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Some differentials on Khovanov–Rozansky homology

JACOB RASMUSSEN

We study the relationship between the HOMFLY and sl.N / knot homologies intro-
duced by Khovanov and Rozansky. For each N > 0 , we show there is a spectral se-
quence which starts at the HOMFLY homology and converges to the sl.N / homology.
As an application, we determine the KR–homology of knots with 9 crossings or fewer.

57M27

1 Introduction

In [12; 13], Khovanov and Rozansky introduced a new class of homological knot
invariants which generalize the original construction of the Khovanov homology [9].
In this paper, we investigate these KR–homologies and the relations between them. Our
motivation was to give some substance to the conjectures made in Dunfield, Gukov
and Rasmussen [3] about the behavior of these theories and their relation to the knot
Floer homology. Although we are unable to say anything about the latter problem, we
hope that we can at least shed some light on the structure of KR–homology.

In order to state our results, we briefly recall the form of these homologies, restricting
for the moment to the case of a knot K � S3 . To such K , the theory of Khovanov and
Rozansky [13] assigns a triply graded homology group H i;j ;k.K/ whose graded Euler
characteristic is the HOMFLY polynomial. To be precise, we denote by PK .a; q/ the
HOMFLY polynomial of K normalized to satisfy the skein relation

aP ."/� a�1P .!/D .q� q�1/P .X/;

and so that P of the unknot is equal to 1. Then, with an appropriate choice of gradings,X
i;j ;k

.�1/.k�j/=2aj qi dim H i;j ;k.K/D PK .a; q/:

The definition of H is closely related to that of another family of homology theories
H

I;J
N

.K/ (N > 0) introduced by Khovanov and Rozansky [12]. Their graded Euler
characteristics give the sl.N / polynomials:X

I;J

.�1/J qI dim H
I;J
N

.K/D PK .q
N ; q/:
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3032 Jacob Rasmussen

The large-N behavior of these theories was studied first in Gukov, Schwartz, and
Vafa [5], and then later in Dunfield, Gukov and Rasmussen [3], where it was conjectured
that the limit of HN .K/ as N !1 should be a triply graded homology theory H.K/
with Euler characteristic PK .a; q/. In fact, the limiting theory is a regraded version
of H .K/.

Theorem 1 For all sufficiently large N ,

H
I;J
N

.K/Š
M

iCNjDI
.k�j/=2DJ

H i;j ;k.K/:

We remark that H .K/ is finite-dimensional, so when N is large there will be at most
one nontrivial summand on the right-hand side. The exact value of N needed for the
theorem to hold depends on K , but it need not be especially big. There are many knots
for which N > 1 is enough.

Theorem 1 is a special case of the following more general relation between H and HN .

Theorem 2 For each N >0, there is a spectral sequence Ek.N / which starts at H .K/

and converges to HN .K/. The higher terms in this sequence are invariants of K .

In some sense, these sequences are all generalizations of Lee’s original spectral sequence
[16] for the Khovanov homology. As described in Dunfield, Gukov and Rasmussen [3],
the idea that they should exist arose from Gornik’s work on the sl.N / homology [4].
The exact method by which they are constructed is rather different from that envisioned
in [3], but we expect that their content is the same.

Strictly speaking, the statement of the theorem is weaker than the conjecture made in [3],
which says that HN .K/ should be the homology of a differential dN W H.K/!H.K/.
The first differential in the sequence Ek.N / provides us with a map d W H .K/!H .K/

whose behavior with respect to the triple grading on H matches that predicted for dN .
Thus, if we knew that the spectral sequence converged after the first differential, this
part of the conjecture would hold. In all the examples we have considered, Ek.N /

does indeed converge after the first differential, but we see no a priori reason why this
should always be the case.

More generally, [3] conjectured that there should be differentials dN W H.K/!H.K/
not just for N > 0, but for all N 2 Z. Furthermore, dN and d�N should be in-
terchanged by an involution �W H.K/! H.K/ which generalizes the well-known
symmetry of the HOMFLY polynomial: PK .a; q/ D PK .a; q

�1/. So far, we are
unable to explain either this symmetry or the differentials dN .N � 0/ in terms of H .
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However, there is one surprising exception. The symmetry � should exchange d1 and
d�1 , so the conjecture implies that

H.H.K/; d�1/ŠH�.H.K/; d1/ŠH 1.K/:

The latter group is always isomorphic to Q, so we expect that H.H.K/; d�1/ŠQ as
well. In fact, we have the following result:

Theorem 3 There is a spectral sequence Ek.�1/ that starts at H .K/ and converges
to Q.

The grading behavior of the first differential d W H .K/!H .K/ matches the expected
behavior of d�1 , so again, if the sequence converged after this differential, we would
be in the situation of the conjecture. The construction of the sequence Ek.�1/, while
simple, is unlike anything familiar from Khovanov homology. It certainly behaves as if
it should be dual to Ek.1/ under the symmetry � , but it is not clear how this duality
might be realized.

Although the KR–homologies are entirely combinatorial in nature, they have been
surprisingly difficult to compute. As an application of the theorems above, we determine
the KR–homology of some simple knots. For example, combining Theorem 1 with the
main result of Rasmussen [21] gives:

Corollary 1 If K is a two-bridge knot, then H i;j ;k.K/D 0 unless iCjCkD �.K/.

This condition is similar to the usual notion of thinness in Khovanov homology; see
Bar-Natan [1] and Khovanov [10]. We call knots which satisfy it KR–thin. The KR–
homology of such a knot is completely determined by its HOMFLY polynomial and
signature. Many other small knots are KR–thin, and Theorems 2 and 3 provide strong
constraints on the homology of those which are not. Using them, it is not difficult to
determine the KR–homology of all knots with 9 crossings or fewer.

The rest of the paper is organized as follows. In the first three sections we review (and
in some cases, sharpen) various notions introduced by Khovanov and Rozansky, starting
with the definitions of the different KR–homologies in Section 2. Section 3 contains
material related to the theory of matrix factorizations, while Section 4 describes the
relation between KR–homology and the Murakami–Ohtsuki–Yamada state model. In
Sections 5 and 6 we construct the spectral sequences of Theorems 2 and 3, respectively.
Finally, in Section 7, we explain how these sequences can be applied to the problem of
computing the KR–homology.
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In writing, we have aimed to give a reasonably self-contained treatment of the KR–
homology. In particular, we do not assume that the reader is familiar with Khovanov and
Rozansky [12; 13], and much of the first three sections is devoted to a review of those
papers. The reasons for this are both technical and expository. On the technical side, the
proof of Theorem 2 rests on results which are very similar, but unfortunately not quite
identical, to those in [12; 13]. In order to give a complete treatment of these facts, it
seemed best to begin at the beginning. From the expository point of view, we hope that
readers who are unfamiliar with KR–homology will find it convenient to have the defi-
nitions and normalization conventions for the different theories housed under one roof.

Acknowledgements The author would like to thank Dror Bar-Natan, Matt Hedden,
Mikhail Khovanov, Ciprian Manolescu, Peter Ozsváth, and Zoltán Szabó for many
helpful conversations during the course of this work and the referee for helpful comments
and suggestions. The author was supported by an NSF Postdoctoral Fellowship while
this work was being written.

2 Definitions

Our goal in this section is to give a concise (but still self-contained) definition of
the various Khovanov–Rozansky homologies. The material here is all drawn from
Khovanov and Rozansky [12; 13] and Gornik [4], but we have slightly modified some
of the definitions. In particular, the reader should be aware that our grading conventions
for the HOMFLY homology are different from the ones introduced in [13].

2.1 Matrix factorizations

We begin by describing a class of algebraic objects known as matrix factorizations.
These objects first appeared in the context of algebraic geometry. Their application to
knot theory was one of the seminal advances of [12].

Definition 2.1 Suppose R is a commutative ring and that w 2R. A Z–graded matrix
factorization with potential w consists of a free graded R–module C � .�2Z/ together
with a pair of differentials d˙W C

�!C �˙1 with the property that .dCCd�/
2Dw�IdC .

Remark We have included the phrase Z–graded to distinguish this definition from the
one used in [12] and [13], where matrix factorizations are Z=2–graded. Unless we’re
trying to emphasize the distinction, we’ll generally be careless and call a Z–graded
matrix factorization a matrix factorization.

Geometry & Topology, Volume 19 (2015)



Some differentials on Khovanov–Rozansky homology 3035

The Z–grading implies that the condition .dCC d�/
2 D w � IdC is equivalent to

d2
C D d2

� D 0 and dCd�C d�dC D w � IdC :

Thus a Z–graded matrix factorization gives rise to two different chain complexes C �
˙

with underlying group C � and differentials d˙ . If it happens that wD 0, we get a third
(Z=2–graded) chain complex structure C �tot on C � , with differential dtot D dCC d� .

A morphism between two matrix factorizations C � and D� is a homomorphism of
graded modules f W C �!D� which commutes with both differentials. We denote the
category of matrix factorizations over a fixed ring R by GMF.R/ and the subcategory
of factorizations with fixed potential w by GMFw.R/.

The tensor product construction plays an important role in the definition of the KR–
homology. If C � and D� are two matrix factorizations over R, we endow the graded
group C � ˝R D� with differentials d˙ defined by the requirement that d� is the
differential on the chain complex C �� ˝D�� , and similarly for dC . The reader can
easily verify

Lemma 2.2 If C � and D� are matrix factorizations with potentials w1 and w2 , then
C �˝D� is a matrix factorization with potential w1Cw2 .

The final notion we need is that of a complex of matrix factorizations with potential w .
This is a Z–graded chain complex defined over the category GMFw.R/. (Recall
that the definition of a chain complex makes sense over any additive category.) More
prosaically, such a complex consists of a doubly graded group C �;� equipped with
differentials

d˙W C
i;j
! C i˙1;j and dvW C

i;j
! C i;jC1

such that .dCC d�/
2 D w � IdC , d2

v D 0, and dv commutes with both dC and d� .
Often, it is more convenient to have dv anticommute with d˙ . This can be arranged
by replacing dv with .�1/idv .

It is helpful to think of C �;� as being a sort of generalized double complex. We
envision the group C i;j as sitting over the point .i; j / in the xy–plane, so that the
differentials d˙ carry us one unit to the right and left, respectively, and dv carries us
one unit up. In keeping with this picture, we refer to i and j as the horizontal and
vertical gradings on C �;� , and denote them by grh and grv , respectively. In addition
to these gradings, it is also natural to consider the quantities gr˙ D grv˙ grh , which
are the total gradings on the double complexes C

�;�
˙

.

In the sequel, we will frequently take the tensor product of complexes of matrix
factorizations. Since we know how to take tensor products of chain complexes and of
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Figure 1: Some singular tangles. Left: a labeled singular tangle, including
a mark and a crossing of each type. Right: diagrams of the four elementary
tangles.

matrix factorizations, it’s clear how this is to be done. From Lemma 2.2, we see that the
tensor product of a complex of matrix factorizations with potential w1 with a complex
of matrix factorizations with potential w2 is a complex of matrix factorizations with
potential w1Cw2 .

2.2 Tangle diagrams

KR–homology is most naturally defined in the context of singular oriented planar
tangles. These are oriented planar diagrams which in addition to the usual over- and
undercrossings may also contain some singular points, as illustrated in Figure 1. (In
the notation of [12] and [13], singular points correspond to wide edges.) From now on,
we will just refer to them as tangle diagrams.

More formally, a tangle diagram is an oriented planar graph, all of whose vertices have
valence 1, 2, or 4. The 4–valent vertices are crossings, and come with an additional
decoration indicating whether they are positive, negative, or singular, as represented
by the diagrams DC , D� , and Ds shown in the figure. Bivalent vertices are called
marks, and must have one incoming and one outgoing edge. Univalent vertices are
called free ends. An edge adjacent to such an end is called external; all other edges
are internal. The connected components of a diagram are the connected components
of the underlying graph (not the connected components of the associated tangle). A
component with no free ends is closed; other components are open. We keep track of
the edges in a tangle diagram by labeling them by integers 1; 2; : : : ; n, where n is the
number of edges in the diagram. A free end is identified by the label of its adjacent edge.

We now describe some operations for building new tangle diagrams out of old ones.
First, if D1 and D2 are two tangle diagrams, we can take their disjoint union D1tD2 .
Second, if i is an edge of D , we can form an new diagram D.i/ by inserting a bivalent
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vertex into i . We can also perform the inverse operation, which is known as mark
removal. Finally, suppose that D is a tangle diagram with incoming and outgoing free
ends labeled i and j , and i is adjacent to j in the sense that they can be isotoped
onto each other without hitting the rest of the graph. Then we can form a new diagram
DjiDj by identifying i and j to form a single bivalent vertex. Any tangle diagram
can be built up from the elementary diagrams DC , D� , Ds , and D0 shown in the
figure by the operations of disjoint union, identifying free ends, and mark removal.

2.3 Edge rings

Suppose D is a tangle diagram with edges labeled 1; : : : ; n, and let R0.D/ be the ring
QŒX1; : : : ;Xn�. To an internal vertex v of D , we assign a linear relator �.v/ in R0.D/,
given by the sum of the variables corresponding to outgoing edges of v minus the sum
of the variables corresponding to ingoing edges. In other words, if v is a mark with
incoming edge i and outgoing edge j , �.v/D Xj �Xi , and if v is a crossing with
incoming edges i and j and outgoing edges k and l , �.v/DXk CXl �Xi �Xj .

Definition 2.3 The edge ring R.D/ is the graded ring R0.D/=.�.vj // where j runs
over all internal vertices of D . The grading on R.D/ is denoted by q ; it is determined
by the requirement that q.Xi/D 2 for all i .

The edge ring behaves nicely under the operations of disjoint union, mark removal, and
identifying free ends. The reader can easily verify that

R.D1 tD2/ŠR.D1/˝Q R.D2/;

R.D.i//ŠR.D/;

R.DjiDj /ŠR.D/jXiDXj
:

More generally, suppose that D is obtained from diagrams D1 and D2 by first tak-
ing their disjoint union and then identifying ends .i1; i2; : : : ; im/ of D1 with ends
.j1; j2; : : : ; jm/ of D2 . Applying the relations above, we see that

R.D/ŠR.D1/˝QŒy1;:::;ym�R.D2/;

where yk acts as Xik
on R.D1/ and Xjk

on R.D2/.

Lemma 2.4 Suppose D is a tangle diagram with V internal vertices, E edges, and
C closed components. Then R.D/ is isomorphic to a polynomial ring on E �V CC

variables.
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Proof It is enough to prove the claim when D is connected; the general result then
follows from the tensor product formula for disjoint unions. If D is open and connected,
the statement amounts to saying that the relations �.vj / are linearly independent in
the vector space spanned by the Xi . Suppose

P
j j̨�.vj /D 0. Then for any internal

edge i the coefficient of Xi in the sum vanishes, which means that the values of ˛
on its two ends must be equal. Since D is connected, it follows that all of the j̨ are
equal. If D is open, considering an external edge shows that j̨ � 0, while if D is
closed and connected, there is a unique linear relation between the �.vj /.

We will also use two subrings of the edge ring. These are the external ring Re.D/,
which is the subring generated by the Xj , where j runs over the external edges of D ,
and the reduced ring Rr .D/ which is generated by the differences Uij D Xi �Xj ,
where i and j run over all edges of D .

More explicitly, the external ring can be described as follows. We assign a sign �j
to each free end of D according to the rule that �j D 1 if j is an outgoing end, and
�j D �1 if it is incoming. If C is a connected component of D , we assign to it the
polynomial �.C /D

P
�j Xj , where j runs over the free ends of C . (Note that if C

is an elementary diagram, this reduces to the previous definition.) Then we have:

Lemma 2.5 Re.D/ Š QŒXj �=.�.C //, where j runs over the external edges of D

and C runs over the set of connected components of D .

Proof Consider the vector space V D hXi j i is an edge of D i, along with its sub-
spaces Ve D hXj j j is an exterior edge of D i and Vc D h�.c/ j c is a crossing of D i.
Let I � QŒXj � be the ideal generated by Ve \ Vc . Then Re.D/ Š QŒXj �=I , so it
suffices to show that Ve \Vc is generated by the elements �.C /, where C runs over
the components of D . Now if �D

P
c ˛c�.c/ 2 Ve , the component of � along each

internal edge must vanish, which means that ˛c has the same value at the two ends of
the edge. Thus ˛c is constant on connected components, and the claim is proved.

The edge ring and the reduced ring are related by the following lemma:

Lemma 2.6 R.D/ŠRr .D/Œx�

Proof Let R0r .D/ be the subring of R0.D/ generated by the Xi � Xj . Then the
map which sends x to X1 defines an isomorphism from R0r .D/Œx� to R0.D/. Since
the relations �.vj / are all contained in R0r .D/, this descends to an isomorphism
Rr .D/Œx�ŠR.D/.
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2.4 The KR–complex

The key step in the definition of KR–homology is a process which assigns to a tangle
a triply graded complex of matrix factorizations. More precisely, let D be a tangle
diagram, and fix as an auxiliary parameter a polynomial p.x/ 2QŒx�. Then the KR–
complex Cp.D/ associated to the pair .D;p/ is a complex of matrix factorizations
over the ring R.D/ with potential

wp.D/D
X

j

�j p.Xj /;

where the sum runs over the external edges of D .

Cp.D/ is a graded module over the graded ring R.D/. This grading corresponds to the
power of q in the HOMFLY polynomial, and will be referred to as the q–grading. The
other two gradings on Cp.D/ are the homological gradings grh and grv coming from
its structure as a complex of matrix factorizations. The differentials on Cp.D/ interact
with the q–grading as follows: dv preserves the q–grading, while dC increases it
by 2. The differential d� is usually not homogenous with respect to the q–grading,
but if p.x/D xn , d� raises the q–grading by 2n�2. We summarize our conventions
regarding the various gradings in the following:

Definition 2.7 We say that x 2 C
i;j ;k

p .D/ if x is homogenous with respect to all
three gradings, and .i; j ; k/D .q.x/; 2 grh.x/; 2 grv.x//. With respect to this grading,
dv is homogenous of degree .0; 0; 2/ and dC is homogenous of degree .2; 2; 0/. If
p.x/D xn , then d� is homogenous of degree .2n� 2;�2; 0/.

