper subrepresentation .�0; V 0/ satisfies dim.V 0/ � � < 0
(and � is � –semistable if instead dim.V 0/ �� � 0). Set-theoretically, Nst.�; �; �; d/ is
the set of H –orbits in Rep.�; V /� -st\��1.�/ and N.�; �; �; d/ is the set of H –orbits
in Rep.�; V /� -ss\��1.�/ which are closed (in this subset). We will mainly focus on
the affine case (� D 0) here.

3.3 Fission and supernova graphs

In 2008, a dictionary was discovered [10] relating the Nakajima quiver varieties for
a special class of graphs, the supernova graphs, to moduli spaces of connections on
curves. These graphs may be defined as follows. Let V be a complex vector space
and let t� End.V / be a Cartan subalgebra of the Lie algebra of GL.V /, such as the
diagonal matrices. Choose a t–valued polynomial

Q.w/D

rX
1

Aiw
i
2 tŒw�

with zero constant term. (We will often call Q an “irregular type”; see [25].) Given Q ,
we obtain a grading V D

L
I Vi of V into the eigenspaces of Q , so that

QD
X

qi .w/Idi ;

where Idi is the idempotent for Vi and the qi are distinct elements of CŒw�. Then we
obtain a graph �.Q/ with nodes I by joining exactly

(1) deg.qi � qj /� 1

edges between the nodes i and j for any i ¤ j 2 I . The graph �.Q/ is the “fission
graph” attached to the irregular type Q , and they are basic examples of supernova
graphs.2;3

2Fission graphs were first introduced in an equivalent fashion in [10, page 29]; the irregular type
appearing there is dQ written in the coordinate z D 1=w . The procedure described there to construct
them by sequentially breaking the vector space V into smaller pieces explains the name “fission”.

3The Stokes data of a connection with irregular part dQ may be parametrised by representations of
the graph with deg.qi � qj / edges between nodes i; j : this is the “Stokes graph” of Q , but our focus
here is on the fission graphs.
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For example, if QDA2w2CA1w has degree at most two, then the fission graph of Q
will be simply laced (have no multiple edges). This is the main case of interest to us
here. In fact, the simply laced fission graphs are exactly the complete k–partite graphs:

Recall that a graph � with nodes I is a complete k–partite graph if there is a partition
I D

F
j2J Ij of its nodes into k nonempty parts Ij labelled by a set J with #J D k ,

such that two nodes are connected by a single edge if and only if they are not in the
same part. If QDA2w2CA1w , then define J to be the eigenspaces of A2 and let Ij
be the eigenspaces of A1 inside the j -eigenspace of A2 (so that I D

F
j2J Ij is the

set of simultaneous eigenspaces of A1; A2 ). This identifies the fission graph �.Q/
with the complete k–partite graph determined by this partition of I , where k D #J
is the number of eigenspaces of A2 . Many complete k–partite graphs are drawn in
the figures of [10; 24]: they are determined by a partition P of an integer into k parts
(corresponding to the partition of the simultaneous eigenspaces of A1; A2 into the
eigenspaces of A2 ). For example, the graph �.1; 1/ corresponding to the partition
1C 1 is just a single edge connecting two nodes (the interval), and similarly �.1; 1; 1/
is the triangle and �.2; 2/ is the square (a complete bipartite graph). The star-shaped
graph with n legs of length one is the bipartite graph �.1; n/. The graphs �.n/ have
n nodes and no edges, and the graphs �.1; 1; : : : ; 1/ are the complete graphs (with
every pair of nodes connected by a single edge).

Definition 3.2 A simply laced supernova graph is a graph obtained by gluing a leg
(of length � 0) on to each node of a simply laced fission graph.4

Here, a leg of length l is just a Dynkin graph of type AlC1 , with l edges. The initial
fission graph will be referred to as the core of the supernova graph. Note that, by
definition, a graph is star-shaped if and only if it is a supernova graph with core �.1; n/
for some n.

The basic result relating supernova graphs to moduli spaces of connections is:

Theorem 3.3 [10; 24] Suppose � is a simply laced supernova graph with nodes I ,
and we choose a dimension vector d 2ZI and parameters � 2CI . Then the Nakajima
quiver variety Nst.�; �; d/ is isomorphic to a moduli space of stable meromorphic
connections M�st on the holomorphically trivial bundle on the Riemann sphere.

4In general, the supernova graphs are defined as follows (this is equivalent to [10, Appendix C]):
take any fission graph �.Q/ with nodes I0 and introduce some new nodes I1 . Define a new graph
�.Q/0 with nodes I0 t I1 by adding a single edge from each node of I0 to each node of I1 . Finally, the
supernova graph is obtained by gluing a leg (of length � 0) on to each node of the core �.Q/0 .
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Figure 1: Example supernova graph, with core �.4; 2; 2/

In the star-shaped case this result follows by combining the known relation between
GLn.C/ coadjoint orbits and quivers [44; 48, Section 7] with the standard symplectic
quotient construction of moduli spaces of Fuchsian systems (see eg [38; 12]), and it
was first used by Crawley-Boevey [26]. The general result rests on the symplectic
approach of [12] to more general connections. See [10; 24, Section 9] for full details,
and for discussion of the reflection isomorphisms on such moduli spaces of connections,
corresponding to the quiver variety reflection functors. Taking nontrivial weights for the
quiver varieties corresponds to taking nontrivial parabolic weights for the connections
(see [23]). The dictionary relating general (non-simply laced) supernova graphs to
connections was given in [10, Appendix C]. (A proof of a result announced there
appeared recently in [36]).

This dictionary gives a different way to organise moduli spaces of connections, and
suggests where to look for interesting examples (by taking interesting graphs). For
example, if the graph is a triangle (with dimension vector d D .1; 1; 1/), the corre-
sponding quiver variety is a Gibbons–Hawking gravitational multi-instanton of type A2
(which is a deformation of the minimal resolution of the Kleinian singularity C2=Z3 );
the above dictionary says, for example, that this very natural space is isomorphic to a
moduli space of connections on rank-two vector bundles on the Riemann sphere with
one order-three pole and a first order pole.

Our basic aim is to establish a multiplicative analogue of this result, thereby giving
a graphical approach that captures all the points of some of the full moduli spaces
of connections M considered in [12; 9; 23] (which allow connections on nontrivial
holomorphic bundles), rather than just the open pieces M� �M. First we will discuss
the theory of multiplicative symplectic geometry that will be required.
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Remark 3.4 A standard way (see eg [49, page 520]) to think about representations
of graphs is in terms of block matrices, ie via the inclusion Rep.�; V /� End.V / (if
there are no multiple edges), whence the symplectic structure pairs the corresponding
entries in the upper-triangular part and the lower-triangular part [49, (3.3)]. As will be
explained below (in Proposition 5.3), Stokes data give a natural multiplicative version
of this picture, with the upper/lower-triangular block matrices above replaced by an
open subset of the upper/lower-triangular unipotent block matrices.

4 Quasi-Hamiltonian geometry

Many of our results will be framed in the language of quasi-Hamiltonian geometry,
so we will briefly review the main features of this theory. In essence, this theory is a
multiplicative version of the usual Hamiltonian theory, with moment maps taking values
in Lie groups rather than the dual of the Lie algebra. The axioms for the analogue of the
symplectic form and its interaction with the group action and the moment map are more
complicated. The upshot is a direct and explicit algebraic approach to constructing
certain quite exotic symplectic manifolds. The original article [2] worked with compact
groups K and then gave a new/alternative finite-dimensional construction of the (real)
symplectic structure on moduli spaces of flat C1 connections on principal K–bundles
over Riemann surfaces with fixed local monodromy conjugacy classes (such moduli
spaces admit Kähler structures, via the Narasimhan–Seshadri correspondence or its
parabolic analogues). Here, as in [16; 20; 25], we will work with complex reductive
groups, such as G D GLn.C/, as a means to construct algebraic complex symplectic
manifolds; in those articles it was shown that the quasi-Hamiltonian approach is actually
quite flexible and can be extended to construct new moduli spaces, not just moduli spaces
of flat C1 connections. Specifically, the quasi-Hamiltonian toolbox was enlarged:
besides the conjugacy classes and the doubles, some new basic pieces were introduced
and it was shown that these were sufficient to give a finite-dimensional construction of
complex symplectic structures on moduli spaces of meromorphic connections appearing
in the wild nonabelian Hodge correspondence of [52; 9]. We will show that these new
pieces yield a new relation to quivers.

4.1 Quasi-Hamiltonian spaces

Fix a connected complex reductive group G (in this article G will always be a product
of general linear groups). Our notation and conventions are as in [25], so in particular
�; x� denote the left- and right-invariant Maurer–Cartan forms on G , and we fix a
nondegenerate invariant bilinear form . ; / on gD Lie.G/. A complex manifold M
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is a complex quasi-Hamiltonian G–space if there are an action of G on M , a G–
equivariant map �W M!G (where G acts on itself by conjugation) and a G–invariant
holomorphic two-form ! 2�2.M/ such that:

(QH1) The exterior derivative of ! is the pullback along the moment map of the
canonical three-form on G : d! D 1

6
��.�3/.

(QH2) For all X 2 g, !.vX ; � /D 1
2
��.� C �;X/ 2�1.M/, where vX is the funda-

mental vector field of X .

(QH3) At each point m 2M , Ker!m\Ker d�D f0g � TmM .

As a basic example [2], any conjugacy class C�G is a quasi-Hamiltonian G–space with
the moment map given by the inclusion and action given by conjugation, analogously
to coadjoint orbits in the usual Hamiltonian story. There is also a multiplicative version
of the symplectic quotient:

Theorem 4.1 [2] Let M be a quasi-Hamiltonian G �H –space with moment map
.�; �H /W M ! G �H , and suppose that the quotient by G of the inverse image
��1.1/ of the identity under the first moment map is a manifold. Then the restriction
of the two-form ! to ��1.1/ descends to the reduced space

(2) M==G WD ��1.1/=G

and makes it into a quasi-Hamiltonian H –space.

In particular, if H is abelian (or, in particular, trivial) then the quasi-Hamiltonian axioms
imply that M==G is a complex symplectic manifold; this will be our main method of
constructing symplectic manifolds. We will mainly work in the complex algebraic
category, with M a smooth affine variety (and �;! algebraic), so that ��1.1/ is an
affine subvariety. The quotient ��1.1/=G is then taken to be the geometric invariant
theory quotient, namely the affine variety associated to the ring of G–invariant functions
on ��1.1/. The points of this quotient correspond bijectively to the closed G–orbits in
��1.1/, and so in general it is different from the set-theoretic quotient. Alternatively,
one may view the points of the geometric invariant theory quotient as parameterising
the quotient of ��1.1/ by a stronger equivalence relation than orbit equivalence (S-
equivalence): two points are S-equivalent if their orbit closures intersect.

The fusion product, which puts a ring structure on the category of quasi-Hamiltonian
G–spaces, is defined as follows.
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Theorem 4.2 [2] Let M be a quasi-Hamiltonian G �G �H –space, with moment
map �D .�1; �2; �3/. Let G �H act by the diagonal embedding .g; h/! .g; g; h/.
Then M , with two-form

(3) z! D ! � 1
2
.��1�; �

�
2�/

and moment map
z�D .�1 ��2; �3/W M !G �H;

is a quasi-Hamiltonian G �H –space.

If Mi is a quasi-Hamiltonian G �Hi space for i D 1; 2, the fusion product

M1~M2

is defined to be the quasi-Hamiltonian G �H1 �H2–space obtained from the quasi-
Hamiltonian G �G �H1 �H2–space M1 �M2 by fusing the two factors of G . If
C�G is a conjugacy class then the quasi-Hamiltonian reduction at C may be defined as

M==
C

G D ��1.C/=G Š .M ~C0/==G

by fusing M with the inverse conjugacy class C0 and then reducing at the value 1 of
the resulting moment map. (Note in the algebraic context that care is needed, and will
be taken, if C is not semisimple and thus not affine.)

It is convenient to formalise the notion of gluing quasi-Hamiltonian spaces, as follows.
Given a quasi-Hamiltonian G �G �H –space M , we may fuse the two G factors to
obtain a quasi-Hamiltonian G�H space. Then, if the quotient is well-defined, we may
reduce by the G factor (at the identity of G ) to obtain a quasi-Hamiltonian H –space,
the gluing of the two G–factors. Thus, for example, if Mi is a quasi-Hamiltonian
G�Hi –space for iD1; 2 then M1 and M2 may be glued to obtain a quasi-Hamiltonian
H1 �H2 space (if it is a manifold) by gluing their product:

M1L
G
M2 WD .M1~

G
M2/==G:

If G DGL.V / for some vector space V , the subscript G will often be replaced by V ,
and if the factors to be glued are clear from the context the subscript will be omitted
and we will write M1LM2 . In most of the cases considered here the G–action will
be free with a global slice so there is no problem performing the gluing. Note that,
whereas fusion is only commutative up to isomorphism, the gluing operation is actually
commutative (when it is defined).
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4.2 General linear fission spaces

Some new examples of complex quasi-Hamiltonian spaces were defined in [16; 20;
25], the (higher) fission spaces. Here we will use some of these spaces in the case of
general linear groups. Gluing on these spaces defines a new operation, fission, enabling
the structure group to be changed, and leads to many new examples of symplectic
manifolds.

Suppose V is a finite-dimensional complex vector space with an ordered grading, ie
with a decomposition

V D V1˚V2˚ � � �˚Vk

for some k . Then we may consider the groups G D GL.V / and H D
Q

GL.Vi /�G
together with the parabolic subgroup PC �G stabilising the flag

F1 � F2 � � � � � Fk D V;

where Fi D V1˚ � � �˚Vi , and the opposite parabolic P� �G stabilising the flag

F 0k � � � � � F
0
2 � F

0
1 D V;

where F 0i D Vi ˚� � �˚Vk , and their unipotent radicals U˙ �P˙ . Thus, in an adapted
basis, UC and U� are the subgroups of block upper- and lower-triangular matrices
with 1s on the diagonal, respectively, and H is the block diagonal subgroup of G .
Then, given an integer r � 1, define the higher fission space

Ar.V /DAr.V1; : : : ; Vk/D GA
r
H WDG � .UC �U�/

r
�H:

If r D 1, the superscript will be omitted, so that A.V /DA1.V /. A point of Ar.V /
is given by specifying C 2G; h 2H and S 2 .UC �U�/

r with S D .S1; : : : ; S2r/,
where Seven 2 U� and Sodd 2 UC . The unipotent elements Si will usually be referred
to as “Stokes multipliers”. The group G �H acts on Ar.V / as follows:

.g; �/.C;S ; h/D .�Cg�1; �S��1; �h��1/;

where .g; �/ 2G �H and �S��1 D .�S1��1; : : : ; �S2r��1/.