Remark At first sight, the fact that we have chosen to double the homological grad-
ings may seem rather strange. In fact, there are two good reasons for this choice of
normalization. First, as we will explain in Section 4, the quantity 2 grh is naturally
related to the power of a in the HOMFLY polynomial. Second, with this normalization,
i; j and k all have the same parity when D is an ordinary diagram (ie one with no
singular crossings).

2.5 Elementary tangles

Before defining the KR–complex in general, we describe it for the elementary diagrams
Ds , DC and D� shown in Figure 1. In each case, Cp.D/ will be a complex of matrix
factorizations over the ring

RDQŒXi ;Xj ;Xk ;Xl �=.Xk CXl �Xi �Xj /ŠQŒXi ;Xj ;Xk �
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with potential

Wp.Xi ;Xj ;Xk ;Xl/D p.Xk/Cp.Xl/�p.Xi/�p.Xj /

D p.Xk/Cp.Xi CXj �Xk/�p.Xi/�p.Xj /:

The complex Cp.Ds/ is a free R–module of rank 2. Since the potential is nonvanishing,
the map dC must take one copy of R to the other. It is given by multiplication by
XkXl �XiXj , which is equal (in R) to �.Xk �Xi/.Xk �Xj /. The map d� takes
the first copy of R back to the second, and must be given by multiplication by

pij D�Wp=.Xk �Xi/.Xk �Xj /:

Note that if we substitute either Xk D Xi or Xk D Xj into Wp , the result vanishes,
so the quotient pij really is an element of R. Finally, the two copies of R have the
same vertical grading, so dv is necessarily trivial. More succinctly, we can represent
Cp.Ds/ by the diagram

Cp.Ds/D Rf1;�2; 0g
�.Xk�Xi /.Xk�Xj / // Rf�1; 0; 0g:

pij

oo

Following [12; 13], we use the notation Rfi; j ; kg to indicate a free R–module of
rank one so that the generator 1 2Ri;j ;k has grading .i; j ; k/.

Using the same notation, the complexes Cp.DC/ and Cp.D�/ are given by diagrams

Rf0;�2; 0g
.Xk�Xi / // Rf0; 0; 0g

pi

oo

Cp.DC/D

Rf2;�2;�2g
�.Xk�Xi /.Xk�Xj / //

.Xj�Xk/

OO

Rf0; 0;�2g
pij

oo

1

OO

and

Rf0;�2; 2g
�.Xk�Xi /.Xk�Xj / // Rf�2; 0; 2g

pij

oo

Cp.D�/D

Rf0;�2; 0g
.Xk�Xi / //

1

OO

Rf0; 0; 0g:
pi

oo

.Xj�Xk/

OO

Geometry & Topology, Volume 19 (2015)



Some differentials on Khovanov–Rozansky homology 3041

Here pi DWp=.Xk�Xi/, and the vertical arrows represent components of the map dv .
The reader can easily verify that in all three complexes, dC and dv are homogenous
of degree .2; 2; 0/ and .0; 0; 2/, respectively.

2.6 General tangles

For an arbitrary tangle diagram D , Cp.D/ is defined to be a tensor product of smaller
complexes, one for each crossing in D . More precisely, if c is a crossing of D , let Dc

be the subdiagram composed of the four edges of D adjacent to c . Dc is an elementary
diagram, so the complex Cp.Dc/ was defined in the previous section. It is a complex
of matrix factorizations over the ring Rc DQŒXi ;Xj ;Xk ;Xl �=.Xk CXl �Xi �Xj /

with potential wp.c/D p.Xk/Cp.Xl/�p.Xi/�p.Xj /.

Next, we consider the complex Cp.Dc/˝Rc
R.D/, which is obtained by replacing each

copy of Rc in Cp.Dc/ with a copy of R.D/. It is a complex of matrix factorizations
over R.D/. The global complex Cp.D/ is defined to be the tensor product

Cp.D/D
O

c

.Cp.Dc/˝Rc
R.D//;

over the ring R.D/, where the product runs over all crossings of D . In particular, if
there are no crossings, Cp.D/DR.D/.

We can now verify that Cp.D/ has the properties advertised in Section 2.4. First, it is
clearly defined over the ring R.D/. Second, it is easy to see that

P
c wp.c/Dwp.D/,

so it follows from Lemma 2.2 that Cp.D/ has potential wp.D/. Third, the differentials
on each individual factor satisfy the grading conventions established in Definition 2.7,
so the same is true for Cp.D/.

An important (indeed, the defining) property of Cp.D/ is that it is local in the following
sense:

Lemma 2.8 Suppose D is obtained from diagrams D1 and D2 by first taking their dis-
joint union and then identifying ends .i1; i2; : : : ; im/ of D1 with ends .j1; j2; : : : ; jm/

of D2 . Then
Cp.D/Š Cp.D1/˝QŒy1;:::;ym� Cp.D2/;

where yk acts as Xik
on Cp.D1/ and Xjk

on Cp.D2/.

Proof This follows from the fact that the set of crossings for D is the union of the
sets of crossings for D1 and D2 , together with the relation

R.D/ŠR.D1/˝QŒy1;:::;ym�R.D2/

observed in Section 2.3.
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2.7 The HOMFLY homology

We now define the various KR–homologies, starting with the HOMFLY homology of
[13]. There are several ways of normalizing this invariant, all of which contain the
same information. In addition to the reduced theory used in the introduction, there is
also an unreduced theory which appears naturally in the context of the sl.N / homology.
We start with a third variant, which interpolates between these two and is closest to the
version of the theory described in [13].

For the next few sections, we assume that L is an oriented link in S3 , and that L

is represented by a connected tangle diagram D which is the closure of a braid.
(The restriction that D be connected is simply for ease of exposition. The necessary
modifications for disconnected diagrams are described in Section 2.10.)

Definition 2.9 The middle HOMFLY homology of L is the group

H.L/DH.H.Cp.D/; dC/; d
�
v /f�wC b; wC b� 1; w� bC 1g;

where w and b are the writhe and number of strands of the braid diagram D .

Remarks There are several aspects of this definition which are worth pointing out.
First, observe that we have taken homology twice: first with respect to dC , and then
with respect to d�v , which is the map induced on H.Cp.D/; dC/ by dv . Second, note
that dC and dv are homogenous with respect to all three gradings, so the triple grading
on Cp.D/ descends to a triple grading on H.L/. Finally, since d� does not appear in
the definition, H.L/ is independent of the parameter p .

Khovanov and Rozansky proved:

Theorem 2.10 [13] H.L/ is an invariant of L.

A priori, nothing stops us from considering the homology H.H.Cp.D/; dC/; d
�
v / for

an arbitrary diagram D representing L, but the restriction to diagrams which are braid
closures plays an important role in the proof of Theorem 2.10. Indeed, Khovanov and
Rozansky prove the invariance of H.L/ under braidlike Reidemeister moves and then
use the fact that any two braid diagrams of L are related by such moves to conclude
that H.L/ is a link invariant.

The second major result of [13] is the relation between H.L/ and the HOMFLY
polynomial:
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Theorem 2.11 [13] For any L� S3 , we haveX
i;j ;k

.�1/.k�j/=2aj qi dim H i;j ;k.L/D�
P .L/

q� q�1
:

Here, both sides of the equation should be interpreted as Laurent series in q .

2.8 Reduced and unreduced complexes

If i is an edge of D , we define the reduced KR–complex Cp.D; i/ to be the quotient
Cp.D/=.Xi/. In [13], Khovanov and Rozansky observe that when pD 0 this definition
is actually independent of i . To see this, recall that C0.D/ is a direct sum of copies
of R.D/. Define Cr .D/ � C0.D/ to be the subgroup obtained by replacing each
copy of R.D/ with a copy of the reduced ring Rr .D/. Inspecting the coefficients of
dC and dv in C0.Ds/, C0.DC/ and C0.D�/, we see that they are all contained in
Rr .D/. It follows that Cr .D/ is a subcomplex of C0.D/.

Lemma 2.12 In the category GMF.Q/, there are isomorphisms

C0.D/Š Cr .D/˝Q QŒx� and C 0.D; i/Š Cr .D/:

Proof The first claim follows immediately from Lemma 2.6. For the second, con-
sider the map �W Rr .D/! R.D/=.Xi/ which is the composition of the inclusion
Rr .D/!R.D/ and the projection R.D/!R.D/=.Xi/. It’s easy to see that � is
an isomorphism of vector spaces. Since C0.D/ is free over R.D/, the induced map
�W Cr .D/! C0.D; i/ is also an isomorphism.

Definition 2.13 The reduced HOMFLY homology H .L/ is defined to be

H .L/DH.H.Cr .D/; dC/; d
�
v /f�wC b� 1; wC b� 1; w� bC 1g;

where, as before, w and b are the writhe and number of strands in the braid diagram D .

From the first part of Lemma 2.12 we see that H.L/ Š H .L/˝Q QŒx�. It follows
that the graded Euler characteristic of H .L/ is given by the HOMFLY polynomial:X

i;j ;k

.�1/.k�j/=2aj qi dim H i;j ;k.L/D P .L/:

There is also an unreduced version of the KR–complex. If i is an edge of D , we let
Up.i/ be the matrix factorization

Cp.Ds/D QŒXi �f0;�2; 0g
0 // QŒXi �f0; 0; 0g:

p0.Xi /

oo

The unreduced complex zCp.D; i/ is defined to be Cp.D/˝QŒXi � Up.i/.
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Definition 2.14 The unreduced HOMFLY homology zH .L/ is given by

zH .L/DH.H. zCp.D; i/; dC/; d
�
v /f�wC b; wC b; w� bg;

where w and b are the writhe and number of strands in the braid diagram D .

Since both dC and dv are trivial on Up.i/, we see that zH .L/ Š H.L/˝H�.S1/.
Its graded Euler characteristic is the unnormalized HOMFLY polynomial of L:X

i;j ;k

.�1/.k�j/=2aj qi dim zH i;j ;k.L/D
a� a�1

q� q�1
P .L/D zP .L/:

Remark The quantity wCb always has the same parity as the number of components
of L. Since all the grading shifts in the complexes Cp.DC/ and Cp.D�/ are even,
it follows that all three gradings of zH .L/ have the same parity as the number of
components of L, and all three gradings of H .L/ have the opposite parity.

As an example, we describe H , H , and zH for the unknot. The unknot can be
represented by a braid diagram D consisting of a single edge (labeled 1), a single mark,
and no crossings. The relation associated to the mark is X1 �X1 D 0, so R.D/ D

QŒX1�=.0/ŠQŒX1�, and Rr .D/ŠQ. Since there are no crossings, Cp.D/ŠR.D/.
It follows that H.U /ŠQŒX �, where 12QŒX � has triple grading .1; 0; 0/; H .U /ŠQ,
with triple grading .0; 0; 0/; and zH .U /ŠQŒX �˚QŒX �, where the generators have
gradings .1; 1;�1/ and .1;�1;�1/.

2.9 The sl.N / homologies

To define the KR–homologies corresponding to the sl.N / polynomial, we add the
differential d� into the mix. Suppose that D is a connected tangle diagram — not
necessarily in braid form — representing the link L. Then D is closed, so the potential
wp.D/D 0, and the differential dtot D dCC d� makes Cp.D; i/ and zCp.D; i/ into
chain complexes.

Definition 2.15 For p.x/ 2 QŒx�, the reduced and unreduced p–homologies are
defined by

Hp.L; i/DH.H.Cp.D; i/; dtot/; d
�
v /;

zHp.L/DH.H. zCp.D; i/; dtot/; d
�
v /:

When p.x/DxNC1 , this definition was introduced by Khovanov and Rozansky in [12].
The fact that it is interesting for other values of p was observed by Gornik [4].
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For the definition to make sense, we should check that zHp.L/ depends only on L, and
not on the choice of the diagram D or the marked edge i . This is done in Section 5.
Similarly, the reduced homology Hp.L; i/ depends only on L and the component
of L containing i . Unlike the HOMFLY homology, Hp.L; i/ really does depend on
the marked component. However, in the special case when L D K is a knot, there
is only one component to choose from, so it makes sense to talk about the reduced
homology Hp.K/.

Next, we consider the grading on these homology groups. For a general polynomial p ,
dtot will not be homogenous with respect to any linear combination of the gradings q

and grh on Cp.D/, so Hp and zHp will have only the single grading coming from grv .
However, when p.x/DX NC1 , dtot is homogenous with respect to the grading

grN D qC .N � 1/ grh D i C
N � 1

2
j ;

so we can view Hp.L; i/ and zHp.L/ as being doubly graded, with gradings .grN ; grv/.
An additional global shift is needed to make the first grading into a link invariant. We put

HN .L; i/DHxNC1.D; i/f.N � 1/w; 0g;

zHN .L/D zHxNC1.D/f.N � 1/w; 0g;

where w is the writhe of the diagram D . In Section 3.4, we verify that HN and zHN

are the sl.N / homology groups defined by Khovanov and Rozansky in [12]. Their
graded Euler characteristic is given by the sl.N / polynomial:

Theorem 2.16 [12] zHN .L/ is an invariant of the link L, while H .L; i/ is an
invariant of the link L and the marked component i . They satisfyX

I;J

.�1/J qI dim H
I;J
N

.L; i/D PL.q
N ; q/;

X
I;J

.�1/J qI dim zH I;J
N

.L/D zPL.q
N ; q/:

As an example, we again consider the homology of the unknot. The reduced complex
satisfies CP .U / Š QŒX1�=.X1/ Š Q, so Hp.U / Š Q, for any p . The complex
zCp.U / is more complicated. It is composed of two copies of QŒX �, situated in gradings
.0; 0; 0/ and .0;�2; 0/. The differential d� takes a generator of the first summand to
p0.X / times the generator of the second. Thus zHp.U /ŠQŒX �=.p0.X //, supported in
homological grading 0. When p.X /DX NC1 , we see that zHN .U /ŠQŒX �=.X N /.
The generator 1 2QŒX �=.X N / has polynomial grading grN D 1�N .
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Remark It is natural to ask whether the groups above can be defined over Z, rather
than just Q. An integral version of the HOMFLY homology can be obtained by
simply replacing the edge ring R with an analogous polynomial ring over Z. However,
constructing a integral version of the sl.N / homology is more difficult: we’d like to
enforce the relation p0.x/DxN D 0, but this forces us to take p.x/DxNC1=.N C1/,
which is not an element of ZŒx�. (It’s not hard to see that H cp.L; i/'Hp.L; i/ for
any c 2Q� , so if we work over Q, we’re justified in using p.x/DxNC1 .) Subsequent
developments in the field have produced alternate definitions of the sl.N / homology
which work over Z, but in this paper we will only consider homologies over Q.

2.10 Disconnected diagrams

We conclude our discussion of KR–homology by describing what happens when the
diagram D is disconnected. In this case, we must modify the definition of the complexes
zCp.D/ and Cp.D/. The unreduced complex zCp.D/ is the tensor product

zCp.D/D
O

j

zCp.Dj ; ij /;

where j runs over the connected components of D . The definition requires that we
specify a collection of edges ij — one for each component of D . In Section 3.4, we
will show that zCp.D/ is essentially independent of the choice of ij . From Lemma 2.8,
we see that

Cp.D/D
O

j

Cp.Dj /;

so from the point of view of the HOMFLY homology, the extra factors
N

Up.ij / just
add a factor of H�.S1/ for each component of D .

To define the reduced KR–complex, assume that the special marked edge i is in the
component D1 . Then

Cp.D/D Cp.D1; i/˝
O
j>1

zCp.Dj /:

The definitions of the various KR–homologies now proceed exactly as they did in the
case when D had only one component.

3 Matrix factorizations

In this section, we develop some ideas about Z–graded matrix factorizations which
will be needed in the rest of the paper. The main difficulty with such factorizations,
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as compared to the Z=2–graded factorizations used in [12] and [13], is that they lack
a good notion of homotopy equivalence. Our first task is to develop an appropriate
substitute — the notion of a quasi-isomorphism. After that, we discuss the class of
Koszul factorizations introduced by Khovanov and Rozansky in [12] and adapt some
of their results to the Z–graded context. We conclude by verifying that the definitions
of the various KR–groups given in Section 2 coincide with the original definitions in
[12] and [13].

3.1 Positive homology

Given a Z–graded matrix factorization C � , we define its positive homology to be the
group

HC.C �/DH.C �; dC/:

If it happens that C �DCp.D/, we abbreviate still further and write HC.D/ in place of
HC.Cp.D//, and similarly for zHC.D/DHC. zCp.D// and HC.D/DHC.Cp.D//.
The operation of taking the positive homology gives a covariant functor HC from the
category GMF.R/ to the category of graded R–modules. This naturally extends to
a functor from Kom.GMFw.R// to Kom.R/. For example, Definition 2.14 can be
rewritten as

zH .L/DH. zHC.D/; d�v /f�wC b; wC b; w� bg

in this notation.

When the factorization has potential 0, we can say more:

Lemma 3.1 There are functors

HCW GMF0.R/! Kom.R/;

HCW Kom.GMF0.R//! Kom.Kom.R//:

Proof If C � has zero potential, the differentials d� and dC anticommute. The
induced map d��W H

C.C �/!HC.C �/ makes HC.C �/ into a chain complex.

3.2 Quasi-isomorphisms

Roughly speaking, we want to think of two matrix factorizations as being equivalent
if their positive homologies are isomorphic as chain complexes. When the potential
is nonzero, however, the positive homology isn’t a chain complex. To get around this
problem, we adopt the following definition:
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Definition 3.2 Suppose C �;D� are objects of GMFw.R/ and that f W C �C!D�C is a
chain map. We say that f is a quasi-isomorphism if for every object E� of GMF�w.R/
the induced map .f ˝1/�W HC.C �˝E�/!HC.D�˝E�/ is an isomorphism which
commutes with d�� . More generally, we say that C � and D� are quasi-isomorphic
and write C � �D� if they can be joined by a chain of quasi-isomorphisms.