Theorem 4.3 [25] Suppose V is an ordered graded vector space and r � 1 is an
integer. Then Ar.V / is a quasi-Hamiltonian G �H –space, with moment map

�.C;S ; h/D .C�1hS2r � � �S2S1C; h
�1/ 2G �H:

For example, if k D 1, so V only has one graded piece (and r is arbitrary), then
H DG and both groups U˙ are trivial, so Ar.V /DG �G DD.G/ is the “double”
of [2]. In the case when H is a torus, Ar.V / is the space zC=L of [16, Remark 4]. If
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rD 1, the spaces Ar.V / appear in [20]. The general formula for the quasi-Hamiltonian
two-form is given in [25, (9)].

If r � 2, we may reduce by G at the identity to define a quasi-Hamiltonian H –space

(4) Br.V / WDAr.V /==G D ��1G .1/=G;

where �G W Ar.V /!G is the G–component of �. If rD 2, this space will be denoted
B.V / WDB2.V /. If H is a torus, each space Br.V / is a symplectic manifold.

The first fission spaces were constructed in 2002 [13] in the case when H is a maximal
torus (published later in [16]). M Van den Bergh (see [7; 8; 57]) subsequently found
some further new examples of complex quasi-Hamiltonian spaces. He showed that, for
any finite-dimensional complex vector spaces V1; V2 , the space

(5) f.a; b/ 2 Hom.V2; V1/˚Hom.V1; V2/ j det.1C ab/¤ 0g

is a quasi-Hamiltonian GL.V1/�GL.V2/ space with moment map ..1Cab/�1; 1Cba/.
(The underlying space, without quasi-Hamiltonian structure, is well-known in the local
classification of D–modules, eg [47, page 31].) Subsequently it was shown in [25,
Theorem 4.2] that if V has exactly two graded pieces (V D V1˚V2 , ie k D 2) then
the reduced fission space

B.V /DB.V1; V2/

is isomorphic (as a quasi-Hamiltonian space) to Van den Bergh’s space (5). Whereas
the spaces (5) facilitate the construction of the classical multiplicative quiver varieties,
the more general spaces B.V / will be key to constructing generalisations here.

Many properties of the fission spaces were established in [25], and it is possible to show
that, up to isomorphism, Ar.V / only depends on the graded vector space V and not
on the choice of ordering of the graded pieces. This follows from [25, Theorem 10.4],
but since it is important here we will explain how it follows in more detail.

Proposition 4.4 If
V D V1˚ � � �˚Vn

is an ordered graded vector space and V 0 is the same graded vector space but with a
different ordering, then Ar.V /ŠAr.V 0/.

Proof The idea is the same for any r , so we will assume that r D 1 (and omit it
from the notation). Further, we may suppose the orderings of V and V 0 differ only
by swapping two consecutive subspaces, say Vk; VkC1 . Recall that a sequence of
unipotent groups UD .U1; : : : ; Ur/ of G directly spans a unipotent group U �G if
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the product map U! U , .u1; : : : ; ur/ 7! u1 � � �ur is an isomorphism of spaces. In
our situation, U˙ have direct spanning decompositions (in any order)

UC D
Y
i<j

Uij ; U� D
Y
i>j

Uij ;

where Uij D 1CHom.Vj ; Vi /�G . Further, one may check that they also have direct
spanning decompositions

(6) UC D Uk;kC1U
ı
C; U� D UkC1;kU

ı
�;

where
U ıC D

Y
i<j

.i;j /¤.k;kC1/

Uij ; U ı� D
Y
i>j

.i;j /¤.kC1;k/

Uij :

On the other hand, A.V 0/ D G �H � U 0
C
� U 0� , where U 0

˙
have direct spanning

decompositions

(7) U 0C D U
ı
CUkC1;k; U 0� D U

ı
�Uk;kC1:

Thus, an isomorphism between A.V / and A.V 0/ is obtained by first using the direct
spanning equivalences (6)–(7) (see [25, Section 6.1]) and then the isomonodromy
isomorphism (of [25, Section 6.2]) corresponding to

.Uk;kC1; U
ı
C; UkC1;k; U

ı
�/ 7! .U ıC; UkC1;k; U

ı
�; Uk;kC1/:

This gives an isomorphism of spaces, and the quasi-Hamiltonian structures match up
due to [25, Lemma 6.1 and Proposition 6.3].

Another operation studied in [25] was the “nesting” of fission spaces. In the case of
general linear groups the nesting results imply that the fission spaces attached to ordered
graded vector spaces behave well under refining the gradings, as follows. Suppose
V D

Lk
1 Vi is an ordered graded vector space and for some fixed index i D f that we

have an ordered grading Vf D
Ll
1Wj of the vector space Vf . Then we can consider

the refined ordered grading U of V given by

U D V1˚V2˚ � � �˚Vf �1˚W1˚W2˚ � � �˚Wl ˚VfC1˚ � � �˚Vk :

Proposition 4.5 The gluing of Ar.V1; : : : ; Vk/ and Ar.W1; : : : ; Wl/ via the action
of GL.Vf / is isomorphic to Ar.U /:

(8) Ar.V1; : : : ; Vk/L
Vf

Ar.W1; : : : ; Wl/ Š Ar.U /:
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Proof If we write K D
Q

GL.Vi / and H D
Q

GL.Ui /, where Ui is the i th vector
space in U , then the left-hand side of (8) is isomorphic to

Ar.V /L
K

KA
r
H

(because KA
r
H is just the product of Ar.W / and lots of doubles, and the doubles

disappear in the gluing). Then the result follows from the nesting result [25, Corol-
lary 6.5].

5 Quasi-Hamiltonian spaces of graph representations

This section sets up some further definitions related to graphs and then establishes a
relation between some fission spaces and some representations of graphs; this is the
key step to define the multiplicative quiver varieties in the next section.

5.1 Orderings of graphs

Recall (from Section 3.1) that we have defined the notion of representation of a graph �
with nodes I and have recalled that a graph is complete k–partite if there is a partition
I D

F
J Ij of its nodes into k D #J parts, and two nodes are connected by an edge if

and only if they are in different parts.

Definition 5.1 An ordering of a complete k–partite graph � with nodes I is the
choice of

(1) a total ordering of its parts (so we can label the parts I1; : : : ; Ik ), and
(2) a total ordering of the nodes in each part Ij .

By declaring Ii < Ij if i < j (and using the given ordering in each part), such an
ordering determines a total order of I . Given such an ordering, one then gets an
orientation of � (so that edges go i ! j 2 I if i > j ), but in general the ordering
contains more information than the associated orientation.

Recall that a quiver is an oriented graph, ie a graph together with a choice of orientation
for each edge. In other words, a quiver is obtained by gluing together some oriented
edges. In turn, an edge is a complete bipartite graph �.1; 1/, and an orientation of
�.1; 1/ is equivalent to an ordering of it (in the sense of Definition 5.1). Thus we may
generalise the notion of oriented edge as follows.

Definition 5.2 A simple coloured quiver � is an ordered complete k–partite graph.

Below (in Definition 5.6) we will generalise the notion of a quiver by gluing together
lots of simple coloured quivers; the case when each simple coloured quiver is an edge
(a copy of �.1; 1/) will yield the usual notion of quiver.
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5.2 Quasi-Hamiltonian spaces of graph representations

Suppose � is a simple coloured quiver with nodes I , and V is a fixed I –graded vector
space, so we may consider the space Rep.�; V / of representations of the graph � on V .
(Recall Rep.�; V / denotes the space of representations of the graph underlying � .)
Then, considering the parts Ij � I , we can define ordered graded vector spaces

Wj D
M
i2Ij

Vi

and W D
L
Wj (which is V with a different grading). Thus there is a nested sequence

of groups
H WD

Y
GL.Vi /�K WD

Y
GL.Wj /�G WD GL.V /:

This enables us to consider the fission spaces A.Wj / for each j , and the quasi-
Hamiltonian K–space

(9) B.W /DA2.W /==G:

The basic result linking graphs to the fission spaces is the following.

Proposition 5.3 Suppose � is a simple coloured quiver with nodes I and V is an
I –graded vector space. Then there is a canonical H –invariant nonempty open subset

Rep�.�; V /� Rep.�; V /

of the space of representations of the graph � on V which is a smooth affine variety
and a quasi-Hamiltonian H –space, canonically isomorphic to

B.W /L
K

Y
j

A.Wj /:

Proof Given a representation .vij / of � on V , use the ordering of I to define the
unipotent elements

(10) vC D 1C
X
i<j

vij ; v� D 1C
X
i>j

vij

of GL.V /, where we set vij 2Hom.Vj ; Vi / to be zero if i; j are in the same part of I .
Then consider the subset R� D Rep�.�; V / of Rep.�; V / such that v�vC is in the
opposite big cell of GL.V / determined by the ordered grading of V , ie so that we
may write

(11) v�vC D wCgw�
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for some g 2H and unipotent elements

wC D 1C
X
i<j

wij ; w� D 1C
X
i>j

wij ;

with wij 2 Hom.Vj ; Vi / (which are allowed to be nonzero for i; j in the same part).
Note that if such a factorisation (11) exists, then it is unique. This subset R� is defined
by the nonvanishing of the polynomial function

(12) f WD
Y
i2I

�i W Rep.�; V /!C;

where �i is the minor of v�vC corresponding to the summand
L
j�i Vj of V . The

subset R� is nonempty as it contains the representation with each vij D 0. Thus, on
one hand, R� is isomorphic to the affine variety fz:f D 1g in C�Rep.�; V /. On the
other hand, it is a straightforward unwinding of the definitions to identify R� with

B.W /L
K

Y
j

A.Wj /:

Indeed, specifying a point of this quasi-Hamiltonian space amounts to solving

�S4S3S2S1 D 1 2 GL.W /; �j D hj s2j s1j 2 GL.Wj /;

where the elements S�; s�j are the Stokes multipliers in B.W / and A.Wj /, respectively,
where � 2 K has components �j and where hj 2

Q
i2Ij

GL.Vi / � GL.Wj /. Thus,
setting vCD S1 and v�D S2 , it is easy to translate these equations into the form (11).
Observe in particular that the element g 2H (from (11)) then has components h�1j and
so (from Theorem 4.3) gW Rep�.�; V /!H is the moment map for the H –action.

Thus, for example, if W D
Lk
1 Wj , the space B.W / itself is an open subset of the

space of representations on W of the complete graph with k nodes. The kD 2 case of
this example is the Van den Bergh space (5), corresponding to the interval, and then the
nontrivial matrix entries of vC; v� are the elements .a; b/ in (5), as in [25, Section 4].

Remark 5.4 Given an irregular type QDA2w2CA1w 2 tŒw� as in Section 3.2 (with
t� End.V /), Proposition 5.3 says, in effect, that the space B.Q/DA.Q/==GL.V / is
isomorphic to an open subset of Rep.�.Q/; V /, where �.Q/ is the fission graph of Q
(from [10, Appendix C] and Section 3.3 above) and A.Q/ is from [25, Theorem 7.6]
(with zD 1=w ; this will be fleshed out in the proof of Proposition 9.1 below). The same
result holds with similar proof for any irregular type, not just the simply laced case.
This yields even more general multiplicative quiver varieties, to be studied elsewhere.
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5.3 Coloured graphs and quivers

Now we wish to consider graphs built out of coloured pieces, each of which is a
complete k–partite graph. Let C be a nonempty finite set (which we will call the set
of colours).

Definition 5.5 A coloured graph is a graph � (with nodes I and edges � ), together
with a colouring of each edge (ie a map  W �! C to the set C of colours), such that
each connected component of each monochromatic subgraph

�c D 
�1.c/� �

is a complete k–partite graph for some k (dependent on c 2 C ).

For simplicity, here we assume �c � � is an embedded copy of a complete k–partite
graph (so it is connected and no nodes get identified), but it is convenient when drawing
pictures to allow �c to be disconnected. We will say a coloured graph is classical if
each connected component of each monochromatic subgraph �c consists of just one
edge (for example if the map  is injective). For example, any graph has a classical
tautological colouring given by taking C D � and  to be the identity map.

Definition 5.6 A coloured quiver is a coloured graph � (with nodes I , edges � and
colour map  ), together with the choice of ordering of each subgraph �c � � (as in
Definition 5.1).

(In general, the orderings chosen for the nodes of different intersecting monochromatic
subgraphs may be completely independent.) Note that a classical/tautological coloured
quiver is just a quiver: if � is classical then choosing an ordering is the same as
choosing an orientation of each edge.

Corollary 5.7 Suppose � is a coloured quiver with nodes I , V D
L
Vi is an I –

graded vector space and H D
Q

GL.Vi /. Then there is a canonical nonempty H –
invariant open subset

Rep�.�; V /� Rep.�; V /

of the space of representations of the graph � on V which is a smooth affine vari-
ety. Further, given a choice of ordering of the colours C for each node i 2 I , then
Rep�.�; V / is a quasi-Hamiltonian H –space.

Henceforth, the open subset Rep�.�; V / will be referred to as the set of invertible
representations of � on V . The term open multiplicative quiver variety will also be
used, alluding to the fact that we have not yet quotiented by H (cf [10]).
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Proof Given a colour c 2 C , let Ic � I be the nodes of �c � � , and let

Vc D
M
i2Ic

Vi ; Hc D
Y
i2Ic

GL.Vi /:

Thus Rep�.�c ; Vc/ is a quasi-Hamiltonian Hc –space, by Proposition 5.3. Denote
by gci the GL.Vi /–component of the moment map gc W Rep�.�c ; Vc/!Hc . Then
consider the space

Rep�.�; V / WD
Y
c2C

Rep�.�c ; Vc/:

By Proposition 5.3, this is an affine variety, a nonempty open subset of Rep.�; V /, and
a quasi-Hamiltonian

Q
Hc –space. If we fix a node i 2 I and use an ordering of the

colours C (at this node i ) then we may (internally) fuse together all the copies of the
group GL.Vi / � Hc for the colours c meeting the node i . Repeating this for each
node gives Rep�.�; V / the structure of quasi-Hamiltonian H –space. The moment
map �W Rep�.�; V /!H has components

(13) �i D
Y
fcji2Icg

gci 2 GL.Vi /;

where the factors are ordered according to the chosen ordering of the colours.

As for any affine variety with an action of a reductive group, the stable points of
Rep�.�; V / are defined as the points whose H –orbit is closed and of dimension
dim.H/� dim.Ker/, where Ker is the kernel of the action, ie the kernel of the map
H ! Aut.Rep�.�; V //, which has dimension 1 in the present set-up. The following
simple remark will be very useful:

Lemma 5.8 An invertible graph representation � 2 Rep�.�; V / is stable if and only
if � is a stable point of Rep.�; V /, ie (via [41]) if and only if � is irreducible.

Proof The space Rep�.�; V / is defined as the nonvanishing locus of a function
F W Rep.�; V /! C (obtained by taking the product of the functions (12) over each
monochromatic component). This function is constant on the H –orbit O of � , and so
O is closed in Rep�.�; V / if and only if it is closed in Rep.�; V /.

Remark 5.9 In fact, if � 2 Rep�.�; V / and �0 2 Rep.�; U / is a graph subrepresen-
tation of � for some graded subspace U � V then �0 2 Rep�.�; U /. One way to
see this is to let �00 D V=U and note that �0˚ �00 represents a point in the closure
of the orbit of � in Rep.�; V / (via the relation between 1–parameter subgroups and
filtrations [41, page 521]), and so is in Rep�.�; V /, as argued in the proof of the lemma.
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Consequently, �0 2 Rep�.�; U /, as all the minors (12) factor, corresponding to the
I –graded vector space decomposition V Š U ˚V=U .

To avoid further discussion of the choice of ordering of the colours C for each node,
we could fix once and for all an ordering of the colours C and always use this at
each node. In fact, up to isomorphism, the space of invertible representations does not
depend on any such choices:

Theorem 5.10 Fix a coloured graph � with nodes I and an I –graded vector space V .
The space Rep�.�; V / is independent of all the further choices of ordering needed to
define it, up to isomorphism of quasi-Hamiltonian H –spaces.

Proof That it is independent of the orderings of the nodes (and parts) of the monochro-
matic subgraphs �c follows from the isomonodromy isomorphisms as in Proposition 4.4.
That it is independent of the orderings of the colours at each node follows from the braid
isomorphisms of [2, Theorem 6.2], ie that fusion is commutative up to isomorphism.

5.4 How to colour a supernova graph

To end this section, recall that a (simply laced) supernova graph was defined (page 3479)
by gluing some legs on to a complete k–partite graph, and that the central complete
k–partite graph was called the core. In this article, unless otherwise stated, a supernova
graph will always be coloured so that its core is monochromatic, ie:

Two edges should have the same colour if and only if they are in the core.

If a supernova graph is star-shaped (ie if its core has the form �.1; n/ for some n),
then we will see that in fact this colouring is equivalent to the tautological/classical
colouring (in the sense that the corresponding spaces of invertible representations are
isomorphic), but that this is not the case in general.

By definition, a supernova quiver is then a supernova graph together with a choice of
ordering of each monochromatic subgraph.

6 Multiplicative quiver varieties

In this section we will define a class of varieties attached to coloured graphs. These
varieties generalise the classical multiplicative quiver varieties suggested in [30] (see
also [7; 57]). Looking at the case of a triangle shows that, in general, new spaces
are obtained this way. Subsequently we will show that for any supernova quiver the
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corresponding multiplicative quiver varieties arise as moduli spaces of Betti data for
meromorphic connections on curves, and so have hyperkähler metrics.

Let � be a coloured quiver with nodes I and colours C . Choose a dimension vector

d 2 ZI ;

where d D .di /i2I has di � 0, and some parameters

q 2 .C�/I

such that

qd WD
Y
i2I

q
di

i D 1:

Further, suppose we have made an additional choice of an ordering of the set C of
colours for each node i 2 I (for example, we could choose and fix an ordering of C
beforehand). Then define Vi DCdi and let V D

L
Vi be the corresponding I –graded

vector space. By Corollary 5.7, the space Rep�.�; V / is a quasi-Hamiltonian H –space,
where H D

Q
GL.Vi /, and we now identify q with the point .qi IdVi

/ of H .

Definition 6.1 The multiplicative quiver variety of �; q; d is the quasi-Hamiltonian
reduction of Rep�.�; V / at the value q of the moment map:

MDM.�; q; d/D Rep�.�; V /==
q
H D ��1.q/=H:

Here the quotient by H on the right is the affine geometric invariant theory quotient,
taking the affine variety associated to the ring of H –invariant functions on the affine
variety ��1.q/ � Rep�.�; V /. (Sometimes these varieties will be referred to as
coloured multiplicative quiver varieties, although this could be confusing since the
classical case is the most colourful.) Note that, since q is in the centre of H , only a
cyclic ordering of the colours at each node is needed (rather than a total ordering).

Remark 6.2 Observe that the relation (11) implies det.gc/D 1 for any colour c 2 C .
Together with the determinants of the moment map conditions

Q
fcji2Icg

gci D qi IdVi
,

this implies qd D 1. Thus, if we chose q; d so that qd ¤ 1 then M would be empty.

One can further consider the open subset Mst � M of stable points; by definition,
the stable points correspond to the closed orbits in ��1.q/ of dimension dim.H/� 1
(noting that the diagonal copy of C� embedded in H always acts trivially).
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Theorem 6.3 Mst.�; q; d/ is a smooth algebraic symplectic manifold which is either
empty or of dimension 2 � .d; d/, where . ; / is the bilinear form (34) on the root
lattice of � . In terms of representations of graphs, the points of Mst correspond to the
H –orbits in ��1.q/ of irreducible representations of the graph � .

Proof All the work has been done to set this up as a quasi-Hamiltonian quotient, and
the result now follows as for classical multiplicative quiver varieties, which is explained
nicely in [57]. The final statement follows from Lemma 5.8 and [41].

Remark 6.4 Similarly to the additive case (see Remark 3.1), and to the classical mul-
tiplicative case (see [57]), given a weight � 2QI with

P
�idi D 0 we can define more

general multiplicative quiver varieties Mst.�; �; q; d/�M.�; �; q; d/ by considering
the linearisation L! Rep�.�; V / defined by the character h 7!

Q
det.hi /�m�i of H .

In other words, M.�; �; q; d/ is the proj of the graded ring of H –invariant sections of
powers of L restricted to ��1.q/. As in Lemma 5.8,

Rep�.�; V /�-st=�-ss
D Rep.�; V /�-st=�-ss

\Rep�.�; V /;

and so set-theoretically M.�; �; q; d/ is the set of H –orbits in ��1.q/\Rep.�; V /�-ss

which are closed (in this subset) and Mst.�; �; q; d/ is just the set of closed H –orbits
in ��1.q/�-stD��1.q/\Rep.�; V /�-st . To keep the paper within a reasonable length
the affine case �D 0 will be our focus here. Note that � will match up with the weights
for Betti data of connections (ie the i of [9, Remark 8.2], or the � in [21]), and such
varieties will parametrise filtered Stokes G–local systems [25, Remark A.5], as shown
in [57] in the tame/star-shaped case. Note that the isomorphisms in Sections 9 and 10
generalise immediately to the case with � ¤ 0, by taking nontrivial linearisations on
both sides, since in essence we are saying they are the same multiplicative symplectic
quotient of the same smooth affine variety.

Given a fixed dimension vector d , we will say that the parameters q are generic if
they obey the condition

q˛ ¤ 1

for any ˛ in the finite set

R˚.d/ WD f˛ 2 ZI j .˛; ˛/� 2 and 0� ˛i � di for all i g n f0; dg:

(Beware that the set of generic q is not always dense in fq j qd D 1g, for example if d
is an integer multiple of another dimension vector.)

Proposition 6.5 If the parameters are generic then all points of the multiplicative
quiver variety are stable, M.�; q; d/DMst.�; q; d/, and so it is smooth.
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Proof If a representation � is not stable then it has a stable subrepresentation, of
dimension vector ˛ say. One may check that this subrepresentation again obeys
the moment map conditions (for the same q ); see Remark 5.9. Thus q˛ D 1 as in
Remark 6.2. But it is stable, so Mst.�; q; ˛/ is nonempty, and so Theorem 6.3 implies
.˛; ˛/� 2, which is not possible if q is generic.

Let us record here the main reordering and recolouring results:

Corollary 6.6 (Reordering) Up to isomorphism, M.�; q; d/ only depends on q; d
and the underlying coloured graph � , and not on any of the chosen orderings.

Proof This follows from Theorem 5.10.

Theorem 6.7 (Recolouring) Suppose � is a coloured graph such that for some colour
c 2 C the subgraph �c � � is star-shaped. Then let � 0 be the new coloured graph
obtained from � by choosing distinct new colours for each edge of �c and adding
these new colours to C . Then M.�; q; d/ŠM.� 0; q; d/ for any q; d .

Proof This will follow immediately from Theorem 7.5 below.

6.1 Example multiplicative quiver varieties

Up to isomorphism, we are thus able to associate a variety to a coloured graph � and
data d 2 ZI ; q 2 .C�/I , where I is the set of nodes of � .

If the underlying graph is star-shaped then all the different colourings of the graph give
the same varieties (via Theorem 6.7); they are all classical multiplicative quiver varieties.

Thus, the simplest case where new varieties may appear is the case when � is a triangle.
By recolouring (as in Theorem 6.7) we see there are at most two inequivalent ways to
colour the triangle. Namely, either (1) all the edges are different colours, or (2) all the
edges are the same colour. (If just two edges were the same colour, they make up a
star-shaped subgraph and we could recolour them.) Thus in case (1) we are considering
the classical multiplicative quiver variety of the triangle (in the sense of Crawley-Boevey
and Shaw [30]), and in (2) we are considering a nonclassical (supernova) quiver variety.

Our aim here is to show that these two varieties are not isomorphic in general when
the dimension vector is d D .1; 1; 1/, in which case the varieties are complex surfaces
(complex dimension two). Later we will show that the supernova quiver varieties are
isomorphic to wild character varieties and thus carry complete hyperkähler metrics; on
the other hand, it is not clear if the spaces (1) arise in relation to nonabelian Hodge theory.
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Figure 2: Left: the classical colouring. Right: the monochromatic/supernova
colouring of a triangular graph � .

Figure 3: The two types of complex surfaces if � is a triangle

Proposition 6.8 Let � be the triangle and fix dimension vector d D .1; 1; 1/. Suppose
q is generic. Then the corresponding varieties are smooth complex algebraic surfaces
and, moreover:

(1) The classical multiplicative quiver variety of �; q; d is obtained by blowing up
three points on a triangle of lines in P2 and then removing the strict transform
of the triangle.

(2) The supernova variety of �; q; d is obtained by blowing up three points on a
conic in P2 and then removing the strict transform of the union of the conic and
a line.

Before proving this we deduce that it implies that the two varieties are not algebraically
isomorphic. This follows from the following fact (the author is grateful to Jérémy
Blanc (email correspondence 19/3/2008) for explaining this):

Proposition 6.9 For i D 1; 2 let Si be a smooth complex projective surface and let
Di � Si be a curve consisting of exactly ai irreducible components. If S1 nD1 is
isomorphic to S2 nD2 then .KS1

/2C a1 D .KS2
/2C a2 .

Thus, taking S1 to be P2 blown up in three points on a line and S2 to be P2 blown
up in three points on a conic, .KS1

/2 D .KS2
/2 D 6, but, taking D1 to be the strict

transform of the triangle of lines, and D2 to be the strict transform of the union of a
conic and a line, a1 D 3¤ a2 D 2, so they are not isomorphic.
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Proof of Proposition 6.8 Since d D .1; 1; 1/, we have Vi DC for each i , so we may
identify each of the six linear maps vij with a complex number. Thus in both cases
we are considering subvarieties of the quotient C6=H , where k 2H Š .C�/3 acts
diagonally as k.vij /D kivij =kj (and so there is a C� subgroup of H acting trivially).
The invariants for this action are generated by

aD v12v21; b D v13v31; c D v23v32; p D v12v23v31; r D v21v13v32;

which satisfy the relation abc D pr . Thus C6=H is identified with the hypersurface
in C5 cut out by abc D pr .

Now, using an appropriate ordering, the relations defining the supernova variety fix the
diagonal matrix h in the factorisation vCv�Dw�hwC . Thus h1 is the top left matrix
entry of vCv� and h1h2 is the determinant of the top left 2� 2 submatrix of vCv� .
Expanding and rewriting in terms of the invariants gives the relations

1C aC b D h1; 1C bC cC ac �p� r D h1h2;

where h1; h2 2 C� are constants (directly related to q ). Using the first equation to
eliminate b , and the second to eliminate r , then setting w D pC a (and translating
the remaining variables w; a; c by suitable constants, then relabelling them x; y; z )
enables us to convert the remaining relation abc D pr into a relation of the form

xyz� x2C c1xC c2yC c3zC c4

defining a hypersurface in C3 , for constants ci . If we now project this to the x–y
plane, there is a unique z over each point x; y not on the conic P.x; y/D xyC c3 .
(In fact c3 D h1 ¤ 0.) Indeed we may rewrite the relation as P.x; y/z CQ.x; y/
with QD c1xC c2yC c4� x2 , and the hypersurface is then expressed as the blowup
of C2 at the three finite points of intersection of the conics P and Q (minus the strict
transform of P ). (In particular, z can take any value over these three points, and the
complement of the image of the projection is the conic P minus these three points.)
Rephrasing this in terms of the projective plane, compactifying C2 by adding the line
at infinity, yields (2).

On the other hand, for (1) the relations may be taken to be

1C aC bC ab D q1; 1C c D q2.1C a/; abc D pr:

Using the second relation to eliminate c , and then combinations of the first and third
to determine b , we get an equation of the form

W.a/C .1C a/pr D 0
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for a cubic polynomial W . Projecting this to the a–p plane, the value of r is uniquely
determined by the point .a; p/ if it is off of the two lines faD�1g[ fp D 0g. Over
these two lines lie just three affine lines, each above one of the three points of the line
pD 0 where a is a root of W (and none of these roots is ever at aD�1). Rephrasing
this in terms of the triangle consisting of these two lines together with the line at infinity
in P2 gives the desired description.

Remark 6.10 Similarly, one can consider the case when � is a square with dimension
vector d D .1; 1; 1; 1/ and again the spaces corresponding to the two inequivalent
colourings are not isomorphic (the explicit descriptions are as above but with a fourth
blowup point added, to the same component, in each diagram in Figure 3). Note that
the next type A affine Dynkin diagram yA4 , the pentagon, is not a supernova graph, so
we cannot further extend this discussion in this direction (this is related to the fact that
there is no second-order Painlevé equation with this affine Weyl symmetry group, nor is
there a two-dimensional Hitchin system for yA4 ). However, although beyond the scope
of the present discussion, one can consider the affine A1 Dynkin graph (two nodes
connected by two edges). The corresponding (non-simply-laced) supernova varieties
are of the form

A3.V1; V2/==q GL.V /�GL.V1/�GL.V2/

(see [10, Appendix C]) and for dim.V1/D dim.V2/D 1 this is a surface, and again
not isomorphic to the corresponding classical multiplicative quiver variety (the explicit
descriptions are as above, but with only two blowup points, on the same component, in
each diagram in Figure 3).

n n

n

n2n 1 1

nn

n

n

1n

n

n

Figure 4: Graphs for higher Painlevé spaces hP6 , hP5 , hP4

There is a conjectural list of all the wild Hitchin spaces which are complex surfaces
(hyperkähler manifolds of real dimension four) in [23, Section 3.2], and the above
examples are the Betti descriptions of some of them. The next simplest class of examples
seem to be the higher Painlevé spaces [10; 24, Section 11.4]: for each of the complex
surfaces M listed in [23, Section 3.2] there is a sequence of spaces Mn of complex
dimension 2n for each n 2 Z�1 . It is conjectured in [24] that Mn is diffeomorphic
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to the Hilbert scheme of n points on M (this conjecture has been proved recently
in the tame/star-shaped case in [34]). If we consider the cases where M is of type
D.1/4 ; A.1/3 ; A.1/2 , respectively, then the Betti description of Mn is the multiplicative
quiver variety associated to the coloured graphs below, and this seems to be the most
direct way to construct the underlying manifold.