Note that f is not required to be a morphism of matrix factorizations, but only a map
on the positive chain complexes which “looks like” such a morphism when we pass to
homology, in the sense that it commutes with d�� .

In practice, many of the quasi-isomorphisms we will consider do arise as morphisms.

Definition 3.3 Suppose C �;D� are objects of GMFw.R/ and that f W C �!D� is
a morphism. We say that f is a weak equivalence if f W C �C! D�C is a homotopy
equivalence.

Lemma 3.4 A weak equivalence is a quasi-isomorphism.

Proof Suppose E� is an object of GMF�w.R/. Then f ˝1W C �˝E�!D�˝E�

is a morphism of GMF0.R/, so the induced map .f ˝ 1/� commutes with d�� . On
the other hand, the map .f ˝ 1/W C �C˝E�C!D�˝E�C is a homotopy equivalence,
so .f ˝ 1/� is an isomorphism.

A second source of quasi-isomorphisms is provided by a process we refer to as twisting.
Suppose that C � is a matrix factorization of length 3, so that C i is trivial for i¤0; 1; 2.
Given a homomorphism H W C 2! C 0 , we define a deformed version of d� by the
equation

d�.H /D d�C dCH �HdC:

The twisted factorization C �.H / is the triple .C �; dC; d�.H //.

Lemma 3.5 C �.H / is a graded matrix factorization with the same potential as C � .

Proof Suppose that C has potential w . It is enough to check that

dCd�.H /C d�.H /dC D dCd�C d2
CH � dCHdCC d�dCC dCHdC�Hd2

C

D d�dCC dCd� D w

and d�.H /2 D 0. The latter expression contains nine terms. Five of these (�d�HdC ,
dCHd� , dCHdCH , HdCHdC and �dCH 2dC ) vanish for dimensional reasons.
Two others (d2

� and �HdCdCH ) vanish because C � is a matrix factorization. The
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remaining two terms d�dCH and �HdCd� represent nontrivial maps C 2 ! C 0 .
On C 2 , d�dC vanishes for dimensional reasons, so dCd� Dw � Id. Similarly, on C 0 ,
d�dC D w � Id. Thus the final two terms cancel each other.

Lemma 3.6 If C � and H are as above, the obvious identification C �C Š C �.H /C is
a quasi-isomorphism.

Proof Suppose E� is a matrix factorization with potential �w . Viewed as endo-
morphisms of the complex C �C ˝E�C , the negative differentials on C � ˝E� and
C �.H /˝ E� have the form d� ˝ 1˙ 1˝ d� and d�.H /˝ 1˙ 1˝ d� . Their
difference .d�.H /� d�/˝ 1D .dCH �HdC/˝ 1 is null-homotopic.

3.3 Koszul factorizations

Suppose R is a ring and that a; b 2 R. The short matrix factorization fa; bg is the
rank two factorization given by the diagram

R
b // R:
a

oo

It has potential ab .

Definition 3.7 [12] Suppose a D .a1; : : : ; an/ and b D .b1; : : : ; bn/ are elements
of Rn . The Koszul factorization fa;bg is the tensor product of the short factorizations
fai ; big:

fa;bg D

nO
iD1

fai ; big:

It is a Z–graded matrix factorization over R, with potential a �bD
P

i aibi . We say
that the order of the factorization is n.

When we want to explicitly record the values of ai and bi , we represent fa;bg by the
Koszul matrix 0BBB@

a1 b1

a2 b2
:::

:::

an bn

1CCCA :
More intrinsically, we can view the underlying module of fa;bg as the exterior algebra
ƒ�Rn , where b is an element of Rn and a is an element of the dual module .Rn/� .
The differentials are given by

dC.x/D x^b and d�.x/D x: a:
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From this perspective, it’s clear that if we express b and a in terms of a new basis for
Rn and its dual basis, the resulting Koszul factorization will be isomorphic to fa;bg.
In particular, consider the change-of-basis operation which replaces the standard basis
element ei of Rn with ei C cej . At the level of Koszul matrices, this corresponds to
the row operation which modifies the i th and j th rows as�

ai bi

aj bj

�
7!

�
ai C caj bi

aj bj � cbi

�
and leaves the remaining rows of the Koszul matrix unchanged.

We now recall an important technical tool introduced in [12]. This is the process of
“excluding a variable”. Suppose that C D fa;bg is a Koszul factorization over the ring
RŒx� with potential w which happens to be contained in R, and that b1 D f .x/ is a
monic polynomial of positive degree in x . Let a0;b0 2RŒx�n�1 be the vectors obtained
from a and b by omitting the first component, and put C 0 D fa0;b0g: At the level of
modules, C Š C 0˚C 0 , and with respect to this decomposition the differentials on C

are given by

dC.u; v/D .d
0
Cu; d 0CvCf .x/u/;

d�.u; v/D .d
0
�uC a1v; d

0
�v/:

Next, we form the quotient ring R1 D RŒx�=.f .x//, and let � W RŒx�! R1 be the
projection. The factorization C 00 D f�.a0/; �.b0/g is a Koszul factorization over R1

with potential �.w/D w 2R.

Lemma 3.8 The map �W C ! C 00 defined by �.u; v/D �.v/ is a weak equivalence
in the category GMFw.R/.

Proof Using the formulas above, it is easy to see that � defines a morphism of
matrix factorizations. Thus we need only verify that � has a homotopy inverse with
respect to dC . Since f is monic, every r 2R1 may be written uniquely in the form
r D r0C r1xC � � �C rk�1xk�1 , where ri 2R and k D degf . The map which sends
r 2 R1 to this representative defines an R–module homomorphism �W R1 ! RŒx�.
C 0 and C 00 are free over RŒx� and R1 , respectively, so � can be used to define an
R–module homomorphism �W C 00! C 0 . We define a map  W C 00! C by

 .y/D

�
�.d 00Cy/� d 0C�.y/

f .x/
; �.y/

�
:
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It is easy to see that  commutes with dC and that � D IdC 00 . Finally, we define
H W C ! C by

H.u; v/D

�
v� �.�.v//

f .x/
; 0

�
:

We leave it as an exercise to the reader to check that H is a homotopy between  �
and IdC .

Corollary 3.9 Suppose C � �D� as objects of GMFw.RŒX �/, where w 2R. Then
the quotients C �=.X / and D�=.X / are quasi-isomorphic as objects of GMFw.R/.

Proof By Lemma 3.8, the quotient C �=.X / is quasi-isomorphic to C �˝f0;xg. This,
in turn, is quasi-isomorphic to D�˝f0;xg.

Now suppose that R is a polynomial ring, that w 2R, and that b 2Rn . It is clear that
we can choose a 2 .Rn/� so that fa;bg has potential w if and only if w is in the ideal
generated by the bi . To what extent is the choice of a unique? When nD 1, we have
a1b1 D w , so a1 is uniquely determined unless b1 D w D 0. For nD 2, we have the
following result.

Lemma 3.10 Suppose R is a UFD and that fa;bg and fa0;b0g are two order-two
Koszul factorizations over R with potential w . If b1 and b2 are relatively prime, the
factorizations fa;bg and fa0;b0g are related by a twist.

Proof We have

a1b1C a2b2 D w D a01b1C a02b2;

which implies that .a1 � a0
1
/b1 C .a2 � a0

2
/b2 D 0: Since b1 and b2 are relatively

prime, our two factorizations must be represented by Koszul matrices of the form�
a1 b1

a2 b2

�
and

�
a1� kb2 b1

a2C kb1 b2

�
:

The second factorization is a twist of the first one, via the map H W R!R which sends
x to kx .

Remark In fact, it is not difficult to see that fa;bg and fa0;b0g are isomorphic as
Z=2–graded matrix factorizations.
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3.4 Equivalence of definitions

The ideas described above can be used to verify that the definitions of the various KR–
homologies given in Section 2 agree with those in [12] and [13]. We assume the reader
is already somewhat familiar with these papers, and only briefly recall their content.

To a planar diagram D , we associate the ring R0.D/ D QŒXi �, where i runs over
the edges of D . In [12], Khovanov and Rozansky assign to D a complex of matrix
factorizations C 0p.D/ defined over R0.D/ and with potential wp.D/. (Although the
definition in [12] is only stated for p.x/ D xNC1 , it works equally well for any p ,
as implicitly noted by Gornik [4].) C 0p.D/ is a tensor product of factors, one for
each internal vertex of D . These factors are as follows. To a mark with incoming
and outgoing edges labeled i and j , Khovanov and Rozansky associate the short
factorization �

p.Xj /�p.Xi/

Xj �Xi
;Xj �Xi

�
:

To the singular diagram Ds , they associate an order-two Koszul factorization given by
the Koszul matrix

C 0p.Ds/D

�
� Xk CXl �Xi �Xj

� XkXl �XiXj

�
:

According to the remark following Lemma 3.10, any two such factorizations are
isomorphic as Z=2–graded factorizations. Thus, the entries in the left-hand column
are more or less immaterial, and we will simply mark them by �’s.

Finally, the positive and negative crossings are associated to short complexes of order-
two Koszul factorizations, as follows:

C 0p.DC/D

�
� Xk CXl �Xi �Xj

� XkXl �XiXj

�
�1
����!

�
� Xl �Xj

� Xk �Xi

�
;

C 0p.D�/D

�
� Xl �Xj

� Xk �Xi

�
�0
����!

�
� Xk CXl �Xi �Xj

� XkXl �XiXj

�
:

The composition �0�1 is given by multiplication by Xk�Xj . Applying a row operation,
we see that these complexes are isomorphic to

C 0p.DC/Š

�
� Xk CXl �Xi �Xj

� XkXl �XiXj

�
�1
����!

�
� Xk CXl �Xi �Xj

� Xk �Xi

�
;

C 0p.D�/Š

�
� Xk CXl �Xi �Xj

� Xk �Xi

�
�0
����!

�
� Xk CXl �Xi �Xj

� XkXl �XiXj

�
:

The matrix factorizations used by Khovanov and Rozansky are Z=2–graded, rather
than the Z–graded factorizations that we have been considering. One advantage
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of this approach is that there is a good notion of homotopy equivalence for such
factorizations. This enables them to work in the homotopy category hmfw.R/ of Z=2–
graded matrix factorizations with potential w . There is an obvious forgetful functor
from Kom.GMFw.R// to Kom.hmfw.R//, so we can view both C 0p.D/ and zCp.D/

as objects of the latter category.

Lemma 3.11 If D is a closed diagram, C 0p.D/Š
zCp.D/ in Kom.hmf0.R.D///.

Proof In both cases, the complex associated to a disconnected diagram is the tensor
product of the complexes associated to its components. Thus we may assume that
D is connected. We fix an edge i of D and consider the diagram D.i/ obtained by
inserting a bivalent vertex v0 into i . For each vertex v of D.i/, the linear relation
�.v/ appears as a matrix entry of every Koszul factorization in the complex C 0p.D.i//.
By Lemma 2.4, the relations f�.v/ j v¤ v0g are all linearly independent. Thus we can
apply [12, Proposition 10] to exclude them. The result is an isomorphic complex C1

defined over the ring R0.D0/=.�.v//ŠR.D/.

It is shown in [12] that C 0p.D/ŠC 0p.D.i//, so to prove the lemma it is enough to show
that C1 Š

zCp.D; i/. To see this, we examine each factor in the complex individually.
For example, consider the factor associated to a singular crossing. We have

XkXl �XiXj D�.Xk �Xi/.Xk �Xj /

in R.D/, so C 0p.Ds/ reduces to a short factorization of the form

fˇ;�.Xk �Xi/.Xk �Xj /g;

where ˇ is the image of some ˇ0 2R0.D/ which satisfies

˛0.Xk CXl �Xi �Xj /Cˇ
0.XkXl �XiXj /D wp.Ds/DWp.Xi ;Xj ;Xk ;Xl/:

It follows that ˇD�Wp=.Xk�Xi/.Xk�Xj /Dpij in R.D/. This is the factorization
assigned to Ds in Section 2.5.

A similar argument shows that C 0p.DC/ and C 0p.D�/ reduce to complexes of the form

fpij ;�.Xk �Xi/.Xk �Xj /g
�1
����! fpi ;Xk �Xig;

fpi ;Xk �Xig
�0
����! fpij ;�.Xk �Xi/.Xk �Xj /g:

Since the composition �0�1 is given by multiplication by Xk �Xj , it is not difficult
to see that �0 and �1 agree with the corresponding maps defined in Section 2.5.
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Finally, we consider the short factorization�
p.XiC/�p.Xi�/

XiC �Xi�

;XiC �Xi�

�
coming from the vertex v0 . Since XiC D Xi� in R.D/, this reduces to the short
factorization fp0.Xi/; 0g which appears in the definition of zCp.D; i/.

Proposition 3.12 HN .L; i/ and zHN .L/ are isomorphic (as doubly graded groups)
to the reduced and unreduced sl.N / homology of [12].

Proof Suppose L is represented by a planar diagram D . The unreduced sl.N /

homology of L is defined to be H.H.C 0p.D/; dtot/; d
�
v /, where p.x/D xNC1 . From

Lemma 3.11 it follows that this is isomorphic to the group H.H. zCp.D; i/; dtot/; d
�
v /

which appears in Definition 2.14.

The argument for reduced homology is slightly more involved. In [12], the reduced
homology of L with respect to an edge i is defined to be H.H.C 0p.D/; dtot/=Xi ; d

�
v /.

Comparing with Definition 2.13, we see that we must show that

H.C 0p.D/; dtot/=Xi ŠH.Cp.D/=Xi ; dtot/:

The complex C 0p.D/ is free over QŒXi �, but it is shown in [12] that H.C 0p.D/; dtot/ is
a torsion module over QŒXi �. Applying the universal coefficient theorem, we see that

H.C 0p.D/=Xi ; dtot/ŠH.C 0p.D/; dtot/=Xi ˝H�.S1/:

On the other hand, Lemma 3.11 tells us that the quotient C 0p.D/=Xi is homotopy
equivalent to

zCp.D; i/=Xi Š Cp.D/=Xi ˝Up.i/=Xi :

Up.i/=Xi is a rank-two factorization with trivial differentials, so

H. zC 0p.D/=Xi ; dtot/ŠH.Cp.D/=Xi ; dtot/˝H�.S1/:

Canceling out the extra factors of H�.S1/, we obtain the desired isomorphism.

It remains to check that the bigradings agree. For the second (homological) grading, this
is clearly the case; it is given by grv in both cases. To see that grN D i C .N � 1/j=2

coincides with the q–grading of [12], first note that the complex C 0p.D/ is set up so
that the right-hand group in each linear factor is unshifted with respect to the q–grading.
If we exclude the linear term appearing in such a factor, the q–grading is unaffected.
Thus it suffices to check that the gradings agree on quadratic factors. Consider the
factorization Cp.Ds/ associated to a singular point. According to Section 2.5, the two
copies of R.D/ used to define this factorization have .i; j / grading shifts of f1;�2g
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and f�1; 0g. These correspond to shifts of f2� ng and f�1g in grN , which precisely
match the shifts in the q–grading which appear in the definition of C 0p.Ds/ in [12,
p. 48]. The calculation for C 0p.D˙/ is similar, except it also uses the grading shifts
in [12, p. 81], part of which goes into the shifts in Cp.D˙/, and part into the overall
shift by w.N � 1/ which appears in the definition of zHN .L/ and HN .L; i/.

Proposition 3.13 The middle HOMFLY homology H.L/ is isomorphic to the HOM-
FLY homology of [13]. The identification is such that an element with grading .i; j ; k/
in our notation corresponds to an element with grading .j=2; i � j=2; k=2/ in the
notation of [13].

Proof The homology of [13] is defined to be H.H.C 0a.D/; dtot/; d
�
v /, where C 0a.D/

is a certain complex of matrix factorizations defined over the ring R0.D/Œa�. If we
substitute a D 0, C 0a.D/ reduces to C 0

0
.D/. On the other hand, it is proved in [13]

that a acts by 0 on H.Ca.D/; dtot/. Applying the universal coefficient theorem, we
find that

H.C 00.D/; dtot/ŠH.C 0a.D/; dtot/˝H�.S1/:

On the other hand, Lemma 3.11 implies that

H.C 00.D/; dtot/ŠH. zC0.D/; dtot/ŠH.C0.D/˝U0.i/; dtot/:

Since U0.i/ has trivial differential, the last group is isomorphic to H.C0.D/; dtot/˝

H�.S1/. Canceling the factors of H�.S1/, we see that

H.H.C 0a.D/; dtot/; d
�
v /ŠH.H.C0.D/; dtot/; d

�
v /ŠH.L/:

It remains to compare the triple grading on the two theories. The ring R0.D/Œa� is
bigraded, with an additional grading corresponding to the power of a as well as the
usual q–grading. The first grading in [13] is nominally given by the power of a. Since
a acts by 0 on homology, however, any class is homologous to one represented by
elements of R0.D/. The a–grading of such a class comes entirely from the grading
shifts introduced in the definition of C 0a.D/. It is easily verified that these shifts are
the same as those for grh , so the first grading is grh D j=2. The second grading in
[13] corresponds to the usual q–grading on the ring R.D/, but the grading shifts in
C 0a.D/ differ from ours. Up to an overall shift, the grading shift in [13] corresponds to
the difference between our shift in q and grh . Thus, the second grading is given by
i � j=2. Finally, the third grading in [13] is given by grv D k=2.

As a further application of these techniques, we can now make good on our claim that
the unreduced complex is independent of the choice of the marked edge used to define it.
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Proposition 3.14 If i and j are two edges of a connected diagram D , the unreduced
complexes zCp.D; i/ and zCp.D; j / are quasi-isomorphic.