7 Isomorphism theorems

In this section we will establish some quasi-Hamiltonian isomorphisms that will be
useful in later sections. These isomorphisms relate incredibly complicated explicit
expressions for the quasi-Hamiltonian two-forms, and at first sight look to be completely
out of reach, but it turns out a quite geometric, inductive, proof is possible using the
fission idea, although the simplest case is still too complicated to do by hand. (The reader
is strongly encouraged to draw some diagrams in order to understand the proofs of these
isomorphisms; this is how they were found.) In the complete bipartite case these isomor-
phisms are closely related to the work of Malgrange [47] and Balser, Jurkat and Lutz
[6] computing the action of Fourier–Laplace on certain spaces of Betti data, ie Stokes
and monodromy data (see also [15, (36) and Remark 20] for more details on [6]). Even
in these cases we are upgrading their isomorphisms to the quasi-Hamiltonian level.5

7.1 Linear algebra

First we will prepare some basic linear algebra. Let V;W be two finite-dimensional
complex vector spaces. Choose elements x 2 Hom.W; V /, y 2 Hom.V;W /. Note the
following elementary fact:

Lemma 7.1 The operator 1C xy 2 End.V / is invertible if and only if the operator
1Cyx 2 End.W / is invertible.

Occasionally we will refer to 1C yx as the “dual” of 1C xy (if the choice of the
maps x; y is clear). Now suppose W has an ordered grading W D

Ls
1Wi (ie W

has a direct sum decomposition into subspaces Wi and we have chosen an ordering
of the subspaces). Let �i ; �i be the corresponding inclusions and projections and
write xi D x ı �i 2 Hom.Wi ; V /, yi D �i ı y 2 Hom.V;Wi / for the corresponding
components. Write

'i WD 1C x1y
1
C � � �C xiy

i
2 End.V /

5More precisely, the isomorphisms here are slightly different from those of [47, XII], since for example
we do not reverse the orientation. However, it is straightforward to adjust what we do here to show that the
exact maps in [47] are also quasi-Hamiltonian.
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for i D 0; 1; : : : ; s . Suppose furthermore that x; y are such that 'i is invertible for
each i . Then define

yxi D '
�1
i�1 ı xi ; yyi D yi ı'�1i�1;

and let

hi D 1C yy
ixi D 1Cy

i
yxi 2 End.Wi /;

Ti D 1C xi yy
i ; Mi D 1C yxiy

i
2 End.V /:

Lemma 7.2 For all i , we have

'i D Ti � � �T1 DM1 � � �Mi 2 Aut.V /;

and so, in particular, each Ti ;Mi (and thus by the previous lemma hi ) is invertible.

Proof For i D 1 this is clear. In general, 'i D 'i�1C xiyi , and so, by induction,

'i D Ti�1 � � �T1C xi yy
i .Ti�1 � � �T1/D Ti � � �T1:

Similarly,
'i DM1 � � �Mi�1C .M1 � � �Mi�1/yxiy

i
DM1 � � �Mi :

Lemma 7.3 The element 1C yx 2 End.W / admits a block Gauss decomposition,
with block diagonal entries hi . Explicitly, 1Cyx D u�1� huC D v�hv

�1
C

, where

u� D 1� Œyy
ixj �i>j ; huC D 1C Œyy

ixj �i�j ;

v�hD 1C Œy
i
yxj �i�j ; vC D 1� Œy

i
yxj �i<j ;

where, for aij 2Hom.Wj ; Wi /, the expression Œaij �i<j denotes the element of End.W /
with aij in its .i; j / block for i < j and zero elsewhere. In particular, huC�u� and
v�h� vC are the “generalised block Gram matrices” :

huC�u� D Œyy
ixj �; v�h� vC D Œy

i
yxj �:

Proof Compute the products u�.1Cyx/ and .1Cyx/vC .

Note that 's D 1C xy , which is dual to 1C yx , and similarly 'i is dual to the
submatrix of 1Cyx in End

�Li
1Wj

�
, explaining why such a decomposition exists.

Thus, the set of .x; y/2T �Hom.V;W / for which all the 'i are invertible, has different
coordinates given by .yxi ; yi / or .xi ; yyi / restricted such that all the hi are invertible.
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Example 7.4 Suppose V has a nondegenerate symmetric bilinear form . � ; � / and
basis x1; : : : ; xs 2 V such that .xi ; xi /D 2 for each i . Set Wi DC for each i and let
yyi D�.xi ; � /2 V

�DHom.V;C/. Then Ti D 1�xi .xi ; � / is the orthogonal reflection
associated to xi . If we identify W D

L
Wi with V via the basis xi and work in this

basis (so that x is the identity matrix) then the above results imply

Ts � � �T1 D 1Cy D�u
�1
� uC;

where uCCu� is the (symmetric) Gram matrix with entries .xi ; xj / (and hD�1).
This triangular decomposition of the product of reflections goes back at least to Killing
and Coxeter (see [15, Remark 18]).

Now suppose further that there is also a direct sum decomposition V D
Lr
1 Vi . Then

we may repeat the above discussion using this decomposition: Define

j WD 1Cy1x
1
C � � �yjx

j
2 End.W /

for j D 0; 1; : : : ; r , where xj W W ! Vj and yj W Vj !W are the components of x
and y . Then if j is invertible for all j , we may define

yyj D 
�1
j�1 ıyj ; yxj D xj ı �1j�1;

gj D 1C yx
jyj D 1C x

j
yyj 2 End.Vj /;

Rj D 1Cyj yx
j ; Nj D 1C yyjx

j
2 End.W /;

so that
j DRj � � �R1 DN1 � � �Nj 2 Aut.W /

is invertible for all j (so 1C yx D r DN1 � � �Nr ), and 1C xy 2 Aut.V / admits a
block Gauss decomposition with block diagonal entries gj :

1C xy D w�gw
�1
C 2 Aut.V /; w�g�wC D Œx

i
yyj � 2 End.V /:

7.2 Isomorphism theorems

We will establish three isomorphism theorems of increasing complexity. Recall from
Section 4.2 the quasi-Hamiltonian spaces Ar.V /;Br.V /. The first case is the follow-
ing.

Theorem 7.5 Let V;W1; : : : ; Ws be finite-dimensional complex vector spaces and W
be the ordered graded vector space

Ls
1Wi . Then there is an (explicit) isomorphism

(14) B.Ws; V /~
V
� � �~

V
B.W1; V /ŠA.W /L

W
B.W; V /

of quasi-Hamiltonian GL.V /�
Q

GL.Wi / spaces.
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In terms of graphs, this isomorphism may be pictured as in Figure 5. Namely, on the
left we are fusing s edges together at one end, and on the right we are applying the
fission operator A.W /L . � / to the edge representing B.W; V /, to break the vector
space W into pieces. This operation is the multiplicative analogue of the splaying
operation of [10] (also called 0–fission in [10, Appendix C]).

W1

W2

Ws

V
V

V

D

W1
W2

Ws

V
Š A.W /L

W V

Figure 5: First isomorphism

Note that this implies the recolouring result (Theorem 6.7), since the spaces on the left
would have each edge a distinct colour, whereas the spaces on the right correspond to
a single monochromatic piece.

Proof First, by a direct calculation postponed to Section 7.3, the s D 2 case of this
may be verified. To deduce the general, result define W 0 D

Ls�1
1 Wi , and observe the

following relations:

B.Ws; V /~
V

�
B.Ws�1; V /~

V
� � �~

V
B.W1; V /

�
ŠB.Ws; V /~

V

�
A.W 0/L

W 0
B.W 0; V /

�
(by induction)

DA.W 0/L
W 0

�
B.Ws; V /~

V
B.W 0; V /

�
ŠA.W 0/L

W 0

�
A.W 0; Ws/L

W
B.W; V /

�
;

where the last isomorphism follows from the sD 2 case. Thus, to establish the theorem
it is sufficient to find an isomorphism

A.W 0/L
W 0

A.W 0; Ws/ŠA.W /:

But this is a special case of Proposition 4.5.

Remark 7.6 Using induction, it follows that the map (14) used in the proof of
Theorem 7.5 is given explicitly by

f.yyi ; xi /g 7! .h; S1; S2; y; x/ 2A.W /LB.W; V /;
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where y; x have components yi ; xi , respectively, and yi D yyiTi�1 � � �T1 with Ti D
1C xi yy

i (as in Section 7.1) so that 1Cyx D u�1� huC D hS2S1 .

Now suppose further that we also have an ordered grading V D
Lr
1 Vi of V . Then a

more symmetrical generalisation of the previous result is available, since we may apply
fission operators to both sides of B.W; V /. Let

H.V /D
Y

GL.Vi /; H.W /D
Y

GL.Wi / and G D GL.V ˚W /:

From now on we will use the following notation for multiple fusions:
 �MO
V

B.Wi ; V / WDB.Ws; V /~
V
� � �~

V
B.W1; V /:

Corollary 7.7 The following three quasi-Hamiltonian H.W / � H.V / spaces are
isomorphic: �

A.W /L
W

A2.W; V /L
V

A.V /
�
==G;(15) �s �1MO

V

B.Wi ; V /

�
L
V

A.V /;(16)

�r �1MO
W

B.Vi ; W /

�
L
W

A.W /:(17)

Note that (15) is isomorphic to A.W /LB.W; V /LA.V /.

Proof An isomorphism between (15) and (16) is immediate upon applying . � /LA.V /

to both sides of (14). An isomorphism between (15) and (17) arises similarly once we
identify A2.W; V / with A2.V;W / in (15), using Proposition 4.4.

In terms of graphs, this gives three descriptions of the space Rep�.�.s; r/; V ˚W /
for the complete bipartite graphs �.s; r/. Unlike the star-shaped case (with r D 1),
we now start to get spaces which are different from those obtained by fusing together
the Van den Bergh spaces along the edges of the graph (eg the reductions are different
even if r D s D 2 when � is the square, as mentioned in Remark 6.10).

The next generalisation is to replace the pair of ordered graded vector spaces V;W
appearing above with an arbitrary k–tuple of ordered graded vector spaces. First we
will set up some new notation (beware of the unfortunate conflicts with that above).
Suppose J D f1; : : : ; kg and we have a finite totally ordered set Ij for each j 2 J .
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W1

W2

Ws

V

LA.V / D

W1
W2

Ws

V
LA.V /

Š

W1
W2

Ws

V1
V2

Vr

Š A.W /L
W

LA.V /
V

Š A.W /L
W

V1
V2

Vr

D A.W /L

W
V1

V2

Vr

Figure 6: Three ways to construct a complete bipartite graph

Let I D
F
Ij be the disjoint union of these sets and suppose we have chosen a finite-

dimensional complex vector space Vi for each i 2 I . Then we may define ordered
graded vector spaces

Wj D
M
i2Ij

Vi ; V D
M
j2J

Wj ; Uj D V 	Wj D
M

p2Jnfj g

Wp:

Thus we view V as graded by J (and not by I ) and similarly Uj is graded by J nfj g.
Define G D GL.V / and H D

Q
i2I GL.Vi /.

Theorem 7.8 For any fixed integer j 2 f1; : : : ; kg, the space�
A2.V /L

W1

A.W1/L
W2

A.W2/ � � �L
Wk

A.Wk/
�
==G

is isomorphic to the space i2Ij
 �MO
Uj

B.Vi ; Uj /

!
L
Uj

A2.Uj /L
W1

A.W1/L
W2

A.W2/ � � �
�

omitting
j th term

�
� � �L

Wk

A.Wk/

as a quasi-Hamiltonian H –space.
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Note that the first space here is B.W /L
K

Q
j A.Wj /, in the notation of Proposition 5.3.

Proof We will show this for j D 1 since the other cases are similar (note that
up to isomorphism the space A2.V / does not depend on the ordering of J ; this
follows from the isomonodromy isomorphisms of Proposition 4.4). First recall that
B.W1; : : : ; Wk/DA2.V /==G , and let B~

1 denote the fusion

i2I1
 �MO
U1

B.Vi ; U1/:

Then the result will follow if we can show

(18) B.W1; : : : ; Wk/L
W1

A.W1/ŠB~
1 L
U1

A2.U1/

as quasi-Hamiltonian spaces, since, if so, we can just glue A.Wj / on to both sides for
j D 2; : : : ; k to obtain the desired result. Now observe that Theorem 7.5 implies

B.W1; U1/L
W1

A.W1/ŠB~
1 :

If we apply the higher fission operator

. � /L
U1

A2.U1/

to both sides of this, we see that (18) (and thus the theorem) will follow provided that

B.W1; U1/L
U1

A2.U1/ŠB.W1; : : : ; Wk/:

In turn, this will follow if there is an isomorphism

A2.W1; U1/L
U1

A2.U1/ŠA2.V /

upon reducing by G . But this follows from the nesting result Proposition 4.5.

In terms of graphs, this gives k C 1 descriptions of the space Rep�.�; V / for any
complete k–partite graph � .

The higher fission operator . � /LA2.V / is the multiplicative analogue of the 1–fission
operation of [10, Appendix C]: in terms of graphs, if V D

Lk
1 Vi , this operation breaks

up a node with vector space V into k pieces (and repeats the original edges to each of
the new nodes) and then each pair of the k new nodes is connected by a single edge.
For example, the key isomorphism

B~
1 LA2.U1/ŠB.W1; : : : ; Wk/LA.W1/
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of (18) may be pictured in terms of graphs as in Figure 7 (in the case where W1DV1˚V2
and k D 3, so U1 DW2˚W3 ).

V1

V2

U1
LA2.U1/ Š

V1

V2

W2

W3

Š A.W1/L
W1

W2

W3

Figure 7: Example isomorphism involving a higher fission operator . � /LA2

7.3 Simplest isomorphism

This section gives more details of the simplest case of Theorem 7.5, ie the statement that

(19) B.W2; V /~
V
B.W1; V /ŠB.W; V /L

W
A.W1; W2/

as quasi-Hamiltonian GL.V /�GL.W1/�GL.W2/ spaces, if W DW1˚W2 .