Proof Let D.i; j / be the diagram obtained by inserting bivalent vertices vi and vj
in edges i and j . Consider the complex C 0p.D.i; j // as an element of the category
GMF0.R.D.i; j //. Arguing as in the proof of Lemma 3.11, we use Lemma 3.8 to
exclude the linear relations f�.v/ j v ¤ vig. The result is a new complex of matrix
factorizations Ci which is quasi-isomorphic to C 0p.D.i; j //. The same argument as
in the proof of Lemma 3.11 shows that Ci Š

zCp.D; i/. Thus C 0p.D.i; j // is quasi-
isomorphic to zCp.D; i/. Similarly, C 0p.D.i; j // is quasi-isomorphic to zCp.D; j /.
This proves the claim.

4 Braid graphs and MOY relations

A tangle diagram all of whose crossings are singular is called a graph; a braid diagram
all of whose crossings are singular is a braid graph. In [19], Murakami, Ohtsuhki and
Yamada explain how to assign a HOMFLY polynomial zP .D/ to a closed graph D . This
assignment can be used to give a state model definition of the HOMFLY polynomial
similar to the Kauffman state model [8] for the Jones polynomial. (See [7; 23] for
related constructions.) Murakami, Ohtsuki and Yamada also show that the HOMFLY
polynomial of a graph satisfies certain relations, which we refer to as MOY relations.

In this section, we briefly review these results and describe their generalizations to KR–
homology. In [12; 13], Khovanov and Rozansky show that Cp.D/ satisfies relations
analogous to the MOY relations for the HOMFLY polynomial. The main technical
result of this section is that these relations continue to hold in the context of Z–graded
matrix factorizations. As an application, we show that the HOMFLY homology of a
braid graph is determined by its HOMFLY polynomial. We then use the MOY state
model to give a proof of Theorem 2.11 along the lines of the proof for the sl.N /

homology given in [12].

4.1 The MOY state model

We begin by recalling the state model of Murakami, Ohtsuki and Yamada [19]. Although
their paper is phrased in terms of the sl.N / polynomials, the results we want are easily
translated into the language of the HOMFLY polynomial, and we will state them in
this form.

Suppose D is a diagram representing an oriented link L. We can “resolve” each
crossing of D in one of two ways: either into a pair of arcs (the oriented resolution) or
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into a singular crossing. To each such resolution, we assign a weight � 2Z depending
on whether the crossing is positive or negative and on which resolution it receives. The
possible resolutions and their weights are illustrated in Figure 2.

0

0

�1

1

Figure 2: Resolutions and their weights

A state of the diagram D is a choice of resolution for each crossing of D . If D has n

crossings, it will have 2n different states. To a state � we assign a weight �.�/ given
by the sum of the local weights at each crossing. In addition, each � gives rise to a
graph D� . In [19] it is shown that the unnormalized HOMFLY polynomial of L is
given by the formula

(1) zP .L/D .aq�1/w.D/
X
�

.�q/�.�/ zP .D� /;

where the quantity zP .D� / is an invariant of the graph D� . We think of zP .D� / as the
HOMFLY polynomial of D� , and view formula (1) as generalizing the definition of zP
to closed tangle diagrams with an arbitrary number of singular crossings.

4.2 Polynomials of braid graphs

In order to use formula (1), we need some way to determine zP .D/ when D is a graph.
In [19], the authors give a direct geometric procedure for finding these polynomials, or
rather, their specializations to aD qN . For our purposes, however, it is more convenient
to characterize zP .D/ in terms of certain relations given in [19].

Suppose DO , DI , DII , DIIIa and DIIIb are braid graphs containing regions like those
shown on the left-hand sides of Figures 3 and 4, and let D0O , D0I , D0II , D0IIIa and D0IIIb be
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the graphs obtained by replacing these regions with the corresponding ones on the right-
hand sides of the figures. It is shown in [19] that zP satisfies the following MOY relations:

.O/ zP .DO/D
a� a�1

q� q�1
zP .D0O/;

.I/ zP .DI/D
aq�1� a�1q

q� q�1
zP .D0I/;

.II/ zP .DII/D .qC q�1/ zP .D0II/;

.III/ zP .DIIIa/C zP .DIIIb/D zP .D
0
IIIa/C

zP .D0IIIb/:

D
aq�1�a�1q

q�q�1

D
a�a�1

q�q�1.O/

.I/

.II/
D .qC q�1/

1

1 2

Figure 3: MOY relations O; I, and II

CDC

DIIIa DIIIb D0IIIa D0IIIb

Figure 4: MOY relation III
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The HOMFLY polynomial of a braid graph is completely determined by these relations.
To see this, we use an induction scheme introduced by Wu [25]. Suppose D is a braid
graph on b strands. The crossings of D are naturally arranged into b � 1 columns,
which we number 1; : : : ; b�1 going from left to right. If c is a crossing of D , let i.c/

be the number of the column containing it. Following Wu, we define the complexity
of D to be the sum

i.D/D bC
X

c

i.c/:

The complexity of a diagram on the left-hand side of Figure 3 is strictly greater than
the complexity of the corresponding diagram on the right. Similarly, the complexity
of diagram DIIIa is greater than that of the other three diagrams in Figure 4.

Lemma 4.1 [25] Suppose D is a nonempty braid graph which is the closure of an
open braid graph Do . Then either D contains a region of the form DO or DI , or Do

contains a region of the form DII or DIIIa .

In other words, D can be related to braid graphs of lesser complexity by one of MOY
moves O–III. Moreover, we may assume that moves of type II and III take place in
the open braid Do .

Corollary 4.2 If D is a braid graph, zP .D/ is determined by MOY relations O–III
and the fact that zP of the empty graph is 1.

4.3 Homology of braid graphs

The KR–complex of a braid graph satisfies decomposition rules analogous to the
MOY relations O–III. In the context of Z=2–graded matrix factorizations, such rules
were introduced in [12] and later applied to the HOMFLY homology in [13; 25].
Similar MOY decompositions also hold in the derived category of Z–graded matrix
factorizations. We collect their statements here, but postpone the proofs to the end of
this section. Note that, although zCp.D/ is generally a complex of matrix factorizations,
when D is a graph, the complex is supported in a single vertical grading. Thus zCP .D/

is most naturally viewed as an object of the GMF.R.D//. It is doubly graded, with
gradings .q; 2 grh/.

Proposition 4.3 Let DO and D0O be two braid graphs related as in the first line of
Figure 3, and let Cp.O/ be the matrix factorization

QŒX1�f0;�2g
0 // QŒX1�f0; 0g:

p0.X1/

oo

Then Cp.DO/Š Cp.D
0
O/˝Q Cp.O/ in GMF.R.DO//.
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Proposition 4.4 Let DI and D0I be two braid graphs related as in the second line of
Figure 3, and let Cp.I/ be the matrix factorization

QŒX1;X2�f1;�2g
0 // QŒX1;X2�f�1; 0g;

p0
12

oo

where p0
12
D .p0.X1/�p0.X2//=.X1 �X2/. Then Cp.DI/Š Cp.D

0
I/˝QŒX1� Cp.I/

in GMF.R.DI//.

Proposition 4.5 Let DII and D0II be two braid graphs formed by taking the union of a
fixed graph D with the diagrams in the last line of Figure 3. Then

Cp.DII/� Cp.D
0
II/f�1; 0g˚Cp.D

0
II/f1; 0g

in GMF.R.D//.

Proposition 4.6 Let DIIIa , DIIIb , D0IIIa , and D0IIIb be braid graphs formed by taking
the union of a fixed graph D with the diagrams in Figure 4. Then

Cp.DIIIa/˚Cp.DIIIb/� Cp.D
0
IIIa/˚Cp.D

0
IIIb/

in the category GMF.R.D//.

As an immediate consequence, we have relations

.O/ zH .DO/Š . zH .D0O/f0;�2g˚ zH .D0O//˝Q QŒx�;

.I/ zH .DI/Š . zH .D0I/f1;�2g˚ zH .D0I/f�1; 0g/˝Q QŒx�;

.II/ zH .DII/Š zH .D0II/f�1; 0g ˚ zH .D0II/f1; 0g;

.III/ zH .DIIIa/˚ zH .DIIIb/Š zH .D0IIIa/˚
zH .D0IIIb/;

which closely parallel the MOY relations for the HOMFLY polynomial. In fact, these
relations are proved by Khovanov and Rozansky in [13], where they are used to show
that zH is invariant under braidlike Reidemeister moves.

Like the HOMFLY polynomial, the HOMFLY homology of a braid graph is determined
by the MOY relations. In fact, the two carry precisely the same information. More
specifically, let

zP.D/D
X
i;j

.�1/j=2aj qi dim zH i;j .D/

be the signed Poincaré polynomial of zH .D/. Then we have:

Proposition 4.7 If D is a closed braid graph on b strands, zP.D/D .�aq/�b zP .D/.
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Proof We induct on the complexity of D . The base case is the empty diagram,
which has complexity 0, HOMFLY polynomial 1, and KR–homology Q supported in
bigrading .0; 0/. For the induction step, we apply Lemma 4.1 to see that D is related
to diagrams of lesser complexity by an MOY move. To complete the proof, we need
only check that the MOY relations for zP are consistent with the corresponding MOY
decompositions for zH .

For example, consider MOY move O. By the induction hypothesis, we know that
zP.D0O/D .�aq/1�b zP .D0O/. On the other hand, relation O above shows that

zP.DO/D .1� a�2/

� 1X
iD0

qi

�
zP.D0O/D .�aq/�1

�
a� a�1

q� q�1

�
zP.D0O/

D .�aq/�b

�
a� a�1

q� q�1

�
zP .D0O/D .�aq/�b zP .DO/;

so the claim holds for DO as well.

We leave it to the reader to check the remaining MOY moves. The argument for move I
is very similar to the one for move O, and moves II and III are even easier, since all
diagrams involved have the same number of strands.

Using the MOY relations it is not difficult to see that if D is a braid graph on b strands,
the denominator of zP .D/ is .q � q�1/b . This fact is nicely reflected in the module
structure of zH .D/. To see this, write D as the closure of an open braid graph Do ,
and label the outgoing edges of Do by 1; 2; : : : ; b . (In D , these are identified with the
incoming edges of Do .) The ring Rb DQŒX1;X2; : : : ;Xb � is a subring of R.D/.

Proposition 4.8 If D is a closed braid graph on b strands, zH .D/ is a free module of
finite rank over Rb .

Proof Again, we induct on the complexity of D . The base case is when D is the
empty diagram, and zH .D/ŠQ is free of rank 1 over Q. For the induction step, we
use Lemma 4.1 to see that D can be simplified either by a MOY O or I move, or by
a MOY II or III move which takes place in the open braid Do . We consider each of
these four possibilities separately.

For move O, it follows from Proposition 4.3 that zH .DO/ is a direct sum of two
copies of zH .D0O/ tensored over Q with QŒXk �, where the strand to be eliminated
has label k . By the induction hypothesis, zH .D0O/ is a free module of finite rank over
QŒX1; : : : ;Xk�1;XkC1; : : : ;Xb �, so Cp.DO/ will be free of finite rank over Rb . The
argument for move I is similar.

Geometry & Topology, Volume 19 (2015)



3062 Jacob Rasmussen

i j

k l

i j

k l

Dr Du

Figure 5: Left: the diagram Dr , which represents a four-valent vertex. Right:
the diagram Du , which represents a pair of two-valent vertices.

For moves of type II and III, the fact that the move takes place in Do implies that Rb

is contained in the ring R.D/ over which the relations of Propositions 4.5 and 4.6
hold. Thus these decompositions also hold over Rb . The result for move II follows
easily from this, since zH .DII/ is a direct sum of two copies of zH .D0II/, which is free
of finite rank by the induction hypothesis.

For move III, the induction hypothesis implies that zH .D0IIIa/ and zH .D0IIIb/ are free. It
follows that zH .DIIIa/˚ zH .DIIIb/ is free as well, so zH .DIIIa/ is a projective module
over the polynomial ring Rb . By the theorem of Quillen and Suslin (see eg [14]), any
such module is free. Finally, zH .D0IIIa/ and zH .D0IIIb/ are of finite rank, so the same
must be true for zH .DIIIa/.

4.4 States and the KR–complex

Now that we understand the relation between the MOY state model and zCp.D/ for
braid graphs, we consider what happens when D is an arbitrary braid.

Lemma 4.9 Suppose D is a closed braid diagram. Then

zHC.D/Š
M
�

zH .D� /f�.�/; 0;�2�.�/g;

where the sum runs over MOY states of D .

Proof We temporarily enlarge our notion of a tangle diagram to include a fourth sort
of crossing Dr , represented by the diagram of Figure 5. The local factor associated to
such a crossing is

Cp.Dr /D Rf0;�2; 0g
.Xk�Xi / // Rf0; 0; 0g:

pi

oo

The definition of the KR–complex is otherwise unchanged.
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Referring to the diagrams in Section 2.5, we see that if we ignore the vertical differential,
there are decompositions

Cp.DC/D Cp.Ds/f1; 0;�2g˚Cp.Dr /;

Cp.D�/D Cp.Dr /˚Cp.Ds/f�1; 0; 2g:

Cp.D/ is a tensor product of factors, one for each crossing of D . If we ignore dv ,
then zCp.D/ will split into a direct sum of 2n summands, where n is the number
of ordinary crossings of D . By assigning the summand Cp.Dr / to the oriented
resolution of a crossing and Cp.Ds/ to its singular resolution, we get a bijection
between summands and MOY states of D . Comparing the grading shifts with the
weights in Figure 2, we see that

zCp.D/Š
M
�

zCp.D.�//f�.�/; 0;�2�.�/g;

where the diagram D.�/ is obtained by replacing each ordinary crossing of D with
either Ds or Dr , depending on � . Note that this is not quite the same the diagram D� ,
which is obtained by replacing each ordinary crossing with either Ds or the oriented
resolution Du . To remedy this discrepancy we use the following lemma, whose proof
is given in the next section.

Lemma 4.10 Suppose D is a closed tangle diagram containing a crossing of type Dr ,
and let D0 be the diagram obtained by replacing this crossing by a pair of marks, as
illustrated by the diagram Du in Figure 5. Then zCp.D/ is quasi-isomorphic to zCp.D

0/

over R.D0/.

Applying this lemma repeatedly, we see that zCp.D.�// is quasi-isomorphic to zCp.D� /.
Thus zHC.D.�//Š zHC.D� /, and the claim is proved.

The similarity between the HOMFLY homology and the original Khovanov homol-
ogy [9] is now evident. Like the chain complex used to define the Khovanov homology,
the summands of zHCp .D/ naturally lie at the vertices of the “cube of resolutions” of
D , each of whose vertices corresponds to a MOY state. The components of the induced
differential d�v correspond to edges of the cube. This analogy can be used to give an alter-
nate proof of Theorem 2.11, which is easily seen to be equivalent to the statement below.

Proposition 4.11 zP .L/D
X
i;j ;k

.�1/.k�j/=2aj qi dim zH i;j ;k.L/:

The argument is similar to the proof that the Euler characteristic of the Khovanov
homology is the Jones polynomial, but with the MOY state model in place of the
Kauffman state model.
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Proof Recall that if D is a closed braid diagram representing L,
zH .L/DH. zHC.D/; d�v /f�wC b; wC b; w� bg:

Since d�v preserves both q and grh , the graded Euler characteristic

�. zH .L//D
X
i;j ;k

.�1/.k�j/=2aj qi dim zH i;j ;k.L/

can be computed from zHC.D/. We find

�. zH .L//D .�1/�bawCbq�wCb
X
i;j ;k

.�1/.k�j/=2aj qi dim zHC i;j ;k
p .D/

D .aq�1/w
X
�

.�q/�.�/.�aq/b
X
i;j

.�1/j=2aj qi dim zH i;j .D� /

D .aq�1/w
X
�

.�q/�.�/ zP .D� /D zP .L/:

4.5 MOY decompositions

We now prove the various technical results used throughout the section. We begin with
the proof of Lemma 4.10, which asserted that a “crossing” of type Dr was equivalent
to its oriented resolution.

Proof of Lemma 4.10 Either D and D0 have the same number of connected compo-
nents, or D0 has one more component than D . Suppose we are in the first case. Then
Xi and Xk are independent linear elements of the polynomial ring R.D/, and we can
use Lemma 3.8 to exclude the linear factor Xk �Xi appearing in zCp.Dr /. We obtain
a quasi-isomorphic complex C 0 defined over the ring R.D/=.Xk �Xi/. The ideals
generated by .Xk�Xi ;Xl �Xj / and .Xk�Xi ;XkCXl �Xi�Xj / are clearly equal,
so R.D/=.Xk �Xi/ŠR.D0/. Then C 0 and zCp.D

0/ are Koszul factorizations over
R.D0/ with the same Koszul matrices, so C 0 Š zCp.D/.

Now suppose that replacing Dr with Du increases the number of components in D .
In this case, Xi DXk and Xj DXl in R.D/, so R.D/ŠR.D0/. We compute

pi D
p.Xk/Cp.Xl/�p.Xi/�p.Xj /

Xk �Xi

D
p.Xk/�p.Xi/

Xk �Xi
C

p.Xj CXi �Xk/�p.Xj /

Xk �Xi

D p0.Xi/�p0.Xj /;

so Cp.Dr / is given by the short factorization fp0.Xi/�p0.Xj /; 0g.
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Recall that zCp.D/ is obtained by tensoring Cp.D/ with short factorizations of the form
fp0.Xn/; 0g, where we pick one edge n for each component of D . By Proposition 3.14,
we may assume that the component containing Dr has marked edge i . Thus zCp.D/ has
short factors fp0.Xi/; 0g and fp0.Xi/�p0.Xj /; 0g. Applying a Koszul row operation,
we see that this is isomorphic to a factorization with short factors fp0.Xi/; 0g and
fp0.Xj /; 0g. If we choose j as the marked edge on the new component, this is the
factorization for zCp.D

0/.

Next, we take up the task of proving the MOY decompositions stated in Propositions 4.3–
4.6. In each case, the argument follows the proofs of the corresponding results in [12;
13], although some additional care is required for the MOY III move. The proof for
the MOY O move is easiest.