Suppose xW W ! V and yW V ! W represent a point .y; x/ of B.W; V /, so the
moment maps are ..1 C yx/�1; 1 C xy/ 2 GL.W / � GL.V /. Thus, a point of
B.W; V /L

W
A.W1; W2/ is given by a tuple y; x; S1; S2; h such that

(20) 1Cyx D hS2S1 2 GL.W /:

It will be convenient below to change notation slightly and set

uC D S1; u� D hS
�1
2 h�1;

so that hS2S1 D u�1� huC (the quasi-Hamiltonian two-form is written in these coordi-
nates in [20]). Now let �i W W !Wi and �i W Wi !W be the inclusion and projection
between W and its summand Wi , and define

xi D x ı �i W Wi ! V; yi D �i ıyW V !Wi ;

'0 D 1; '1 D 1C x1y
1
2 Aut.V /; yyi D yi ı'�1i�1W V !Wi ;

hi D 1C yy
ixi 2 End.Wi /; Ti D 1C xi yy

i
2 End.V /:

(Note that the existence of the decomposition (20) is equivalent to '1 being invertible.)
As in Section 7.1, we have that

(21) 1C xy D T2T1 2 GL.V /:
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Thus, we are led to take the corresponding point of

B.W2; V /~
V
B.W1; V /

to be ..yy2; x2/; .yy1; x1//. This prescription defines an isomorphism between the two
sides of (19). It is clearly equivariant under the action of GL.W1/�GL.W2/�GL.V /
and the moment maps match up due to (21) and since h�1i is the i th component of h�1 .
Finally, we need to check that the quasi-Hamiltonian two-forms match up. This comes
down to verifying the identity

Tr.1Cyx/�1dy ^ dx�Tr.1C xy/�1dx ^ dyCTr.xU�hxUCh�1/

D Tr h�11 d yy1 ^ dx1�TrT �11 dx1 ^ d yy
1

CTr h�12 d yy2 ^ dx2�TrT �12 dx2 ^ d yy
2

�TrT �11 T �12 dT2 ^ dT1;

where xU� D .du�/u�1� and xUC D .duC/u�1C . This will be left as an exercise (the
author has checked it symbolically using a computer program).

7.4 Alternative version

Suppose instead that we set Mi D 1C yxiy
i 2 Aut.V /, where yxi D '�1i�1 ı xi . Then

(22) 1C xy DM1M2;

so we are led to consider the point ..y1; yx1/; .y2; yx2// of B.W1; V /~
V
B.W2; V /. This

prescription defines an isomorphism

(23) B.W1; V /~
V
B.W2; V /ŠB.W; V /L

W
A.W1; W2/:

It is clearly equivariant under the action of GL.W1/�GL.W2/�GL.V /. The moment
maps match up due to (22) and since h�1i is the i th component of h�1 (and hi is
dual to both Mi and Ti ). The difference between the above two descriptions is just
swapping the order of the two factors. Noting that '0 D 1 and '1 D T1 DM1 , the
corresponding isomorphism

(24) B.W1; V /~
V
B.W2; V /ŠB.W2; V /~

V
B.W1; V /

is just ..y1; x1/; .y2; yx2// 7! ..yy2; x2/; .y
1; x1// and .yy2; x2/D T1 � .y2; yx2/, where

the dot denotes the action of GL.V /, ie it is the braid isomorphism of [2, Theorem 6.2].
In particular, the fact that (23) is a quasi-Hamiltonian isomorphism follows since (19)
and (24) are quasi-Hamiltonian isomorphisms.
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8 Wild character varieties

The wild character varieties are a large class of algebraic symplectic/Poisson varieties,
which parametrise connections on bundles on curves. They generalise the (tame)
character varieties, ie spaces of fundamental group representations, which parametrise
regular singular connections on bundles on curves. The first approach to their symplectic
structures was analytic [11; 12], in the style of Atiyah and Bott. Subsequently, a purely
algebraic approach was developed extending the quasi-Hamiltonian theory [16; 20; 25].

The general set-up is as follows (see [25] for more details). Fix a connected complex
reductive group G , such as G D GLn.C/, and a maximal torus T � G . A wild
character variety MB.†/ is then associated to an object called an “irregular curve” or
“wild Riemann surface” †. This generalises the notion of curve with marked points, in
order to encode some of the boundary conditions for irregular connections: an irregular
curve † (for fixed G ) is a triple .†; a;Q/ consisting of a smooth compact complex
algebraic curve †, plus some marked points aD .a1; : : : ; am/�†, for some m� 1,
and an “irregular type” Qi at each marked point ai . The extra data is the irregular type:
an irregular type at a point a 2 † is an arbitrary element Q 2 t. yKa/=t.yOa/, where
t D Lie.T /. If we choose a local coordinate z vanishing at a then Q 2 t..z//=tŒŒz��
and we may write

QD
Ar

zr
C � � �C

A1

z

for some elements Ai 2 t, for some integer r � 1. (The tame/regular singular case is
the case when each Qi D 0, and in this case the wild character variety coincides with
the usual space of fundamental group representations.) There are several variations of
this definition (bare irregular curves, twisted irregular curves) discussed in [25], but
they will not be needed here.

Given an irregular curve †D .†; a;Q/ we may consider algebraic connections on
algebraic G–bundles on †ı D † n fag such that near each puncture ai there is a
local trivialisation such that the connection takes the form dQi C logarithmic terms,
ie whose irregular part is determined up to isomorphism by dQi . One way to state the
irregular Riemann–Hilbert correspondence in this context is that the category (groupoid)
of such connections is equivalent to the category of Stokes G–local systems determined
by † (see [25, Appendix A]). This generalises Deligne’s equivalence [31] between
regular singular connections on algebraic vector bundles on †ı and local systems on
†ı .

A Stokes G–local system is defined as follows. Given the irregular curve †, we may
define two real surfaces with boundary

z† ,! y†�†
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e.d/

d

@1

H1

Figure 8: The surface z† with halo drawn

as follows: y† is the real oriented blow-up of † at the points of a , so that each point ai
is replaced by a circle @i parameterising the real oriented direction emanating from ai ,
and the boundary of y† is @y†D@1t� � �t@m . In turn, each irregular type Qi canonically
determines three pieces of data (see [25] for full details):

(1) A connected reductive group Hi �G , the centraliser of Qi in G .

(2) A finite set Ai � @i of singular/anti-Stokes directions for all i D 1; : : : ; m.

(3) A unipotent group Stod � G normalised by Hi , the Stokes group of d , for
each d 2Ai for all i D 1; : : : ; m.

The surface z†� y† is defined by puncturing y† once at a point e.d/ in its interior near
each singular direction d 2Ai � @i , for all i D 1; : : : ; m. For example, we could fix
a small tubular neighbourhood of @i (a “halo”) Hi � y† (so Hi is an annulus), and
choose the extra puncture e.d/ 2 y† to be on the interior boundary of Hi near the
singular direction d (as pictured in Figure 8).

A Stokes G–local system for the irregular curve † consists of a G–local system on z†,
with a flat reduction to Hi in Hi for each i D 1; : : : ; m, such that the local monodromy
around e.d/ is in Stod for any basepoint in Hi , for all d 2Ai for all i .

Thus, via the irregular Riemann–Hilbert correspondence, the classification of con-
nections with given irregular types is reduced to the classification of Stokes G–local
systems, which goes as follows: Choose a basepoint bi 2Hi for each i and let … be
the fundamental groupoid of z† with basepoints fb1; : : : ; bmg. Then we may consider
the space Hom.…;G/ of G–representations of … and the subspace HomS.…;G/ of
Stokes representations, which are the representations such that the local monodromy
around @i (based at bi ) is in Hi and the local monodromy around e.d/ (based at bi )
is in Stod , for all d 2Ai , for all i . The group H WDH1� � � � �Hm acts naturally on
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HomS.…;G/, and the set of isomorphism classes of Stokes G–local systems for † is
in bijective correspondence with the set of H –orbits in HomS.…;G/.

The space of Stokes representations is naturally a smooth affine variety and the wild
character variety MB.†/ is defined to be the affine quotient

MB.†/D HomS.…;G/=H

taking the variety associated to the ring of H –invariant functions. One of the main
results of [25] is that HomS.…;G/ is an algebraic quasi-Hamiltonian H –space, and
this implies that MB.†/ is an algebraic Poisson variety, with symplectic leaves obtained
by fixing the conjugacy classes of “inner” local monodromies, in Hi , of the Stokes
local systems around @i for each i . In full generality, the space HomS.…;G/ of
Stokes representations is identified [25, (36)] with the reduction

(25) HomS.…;G/Š
�
D~g ~

G
A.Q1/~

G
� � �~

G
A.Qm/

�
==G

Š
�
D~g ~

G
A.Q1/~

G
� � �~

G
A.Qm�1/

�
L
G

A.Qm/

involving the explicit quasi-Hamiltonian G �Hi –spaces A.Qi / defined in [25, The-
orem 7.6]. Here D Š G �G is the internally fused double of [2], which is a quasi-
Hamiltonian G–space with moment map given by the group commutator. (In the tame
case Qi D 0, the space A.Qi / is just the double D.G/ŠG�G , and if Qi has regular
semisimple leading term then A.Qi / is the space zC=L of [16, Remark 5].) Given a
conjugacy class CCCD C1 � � � � �Cm �H , there is a symplectic wild character variety

(26) MB.†;CCC/D �
�1
H .CCC/=H �MB.†/

obtained by fixing the inner local monodromy conjugacy classes. In turn, we may
consider the stable points (for the action of H on HomS.…;G/), which may be
characterised as the irreducible Stokes representations (see [25, Section 9]). Let

Mst
B.†;CCC/�MB.†;CCC/

be the subset of stable points. If the class CCC is sufficiently generic (see [25, Corollar-
ies 9.8 and 9.9]) then Mst

B.†;CCC/DMB.†;CCC/ and it is a symplectic orbifold; in the
case G D GLn.C/ it is smooth, and isomorphic to one of the complete hyperkähler
manifolds (wild Hitchin spaces) constructed in [9]. As mentioned in Remark 6.4, here
we have set the Betti weights equal to zero.

8.1 Type 3 wild character varieties

In this article we will focus on a special class of wild character varieties. From the
general viewpoint described above they appear to be very special, but from the point of
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view of quivers, we will see it is still a somewhat vast class. Suppose G DGL.V / is a
general linear group, with V DCn .

Definition 8.1 An irregular curve † is of type 3 if †D .P1;1;Q/ where Q has
pole order r � 2, ie the underlying curve is the Riemann sphere with just one marked
point 1 and dQ has a pole of order at most 3.

Thus if †D .P1;1;Q/ is an irregular curve of type 3 we may write

(27) QD
A

2
z2CT z D

A

2w2
C
T

w
; so that dQD .AzCT /dz

for some diagonal matrices A; T 2 End.V /, where w D 1=z is a coordinate vanishing
at z D1. Thus dQ has a pole of order at most 3 at 1.

More generally, we will consider irregular curves of type 3C 1m , for integers m� 1:
an irregular curve † is of type 3C 1m if it is of type 3, except it has m other marked
points t1; : : : ; tm 2C D P1 n1, each with zero irregular type.

The next main result we will prove may be summarised as follows:

Theorem 8.2 Suppose G D GL.V / is a general linear group and † is an irregular
curve of type 3C 1m for some m � 1. Then for any choice of conjugacy classes CCC

there is another vector space yV and a type 3 irregular curve y† (for the group GL. yV /)
such that the wild character variety

Mst
B.†;CCC/

is isomorphic as an algebraic symplectic manifold to the type 3 wild character variety

Mst
B.
y†; yCCC/

for some conjugacy classes yCCC.

In particular, we could take † to be tame (ie of type 1m ) and still find it is isomorphic
to a type 3 wild character variety: any genus zero tame character variety is isomorphic
to a type 3 wild character variety.

The way we will prove this is via multiplicative quiver varieties. The main statements
are the following.

Theorem 8.3 Suppose G D GL.V / is a general linear group and † is an irregular
curve of type 3C 1m for some m � 0. Then for any choice of conjugacy classes CCC

there is a supernova graph � (with monochromatic core), and data q; d such that the
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wild character variety of † with classes CCC is isomorphic as an algebraic symplectic
manifold to the multiplicative quiver variety of � with parameters q; d :

Mst
B.†;CCC/ŠMst.�; q; d/:

Conversely, all such multiplicative quiver varieties arise as type 3 wild character
varieties:

Theorem 8.4 Suppose � is a supernova graph (with monochromatic core) and q; d
are given. Then there is a vector space V and a type 3 irregular curve † (for the group
G D GL.V /) and conjugacy classes CCC such that the multiplicative quiver variety of �
is isomorphic as an algebraic symplectic manifold to the type 3 wild character variety
associated to †;CCC:

Mst.�; q; d/ŠMst
B.†;CCC/:

It is clear that these two results will imply Theorem 8.2. Further, as will be explained
in Section 10, the reflection isomorphisms of Theorem 10.1 follow almost directly
from the passage between wild character varieties and multiplicative quiver varieties in
Theorems 8.3 and 8.4. These results will be proved in the next section.

9 Multiplicative quiver varieties and wild character varieties

9.1 Type 3 wild character varieties as multiplicative quiver varieties

First we will establish Theorem 8.4 and the case m D 0 of Theorem 8.3. The strat-
egy is to consider an intermediate space Rep�.�; V /==CCCH of reductions of an open
multiplicative quiver variety at some conjugacy classes and then show the subspace
of stable points of this is isomorphic both to a type 3 wild character variety and to a
multiplicative quiver variety.

Suppose GDGL.V /, where V DCn , and †D .P1;1;Q/ is a type 3 irregular curve
with irregular type QD Az2=2CT z , where A; T 2 End.V / are diagonal matrices.

Then Q determines a complete k–partite graph � D �.Q/, the fission graph of Q , as
recalled in Section 3.3 (with w D 1=z ). The graph �.Q/ may be defined as follows.
Let J be the set of eigenspaces of A, and k D #J . Let Wj � V be the corresponding
eigenspace of A for each j 2 J , and let Ij be the set of eigenspaces of T jWj

. For any
i 2 Ij let Vi �Wj � V be the corresponding eigenspace of T jWj

. Let I D
F
Ij be

the disjoint union of all the Ij . Then � is the complete k–partite graph with nodes I
determined by this partition (ie two nodes are joined by a single edge if and only if they
are in different parts Ij of I ). Further, Q determines a grading V D

L
Vi of V by I .
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Thus, viewing � as a simple (monochromatic) coloured quiver, for any choice of
ordering there is a quasi-Hamiltonian H –space

M WD Rep�.�; V /

as in Proposition 5.3, with moment map �W M! H , where H D
Q

GL.Vi /. The
stable points Mst �M for the H action consist of the irreducible (invertible) graph
representations (as in Theorem 6.3), and given any conjugacy class CCC �H we may
consider the stable points of the reduction at CCC:

(28) Mst==
CCC

H D f� 2Mst
j �.�/ 2CCCg=H:

This is an open subvariety of the affine variety associated to the ring of H –invariant
functions on the affine variety ��1.CCC/, where CCC�H is the closure of the conjugacy
class CCC.

Note that the group H attached to the irregular curve (the centraliser of Q) is the same
as the group H acting on M.

Proposition 9.1 For any conjugacy class CCC�H , the wild character variety Mst
B.†;CCC/

is isomorphic to the reduction (28) of the open multiplicative quiver variety M.