Proof of Proposition 4.3 The diagram D0O is obtained from DO by deleting a small
loop consisting of a single edge, labeled 1, attached at both ends to a single mark.
The relation �.v/ associated to this mark is 0, so R.DO/ŠR.D0O/˝Q QŒX1�. Both
diagrams have the same set of crossings, so the only difference between zCp.DO/ and
zCp.D

0
O/ comes from the factor associated to the deleted component. This is precisely

the factorization Cp.O/ from the statement of the proposition.

The argument for the MOY I move is not much harder.

Proof of Proposition 4.4 We start by considering the case when DI is the open
diagram shown in Figure 3. Then

R.DI/ŠQŒX1;X2;X3�=.X3CX2�X2�X1/ŠQŒX1;X2�;

while R.D0I/DQŒX1�, so R.DI/ŠR.D0I/˝QŒX2�. The diagram D0I has no crossings,
so Cp.D

0
I/DR.D0I/, while Cp.DI/ is the short factorization

Rf1;�2; 0g
.X3�X1/.X3�X2/ // Rf�1; 0; 0g;

p12

oo

where RDR.DI/. Since X1 DX3 in R.D1/, the entry on the upper arrow is 0. To
compute p12 , we first take the quotient

p.X3/Cp.X4/�p.X2/�p.X1/

.X3�X1/.X3�X2/

in the ring QŒX1;X2;X3;X4�=.X3CX4�X1�X2/ and then set X2 DX4 . In other
words,

p12 D
1

X1�X4

�
p.X1CX2�X4/�p.X1/

X2�X4

C
p.X4/�p.X2/

X2�X4

�ˇ̌̌̌
ˇ
X2DX4

;
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Figure 6: Diagrams for the MOY II move

which reduces to .p0.X1/�p0.X2//=.X1�X2/. Thus Cp.DI/ is exactly the factor-
ization Cp.I/ described in the statement of the proposition, and

Cp.DI/Š Cp.D
0
I/˝QŒX1� Cp.I/:

More generally, suppose that DI and D0I are formed by gluing a fixed graph D to DI

and D0I . Then Lemma 2.8 tells us that zCp.D
0
I/Š

zCp.D/˝QŒX1� Cp.D
0
I/, so

zCp.DI/Š zCp.D/˝QŒX1� Cp.DI/

Š zCp.D/˝QŒX1� Cp.D
0
I/˝QŒX1� Cp.I/

Š zCp.D
0
I/˝Cp.I/;

and the general case follows from the local one.

The proof of the MOY II relation follows its counterpart in [13] almost verbatim.

Proof of Proposition 4.5 As before, we start by assuming that DII and D0II are the
open graphs shown in Figure 6. We label their edges as shown in the figure. Cp.DII/

is an order-two Koszul factorization over the ring

RDQŒX1; : : : ;X6�=.X5CX6�X3�X4;X3CX4�X1�X2/ŠR0ŒX3�;

where R0DQŒX1;X2;X5;X6�=.X5CX6�X1�X2/ŠQŒX1;X2;X5� is isomorphic
to both Re.DII/ and Re.D

0
II/. It is given by a Koszul matrix of the form�
� �.X3�X1/.X3�X2/

� .X3�X5/.X3�X6/

�
:

We use the entry �.X3 �X1/.X3 �X2/ in the first row to exclude the internal vari-
able X3 . The result is a new factorization C1 which is quasi-isomorphic to Cp.DII/

over the ring R0 . C1 is an order-one Koszul factorization defined over the ring

R1 DR=.X 2
3 � .X1CX2/X3CX1X2/:
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We can write C1 D fP;Qg, where Q is obtained by substituting

X 2
3 D .X1CX2/X3�X1X2

into the lower right entry of the factorization above. We have

QD .X1CX2/X3�X1X2� .X5CX6/X3CX5X6

D�X1X2CX5X6 D�.X5�X2/.X5�X1/:

Thus, although Q is a priori an element of R1 , we find that actually Q 2R0 . Since
the product PQ D wp.DII/ is also contained in R0 , P 2 R0 as well. Thus C1 Š

C2˝R0
R1 , where C2 is the short factorization over R0 defined by the pair fP;Qg. In

other words, C2DCp.D
0
II/. Viewed as a module over R0 , we have R1ŠR0˚X3R0 ,

so, over R0 ,
C1 Š C2˚X3C2 D Cp.D

0
II/˚X3Cp.D

0
II/:

Next, we check the grading shifts of the two summands. Cp.DII/ is a direct sum of
four copies of R, with grading shifts f�2; 0g; f0;�2g; f0;�2g and f2;�4g. When we
exclude X3 to get C1 , we are left with two copies of R1 , with grading shifts f�2; 0g

and f0;�2g. Since

R1 ŠR0˚X3R0 DR0˚R0f2; 0g;

C1 is a direct sum of four copies of R0 , with grading shifts f�2; 0g; f0; 0g; f0;�2g

and f2;�2g. On the other hand, Cp.D
0
II/ is a direct sum of two copies of R0 with

grading shifts f�1; 0g and f1;�2g. Thus C1 must decompose as Cp.D
0
II/f�1; 0g˚

Cp.D
0
II/f1; 0g.

Finally, we consider the general situation, in which DII and D0II are formed by attaching
the diagrams shown in the figure to an arbitrary graph D . In this case the result
follows from the special case considered above, the local nature of the KR–complex
(Lemma 2.8), and the fact that if A� B over R, then A˝R C � B˝R C .

Lastly, we turn to the MOY III move. As usual, it suffices to prove the statement of
Proposition 4.6 for the graphs shown in Figure 4 and then appeal to the local nature of
the KR–complex to show that it holds in general. We number the edges of the diagram
DIIIa as shown in Figure 7, and label the external edges of DIIIb , D0IIIa , and D0IIIb to
match. All four diagrams share the same potential

W D p.X4/Cp.X5/Cp.X6/�p.X1/�p.X2/�p.X3/

and the same exterior ring

R0 DQŒX1; : : :X6�=.X4CX5CX6�X1�X2�X3/:
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Figure 7: The diagram DIIIa

In [12; 13], Khovanov and Rozansky introduce an additional factorization ‡ defined
over R0 and with potential W . ‡ is a order-two Koszul factorization given by the
Koszul matrix �

P2 s2.X1;X2;X3/� s2.X4;X5;X6/

P3 X1X2X3�X4X5X6

�
;

where s2.x;y; z/D xyCxzCyz is the degree-two symmetric polynomial. Since W

is symmetric in X1;X2;X3 and X4;X5;X6 , it is not difficult to see that it is in
the ideal generated by the symmetric differences X1 CX2 CX3 �X4 �X5 �X6 ,
s2.X1;X2;X3/ � s2.X4;X5;X6/, and X1X2X3 � X4X5X6 . The first symmetric
difference vanishes in R0 , so we can find P2;P3 2R0 so that

.s2.X1;X2;X3/� s2.X4;X5;X6//P2C .X1X2X3�X4X5X6/P3 DW

in R0 . The choice of P2 and P3 is not unique, but since

s2.X1;X2;X3/� s2.X4;X5;X6/ and X1X2X3�X4X5X6

are relatively prime, Lemma 3.10 implies that any two choices are related by a twist.
For definiteness, we fix some values of P2 and P3 which are symmetric in X1;X2;X3

and (separately) in X4;X5;X6 .

In [13], Khovanov and Rozansky exhibit homotopy equivalences

f W Cp.DIIIa/C! ‡C˚Cp.D
0
IIIb/C;

gW Cp.DIIIb/C! ‡C˚Cp.D
0
IIIa/C:

Our goal is to show that f and g are quasi-isomorphisms. We will prove the following:

Proposition 4.12 Cp.DIIIa/� ‡ ˚Cp.D
0
IIIb/ over R0 .

Geometry & Topology, Volume 19 (2015)



Some differentials on Khovanov–Rozansky homology 3069

For the moment, let us assume that this proposition is true. Observe that D0IIIa is
essentially the same graph as DIIIa , but with the labels on edges 1 and 3 and 4 and
6 reversed. Since ‡ is symmetric in both X1;X2;X3 and X4;X5;X6 , Cp.D

0
IIIa/

will be quasi-isomorphic to ‡ ˚Cp.DIIIb/. It follows that Cp.DIIIa/˚Cp.DIIIb/ and
Cp.D

0
IIIa/˚Cp.D

0
IIIb/ are both quasi-isomorphic to ‡˚Cp.DIIIb/˚Cp.D

0
IIIb/. Thus

Proposition 4.6 is implied by Proposition 4.12. To prove the latter, we follow the
argument given in [13] step by step.

The factorization Cp.DIIIa/ is defined over the ring

RDR.DIIIa/DQŒX1; : : : ;X9�=I;

where

I D .X7CX8�X1�X2; X6CX9�X3�X7; X4CX5�X8�X9/:

We use these relations to eliminate X1 , X7 and X8 , thus expressing R as a polynomial
ring in variables X2;X3;X4;X5;X6;X9 . In this ring, Cp.DIIIa/ is an order-three
Koszul factorization, with Koszul matrix0@� .X2�X8/.X2�X7/

� .X3�X9/.X3�X6/

� .X9�X4/.X9�X5/

1A :
Eliminating X7 and X8 , this becomes0@� .X2CX9�X4�X5/.X2CX3�X6�X9/

� .X3�X9/.X3�X6/

� .X9�X4/.X9�X5/

1A :
We use the right-hand entry of the last row to exclude the internal variable X9 . The result
is an order-two Koszul factorization C1 over the ring R1 DR=.X9�X4/.X9�X5/,
with Koszul matrix�

� X9.X3�X6/CX4X5C .X2�X4�X5/.X2CX3�X6/

� .X3�X9/.X3�X6/

�
:

After a row operation in which we add the bottom entry in the right-hand row to the
top one, we get�

� .X2�X4/.X2�X5/C .X2CX3�X4�X5/.X3�X6/

� .X3�X9/.X3�X6/

�
:
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More explicitly, this factorization is represented by the diagram

R1

b1 //

a2

��

R1
a1

oo

a2

��
R1

�b1 //

b2

OO

R1
�a1

oo

b2

OO

where a1 and a2 are unknown, and

b1 D .X2�X4/.X2�X5/C .X2CX3�X4�X5/.X3�X6/;

b2 D .X3�X9/.X3�X6/:

We now think of C1 as an object of GMF.R0/, and R1 as a free module of rank 2

over R0 . Following [13], we choose an explicit basis f1;X9CX3�X4�X5g for the
two copies of R1 in the lower row of the diagram, and the basis f1;X9�X3g for the
two copies of R1 in the upper row. With respect to these bases, C1 takes the form

R0˚R0

B0
1 //

A2

��

R0˚R0
A0

1

oo

A2

��
R0˚R0

�B1 //

B2

OO

R0˚R0
�A1

oo

B2

OO

where A1;A
0
1
;B1;B

0
1
;A2;B2 are 2� 2 matrices over R0 representing multiplication

by a1; b1; a2 and b2 . The pairs A1 and A0
1

and B1 and B0
1

represent the same linear
maps with respect to different bases, so they are conjugate. For B1 , this is irrelevant —
X9 does not appear in b1 , so B1 is a multiple of the identity map:

B1 D B01 D

�
x 0

0 x

�
;

where xD .X2�X4/.X2�X5/C.X2CX3�X4�X5/.X3�X6/. Direct computation
shows that

B2 D

�
0 y

z 0

�
;

where y D .X3�X4/.X3�X5/.X3�X6/ and z DX6�X3 .
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Lemma 4.13 A1 and A0
1

may be expressed in the form

A1 D

�
a yc=z

c a� qc

�
; A01 D

�
a� qc yc=z

c a

�
;

where q DX4CX5� 2X3 .

Proof Suppose that A1 D
�

a b
c d

�
. Changing basis, we see that

A01 D

�
a� qc bC q.a� d/� q2c

c d C qc

�
;

where q DX4CX5� 2X3 . The component of dCd�C d�dC which maps from the
bottom right corner of the square to the upper left must vanish, so A0

1
B2 D B2A1 , or,

more explicitly�
a� qc bC q.a� d/� q2c

c d C qc

��
0 y

z 0

�
D

�
0 y

z 0

��
a b

c d

�
:

Multiplying out and equating terms, we find that we must have d D a � qc and
yc D zb .

Lemma 4.14 A2 D

�
�xc0 ˇ

 �xc0

�
, where zc0 D c .

Proof Suppose that A2 D
� ˛ ˇ
 ı

�
. Inspecting the component of d�dCCdCd� which

maps the lower left-hand corner of the diagram to itself, we see that A2B2CB1A1 D

W � Id, or �
˛ ˇ

 ı

��
0 y

z 0

�
C

�
x 0

0 x

��
a yc=z

c a� qc

�
D

�
W 0

0 W

�
:

Inspecting the off-diagonal elements, we find that zıCxc D y˛Cxyc=z D 0. Since
x and z are relatively prime, we must have c D zc0 , ı D �xc0 for some c0 2 R0 .
Substituting into the second equation, we see that ˛ D ı .

Thus we can write A and A0 in the form

A1 D

�
a yc0

zc0 a� qzc0

�
; A01 D

�
a� qzc0 yc0

zc0 a

�
:

Consider the map H from the upper right-hand copy of R0˚R0 to the lower left
given by the matrix H D

�
�c0 0

0 �c0

�
. The twisted factorization C2.H / has the same

positive differentials as C2 , but the negative differentials are given by matrices

A1.H /D

�
a 0

0 a� qzc0

�
; A01.H /D

�
a� qzc0 0

0 a

�
; A2.H /D

�
0 ˇ

 0

�
:
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It is now clear that C2.H / decomposes as a direct sum: one summand consists of the
first copies of R0 in the top row and the second copies in the bottom, and the other of
the second copies in the top and the first in the bottom. Both summands are order-two
Koszul factorizations over R0 , with Koszul matrices�

a� qzc0 x

 z

�
and

�
a x

ˇ y

�
:

Recalling that

y D .X3�X4/.X3�X5/.X3�X6/; z DX3�X6;

x D z.X4CX5�X2�X3/C .X2�X4/.X2�X5/;

and using row operations to simplify the right-hand columns, we see that these are
equivalent to Koszul matrices of the form�

� .X2�X4/.X2�X5/

� X3�X6

�
and

�
� s2.X1;X2;X3/� s2.X4;X5;X6/

� X1X2X3�X4X5X6

�
:

By Lemma 3.10, the first factorization is a twisted version of�
p1245 .X2�X4/.X2�X5/

p36 X3�X6

�
;

where

p1245 D
p.X4/Cp.X5/�p.X1/�p.X2/

X4CX5�X1�X2

and p36 D
p.X6/�p.X3/

X6�X3

:

Arguing as in the proof of Lemma 4.10, we see that this factorization is quasi-isomorphic
to Cp.D

0
IIIb/. Likewise, Lemma 3.10 shows that the second factorization is a twisted

version of ‡ .

To recap, we have shown that Cp.DIIIa/� C1 . By Lemma 3.6, C1 � C1.H /, which
decomposes into a direct sum of two order-two Koszul complexes. Finally, a further
application of Lemmas 3.6 and 3.10 shows that these are quasi-isomorphic to Cp.D

0
IIIb/

and ‡ . We leave it as an exercise for the reader to check that the two summands have
the correct bigrading. This concludes the proof of Proposition 4.6.

5 Relation between H and HN

We are now in a position to address the relation between the HOMFLY and sl.N /

homologies. Here is our main result.
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Theorem 5.1 Suppose L � S3 is a link, and let i be a marked component of L.
For each p 2 QŒx�, there is a spectral sequence Ek.p/ with E1.p/ Š H .L/ and
E1.p/ŠHp.L; i/. For all k > 0, the isomorphism type of Ek.p/ is an invariant of
the pair .L; i/.

Corollary 5.2 The isomorphism type of Hp.L; i/ is an invariant of .L; i/.

The relation of these sequences with the various gradings may be summarized as follows.
Let dk.p/W Ek.p/!Ek.p/ be the k th differential in the sequence. If p.x/D xNC1 ,
then dk.p/ is homogenous of degree .2N k;�2k; 2� 2k/ with respect to the triple
grading on H .K/. In particular, each dk.p/ preserves the grading gr0

N
D qC2N grh .

The grading on E1.p/ induced by gr0
N

is equal to the polynomial grading grN D

qC .N � 1/ grh on HN .L; i/.

For general values of p , dk.p/ is no longer homogenous with respect to the q–grading,
but it is still the case that dk.p/ shifts grh by �k and grv by 1� k . Thus the dk.p/

are all homogenous of degree 1 with respect to the grading gr� . The grading induced
by gr� on the E1 term is equal to the homological grading on Hp.k/.

A few other remarks on the theorem are in order. First, it is possible to prove an
analogous result for the unreduced homology. The argument is very similar to the
one in the reduced case, except that we don’t need to worry about keeping track of a
marked edge. Second, in terms of invariance, the spectral sequence suffers from the
same drawback as the HOMFLY homology — we can show that any two diagrams
representing the same link give rise to isomorphic spectral sequences, but not that the
isomorphism is canonical. Finally, we expect that Hp.L; i/ should be determined
by the order of vanishing of p0.x/ at x D 0, and that zHp.L/ should be determined
by the multiplicities of the roots of p0.x/. (This idea has its source in the work of
Gornik [4]. Although we will not pursue it here, some supporting evidence has been
provided by Mackaay and Vaz [17].) In particular, it seems unlikely that the set of
all homologies Hp.L; i/, p 2QŒx� contains more information than is present in the
sl.N / homologies.

5.1 Definition and basic properties

We now construct the spectral sequence Ek.p/. Given a link L with a marked
component, we fix a braid diagram D representing L and an edge i belonging
to the marked component. The complex Cp.D; i/ is endowed with differentials
dC; d� and dv . Since D is a closed diagram, all three differentials anticommute. It
follows that HCp .D; i/ inherits a pair of anticommuting differentials d�� and d�v . The
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differential d�� lowers grh by 1 and preserves grv , while d�v raises grv by 1 and
preserves grh . Thus the triple .HCp .D; i/; d

�
v ; d

�
�/ defines a double complex with

total differential dv� D d�v C d�� and total grading gr� D grv � grh . Like any double
complex, .HCp .D; i/; dv�/ comes with two natural filtrations: a horizontal filtration
induced by grh , and a vertical filtration induced by grv .

Definition 5.3 Ek.p/ is the spectral sequence induced by the horizontal filtration on
the complex .HCp .D; i/; dv�/.

As we did in the definition of H , we shift the triple grading on Ek.p/ by a factor
of f�wC b � 1; wC b � 1; w � bC 1g, where w and b are the writhe and number
of strands in the diagram D . With this normalization, the first claim of Theorem 5.1
is easily verified. E0.p/ D HCp .D; i/f�wC b � 1; wC b � 1; w � bC 1g, and the
differential d0.p/W E0.p/!E0.p/ is the part of d�v C d�� which preserves grh . In
other words, d0.p/D d�v , so

E1.p/DH.HCp .D; i/; d
�
v /f�wC b� 1; wC b� 1; w� bC 1g ŠH .L; i/:

To complete the proof of the theorem, we must show that the total homology satisfies

H.HCp .D; i/; dv�/ŠHp.D; i/;

and that the sequence is an invariant of the pair .L; i/. Before we doing this, we pause
to discuss some elementary properties of Ek.p/. First, note that when p is a linear
polynomial, the differential d� is identically zero, and the spectral sequence converges
trivially to Hp.D; i/ŠH .D/. Thus the sequence is only interesting when deg p > 1.
For the rest of the section, we will assume that this is the case.

Next, we address the issue of gradings.

Lemma 5.4 The differential dk.p/ is homogenous of degree �k with respect to grh

and degree 1� k with respect to grv . In addition, if p.x/ D xNC1 , then dk.p/ is
homogenous of degree 2N k with respect to the q–grading.

Proof When p.x/D xNC1 , this follows immediately from the fact that d� and dv
are homogenous of degrees .2N;�2; 0/ and .0; 0; 2/ with respect to the triple grading
on HCp .D; i/. For general values of p , d� is no longer homogenous with respect
to the q–grading, but its behavior with respect to the homological gradings remains
unchanged.

When p.x/DxNC1, the differentials dk.p/ all preserve the quantity gr0
N
DqC2N grh ,

so the graded Euler characteristic of H.HCp .D; i/; dv�/ with respect to gr0
N

will be
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the same as the graded Euler characteristic of E1.p/. Using Theorem 2.11, we
compute that

�.E1.p//D
X

.�1/gr�qgr0
N dim H .L; i/

D

X
i;j ;k

.�1/k�j qiCNj dim H i;j ;k.L; i/

D

X
i;j ;k

.�1/k�j aj qi dim H i;j ;k.L; i/
ˇ̌
aDqN

D PL.q
N ; q/:

Since the graded Euler characteristic of H.HCp .D; i/; dv�/ is given by the sl.N /

polynomial, it’s at least plausible that the homology should agree with HN .

Next, we consider the relation between Ek.p/ for different values of p . In the
original complex Cp.D; i/, the underlying group and the differentials dC and dv are
independent of p . Thus E0.p/ D HCp .D; i/ is independent of p , as is d0 D d�v .
It follows that we can view E1.p/ D H .L; i/ as being equipped with an infinite-
dimensional family of differentials d1.p/; one for each p 2QŒx�.

Lemma 5.5 d1.apC bq/D ad1.p/C bd1.q/

Proof Denote the differential d� on Cp.D/ by d�.p/. We claim that

d�.apC bq/D ad�.p/C bd�.q/:

Since d1.p/ is the map induced by d�.p/, the claim implies the statement of the
lemma. To prove it, observe that, for an elementary tangle D , the potential

Wp D p.X3/Cp.X4/�p.X1/�p.X2/

satisfies WapCbq D aWpC bWq . The coefficients of d�.p/ are quotients of Wp by
fixed polynomials, so they are also linear in p . Finally, it is easy to see that the linearity
property is preserved under tensor product, so the claim holds.

Corollary 5.6 For all p; q 2QŒx�, d1.p/ and d1.q/ anticommute.

Proof We have d1.p/d1.q/Cd1.q/d1.p/D .d1.p/Cd1.q//
2D d1.pCq/2D 0.
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5.2 The total homology

Our goal in this section is to calculate the homology group H.HCp .D; i/; dv�/ to which
Ek.p/ converges. (Throughout, we continue to assume that deg p > 1.) To do this,
we use two more spectral sequences — one which converges to H.HCp .D; i/; dv�/,
and another which can be used to calculate Hp.D; i/. The key point is to show that
both of these sequences converge at the E2 term, and that the E2 terms agree.

We start off with some notation. Suppose that C � is a graded matrix factorization with
potential 0, so that dC anticommutes with d� . Then we define

H˙.C �/DH.H.C �; dC/; d
�
�/:

When C �DCp.D; i/, we abbreviate this to H˙.D; i/. Both dC and d� are homoge-
nous with respect to the homological grading on C (albeit with different degrees), so
this grading descends to a well-defined grading on H˙.C �/.

Lemma 5.7 If C � and D� are quasi-isomorphic factorizations with potential 0, then
H˙.C �/ŠH˙.D�/.

Proof The definition of quasi-isomorphism implies that the complex .H.C �; dC/; d��/
is isomorphic to .H.D�; dC/; d��/.

Lemma 5.8 If D is a closed braid graph on b strands, then H˙p .D; i/ is supported in
horizontal grading grh D 1� b .

Proof As in Section 4.3, we use the MOY relations to induct on the complexity of D .
In the base case, D is a single circle, and H˙p .D; i/Š Cp.D; i/ŠQ is supported in
grading grh D 0.

For the induction step, we use Lemma 4.1 to see that D can be related to diagrams of
lesser complexity using the MOY moves. In fact, we claim that D can be simplified by
a MOY move which has the marked edge i as an external edge. To see this, write D as
the closure of an open braid in such a way that i is one of the edges which appear in the
closure. Then i will be an external edge for any MOY II or III move provided by the
lemma. If i lies on a loop which could be eliminated by a MOY O move, we ignore it
and simplify using some other MOY move. Finally, if i is a small loop which is about
to be eliminated by a MOY I move, i must be the rightmost strand in D . In this case,
we consider the mirror image D of D . It’s easy to see that Cp.D; i/ŠCp.D; i/, and
the marked edge in D is on the leftmost strand. We now use Lemma 4.1 to simplify D

as before.
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Thus, in order to prove the lemma, it is enough to check that if the statement holds for
the less complex diagram(s) in each of the four MOY moves, it also holds for the more
complex one. For example, suppose DO and D0O are related by a MOY O move, so that

Cp.DO/Š Cp.D
0
O/˝Q Cp.O/:

Then
Cp.DO; i/Š Cp.D

0
O; i/˝Q Cp.O/;

and dC D 0 on Cp.O/, so

HCp .DO; i/ŠHCp .D
0
O; i/˝Q Cp.O/:

By the Kunneth formula,

H˙p .DO; i/ŠH˙p .D
0
O; i/˝Q H.Cp.O/; d�/:

D0O has one fewer strand than Hp.D/, so Hp.D
0
O; i/ is supported in grh D 2� b by

the induction hypothesis. When deg.p/ > 1, H.Cp.O/; d�/ is supported in grhD�1.
Thus H˙p .DO; i/ is supported in grh D 1� b as claimed.

Similarly, if DI and D0I are related by a MOY I move,

Cp.DI; i/Š Cp.D
0
I; i/˝QŒX1� Cp.I/ and HCp .DI; i/ŠHCp .D

0
I; i/˝QŒX1� Cp.I/:

The complex .Cp.I/; d�/ has the form

QŒX1;X2�f0;�2g QŒX1;X2�f0;�0g;
p0

12
oo

where p0
12
D .p0.X1/�p0.X2//=.X1�X2/. When deg p > 1, its homology is a free

module over QŒX1�, supported in grading grhD�1. As in the previous case, we apply
the Kunneth formula to conclude that H˙p .DI; i/ is supported in grh D 1� b .

Next, suppose that DII and D0II are related by a MOY II move which takes place away
from the marked edge i . Proposition 4.5 tells us that

Cp.DII/� Cp.D
0
II/f�1; 0g˚Cp.D

0
II/f1; 0g

over a ring R which contains QŒXi � as a subring. By Corollary 3.9, it follows that

Cp.DII; i/� Cp.D
0
II; i/f�1; 0g˚Cp.D

0
II; i/f1; 0g:

Applying Lemma 5.7, we see that

H˙p .DII; i/�H˙p .D
0
II; i/f�1; 0g˚H˙p .D

0
II; i/f1; 0g:

Geometry & Topology, Volume 19 (2015)



3078 Jacob Rasmussen

Since both diagrams have the same number of strands, the result follows from the
induction hypothesis. The argument for the MOY III move is very similar, and is left
to the reader.

Corollary 5.9 If D is a closed braid on b strands, H˙p .D; i/ is supported in horizontal
grading grh D 1� b .

Proof Since we are only taking homology with respect to dC and d� , H˙p .D; i/

decomposes as a direct sum over MOY states of D (cf Lemma 4.9):

H˙p .D; i/Š
M
�

H˙p .D� ; i/f�.�/; 0;��.�/g:

If D is a braid on b strands, each diagram D� will be a braid graph on b strands. There
are no shifts in grh , so each summand H˙p .D� ; i/ is supported in grh D 1� b .

Proposition 5.10 If D is a closed braid, then

H.HCp .D; i/; dv�/ŠH.H˙p .D; i/; d
�
v /:

Proof We compute the total homology using the spectral sequence induced by the
vertical filtration on .HCp .D; i/; d

�
v ; d

�
�/. In this sequence, d0D d�� , so the E1 term is

H.HCp .D; i/; d
�
�/DH˙p .D; i/:

By Corollary 5.9, this group is supported in a single horizontal grading.

The differential d1 is the induced map d�v W H
˙
p .D; i/! H˙p .D; i/. Thus the E2

term of the sequence is the group H.H˙p .D; i/; d
�
v /. For n > 1, the differential dn

raises grv by n and grh by n�1. Since the E1 term (and thus the E2 term) is supported
in a single horizontal grading, dn � 0 for all n> 1, and the sequence converges at the
E2 term. A priori, this implies that the graded group H.H˙p .D; i/; d

�
v / is isomorphic

to the associated graded group of H.HCp .D; i/; dv�/. In fact, for each value of the
homological grading gr� , the former group is supported in a unique value of the
filtration grading grv . Thus the two groups are canonically isomorphic.

Our next task is to relate the group H.H˙p .D; i/; d
�
v / to Hp.D; i/. To do so, we use

a slightly different spectral sequence. Recall that if .C �; d˙/ is a matrix factorization
with potential 0, we can form the total differential dtot D dCC d� .

Lemma 5.11 If C � is a matrix factorization with potential 0, there is a spectral
sequence with E2 term H˙.C �/ which converges to H.C �; dtot/.
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Proof We define an increasing filtration of .C �; dtot/ by Fn D
L

i<n C i ˚ ker dn
C ,

where dn
C denotes the component of dC which maps C n to C nC1 . The E0 term of

the spectral sequence induced by this filtration is the associated graded complex

En
0 D

Fn

Fn�1
Š

C n�1

ker dn�1
C

˚ ker dn
C:

The differential d0W E
n
0
!En

0
is given by d0.x;y/D .d�y; dCx/. If d0.x;y/D 0,

then dCx D 0, so x D 0 as an element of C n�1= ker dn�1
C . Conversely, dCd�y D

�d�dCyD 0 for any y 2 ker dn
C , so d�yD 0 as an element of C n�1= ker dn�1

C . Thus

ker d0 D f.0;y/ jy 2 ker dn
Cg Š ker dn

C:

Similarly, im d0 Š im dn�1
C , so En

1
DH.En

0
; d0/ŠH n.C �; dC/.

Next, we consider the differential d1W E
n
1
! En�1

1
. An element of En

1
can be

represented by x 2 ker dn
C , and d1x is the image of dtotx D d�x in En�1

1
. In

other words, d1 is given by d��W H
n.C �; dC/!H n�1.C �; dC/, and the E2 term is

H.H.C �; dC/; d
�
�/DH˙.C �/.

Lemma 5.12 If D is a closed braid graph, then H.Cp.D; i/; dtot/ŠH˙p .D; i/:

Proof We apply the sequence of the preceding lemma to the complex .Cp.D; i/; dtot/.
By Lemma 5.8, the E2 term is supported in a single homological grading, and thus in
a single filtration grading as well. It follows that the sequence has converged at the E2

term. As in the proof of Proposition 5.10, the fact that the E1 term is supported in a
single filtration grading implies that it is canonically isomorphic to the total homology.

Proposition 5.13 If D is a closed braid, then Hp.D; i/ŠH.H˙p .D; i/; d
�
v /:

Proof By definition, Hp.D; i/ is the homology of the complex .H.Cp.D; i/; dtot/;d
�
v /.

To prove the proposition, it suffices to show that this complex is isomorphic to
.H˙p .D; i/; d

�
v /. The complex .Cp.D; i/; dtot/ splits as a direct sum over MOY

states of D , so, by the previous lemma, the underlying group H.Cp.D; i/; dtot/ is
isomorphic to H˙p .D; i/.

To see that the differentials are identified under this isomorphism, we must check that
the following diagram commutes:

H.C p.D; i/; dtot/
d�v // H.C p.D; i/; dtot/

H˙p .D; i/
d�v // H˙p .D; i/
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To show this, we filter CtotD .Cp.D; i/; dtot/ as in the proof of Lemma 5.11. Since dv
commutes with dC , the map dvW Ctot! Ctot preserves the filtration. It thus induces a
morphism of spectral sequences .dv/k W Ek!Ek which converges to d�v W Htot!Htot .
In particular, the map .dv/2 is the induced map d�v W H

˙
p .D; i/!H˙p .D; i/. Since

both sequences converge at the E2 term, .dv/2 is also equal to the associated graded
map of d�v W Htot!Htot . Since Htot is supported in a single filtration grading, the two
maps are actually equal.

To sum up, we have:

Proposition 5.14 The spectral sequence Ek.p/ converges to Hp.D; i/. The grading
gr� on Ek.p/ corresponds to the homological grading on Hp.D; i/, and if p.x/D

xNC1 , the grading gr0
N

on Ek.p/ corresponds to the polynomial grading grN on
Hp.D; i/.

Proof The first statement is immediate from Propositions 5.10 and 5.13, so we just
need to check that the gradings agree. The triple grading on E1.p/ is the grading on
Cp.D; i/, shifted by f�wC b � 1; wC b � 1; w � bC 1g, where w and b are the
writhe and number of strands in D . We write gr�.E/ and gr�.C / for the shifted and
unshifted gradings, so that

gr�.E/D grv.E/� grh.E/D grv.C /� grh.C /� bC 1

and
gr0N .E/D q.E/C 2N grh.E/

D q.C /C 2N grh.C /C .N C 1/.b� 1/C .N � 1/w:

On E1.p/, gr�.C / and gr0
N
.C / agree with the gradings gr� and gr0

N
on the total

homology H.HCp .D; i/; dv�/. The gradings on the latter group can be computed using
the spectral sequence of Proposition 5.10, whose E1 term is supported in grhD 1�b .
Substituting, we find that

gr�.E/D grv.C /� .1� b/� bC 1D grv.C /;

which is the homological grading on Hp.D; i/, and

gr0N .E/D q.C /� .N � 1/.b� 1/C .N � 1/w

D q.C /C .N � 1/ grh.C /C .N � 1/w

D grN .C /C .N � 1/w;

which is the polynomial grading on HN .D; i/.
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5.3 Change of marked edge

We now turn to the last part of Theorem 5.1; the invariance of Ek.p/. The first step is
to show that, for a fixed braid diagram D representing L, Ek.p/ depends only on the
component of L containing the marked edge i , and not on i itself.

Suppose for the moment that D is an arbitrary tangle diagram. If i is an internal
edge of D , multiplication by Xi defines an endomorphism Xi W Cp.D/! Cp.D/:

Viewing Cp.D/ as an object of Kom.GMFw.R.D///, we can form the mapping
cone Cone.Xi/, which is also an object of Kom.GMFw.R.D///. We would like to
view Cone.Xi/ as a factorization over the ring Ri.D/DR.D/=.Xi/. To do so, we
observe that, since Xi is a generator of the polynomial ring R.D/, there is an inclusion
Ri.D/�R.D/ with the property that Ri.D/ŒXi �ŠR.D/.

Lemma 5.15 Cone.Xi/ is homotopy equivalent to Cp.D; i/ in Kom.GMFw.Ri.D///.

Proof As a matrix factorization, Cone.Xi/D Cp.D/˚Cp.D/. The vertical differen-
tial is given by

dv.x;y/D .dvx; dvyC .�1/grv xXi �x/:

Let �0W Cp.D/! Cp.D; i/ be the projection, and define � W Cone.Xi/! Cp.D; i/

by �.x;y/ D �0.y/. Since Cp.D/ is a free module over R.D/ D Ri.D/ŒXi �, we
have an injection �0W Cp.D; i/! Cp.D/ modeled on the inclusion Ri.D/�R.D/.
We extend this to an inclusion �W Cp.D; i/! Cone.Xi/ given by �.z/ D .0; �0.z//.
The composition �� is the identity map, and �� is homotopic to the identity via a
homotopy H W Cone.Xi/! Cone.Xi/ given by H.x;y/D ..y � ��y/=Xi ; 0/.

Lemma 5.16 Suppose D is a tangle diagram, and let j and k be two edges of D

which belong to the same component of the underlying tangle and are separated by a
single ordinary crossing. (For example, the edges labeled j and k in Figure 1.) Then
Xj and Xk are homotopic morphisms from Cp.D/ to itself.