Proof Mst
B.†;CCC/ is the set of stable points of MB.†;CCC/. In turn, the wild character

variety MB.†;CCC/ is constructed in [25] as the multiplicative symplectic quotient of
HomS.…;G/ by H at the class CCC �H , where G D GL.V /. Now recall from (25)
(or [25, (36)]) that HomS.…;G/ may be identified as an explicit quasi-Hamiltonian
reduction. In the current situation gD 0 and mD 1, so the fusion product (25) just has
one term A.Q/, where Q D Az2=2C T z is the irregular type we fixed above. The
space A.Q/ attached to Q was defined in [25, Theorem 7.6], and was shown there to
be a quasi-Hamiltonian G �H –space.6 This was proved by showing that there is an
isomorphism

A.Q/Š GA
2
K L
K

KAH

between A.Q/ and the gluing of two fission spaces with respect to the intermediate
group K WD CG.A/D

Q
GL.Wj /, so that H �K �G (see [25, Proposition 7.12 and

proof of Lemma 7.11], where K is denoted H2 ). (Beware that if K ¤H then A.Q/

is not isomorphic toGA
2
H , and will have different dimension.) Thus we see that

HomS.…;G/DB.Q/DA.Q/==G Š
�
GA

2
K L
K

KAH
�
==G DB.W /L

K
KAH

6One can view A.Q/ as HomS.….†
0/; G/ , where †0 is either the irregular curve of type 3C 1

obtained by adding a single extra, tame, marked point to † at z D 0 , or †0 is the analytic irregular curve
obtained by taking a disk around 1 in † .
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since, by definition B.W / D GA
2
K==G , where W D

L
Wj (which is V with a

different grading). Finally, to identify HomS.…;G/ with Rep�.�;G/ (as defined in
Proposition 5.3), we just need to remark that

KAH D
Y
j2J

A.Wj /

since K is a product, where Wj is graded by Ij .

Thus, the reduction (28) and the wild character variety Mst
B.†;CCC/ are the reduction of

the same smooth affine variety

HomS.…;G/DB.Q/ Š Rep�.�; V /DM

with the same structure of quasi-Hamiltonian H –space, by the same group H at the
same conjugacy class CCC�H , and so are identified. (The stable points were defined
intrinsically in terms of the H –action and so are identified on both sides.)

Now, to identify the wild character variety with a multiplicative quiver variety, we will
explain how to encode the conjugacy class CCC by gluing on some legs to the fission
graph � , converting it into a supernova graph.

Since CCC�H D
Q

GL.Vi / we may write CCCD
Q
MCi , where MCi is a conjugacy class of

GL.Vi /. The extra data needed to determine a supernova graph is a “marking” of each
conjugacy class MCi .

Definition 9.2 Suppose C�GLn.C/ is a conjugacy class. A marking of C is a finite
ordered set .�1; �2; : : : ; �w/ of invertible complex numbers such that

Qw
1 .M ��i /D 0

for any M 2 C.

n

1 2 3

d2 d3 dw

w

b1 b2 bl

a1 a2 al

Figure 9: Representation of a type Aw Dynkin graph

Equivalently, a marking of C is the choice of a monic annihilating polynomial f 2CŒx�
with f .0/¤ 0, so that f .M/D 0 for all M 2 C, together with a choice of ordering
of the multiset of roots of f . A marking will be said to be minimal if w D deg.f /
is minimal (so that f is the minimal polynomial of M ). A marking is special if the
first root is the identity (�1 D 1). Given a marking of C� GLn.C/, define invertible
complex numbers

(29) qi D �i=�i�1
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(including q1 D �1 ) and integers

di D rank.M � �1/ � � � .M � �i�1/;

i D 1; 2; : : : (for any M 2 C), so that d1D n. The marking and the dimensions di are
well-known to determine the class C. The following lemma gives a quiver-theoretic
approach to this fact. Consider the type Aw Dynkin graph (a leg) with w nodes and
l WD w� 1 edges, as in Figure 9.

Lemma 9.3 (See [30]) If f.ai ; bi /g is an invertible representation of this leg (type Aw
Dynkin graph) on the vector space V D

Lw
1 Cdi such that each bi is surjective and

each ai is injective and the moment map conditions

M D q1.1C a1b1/;

1C b1a1 D q2.1C a2b2/;

:::

1C bl�1al�1 D ql.1C albl/;

1C blal D qw

hold, then M 2 C.

Proof Writing qi D �i=�i�1 and setting �i D �i ��i�1; pi D �ibi , this reduces to the
additive version, for adjoint orbits O� gln.C/ (see [25, Lemma 9.10]). Here is a proof,
for completeness: It is clear that the conjugacy class of M is uniquely determined
by these conditions (see Proposition A.1). Thus we just need to check that the class
determined in this way is indeed the class C we started with. But if M is any element
of C we may define an invertible representation satisfying these conditions by setting
V1 D Cn and then inductively bi D .M=�i � 1/jVi

; ViC1 D Im.bi / and ai to be the
inclusion

ViC1 D

iY
1

.M � �j /.V / ,!

i�1Y
1

.M � �j /.V /D Vi :

Note that if these moment map conditions hold and M 2 C then

(30) det.M/D q
d1

1 det.1C a1b1/

D q
d1

1 det.1C b1a1/D q
d1

1 q
d2

2 det.1C a2b2/D � � � D
wY
1

q
di

i :

Returning to the global picture, we will say that the type 3 irregular curve † is marked
if we have chosen a conjugacy class MCi � GL.Vi / for each i (as above) together
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with a marking of each class MCi . Let Li denote the leg determined (as above) by the
marking of MCi . Thus we may construct a larger graph y� by gluing the left-hand node
of Li on to the node i 2 I of � . Let yI denote the set of nodes of y� (equal to the
disjoint union of the nodes of Li for all i 2 I ). By definition, y� is a simply laced
supernova graph. Since each node of each leg comes with a vector space (Cdi in the
above example) each node of y� comes with a vector space, so we obtain an yI –graded
vector space yV , and we will denote its graded pieces by Vi for all i 2 yI , and from
now on we will let di D dim.Vi / for all i 2 yI . Similarly, we obtain a scalar qi 2C�

for each i 2 yI from the scalars at each node of each leg. We colour the graph y� so
that the core � is monochromatic. Thus we have all the data required to define a
(supernova) multiplicative quiver variety M.y�; q; d/. Note that, from (30), it follows
that

Q
I det.Mi /D q

d (for any Mi 2
MCi ), and both the quiver variety M.y�; q; d/ and

the wild character variety Mst
B.†;CCC/ will be empty unless this common value is 1.

Theorem 9.4 The multiplicative quiver variety Mst.y�; q; d/ is isomorphic to the type
3 wild character variety Mst

B.†;CCC/ as an algebraic symplectic manifold.

Proof By Proposition 9.1, it is sufficient to prove that Mst.y�; q; d/ is isomorphic
to Mst==CCCH D Rep�.�/st==CCCH . This result is the multiplicative analogue of [24,
Theorem 9.11], and we have now set things up so that the same proof works verbatim
(noting Lemma 5.8 above), with [25, Lemma 9.10] replaced by Lemma 9.3 above. In
particular, stability implies that all the maps bi down the legs are surjective and all
the maps ai up the legs are injective, and so the conjugacy class of the element Mi D

qi1.1C ai1bi1/ (from the i th leg) is fixed. Given [16; 25], identifying the symplectic
structures comes down to the fact [57, Remark 4.2] that the quasi-Hamiltonian reduction
of the representations of the leg Li gives the quasi-Hamiltonian form on the conjugacy
class MCi .

This establishes the mD 0 case of Theorem 8.3. The above proof really shows the
equivalence between the supernova multiplicative quiver varieties Mst.y�; q; d/ and the
reductions Mst==CCCH , modulo the choice of a marking of each conjugacy class. Thus
(via Proposition 9.1) this also establishes Theorem 8.4.

This shows how to “read” a wild character variety from a supernova multiplicative
quiver variety. This is the “generic reading” (the other k readings will be described in
the following subsection). In summary, the basic data correspond as follows:

(1) The rank n of the structure group GDGLn.C/ of Stokes local systems appearing
in the wild character variety is the sum of the dimensions on the nodes I of the
core � of the supernova graph y� : nD

P
i2I di .
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(2) If the core � � y� is a complete k–partite graph, then k is the number #J
of eigenspaces J of the leading term A of the irregular type Q at 1 on the
corresponding irregular curve (as in (27)).

(3) The number of nodes Ij in the j th part of the core � is the number of eigenspaces
of T jWj

2 End.Wj /, where Wj �Cn is the eigenspace of A corresponding to
j 2 J , and where T is the next coefficient of the irregular type Q (see (27)).

(4) The eigenspace Vi of T jWj
2 End.Wj / corresponding to i 2 Ij � I � yI has

dimension di , and in turn dim.Wj /D
P
Ij
di .

(5) The (formal) monodromy conjugacy class CCC�H D
Q
I GL.Vi / of the Stokes

local systems is a product of conjugacy classes MCi � GL.Vi / for i 2 I , and MCi
is the conjugacy class determined by the (data on the) i th leg of the supernova
graph, as in Lemma 9.3.

(6) The coefficients A; T of the irregular type Q can be encoded as data on the graph
as follows: The eigenvalues of A correspond to assigning a distinct complex
number for each part of the core (ie to specifying an injective map J ,!C ). In
turn, the eigenvalues of T correspond to choosing a scalar ti 2C for each node
of i 2 I of the core, such that ti1¤ ti2 whenever i1¤ i2 are in the same part of I .

Finally, recall that the passage from the wild character variety to the multiplicative
quiver variety required the choice of a marking of each conjugacy class MCi ; changing
the choice of marking immediately yields many isomorphisms between multiplicative
quiver varieties. This yields the reflection isomorphisms for the nodes not in the core
(see Section 10). To obtain the other reflection isomorphisms for the core nodes (for
example for i 2 Ij � I ), in the following subsection we will use the main isomorphism
(Theorem 7.8) to realise Mst.y�; q; d/ as a wild character variety of type 3C1m , where
mD #Ij , parameterising certain Stokes local systems of smaller rank

P
InIj

di . (This
will also complete the proof of Theorem 8.3.)

9.2 Type 3C1m wild character varieties as multiplicative quiver varieties

Suppose G D GL.U /, where U D Cr , and † is a type 3 C 1m irregular curve
with underlying curve P1 , with irregular type Q D Az2=2C T z at z D1, where
A; T 2 End.U / are diagonal matrices, and there are m � 1 further marked points
t1; : : : ; tm 2C � P1 each with trivial irregular type.

Then Q determines a complete k0–partite graph � 0 D �.Q/, the fission graph of Q ,
as in the previous subsection: Let J 0 be the set of eigenspaces of A, and k0 D #J 0 .
Since the eigenspaces are parametrised by the eigenvalues of A we can (and will)
identify J 0 with a subset of C . Let Wj � U be the corresponding eigenspace of A
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for each j 2 J 0 , and let Ij be the set of eigenspaces of T jWj
. For any i 2 Ij , let

Vi �Wj �U be the corresponding eigenspace of T jWj
. Let I 0D

F
Ij be the disjoint

union of all the Ij . Then � 0 is the complete k0–partite graph with nodes I 0 determined
by this partition (ie two nodes are joined by a single edge if and only if they are in
different parts Ij of I 0 ). Further, Q determines a grading U D

L
Vi of U by I 0 .

Up to a slight change of notation, all this is as before. Now we set k D k0C 1 and
construct a complete k–partite graph � by adding an extra part of size m (the number
of extra marked points): let J D J 0tf1g, let I1 D ft1; : : : ; tmg, let I D

F
J Ij and

let � be the complete k–partite graph determined by this partition of I into k parts.

As in (26), the extra data needed to determine a symplectic wild character variety for
the irregular curve † consists of a conjugacy class CCC of the group Gm �

Q
I 0 GL.Vi /,

ie a conjugacy class Ci �G D GL.U / for each i 2 I1 and a class MCi � GL.Vi / for
each i 2 I 0 .

Further, we will say the type 3C 1m irregular curve † is marked if we have chosen
conjugacy classes CCC (as above) plus a marking of each class Ci ; MCi , such that the
markings of each Ci are special (for i 2 I1 ); see Definition 9.2. The extra choice
of marking is enough to determine a supernova graph with core � , as follows. Let
C0i � GL.U / denote the inverse conjugacy class of Ci (for i 2 I1 ). By inverting
each � , the marking of Ci determines a marking of C0i (for i 2 I1 ). As in Lemma 9.3,
each choice of marking determines a leg: let yLi denote the leg determined by the
marking of the inverse class C0i (i 2 I1 ) and let Li denote the leg of MCi (i 2 I 0 ). As
usual, note that each node of each leg comes with a parameter in C� and a dimension
in Z�0 .

Now, for each i 2 I1 let Li denote the leg obtained by removing the left-most edge
of yLi (ie we remove the node with dimension dim.U /). Now we have a leg Li for
any i 2 I D I 0t I1 , and we define a supernova graph y� by gluing the left-most node
of Li on to the node i of � for all i 2 I . Let yI denote the set of nodes of y� , and so
from the parameters and the dimensions on the nodes of the legs we obtain q 2 .C�/yI

and d 2ZyI (with components di � 0), and thus may consider the multiplicative quiver
variety M.y�; q; d/, where y� is coloured so its core � is monochromatic.

Theorem 9.5 The multiplicative quiver variety Mst.y�; q; d/ is isomorphic to the type
3C 1m wild character variety Mst

B.†;CCC/ as an algebraic symplectic manifold.

Proof For i 2 I1 , let Vi D Cdi and let MCi � GL.Vi / denote the conjugacy class
determined by the leg Li (here di is the dimension of the left-most node of Li , which
equals rank.M � IdU / for any M 2 Ci ). Thus, we now have a class MCi � GL.Vi / for
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all i 2 I . Let MCCC�H D
Q
I GL.Vi / denote this collection of conjugacy classes. Let

V D
L
I Vi . Thus V D U ˚W1 , where W1 D

L
I1
Vi , but we will always view V

as graded by I . We will break the proof into several steps.

(1) First, via Proposition 9.1 and Theorem 9.4, the multiplicative quiver variety
Mst.y�; q; d/ may be identified with Mst== MCCCH , where M D Rep�.�; V / with V DL
I Vi (this is really what is shown in the proof of Theorem 9.4).

(2) The main isomorphism, Theorem 7.8, then shows that MD Rep�.�; V / is iso-
morphic as a (smooth, affine) quasi-Hamiltonian H –space to

(31) MŠ

 i2I1
 ��MO
U

B.Vi ; U /

!
L
U

A.Q/:

In particular, the stable points (for the action of H ) are identified. Here we have
identified

A.Q/ŠA2.U /L
W1

A.W1/L
W2

A.W2/L
W3

� � � L
Wk0

A.Wk0/

as quasi-Hamiltonian G�H 0 spaces, as in Proposition 9.1 (but here Q takes values in
the Cartan subalgebra of gl.U /), where J 0 is identified with f1; : : : ; k0g,

Wj D
M
Ij

Vi ; G D GL.U / and H 0 D
Y
I 0

GL.Vi /;

so that H DH 0 �H1 , where H1 D
Q
I1

GL.Vi /.