Proof Suppose that D is the elementary diagram DC . The complex Cp.DC/ has
the form

Rf0;�2; 0g
.Xk�Xi / // Rf0; 0; 0g

p1

oo

Rf2;�2;�2g
�.Xk�Xi /.Xk�Xj / //

.Xj�Xk/

OO

Rf0; 0;�2g
p12

oo

1

OO
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where RDR.DC/: The homotopy H is given by the vertical arrows in the diagram

Rf0;�2; 0g
.Xk�Xi / //

1

��

Rf0; 0; 0g
p1

oo

.Xj�Xk/

��
Rf2;�2;�2g

�.Xk�Xi /.Xk�Xj / // Rf0; 0;�2g
p12

oo

It’s easy to see that H commutes with dC and d� and that dvH CHdv DXj �Xk .
Since Xj �Xk DXl�Xi in R.DC/, multiplication by Xi and Xl are also homotopic.
The reader can easily check that there is a similar homotopy when D is the elementary
diagram D� .

For a general diagram D , the local nature of the KR–complex implies that we can write
Cp.D/Š Cp.D˙/˝R.D˙/

Cp.D
0/, where D˙ is the crossing separating j from k ,

and D0 is the rest of the diagram. In terms of this decomposition, Xj W Cp.D/!Cp.D/

can be written as Xj ˝1 and similarly for Xk . Clearly f � g implies f ˝1� g˝1,
so we are done.

Next, we need a general result from homological algebra.

Lemma 5.17 Suppose A is an additive category. If f W A! B and gW A! B are
homotopic in Kom.A/, then Cone.f /Š Cone.g/.

Proof If H W A! B is the homotopy from f to g , then the map H W Cone.f /!
Cone.g/ defined by h.a; b/D .a; b�Ha/ is an isomorphism with inverse h�1.a; b/D

.a; bCHa/.

By repeatedly applying the lemmas, we see that if i and j belong to the same com-
ponent of L then Cp.D; i/ and Cp.D; j / are homotopy equivalent as objects of
Kom.GMF0.Q//.

Proposition 5.18 Suppose D is a diagram representing a link L and that i and j are
edges of D which belong to the same component of L. If we denote by Ek.p;D; i/

the spectral sequence associated to the pair .D; i/, then Ek.p;D; i/Š Ek.p;D; j /

for all k > 0.

Proof Let f W Cp.D; i/! Cp.D; j / be a homotopy equivalence. Recall the func-
tor HCW GMF0.Q/ ! Kom.Q/, which takes a factorization C � to the complex
.HC.C �/; d��/. We apply HC to f and get a homotopy equivalence

f CW HCp .D; i/!HCp .D; j /
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in the category Kom.Kom.Q// (ie double complexes over Q). Since f C respects the
horizontal filtration on HCp , it induces a map of spectral sequences f C

k
W Ek.p; i/!

Ek.p; j /. The map f C
1
W E1.p; i/!E1.p; j / is the induced map

.f C/�W H.HCp .D; i/; d
�
v /!H.HCp .D; i/; d

�
v /:

Since f C is a homotopy equivalence with respect to d�v , this map is an isomorphism.
This proves the claim when k D 1. Finally, it is a well-known property of spectral
sequences that if f Cr is an isomorphism then f C

k
is an isomorphism for all k > r as

well. (See eg [18, Theorem 3.4].)

5.4 Invariance under Reidemeister moves

The final step in the proof of Theorem 5.1 is to show that Ek.p/ remains invariant when
we vary the diagram D . Following [13], we make some preliminary simplifications of
the problem. By assumption, the diagram representing L is a braid diagram. Any two
braid diagrams representing the same link L can be joined by a sequence of the five
moves shown in Figure 8, so it is enough to prove that Ek.p/ is invariant under these
moves. Also, using Proposition 5.18, we can assume that the marked edge i does not
participate in the move.

DIC
D0IC DI� D0I�

DIIC
D0IIC DII� D0II�

DIII D0III

Figure 8: Braidlike Reidemeister moves
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In what follows, it will be important to keep track of the category we are working in.
To help with this, we introduce the following notation, writing

Cj D Kom.GMFw.Dj /.Re.Dj ///; CCj D Kom.Kom.Re.Dj ///;

Kj D Kom.hmf.Re.Dj ///; KCj D Kom.Mod.Re.Dj ///;

where j D I; II; III. The same symbols without subscripts indicate the correspond-
ing category for a closed diagram (for example C D Kom.GMF0.Q//). There is a
commutative square of functors

C HC //

F
��

CC

F
��

K HC // KC

where F is the forgetful functor which corresponds to ignoring the differential d� (or
d�� ) and HC is the functor which corresponds to taking homology with respect to dC .

Suppose that Dj and D0j are closed diagrams related by the j th Reidemeister move.
Below, we will show that there are morphisms

�j W H
C
p .Dj ; i/!HCp .D

0
j ; i/ .j D I˙; II˙; III/

in the category CC with the property that F.�j / is a homotopy equivalence in KC . This
is sufficient to prove the theorem. Indeed, arguing as in proof of Proposition 5.18, we see
that �j induces a morphism of spectral sequences .�j /k W Ek.P;Dj ; i/!Ek.P;D

0
j ; i/

which is an isomorphism for k > 0.

Most of the work involved in constructing the �j and showing they are homotopy
equivalences has already been done by Khovanov and Rozansky. In [13], they prove
invariance of the HOMFLY homology by exhibiting homotopy equivalences

�j W F.Cp.Dj //! F.Cp.D
0
j //

in the category Kj . From the local nature of the KR–complex, it follows that there are
homotopy equivalences

�j ˝ 1W F.Cp.Dj ; i//! F.Cp.D
0
j ; i//

in K . The morphism �j will be derived from �j , in the sense that F.�j /DHC.�j˝1/.

Reidemeister I move In this case, we can work directly in the category CI .

Lemma 5.19 There are morphisms �I˙ W Cp.DI˙/!Cp.D
0
I˙
/ in CI with the property

that F.�I˙/ is a homotopy equivalence.
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Proof The ring Re.RI˙/ is isomorphic to QŒX1�. Since R0I has no crossings,
Cp.R

0
I/ D QŒX1� as well. Arguing as in the proof of Proposition 4.4, we see that

the complex Cp.IC/ has the form

QŒX1;X2�f0;�2; 0g
0 // QŒX1;X2�f0; 0; 0g

p0.X1/�p0.X2/

oo

QŒX1;X2�f2;�2;�2g
0 //

X2�X1

OO

QŒX1;X2�f0; 0;�2g
p0

12

oo

1

OO

The morphism �IC takes the copy of QŒX1;X2� in the top left to Cp.R
0
I/DQŒX1� by

substituting X2 DX1 , and is zero elsewhere. Similarly, Cp.I�/ is the complex

QŒX1;X2�f0;�2; 2g
0 // QŒX1;X2�f�2; 0; 2g

p0
12

oo

QŒX1;X2�f0;�2; 0g
0 //

1

OO

QŒX1;X2�f0; 0; 0g
p0.X1/�p0.X2/

oo

X2�X1

OO

and the morphism �I� takes the copy of QŒX1;X2� in the top right to Cp.R
0
I/DQŒX1�

by substituting X2 D X1 , and is zero elsewhere. The reader can easily verify that
both �IC and �I� are morphisms in CI and that their restrictions to KI are homotopy
equivalences. (In fact, they are the morphisms �I˙ defined in [13].)

By the local nature of the KR–complex, there are morphisms

�I˙ ˝ 1W Cp.D; i/! Cp.D; i/

in C which restrict to homotopy equivalences in K . Finally, the morphism

�I˙ W H
C
p .DI˙ ; i/!HCp .D

0
I˙
; i/

is defined to be HC.�I˙˝1/. The fact that F.�I˙/ is a homotopy equivalence follows
from the relation FHCDHCF . This concludes the proof of Reidemeister I invariance.

Reidemeister II move As shown in Figure 8, there are two different versions of the
oriented Reidemeister II move. We discuss only the first one; the proof for the other
is virtually identical. We can represent Cp.DIIC ; i/ by the diagram on the left-hand
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˚

.�1; �2/

�1˚�2

�

f1gf�1g

Figure 9: The complex HCp .DIIC ; i/

side of Figure 9. Each corner of the square is an object of C , and the edges represent
additional components of dv going between them. We apply the functor HC to get
HCp .DIIC ; i/. Using the MOY II decomposition on each factorization in the complex
at the bottom left of the square (and Lemma 4.10 on the other corners) we see that
HCp .DIIC ; i/ has the form shown on the right-hand side of the figure.

Consider the maps �1W HCp . ; i/!HCp . ; i/ (from the upper left-hand corner to the
first summand on the bottom left) and �2W H

C
p . ; i/!HCp . ; i/ (from the second

summand to the bottom right). We claim that both �1 and �2 are isomorphisms in CC .
To see this, we return to Cp.DII; i/, and apply the functor F . In K , we can use the
MOY II decomposition directly, without applying HC first. We get a diagram like
that on the right-hand side of Figure 9, with corresponding morphisms z�1 and z�2 . The
main ingredient in the proof of invariance under the Reidemeister II move in [13] is
to show that z�1 and z�2 are isomorphisms. From this, it follows that HC.z�1/D F.�1/
and HC.z�2/ D F.�2/ are isomorphisms. But if f is a morphism in CC with the
property that F.f / is an isomorphism in KC , then f is an isomorphism in CC . (In
plainer language, a chain map that is an isomorphism at the level of modules is an
isomorphism.) This proves the claim.

At this point, a standard cancellation argument like that used in the proof of invariance
under the Reidemeister II move in [9] or [12] shows that HCp .DII; i/ is homotopy
equivalent to HCp .D

0
II; i/ in CC . This concludes the proof of Reidemeister II invariance

Reidemeister III move The argument in this case is similar to the one for the Rei-
demeister II move. We start out with the complex Cp.DIII; i/, which has the form
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ˇ

˛
˚ ˚

Figure 10: The complex HCp .DIII; i/

illustrated in the top half of Figure 10. After applying the functor HC and using the
MOY II and III decompositions, we get the diagram for HCp .DIII/ shown in the bottom
half of the figure. Our first claim is that the maps labeled ˛ and ˇ are isomorphisms.
The proof is the same as it was for the Reidemeister II move — we consider the
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Figure 11: Simplified version of HCp .DIII; i/

analogous decomposition of Cp.DIII; i/ in the category K , where Khovanov and
Rozansky proved that the corresponding maps z̨ and ž are isomorphisms. (This is the
first part of the proof of [13, Proposition 8].) Canceling the summands connected by ˛
and ˇ , we see that HCp .DIII; i/ is homotopy equivalent (in CC ) to a complex C of
the form shown in Figure 11.

An analogous simplification of HCp .D
0
III/ shows that it is homotopy equivalent to a

complex C 0 which also has the form shown in Figure 11. To be precise, it has the
same six subquotients as C . A priori, however, the morphisms between them may
be different. We claim that in reality this is not the case; the maps in C and C 0

corresponding to a fixed arrow in the diagram are the same up to multiplication by
a nonzero element of Q. It follows that C Š C 0 in CC , which gives us the desired
homotopy equivalence between HCp .DIII; i/ and HCp .D

0
III; i/.

To prove the claim, we go back to the proof of the Reidemeister III move in [13].
There, Khovanov and Rozansky consider the complexes of the open diagrams Cp.DIII/

and Cp.D
0
III/ in the category KIII . As we have described above, they show that they

are homotopy equivalent to complexes Co and C 0o of the form illustrated in Figure 11.
Moreover, they show that the morphisms in Co and C 0o corresponding to a fixed edge
in the figure are nonzero multiples of each other. Going from this statement to our
claim is just a matter of applying functoriality. More precisely, suppose f and f 0 are
morphisms in C and C 0 associated to some edge of the diagram, and that fo and f 0o
are the corresponding morphisms in Co and C 0o . Then

F.f /DHC.fo˝ 1/ and F.f 0/DHC.f 0o˝ 1/

It follows that F.f / is a nonzero multiple of F.f 0/. Since a morphism of complexes
is determined by its action on modules, f is a nonzero multiple of f 0 . This concludes
the proof of Reidemeister III invariance.
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6 An additional sequence

We now turn our attention to the spectral sequence described in Theorem 3, which is a
special case of the following result:

Theorem 6.1 Suppose L � S3 is an `–component link, and let U ` be the `–
component unlink. There’s a spectral sequence Ek.�1/ which has E2 term H .L/

and converges to H .U `/. The differentials in this sequence raise the cohomological
grading grC by 1 and preserve the polynomial grading gr0

�1
D q� 2 grh .

More precisely, the differential dk is homogenous of degree .2� 2k; 2� 2k; 2k/ with
respect to the triple grading on H .L/.

Compared with the sequences of the preceding section, this construction of Ek.�1/

is quite simple. Indeed, the fact that such a sequence should exist is well-known to
experts in the field. It is more surprising, however, that the behavior of this sequence
with respect to the triple grading should so closely match the behavior predicted in [3]
for the “canceling differential” d�1 .

Proof We represent L by a braidlike diagram D , and consider the globally reduced
complex Cr .D/ defined in Section 2.8. The triple .Cr .D/; dC; dv/ is a double complex
with respect to the bigrading .grh; grv/. The total differential on this complex is dCCdv ,
and the total grading is grhC grv D grC . In addition, since dC and dv have degrees
.2; 2; 0/ and .0; 0; 2/ with respect to the triple grading on Cr .D/, dCC dv preserves
the polynomial grading gr0

�1
D q� 2 grh .

The spectral sequence of the theorem is induced by the horizontal filtration on the
complex .Cr .D/; dCC dv/. This sequence has E2 term H.H.Cr .D/; dC/; d

�
v / D

H .L/, and converges to the total homology H.Cr .D/; dvC dC/.

To compute the latter group, we consider the spectral sequence induced by the vertical
filtration on Cr .D/. The E1 term of this sequence is H.Cr .D/; dv/. Recall that
Cr .D/ is a tensor product of factors, one for each crossing of D :

Cr .D/D
O

c

Cr .Dc/:

If we ignore the differential dC , the factor associated to a crossing with sign ˙1 has
the form

Cr .Dc/DMcf˙1;�1;�1g˚Ncf0;˙1;�1g;
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where

Mc DRr .D/f1;�1;�1g
.Xk�Xj /
������!Rr .D/f�1;�1; 1g;

Nc DRr .D/f0;�1;�1g
1

������!Rr .D/f0;�1; 1g:

The complex Nc is contractible, so Cr .D/ is the direct sum of

M D
O

c

Mcf˙1;�1;�1g

and a contractible complex. It follows that H.Cr .D/; dv/ Š H.M; dv/. Each fac-
tor Mc is supported in a single value of grh , so M and H.M; dv/ are supported in a sin-
gle value of grh as well. Thus the spectral sequence has converged at the E1 term, and

H.Cr .D/; dvC dC/ŠH.M; dv/:

To evaluate H.M; dv/, we observe that Mc has the same form as the complex
Cp.Dr / introduced in the proof of Lemma 4.9, but with dv in place of dh . Thus
H.M; dv/ Š HC.D0/, where D0 is the abstract graph obtained by replacing each
crossing of D with a “crossing” of type Dr . Since the differential in Mc is multipli-
cation by Xk �Xj , the ends labeled j and k lie on a solid segment of Dr , as do the
ends labeled i and l . By Lemma 4.10, HC.D0/ŠHC.D00/, where D00 is the abstract
graph obtained by erasing the dashed lines in each copy of Dr . In other words, D00 is
obtained by thinking of L as a topological space and entirely forgetting its embedding
in R3 . Thus D00 is a disjoint union of ` circles and H.M; dv/ŠH .U `/.

When ` D 1, H.M / is one-dimensional, and is supported in the top homological
grading of M . If we compute the gradings grC and gr0

�1
for this generator, we find that

they are given by grC D�2w and gr0
�1
D 2w , where w is the writhe of D . Together

with the overall shift of f�w C b � 1; w C b � 1; w � b C 1g in the triple grading,
this means that the total homology H.Cr .D/; dv C dC/ is supported in gradings
grC D gr0

�1
D 0. More generally, the total homology will have Poincaré polynomial

X
iDgrC

jDgr0
�1

t iqj dim H i;j .Cr .D/; dvC dC/D

�
1C t�1

1� q

�`�1

:

We can also prove an analog of Corollary 5.6.

Lemma 6.2 The differential dk.�1/ anticommutes with d1.p/ for any value of p .
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Proof In this situation, it’s more convenient to work with Cp.D; i/ than Cr .D/. The
isomorphism between the two described in Lemma 2.12 clearly respects their structure
as double complexes, so we can think of Ek.�1/ as being the spectral sequence
induced by the horizontal filtration on .Cp.D; i/; dC; dv/. Since d� anticommutes
with both dC and dv , it defines a morphism d�W Cp.D; i/!Cp.D; i/ in the category
Kom.Kom.R.D///. There is an induced morphism .d�/k W Ek.�1/!Ek.�1/ which
anticommutes with dk.�1/. The map .d�/k is induced by the action of d� on Ek.�1/.
In particular, .d�/2 is the map induced by d� on E2.�1/ŠH .L/ — in other words,
.d�/2 D d1.p/. This proves the claim.

7 Examples

In this section, we compute the KR–homology of some simple knots. We begin by
giving a quick proof of Theorem 1. Next, we discuss the notion of a KR–thin knot
and show that two-bridge knots are KR–thin. We then derive a skein exact sequence
which is useful for making calculations. Combining this with some computations of
Webster [24], we are able to determine the KR–homology of all knots with 9 crossings
or fewer.

7.1 Homology of knots

The reduced homology of a knot has the following important property:

Proposition 7.1 If K is a knot, then H .K/ is a finite-dimensional vector space over Q.

Proof Suppose D is a diagram representing a link L. The complex Cp.D; i/ is
a finitely generated module over the ring R.D/, so H .D; i/ is finitely generated
over the ring QŒXj �, where j runs over the edges of D . According to Lemma 5.16,
multiplication by Xj and Xk are homotopic as morphisms of Cp.D; i/ whenever
j and k belong to the same component of L. In particular, if L D K is a knot,
multiplication by any Xj is homotopic to multiplication by Xi , which is the zero map
on Cp.D; i/. It follows that all Xj act trivially on H .K; i/ŠH .K/, so this group is
finitely generated over Q.

Proof of Theorem 1 Since H .K/ is finite-dimensional, it is supported in finitely
many q–gradings. Consider the spectral sequence Ek.N / which relates H .K/ to
HN .K/. The k th differential in this sequence raises the q–grading by 2kN . Thus,
when N is sufficiently large, all the differentials beyond d0 must vanish, and the
sequence has converged at the E1 term.
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7.2 KR–thin knots

In both Khovanov homology and knot Floer homology, the simplest knots exhibit a
very similar pattern of behavior, in which there is a linear relation between the two
gradings and the signature of the knot. Such knots are said to be thin. An analogous
definition of thinness in the context of KR–homology was proposed in [3]. In terms of
our current normalizations, it is:

Definition 7.2 A knot K � S3 is KR–thin if H i;j ;k.K/D 0 whenever i C j C k ¤

�.K/.

Our sign convention for � is that positive knots have positive signature. The quantity
ıD iCjCk which appears in the definition occurs frequently, and it is often convenient
to think of the grading on H as being determined by the triple .i; j ; ı/, rather than
i; j ; k . From this point of view, it is clear that the HOMFLY homology of a KR–thin
knot is completely determined by its signature and HOMFLY polynomial. The same
statement holds for the sl.N / homology as well:

Proposition 7.3 If K is KR–thin, then the isomorphism of Theorem 1 holds for all
N > 1.

Proof Consider the spectral sequence Ek.N / WDEk.x
NC1/ which relates H .K/ to

HN .K/. The differential dk.N / is triply graded of degree .2kN;�2k; 2� 2k/, so it
raises ı D i C j C k by 2C 2k.N � 2/. This quantity is positive whenever N > 1.
Since E1.N /ŠH .K/ is supported in a single value of ı , it follows that dk � 0 for
all k > 0, and the sequence converges at the E1 term.

In [21], knots for which HN took this form were called N–thin. In this language, the
proposition says that if a knot is KR–thin, then it is N–thin for all N > 1. Conversely,
we have the following result, which is an immediate consequence of Theorem 1.

Proposition 7.4 If K is N–thin for all sufficiently large N , then K is KR–thin.

The main result of [21] says that two-bridge knots are N–thin for all N > 4, so they are
KR–thin as well. We thus arrive at the statement of Corollary 1 from the introduction.

Curiously, it seems difficult to prove this result without appealing to the sl.N / homology.
The issue is that HN .K/ can be computed using any planar diagram of K , whereas
the definition of H .K/ requires that we use a braid diagram. Any two-bridge knot
admits a simple plat diagram of the form shown in Figure 12, which can be used to
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Figure 12: Plat diagram of a two-bridge knot

compute HN .K/. In contrast, the minimal braid diagram of such a knot can be quite
complicated, and there does not seem to be an easy way to compute H .K/ from it.

By a well-known theorem of Lee [15], the Khovanov homology of any alternating knot is
thin. In [20], Ozsváth and Szabó proved a similar result for the knot Floer homology. As
observed in [3], however, it cannot be the case that all alternating knots are KR–thin. In-
deed, the HOMFLY polynomial of a KR–thin knot must be alternating, in the sense that

PK .a; q/D .�1/�.K /
X
i;j

cij a2j .�q2/i ;

with cij � 0. On the other hand, it is not difficult to find alternating knots whose
HOMFLY polynomials are not alternating.

We conclude our discussion of KR–thin knots by considering their behavior with respect
to the spectral sequences Ek.1/ and Ek.�1/. We have already seen that the sequences
Ek.N / are essentially trivial for N > 1. This cannot be true for Ek.˙1/, however,
since they converge to Q. Instead, we have:

Lemma 7.5 If K is KR–thin, then the spectral sequences Ek.1/ and Ek.�1/ con-
verge after the first differential on H .K/. (That is, at E2.1/ and E3.�1/.)

Proof As we saw in the proof of Proposition 7.3, the differential dk.1/ shifts ı by
2�2k . Since E1.1/ŠH .K/ is supported in a single ı–grading, dk.1/ is trivial for all
k > 1. Similarly, the differential dk.�1/ is triply graded of degree .2�2k; 2�2k; 2k/,
so it shifts ı by 4� 2k . Thus it vanishes for all k > 2.

It follows that the spectral sequence of a KR–thin knot behaves as conjectured in [3].

7.3 A skein exact sequence

Suppose D is a planar diagram representing a two-component link L, and that i

and j are edges of D belonging to the two components of L. Let CN .D; i/ D

.H.Cp.D; i/; dtot/; d
�
v / be the sl.N / chain complex, and form the mapping cone

CN .D; i; j /D CN .D; i/f1; 0;�1g
Xj

��! CN .D; i/f�1; 0; 1g;
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where Xj denotes the map induced by multiplication by Xj . The grading shifts are
chosen so that Xj — like d�v — is homogenous of degree .0; 0; 2/ with respect to the
triple grading. We call the homology of CN .D; i; j / the totally reduced homology
of L and denote it by HN .L/. Using Lemma 5.16, it is not difficult to see that HN .L/

is independent of the choice of i and j , although we will not use this fact here.

The group HN .L; i/ can naturally be viewed as a QŒX � module, where X acts as
multiplication by Xj . If we understand the module structure of HN .L; i/, we can
easily determine the totally reduced homology from the long exact sequence

� � � �!HN .L/ �!HN .L; i/
Xj

��!HN .L; i/ �!HN .L/ �! � � � :

One such case is when L is a two-bridge link. In [21], it was shown that HN .L; i/

is composed of a number of summands on which X acts trivially, together with a
single summand isomorphic to QŒX �=X N�1 . The generators of each summand have
ı–grading congruent to �.L/ mod .2N � 4/. (On HN , we can’t tell the difference
between a2 and q2N , so the ı–grading is only defined modulo .2N � 4/.) From this,
it is not difficult to see that HN .L/ is also thin, in the sense that it is supported in
ı–gradings congruent to �.L/. In analogy with the case of knots, we say that L is
KR–thin if HN .L/ is thin for all N � 0.

For the moment, our interest in the group H .L/ arises from the following skein exact
sequence, which generalizes the oriented skein relation for the sl.N / polynomial.

Proposition 7.6 Suppose LC and L� are two knots related by a crossing change, and
L0 is the two-component link obtained by resolving the crossing. Then there is a long
exact sequence

� � �
.0;0/
���!HN .L�/

.�N;1/
�����!HN .L0/

.N;1/
���!HN .LC/

.0;0/
���!HN .L�/

.�N;1/
�����! � � � :

The numbers over each arrow indicate the degree of the corresponding map with respect
to the .q; ı/ bigrading on HN . For example, the map HN .L0/! HN .LC/ raises
the q–grading by N and ı by 1.

Proof The complex CN .L�/ is the mapping cone of the map �0W CN .L0/ !

CN .Ls/, where Ls is the diagram obtained by replacing the crossing in question with
a singular point. Similarly, CN .LC/ is the mapping cone of �1W CN .Ls/!CN .L0/,
from which it follows that CN .Ls/ is homotopy equivalent to the mapping cone of the
inclusion i W CN .L0/! CN .LC/. An explicit homotopy equivalence is given by the
map

�W CN .Ls/! CN .L0/˚CN .Ls/˚CN .L0/
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which sends a 2 CN .Ls/ to .��1.a/; a; 0/. It is easy to see that � is the inclusion in a
strong deformation retract, in the sense of Bar-Natan [2]. By [2, Lemma 4.5], it follows
that CN .L�/ is homotopy equivalent to the mapping cone of ��0W CN .L0/!Cone.i/.
This complex has a three-step filtration, as illustrated in the diagram

CN .L0/
��1�0//

((
CN .L0/ // CN .LC/:

It follows that there is a short exact sequence

0 �! CN .LC/ �! Cone.��0/ �! Cone.�1�0/ �! 0:

Considering the associated long exact sequence, we see that, to prove the lemma,
it suffices to show that Cone.�1�0/ Š CN .D; i; j /. To show this, recall that the
composition �1�0 is multiplication by Xj �Xi , where i and j are the edges of L0

adjacent to the resolution. Taking these two edges to be the edges i and j which
appear in the definition of H .L/ gives the desired isomorphism. Finally, the bigrading
of each map in the sequence can easily be determined from [21, Lemma 3.3]. This is
left as an exercise to the reader.

As an application, we have the following criterion for showing that a knot is KR–thin.
It is a slight generalization of [21, Criterion 5.4].

Corollary 7.7 Suppose that L� , L0 and LC are as above, that L� and L0 are both
KR–thin, and that det L�C 2 det L0 D det LC . Then LC is KR–thin as well.

Proof Suppose N is very large. Then all three terms in the exact sequence stabilize —
L0 by hypothesis, and L� and LC by Theorem 1. We have

rank HN .LC/� det LC D rank HN .L�/C rank HN .L0/

since both L� and L0 are thin. For this to happen, the map HN .L�/!HN .L0/ in
the exact sequence must vanish. To show that LC is N–thin, it is enough to check that
�.LC/D �.L�/D �.L0/C 1: This follows from the usual skein-theoretic constraint
on the signature. (See the proof of [21, Criterion 5.4] for details.) Finally, since LC is
N–thin for all large N , it is KR–thin as well.

The analogous statement with the roles of L� and LC reversed also holds.
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7.4 Connected sums

In applying the skein exact sequence of the previous section, one often encounters
non-prime knots and links. For this reason, it is convenient to understand the behavior
of the KR–homology under connected sum.

Suppose L1 and L2 are oriented links with marked components i1 and i2 . Up to
isotopy, there is a unique way to form their orientation-preserving connected sum along
i1 and i2 . We denote the resulting link by L1 #i1Di2

L2 .

D1

D2

Figure 13: The connected sum of braids D1 and D2

Lemma 7.8 There are isomorphisms

H .L1 #i1Di2
L2/ŠH .L1/˝H .L2/;

HN .L1 #i1Di2
L2; i1/ŠHN .L1; i1/˝HN .L2; i2/:

Proof Suppose Li is represented by a braid diagram Di on bi strands. Without loss
of generality, we may arrange the diagrams Di so i1 is the rightmost strand of D1

and i2 is the leftmost strand of D2 . Then the connected sum L1 #i1Di2
L2 can be

represented by a braid diagram D1 # D2 on b1 C b2 � 1 strands, as illustrated in
Figure 13. Let Do

1
be the open diagram obtained by removing a neighborhood of the

connected sum point in D1 , and let iC
1

and i�
1

be its free ends. Then XiC
1
DXi�

1
in

R.Do
1
/, and

Cp.D1/Š Cp.D
o
1/jXiC

1
DXi�

1
Š Cp.D

o
1/:

From the local nature of the KR–complex, we see that

Cp.D1 # D2/Š Cp.D
o
1/˝Cp.D

o
2/jXiC

1
DXi�

2
;Xi�

1
DXiC

2

Š Cp.D1/˝Cp.D2/jXi1
DXi2

:
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It follows that the reduced KR–complex has the form

Cp.D1 # D2; i1/Š Cp.D1; i1/˝Cp.D2; i2/:

Applying the Kunneth formula twice gives the statement of the lemma.

Corollary 7.9 The connected sum of two KR–thin knots is KR–thin.

Similarly, it is not difficult to see that the connected sum of a KR–thin knot and a
KR–thin link is also KR–thin.

7.5 Small knots

We conclude by describing the KR–homology of knots with 9 or fewer crossings.
Previous computations of H have been made by Khovanov [11], who showed that the
.2; n/ torus knots are KR–thin, and by Webster [24], who wrote a computer program
for this purpose. Using it, he computed H for knots up through 7 crossings, all of
which are KR–thin. For larger knots, the program is very effective at computing the
homology of knots which can be represented as closures of three-strand braids, but less
useful in other cases. Fortunately, many of the small knots with large braid index are
two-bridge, and thus covered by Corollary 1. The remainder can be analyzed using
the skein exact sequence of Proposition 7.6. Combining the information from these
various sources, we have the following result:

Proposition 7.10 The only knots with 9 crossings or fewer which are not KR–thin
are 819 , 942 , 943 , and 947 . (Numbering as in Rolfsen [22].)

Remarks The homology of 819 (the .3; 4/ torus knot) was computed by Webster [24].
The homology of the remaining three knots is illustrated in Figure 14. In all four cases,
the homologies are symmetric; the sequences Ek.�1/;Ek.1/ and Ek.2/ converge
after the first differential on H .K/; and HN .K/ŠH .K/ for N > 2. In addition, the
calculated values of H .819/ and H .942/ agree with the predictions made in [3].

Proof The only knots with 8 or fewer crossings which are not two-bridge are 85; 810

and 815 –821 . Among these, all but 815 have braid index 3 and were computed by
Webster [24]. The only one which is not thin is the .3; 4/ torus knot 819 . In [21], it
was shown that 815 is N–thin for all N > 4. Thus it is also KR–thin.

For the 9–crossing knots, we have to work a little harder. The knots 916 , 922 , 924 ,
925 , 928 , 929 , 930 and 932 –949 are not two-bridge. Only one — 916 — is the closure
of a three-strand braid, and Webster’s program shows that it is KR–thin. Of the rest,
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9
42

9
43

9
47

j D 2

j D 0

j D�2

j D 8

j D 6

j D 4

j D 2

j D 6

j D 4

j D 2

j D 0

Figure 14: HOMFLY homology of the knots 942 , 943 and 947 , represented
by “dot diagrams”. Each dot represents a generator of the homology. The i

and j gradings are indicated by the positions in the horizontal and vertical
directions, respectively (i D 0 corresponds to the axis of symmetry). The
solid and hollow dots have different ı–gradings. For 942 , hollow dots have
ıD�2 , and the solid dot has ıD 0 . For 943 , the values are ıD 2 and ıD 4 ,
respectively, and for 947 , they are ı D 0 and ı D 2 .

all but five — 929 ,942 ,943 , 946 and 947 — can be shown to be KR–thin using the
criterion of Corollary 7.7. These knots, and the crossing to which the criterion can be
applied, are shown in Figures 17 and 18 at the end of the paper.

The knot 929 can be seen to be KR–thin by a similar but slightly more elaborate
argument. If we change the marked crossing on the right side of the knot in Figure 17,
we get the two-bridge knot 76 . Resolving the crossing gives the link 72

4
. We claim that

this link is KR–thin. To see this, we consider the second marked crossing in the figure.
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2
942 4

1

Figure 15: We consider the skein exact sequence associated to the circled
crossing in diagram of 942 shown above. L0 is the link 42

1
, oriented as

shown.

Changing this crossing gives the connected sum of the Hopf link and the trefoil knot,
which is KR–thin and has determinant 6. Resolving the crossing gives the knot 51 ,
which has determinant 5. Since the determinant of 72

4
is 16D 6C2 �5, it’s not difficult

to see that 72
4

is KR–thin. Then 929 must be KR–thin as well.

To analyze the four remaining knots, we resort to a more detailed study of the skein
exact sequence. We illustrate this process in the case of the knot 942 , which is shown in
Figure 15. If we change the circled crossing in the figure from positive to negative, the
result is the connected sum of the negative trefoil and the figure-eight knot. Resolving
the crossing, we get the two-bridge link 42

1
shown on the right-hand side of the figure.

Thus we have a long exact sequence

� � � �!HN .31 # 41/ �!HN .4
2
1/ �!HN .942/ �!HN .31 # 41/ �! � � � :

When N is large, all three terms in this sequence stabilize. Both 31 # 41 and 42
1

are KR–thin, so their homologies are determined by their HOMFLY polynomials. In
Figure 16, we have superimposed diagrams representing the homology of 31 # 41

(hollow dots) and 42
1

(solid dots). The j –gradings are shifted so that they correspond
to the power of a in the HOMFLY polynomial of 942 . Under the assumption that N

is large, nontrivial components of the map

HN .31 # 41/!HN .4
2
1/

must preserve the position of the generators. In other words, a generator corresponding
to a hollow dot at any of the lettered positions can map nontrivially to a solid dot at the
same position, but not to anything else.

From the figure, we can deduce some constraints on the group HN .942/. For example,
the group at position c must have rank either 2 or 0, depending on whether the map
from the hollow to the solid generator at that position is trivial or nontrivial. Since
HN .942/ŠH .942/ when N is large, the same is true for H as well.
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a a

c

d db

e

j D 2

j D 0

j D�2

j D�4

Figure 16: Possible generators of H .942/

We can now use Theorems 2 and 3 to deduce the exact value of the homology. For
example, suppose the two generators labeled a on the right-hand side of the figure
survive in H .942/. They must die in the spectral sequence Ek.1/, but there is nothing
to kill them. We conclude that these generators could not have survived. A similar
argument using Ek.�1/ shows that the two left-hand generators labeled a do not
survive either. It is now easy to see that generators labeled b must kill each other too.

To eliminate the generators labeled c , we consider the spectral sequence Ek.2/, which
converges to the usual Khovanov homology. Clearly, if these generators survive in
H .K/, they will also appear in H 2.K/, where they will have q–grading �8. On the
other hand, it is well known that H 2.942/ has Poincaré polynomial

P2.942/D q�6t�4
C q�4t�3

C q2t�2
C 2t�1

C 1C q2
C q4t C q6t2:

There is no term with q�8 , so the generators in position c must die. Next, we consider
the positions labeled d , where we have a map from a two-dimensional space generated
by the hollow dots to a one-dimensional space generated by the solid dot. Now that we
know that there is nothing in position c , considering Ek.˙1/ shows that both maps
must be surjective. Finally, in position e , we have a map from a space of dimension 3
to a space of dimension 2. Examining the sequence Ek.2/ shows that this map must
have rank 1. Thus the homology is as shown in Figure 14.

Similar considerations may be applied to compute the homology of the knots 943; 946

and 947 . Rather than go into details, we simply indicate an appropriate crossing for
each knot in Figure 18, and leave it to the interested reader to check the rest.
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925924922

928 929 930

932 933 934

935 936 937

Figure 17: 9-crossing knots (I). Figures drawn by Knotscape [6].
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938 939 940

941 942 943

944 945 946

947 948 949

Figure 18: 9-crossing knots (II). Figures drawn by Knotscape [6].
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