(3) On the other hand, the wild character variety Mst
B.†;CCC/ is constructed in [25] as

the quasi-Hamiltonian reduction of

(32)
�
Cm~

G
� � �~

G
C2~

G
C1L

G
A.Q/

�st

by H 0 at the conjugacy class MC0 . More precisely, the general construction of [25] (see
(25) above) identifies Mst

B.†;CCC/ with the symplectic leaf of�
D.G/~mL

G
A.Q/

�st
=.Gm �H 0/

corresponding to CCC � Gm �H 0 , since at a tame point (with zero irregular type Qi )
the fission space A.Qi / equals the double D.G/ŠG �G . Since the action of Gm

is free (and D.G/=G ŠG ) we may identify the stable points .D.G/~mLA.Q//st

(for the action of Gm �H 0 ) with the stable points of .GmL A.Q//st (for the H 0

action). In turn, the space (32) is defined to be the subset of .GmLA.Q//st obtained
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by restricting to Cm ~ � � � ~ C1 � G
m . It is an open subset of the affine variety

Cm~ � � �~C1LA.Q/. This now looks quite close to (31).

(4) Let �1W M!H1 be the H1 component of the moment map on (31), and let
MCCC1 D

Q
I1
MCi �H1 . Consider the space

��11 .
MCCC1/

st
WD ��11 .

MCCC1/\Mst;

where Mst denotes the stable points for the full H action (ie the irreducible invertible
representations of the graph � ).

To complete the proof, we claim:

Proposition 9.6 There is a well-defined map from ��11 .
MCCC1/

st=H1 to the space (32)
which is an isomorphism of quasi-Hamiltonian H 0–spaces.

Proof Via the isomorphism (31), a graph representation � 2 Rep�.�; V / determines
elements

.ai ; bi / 2B.Vi ; U /

for any i 2 I1 , so ai W U ! Vi and bi W Vi ! U . If � is stable then ai is surjective
and bi is injective: via Lemma 5.8, � is irreducible as a graph representation, and ai
encodes all the maps to Vi , and bi encodes all the maps out of Vi , and so if ai was not
surjective then we could replace Vi by the image of ai to obtain a subrepresentation,
and similarly if bi was not injective then we could replace V by the kernel of bi .
Now the GL.Vi / component of �1 is .1C aibi /�1 , and so fixing this to be in MCi is
equivalent to fixing 1C biai to be in Ci � GL.U /, by Lemma 9.3 (this is why we
attached yLi to the inverse of Ci in the preparation for the theorem). Thus, there is a
map from

��11 .
MCCC1/

st
�

 i2I1
 ��MO
U

B.Vi ; U /

!
L
U

A.Q/ to Cm~ � � �~C2~C1L
U

A.Q/

taking .ai ; bi / 2 B.Vi ; U / to 1C biai 2 Ci � G D GL.U /. Due to the injectiv-
ity/surjectivity conditions, this map has fibres exactly the H1–orbits. It is clearly
H 0–equivariant, and the reader may readily verify, by comparing exactly what the
stability conditions say, that it is an isomorphism on to the stable subset (32). In
more detail, the stable points of (32) may be described as follows. A point of (32)
is determined by matrices Ti 2 Ci and a representation �0 2 Rep.� 0; U / of � 0 on
U D

L
I 0 Vi . The representation �0 determines elements v˙ 2 U˙ � GL.U / (see

(10)), and these data should satisfy the condition

(33) Tm � � �T1v�vC D wCgw� 2 GL.U /
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for some w˙ 2U˙; g 2H 0 . This point of Cm~ � � �~C1LA.Q/ is stable if and only
if there is no proper nontrivial subrepresentation W �U of the graph representation �0

such that Ti .W /�W for all i .

This completes the proof of the theorem, since both sides are now the reduction by H 0

of the same space.

In the next section this will be used to deduce the desired Weyl group isomorphisms,
since exactly the same class of multiplicative quiver varieties arises from both the
type 3 and the type 3C 1m wild character varieties. First we will give a corollary,
summarise the dictionary and give examples.

Corollary 9.7 If � is a simply laced supernova graph, with monochromatic core, then
the multiplicative quiver variety Mst.�; q; d/ is a hyperkähler manifold.

Proof From Theorem 9.4, Mst.�; q; d/ is a type 3 wild character variety Mst
B.†;CCC/.

Then the irregular Riemann–Hilbert correspondence identifies this wild character variety
with one of the spaces of stable meromorphic connections shown to be hyperkähler
in [9]. As mentioned in Remark 6.4, here we have set the Betti weights equal to zero.

Remark 9.8 We conjecture that the other k (nongeneric) readings of � yield isometric
hyperkähler manifolds (this should follow from an extension of the results of [56] on
the Nahm transform).

9.3 Dictionary

In summary, the dictionary between type 3C1m wild character varieties and supernova
multiplicative quiver varieties is as follows (see [10; 24] for the additive version). Sup-
pose y� is a simply laced supernova graph with nodes yI , and core � with core nodes I ,
and we fix data d 2ZyI ; q 2 .C�/yI . Then (if y� is coloured so as to have monochromatic
core) we may consider the multiplicative quiver variety Mst.y�; q; d/, and this may be
read in terms of wild character varieties in kC 1 different ways (if � is a complete
k–partite graph, corresponding to a partition I D I1 t � � � t Ik ). To describe these
readings, first recall that we can attach the following data to y�; q; d : Let Li be the leg
of y� attached to the node i 2 I . This leg (and the data on it) determines a conjugacy
class MCi � GL.Vi / as in Lemma 9.3, where Vi D Cdi . For any i 2 I , let Ui be the
direct sum of the vector spaces at all the nodes of the other parts of I , not containing i .
If i 2 Ij � I then

Ui D
M
l2InIj

Vl :
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Reading rank r m H.Q/� GL.Cr / MCCC�H.Q/ m classes #A #Tl

generic
P
I di 0

Q
I GL.Vi / MCi

ˇ̌
i2I

� k #Il
Ij � I

P
InIj

di #Ij
Q
InIj

GL.Vi / MCi
ˇ̌
i2InIj

Ci
ˇ̌
i2Ij

k� 1 #Il

Table 1: Data for wild character varieties from kC 1 readings

Remark 9.9 The injectivity/surjectivity conditions (as at the start of the proof of
Proposition 9.6) show that Mst.y�; q; d/ will be empty unless dim.Vi /� dim.Ui / for
all i 2 I .

In turn, the leg Li may be lengthened to construct a new leg yLi by adding a single node
(connected by a single edge to the left end of Li ) with vector space Ui and parameter
1 2C� . The leg yLi determines a conjugacy class C0i �GL.Ui / (as in Lemma 9.3) for
any i 2 I , and we define Ci �GL.Ui / to be the inverse of the class C0i (if g 2 Ci then
g�1 2 C0i ). In general we will say that the class MCi � GL.Vi / is the child of the class
Ci � GL.Ui / (see the appendix for the exact relation between the Jordan forms).

Then the basic data for the corresponding wild character varieties is as in Table 1
(there is a reading of the graph for any of the k parts Ij � I , plus the generic reading,
choosing no such part). The rank is the rank of the bundles on †, m is the number of
tame marked points in the finite plane, H DH.Q/ is the centraliser of the irregular
type Q , #A denotes the number of eigenvalues of the leading term A of Q , and
#Tl denotes the number of eigenvalues of the second term T of Q that are in the l th

eigenspace of A.

9.4 Examples

For example, suppose that U is a finite-dimensional complex vector space and that
C1; : : : ;Cm; MC � GL.U / are mC 1 arbitrary conjugacy classes. Consider the tame
character variety parameterising irreducible representations of �1.C n m points/ in
GL.U / with these fixed local conjugacy classes.

Let di D rank.Mi �1/ for any Mi 2 Ci , and let Vi DCdi , V D
Lm
1 Vi . Consider the

groups H D
Qm
1 GL.Vi /�G WDGL.V / and define new conjugacy classes as follows:

let C�G be the parent of the conjugacy class MC�GL.U / and let MCi �GL.Vi / denote
the child of Ci (see the appendix), and let MCCC D . MCi /m1 � H . Recall that the fission
space GAH DA.V / enables us to break the group G to its subgroup H .

Corollary 9.10 There is an isomorphism

.C1~ � � �~Cm/
st==
MC

GL.U /Š .CL
G

GAH /
st==
MCCC

H
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from the tame character variety parameterising irreducible representations of the group
�1.Cnm points/ in GL.U / to a type 2C1 wild character variety for the group GL.V /.

Proof These are the two nongeneric readings of a star-shaped graph.7 Since the core
is bipartite (k D 2), in each case A only has one eigenvalue, which we can take to be
zero. Further, one of the parts only has one node, so in one of the readings T has only
one eigenvalue, which again we may take to be zero, so in that reading QD 0, ie it is
a tame case.

Up to some relabellings, this is Theorem 1.5 from the introduction.

Figure 10: Star-shaped supernova graph, with core �.4; 1/

Remark 9.11 The additive analogue of this example is easier, eg since the analogue
of the fission operation C 7! CL GAH is just restriction to H : a coadjoint orbit
O� g� is naturally a Hamiltonian H –space for any subgroup H �G , with moment
map the dual of the derivative of the inclusion �W H ,!G (see the “splaying” operation
in [10]). This motivates the operation . � /L GAH as the multiplicative analogue of
this restriction operation (see [20]). The additive analogue takes the form

.O1 � � � � �Om/
st==
MO

GL.U /Š .O/st==
MOOO

H

and essentially goes back to [1; 35]. (See also [17; 10; 24] for the quiver approach;
this precise statement, with stability conditions and possibly nonsemisimple orbits, is a
special case of the results in [24, Section 9].)

7The third reading of a star-shaped graph is as a type 3 wild character for the group GL.U ˚V / and
is of the form

B.Q/== MC� MCCC GL.U /�H;

where Q has coefficients A; T such that A has two eigenvalues (and has centraliser GL.U /�GL.V /)
and T breaks the group further to GL.U /�H .
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10 Reflection isomorphisms and global Weyl group actions

In this section we will deduce the desired reflection isomorphisms (to prove Theorem 1.4
stated in the introduction). This shows that many not-necessarily-affine Kac–Moody
Weyl groups play a role in gauge theory (ie the theory of connections on bundles) on
global Riemann surfaces. This contrasts with the usual understanding of the special
case of affine Kac–Moody Weyl groups (see eg [51, Section 5.1]) in relation to loop
groups (gauge theory on a circle). A weaker (additive) version of these results appears
in [24]. Also, in the case of a star-shaped graph, similar (multiplicative) results appear
in increasing generality in [15] (for affine D4 ), [30; 57].8 For more general graphs
the present approach will be less direct, although it is expected to be related to the
Fourier–Laplace transform.

Recall (Section 9) that, given a marked irregular curve † (of type 3C 1m for some
m� 0), we have defined a supernova graph y� and shown that the wild character variety
of † is isomorphic to a multiplicative quiver variety for the graph y� . Here we will
recall how to attach a Kac–Moody root system and Weyl group to a graph, and thus to
a marked irregular curve. This is the global Weyl group and root system of †. In brief,
at each simple pole (in each reading) there is a local Weyl group (a symmetric group
controlling the order of the eigenvalues of the residue at the pole) and the global picture
fits all these symmetric groups together to give the global Weyl group. In turn, we will
show how the global Weyl group acts to give isomorphisms between multiplicative
quiver varieties, corresponding to isomorphisms between wild character varieties (often
for different irregular curves).

10.1 The Kac–Moody root system and Weyl group of a graph

Let � be a graph with no edge loops. This determines a (symmetric) Kac–Moody
algebra (see [39]), and its root system and Weyl group may be defined as follows. Let
I be the set of nodes of � and let nD #I be the number of nodes. Define the n�n
(symmetric) Cartan matrix to be

C D 2Id�A;

8The approach of [15] (using the complex Fourier–Laplace transform of [6]) is equivalent to the
approach of [30] (using the middle convolution of [40]); indeed, it is easy to see that, generically, the
scalar shift used in [15], which already appeared in [6, Section 4.4], is middle convolution (see [40,
Section 2.10]). In fact, it is straightforward to deduce explicit formulae for the complex version of Katz’s
middle convolution (equivalent to [32]) from (prior) formulae in [6; 47] for the Fourier–Laplace transform
on Betti data, a special case of which was used in [15] (see also [14]).
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where A is the adjacency matrix of � ; the i; j entry of A is the number of edges
connecting the nodes i and j . The root lattice ZI D

L
i2I Z"i inherits a bilinear

form defined by

(34) ."i ; "j /D Cij :

The simple reflections si , acting on the root lattice, are defined by the formula

si .ˇ/ WD ˇ� .ˇ; "i /"i

for any i 2 I . They satisfy the relations

s2i D 1; sisj D sj si if Aij D 0; sisj si D sj sisj if Aij D 1:

By definition, the Weyl group is the group generated by these simple reflections. There
are also dual reflections ri acting on the vector space CI by the formula

ri .�/D ���i˛i ;

where �D
P
i2I �i"i 2CI with �i 2C and ˛i WD

P
j ."i ; "j /"j 2CI . By construction,

one has that si .ˇ/ � ri .�/ D ˇ � �, where the dot denotes the pairing determined by
"i � "j D ıij . Exponentiating component-wise yields the multiplicative dual reflections
(still denoted ri ) acting on q 2 .C�/I , given in components by

ri .q/j D q
�."i ;"j /

i qj :

These satisfy qˇ D ri .q/si .ˇ/ , where qˇ WD
Q
I q

ˇi

i .

The corresponding Kac–Moody root system is a subset of the root lattice ZI . It may
be defined as the union of the set of real roots and the set of imaginary roots, where:

(1) The simple roots are "i for i 2 I .

(2) The set of real roots is the Weyl group orbit of the set of simple roots.

(3) Define the fundamental region to be the set of nonzero ˇ 2NI whose support
is a connected subgraph of � and such that ."i ; ˇ/� 0 for all i 2 I . The set of
imaginary roots is the union of the Weyl group orbit of the fundamental region
and the orbit of minus the fundamental region.

This defines the root system (see [39, Chapter 5] for the fact that this description does
indeed give the roots of the corresponding Kac–Moody algebra). By definition, a root
is positive if all its coefficients are � 0. For example, if � is an ADE Dynkin diagram
this gives the root system of the corresponding finite-dimensional simple Lie algebra,
or if � is an extended/affine ADE Dynkin diagram then this is the root system of the
corresponding affine Kac–Moody Lie algebra (closely related to the corresponding
loop algebra), but of course there are many examples beyond these cases.
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10.2 Reflection isomorphisms

Our aim is to establish the following.

Theorem 10.1 Suppose y� is a simply laced supernova graph with nodes yI , coloured
so that its core � is monochromatic, q; d are arbitrary, and si ; ri are the corresponding
simple reflections, generating the Kac–Moody Weyl group of y� . Suppose the support
of d intersects two distinct parts of the core � (so we ignore the trivial cases with just
one part). Then if qi ¤ 1 the multiplicative quiver varieties

(35) Mst.y�; q; d/ and Mst.y�; ri .q/; si .d//

are isomorphic smooth symplectic algebraic varieties, for any node i 2 yI .

Proof First suppose i is not in the core (ie i is in the interior of a leg). Then the
desired reflection isomorphism arises simply by changing the choice of the marking, in
the passage from wild character varieties in Theorem 9.4: both of the multiplicative
quiver varieties (35) are isomorphic to the same type 3 wild character variety. The
details are now very similar to the additive case [24, Corollary 9.12] so will be omitted
here: in brief we swap the order of the two � ’s appearing in the determination (29)
of qi from the marking of the corresponding leg.

Now suppose i is a node of the core, say i 2 Ij � I . Then, via Theorem 9.5, we
may read Mst.�; q; d/ using the part Ij � I , ie there is an isomorphic wild character
variety Mst

B.†;CCC/ for a marked irregular curve † of type 3C1m with mD #Ij , where
the conjugacy classes

CCCD .Ci ji2Ij ;
MCi ji2InIj /

for † are determined by the legs of y� , as in Section 9.3. Then we can essentially
proceed as above, changing the marking of the class Ci corresponding to the chosen
node i . This is slightly complicated since the marking of Ci must be special, but
we can easily circumvent this, as follows. Note that once we have passed to the wild
character variety we have the possibility to perform the following scalar shifts.

Lemma 10.2 Suppose we choose i 2C� for all i 2 Ij , and set  D
Q
Ij
i . Define

new conjugacy classes

CCC0 D ..iCi /ji2Ij ; .
MCi /ji2InIj /

by scaling the previous classes. Then the wild character variety Mst
B.†;CCC

0/ is isomor-
phic to Mst

B.†;CCC/.
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Proof Straightforward (see (33) and recall that g is the moment map for H 0 DQ
InIj

GL.Vi /, and we wish to impose gi 2 MCi for i 2 I n Ij , and Ti 2 Ci ).

Now, given a fixed node i 2 Ij � I , we may change the marking of Ci by swapping
the order of the two � ’s appearing in the determination (29) of qi , as before. This new
marking of Ci will in general no longer be special. But there is a unique scalar shift to
make it special (with l D 1 for all l 2 Ij nfig). Using this new marking, and this scalar
shift, we can realise Mst

B.†;CCC
0/ as a multiplicative quiver variety Mst.�; q0; d 0/ for the

same graph y� but with new data q0; d 0 . We claim that q0D ri .q/ and d 0D si .d/, and
so the theorem follows. The claim may be verified as follows (cf [24, Corollary 9.18]).
We will use subscripts lk to label the kth node down the l th leg (for l 2 I; kD 1; 2; : : :).
Suppose the marking of MCl is .�l1; �l2; : : :/ for each l 2 I . The special marking of Ci
corresponding to the marking of MCi is thus

.1; ��1i1 ; �
�1
i2 ; : : :/:

Changing this marking by swapping the first two entries yields

.��1i1 ; 1; �
�1
i2 ; : : :/:

This is not special, so we set  D i D �i1 (and l D 1 for all other l 2 Ij ) and perform
the corresponding scalar shift to yield the special marking

.1; ; ��1i2 ; : : :/

of C0i D Ci . The child MC0i of C0i thus has marking

.�1; �i2=; : : :/:

Also for l 2 I nIj the class MC0
l
D  MCl has marking .�l1; �l2; : : :/. Now we can read

off how the parameters q have changed:

qi D qi1 D �i1 7! �1 D 1=qi ;

qi2 D �i2=�i1 7! .�i2=/=
�1
D �i2 D qiqi2;

ql D ql1 D �l1y 7! �l1 D qiql ;

for all l 2 I n Ij , and all the other components of q are unchanged. These are the
components of ri .q/. For the dimension vector d , di1 is the only component which is
changed, and the new value d 0i1 may be computed as follows. Suppose Ti 2 Ci . Then

di1 D rank.Ti � 1/D dim.U /� dim Ker.Ti � 1/;

di2 D dim.U /� dim Ker.Ti � 1/� dim Ker.Ti � ��1i1 /;

d 0i1 D rank.Ti � 1/D rank.Ti � �1/D dim.U /� dim Ker.Ti � ��1i1 /;

Geometry & Topology, Volume 19 (2015)



3528 Philip Boalch

so that d 0i1 D dim.U /C di2 � di1 , which is the corresponding component of si .d/,
given that dim.U /D

P
l2InIj

dl1 .

Remark 10.3 (Affinised global Weyl groups; cf [10, Remark page 27]) If we work
with meromorphic connections (with parabolic/parahoric structures), rather than mon-
odromy/Stokes data as we do here, then in general a larger affinised Weyl group W ÌL
appears, where LŠ f� 2 ZyI j � � d D 0g, since in essence one then has a choice of
logarithm of each element qi .

11 Graphical Deligne–Simpson problems

We can now describe some basic linear algebra problems in terms of graphs, and present
a conjectural solution. Choose an ordered complete k–partite graph � with nodes I ,
for some integer k . (As in Section 3.3, the graph � determines and is determined by
a partition �W I � J of a finite set I into parts Ij D ��1.j /, where j 2 J .) Let
V D

L
i2I Vi be a finite-dimensional I –graded vector space, and choose a conjugacy

class MCi � GL.Vi / for each i 2 I . Using the chosen ordering, define the following
subgroups of GL.V /:

UC D

�
1C

X
i<j

uij

ˇ̌̌
uij W Vj ! Vi

�
; U� D

�
1C

X
i>j

uij

ˇ̌̌
uij W Vj ! Vi

�
;

and H D
Q
i2I GL.Vi /�GL.V /, the block-diagonal subgroup. Thus we may consider

the dense open subsets
U�HUC and UCHU�

of GL.V /, which we will refer to as the big cell and the opposite big cell, respectively
(even though they are not cells). Note that the choice of the classes MCi is equivalent to
the choice of a conjugacy class MCD . MCi /�H .

Recall (from Section 3.1) that a representation of � on V is a choice of linear maps
vij W Vj ! Vi for all i; j 2 I such that �.i/¤ �.j /. Given such a representation, we
can use the ordering of � to define the following unipotent elements of GL.V /:

vC D 1C
X
i<j

vij ; v� D 1C
X
i>j

vij :

The basic question then is: does there exist an irreducible representation fvij g of �
on V such that v�vC is in the opposite big cell of GL.V / with H –component in the
conjugacy class MC? More explicitly: is there an irreducible representation fvij g of �
on V , and elements wC 2 UC; w� 2 U� and g 2 MC such that

v�vC D wCgw�‹
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We will call this the graphical Deligne–Simpson problem for � . (It is an explicit form
of the irregular Deligne–Simpson problem iDS of [25, Section 9.4] for the case of type
3 irregular curves; as explained there, it encodes the question of when some of the
hyperkähler manifolds of [9] are nonempty. The complete bipartite case was discussed
in [17]. Also, the additive analogue was established in [10; 24]; it is concerned with the
spaces M� defined in [12], and some of their generalisations. Beware that Kostov [43]
has studied a different, inequivalent additive irregular Deligne–Simpson problem.)
Given what we have already done, the following propositions are now straightforward.

Proposition 11.1 The solubility of the irregular Deligne–Simpson problem for � is
independent of the ordering of the graph � .

Proposition 11.2 Suppose C1; : : : ;Cm � GL.V / are conjugacy classes. Consider the
following question: is there a representation fvij g of the graph � on V , and elements
Ti 2 Ci ; w˙ 2 U˙; g 2 MC such that .1/ T1 � � �Tmv�vC D wCgw� , and .2/ there are
no nontrivial proper subrepresentations U �V of � with Ti .U /�U for i D 1; : : : ; m.
Then this question is equivalent to a graphical Deligne–Simpson problem for a complete
.kC 1/–partite graph, obtained by adding a part of size m to the nodes of � .

Taking � to be the graph with one node and no edges then yields:

Proposition 11.3 The graphical Deligne–Simpson problem for star-shaped graphs is
equivalent to the usual (tame) Deligne–Simpson problem.

Thus we have a natural extension, involving a larger class of graphs. In 2004, Crawley-
Boevey [27] made a conjecture, involving the Kac–Moody root system of a star-shaped
graph, under which the tame Deligne–Simpson problem admits a solution. (A proof of
this conjecture was announced in 2006 [28].) See also for example [54; 42; 30; 55].
This naturally leads us to conjecture the analogous result in the irregular case, now
involving supernova graphs, as follows.

Choose a marking of each conjugacy class MCi �GL.Vi / for all i 2I (see Definition 9.2).
Then we get a supernova graph y� (with nodes yI ) by gluing on legs, and parameters
q; d , as in Section 9.1. The graph y� determines a Kac–Moody root system � ZyI , as
in Section 10.1, and in particular the notion of positive roots.

Conjecture 11.4 The graphical Deligne–Simpson problem for the graph � and con-
jugacy classes MC admits a solution if and only if d is a positive root, qd D 1, and,
whenever it is possible to write d D d1 C d2 C � � � as a nontrivial sum of positive
roots such that qd1 D qd2 D � � � D 1, then �.d/ > �.d1/C �.d2/C � � � , where
�.d/D 2� .d; d/.
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Remark 11.5 Similarly, the analogous result should hold for all fission graphs �.Q/
(see Section 3.3), not just the simply laced ones appearing here, ie the nonemptiness of
Rep�.�.Q/; V /st== MC H ŠMst

B.†;
MC/ is controlled by the root system of the supernova

graph y�.Q/ determined by a marking of each class MCi in MC (where †D .P1;1;Q/).

12 Fission algebras

We will define some noncommutative algebras Fq whose simple modules correspond
to stable points of the multiplicative quiver varieties, generalising the multiplicative
preprojective algebras of [30]. These algebras will be useful in the further study of the
multiplicative quiver varieties, and are related to some generalisations of the double
affine Hecke algebras.

Let � be a coloured quiver with nodes I and colours C . Choose some parameters
q 2 .C�/I and a cyclic ordering of the colours for each node. Construct a quiver z� as
follows. Take the double x� , and for each colour c 2 C do the following:

(1) For all .i; j / 2 Ic � Ic with i ¤ j , add an edge wcij from node j to i ,

(2) for all i 2 Ic add a loop ci from i to i . (Here we suppose each coloured graph
�c is connected.)

Let z� be the resulting quiver, and consider its path algebra P.z�/ D Cz� .9 For any
c 2 C , consider the elements

wcC D IdIc
C

X
i<j2Ic

wcij ; wc� D IdIc
C

X
i>j2Ic

wcij ; c D
X
i2Ic

ci ;

vcC D IdIc
C

X
i<j2Ic

vcij ; vc� D IdIc
C

X
i>j2Ic

vcij ;

where vcij is the arrow in x�c � x� from j to i (or zero if i; j are in the same part
of Ic ). Then define Fq D Fq.�/ by imposing the relations

vc�vcC D wcCcwc� for each c 2 C; and
Y
fcji2Icg

ci D qiei ;

using the ordering of C at i , for each i 2 I , ie the fission algebra Fq is obtained by
quotienting P.z�/ by the two-sided ideal generated by these relations. This generalises

9It is the algebra having basis the paths in z� ; a path is a concatenation an � � � a2a1 of oriented edges
such that h.ai / D t .aiC1/ . (This includes for each i 2 I the path ei of length 0 based at i .) It is an
associative algebra under path concatenation (setting to zero the product a2a1 if h.a1/¤ t .a2/). The
identity is the element 1D

P
I ei , and any subset J � I determines an idempotent IdJ D

P
J ei .
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easily to the case when each subgraph �c is an arbitrary fission graph, not just the
simply laced case.

Now suppose V is a module for Fq such that V is finite-dimensional as a vector space
over C . Since it is a module for the path algebra of x� , this determines a representation
� 2 Rep.�; V / of the graph � on V . By construction, the representations which arise
in this way are precisely those such that:

(1) For any colour c 2 C the function (as in (12))

fc D
Y
i2Ic

�i W Rep.�c ; V /!C

does not vanish on �j�c
(the restriction of � to the subgraph �c ), so that � is in

the open subset Rep�.�; V / of Rep.�; V /,

(2) �.�/D q , where �W Rep�.�; V /!H is the moment map, as in (13).

Thus, taking the S-equivalence class of � 2 ��1.q/, the Fq –module V determines a
point of the multiplicative quiver variety M.�; q; d/, where d 2 ZI is the dimension
vector of V .

Proposition 12.1 Suppose that � is a coloured quiver with nodes I , and q 2 .C�/I ,
d 2 ZI

�0 . The multiplicative quiver variety M.�; q; d/ has a stable point if and only if
Fq has a simple module with dimension vector d .

Proof By definition, a module is simple if it has no proper nontrivial submodules. On
the other hand, an invertible graph representation is stable if and only if it has no proper
nontrivial subrepresentations. As noted in Remark 5.9, any such subrepresentation
is again invertible, and, considering the moment map condition, corresponds to a
submodule for Fq .

This is analogous to the deformed preprojective algebras [29] (controlling the Nakajima
quiver varieties [48]) and the multiplicative preprojective algebras [30] (controlling the
classical multiplicative quiver varieties). Indeed, if each monochromatic subgraph �c
just has one edge, then the fission algebras are the same as the multiplicative preprojec-
tive algebras.

Remark 12.2 In [33, Appendix A.1], Crawley-Boevey and Shaw explain a close
relationship between the multiplicative preprojective algebras and the “generalised
double affine Hecke algebras” introduced by Etingof, Oblomkov and Rains [33]. Since
the multiplicative preprojective algebras are the fission algebras of classically coloured
quivers, this suggests there are yet more general double affine Hecke algebras, related
to some of the other fission algebras.
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Appendix: Relating orbits

Suppose AW V !W and BW W ! V are linear maps between two finite-dimensional
complex vector spaces V;W such that A is injective, B is surjective, and the elements

TV WD 1CBA 2 End.V /; TW D 1CAB 2 End.W /

are invertible. In this appendix we will recall the exact relation between the Jordan
normal forms of TV and TW . Let C� GL.W / be the conjugacy class containing TW
and let C0 � GL.V / be the conjugacy class of TV .

Recall that giving a Jordan form of an invertible matrix is equivalent to giving a partition
(ie a Young diagram) $s for each nonzero complex number s , so that $s specifies the
sizes of the Jordan blocks corresponding to the eigenvalue s 2C� . For example, the
partition $1 D .2; 2; 1/ specifies the 5� 5 unipotent matrix with three Jordan blocks
of size 2; 2 and 1 respectively (and it corresponds to the Young diagram with three
rows of lengths 2; 2; 1).

Proposition A.1 Let f$s j s 2C�g be the partitions giving the Jordan form of C and
let f$ 0s j s 2 C�g be the partitions giving the Jordan form of C0 . Then $ 0s D$s if
s ¤ 1, and $ 01 is obtained from $1 by deleting the first (ie longest) column of $1 .
(In other words, each part of $1 is decreased by one to obtain $ 01 .)

Proof This follows immediately from the well-known relation between the adjoint
orbit OD C�1� End.W / of AB and the orbit O0 D C0�1� End.V / of BA, which
is reviewed for example in [24, Appendix D].

Let MC� GL.V / be the inverse of the class C0 . In the body of the paper we will refer
to MC as the child of C (and to C as the parent of MC), if the vector spaces V;W are clear
from the context.
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