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Slowly converging Yamabe flows

ALESSANDRO CARLOTTO

OTIS CHODOSH

YANIR A RUBINSTEIN

We characterize the rate of convergence of a converging volume-normalized Yamabe
flow in terms of Morse-theoretic properties of the limiting metric. If the limiting
metric is an integrable critical point for the Yamabe functional (for example, this
holds when the critical point is nondegenerate), then we show that the flow con-
verges exponentially fast. In general, we make use of a suitable Łojasiewicz–Simon
inequality to prove that the slowest the flow will converge is polynomially. When
the limit metric satisfies an Adams–Simon-type condition we prove that there exist
flows converging to it exactly at a polynomial rate. We conclude by constructing
explicit examples of this phenomenon. These seem to be the first examples of a
slowly converging solution to a geometric flow.

35K55, 53C44; 58K05, 58K55

1 Introduction

Let M be an arbitrary smooth closed manifold of dimension n� 3 and set

N D
2n

n�2
:

In this article we study the quantitative rate of convergence of the volume-normalized
Yamabe flow

@g

@t
D�.Rg � rg/g;

describing a one-parameter deformation of complete Riemannian metrics g D g.t/,
t � 0, on M . Here Rg is the scalar curvature and rg is its average (with respect to
the Riemannian volume form associated to g ). This is a flow on a volume-normalized
conformal class on M . It arises as the gradient flow of the Einstein–Hilbert functional
and thus is a fundamental tool in the study of scalar curvature deformations, mostly
in connection with the celebrated Yamabe problem. Motivated by the well-known
uniformization theorem, the problem asks whether for any given Riemannian manifold
.M0;g0/ one can find a positive function w such that the conformal metric wN�2g0
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has constant scalar curvature. An affirmative answer to this question was obtained by
the combined efforts of Yamabe [31], Trudinger [30], Aubin [2] and Schoen [24]; we
refer the reader to the survey article by Lee and Parker [18].

In unpublished work, Hamilton introduced the Yamabe flow as a possible alternative
method for solving the Yamabe problem and showed that the flow existed for all time
t � 0. However, the problem of convergence turns out to be highly nontrivial. For
conformally flat metrics with positive Ricci curvature, Chow showed that the flow
converged as t!1 to a metric of constant scalar curvature [14]. Ye removed the Ricci
curvature condition [32] and, subsequently, Schwetlick and Struwe showed that the flow
converged in dimensions 3� n� 5 under the assumption that the the Yamabe energy
of the initial metric g.0/ was “not too large” [26]. The energy assumption was then
removed by Brendle to establish unconditional convergence of the flow in dimensions
3� n� 5 in [7], and convergence in dimensions n� 6 under a technical hypothesis
on the conformal class in [8]. We refer to Brendle [10] for a survey concerning these
and related results.

Our work complements these contributions by showing that, depending on certain
Morse-theoretic properties of the limit metric, the rate of convergence has either
exponential or polynomial upper bounds, and in the latter case the polynomial rate of
convergence cannot in general be improved; therefore, it gives an essentially complete
description of the rate of convergence for this flow. Perhaps the most novel outcome of
this work is that there exist slowly converging geometric flows.
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for valuable discussions, R Mazzeo and F Weissler for informing us of [6; 13] and
S Brendle, A Malchiodi, R Mazzeo and R Schoen for their interest and encouragement.

1.1 Main results

We now list our main results (we will define the precise terminology below), starting with
the following statement concerning general upper bounds on the rate of convergence of
the Yamabe flow. Integrability is defined in Definition 8.
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Theorem 1 Assume g.t/ is a Yamabe flow that converges in C 2;˛.M;g1/ to g1
as t !1 for some ˛ 2 .0; 1/. Then there is a ı > 0 depending only on g1 so that:

(i) If g1 is an integrable critical point, then the convergence occurs at an exponential
rate, that is

kg.t/�g1kC 2;˛.M;g1/
� Ce�ıt

for some constant C > 0 depending on g.0/.

(ii) In general, the rate of convergence cannot be worse than polynomial, that is

kg.t/�g1kC 2;˛.M;g1/
� C.1C t/�ı

for some constant C > 0 depending on g.0/.

The problem of determining of the rate of convergence of the flow was raised by Ye
[32, page 36]. In general, the polynomial rate of convergence cannot be improved, as
we discuss below.

Two previous results on this question are worth mentioning. First, Struwe’s method
of showing that the Yamabe flow on the 2–sphere (which agrees with the Ricci flow
in this case) converges exponentially fast [29] can in fact be extended to prove that a
Yamabe flow converging to the standard round metric on the sphere (in all dimensions)
converges exponentially fast. (This also follows from the work of Brendle [9].) We
remark that this is a special case of Theorem 1(i), as the round metric is integrable
by Obata’s theorem. Second, the convergence statement in case (ii) of Theorem 1 can
in some sense be regarded as an implicit corollary of the arguments of [7]. (Because
we are assuming the metric converges, there cannot be any bubbling phenomena; thus
one may use the remaining arguments in [7], which may be verified to apply in any
dimension, to conclude.) The proof we give for Theorem 1 is self-contained and
applies, in a unified framework, to both settings. Moreover, the method we use directly
applies to other gradient flows (eg the Calabi flow; we refer to [23, Section 4.3.4] for a
discussion and references) although we do not go into the details of such applications
in this article.

The integrability condition is a nearly sharp condition for exponential convergence, as
is shown in Theorem 2. The Adams–Simon positivity condition (that we denote by
ASp for some p ) is defined in Definition 10.

Theorem 2 Assume that g1 is a nonintegrable critical point of the Yamabe energy
with order of integrability p� 3. If g1 satisfies the Adams–Simon positivity condition
ASp , then there exists a metric g.0/ conformal to g1 such that the Yamabe flow g.t/
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starting from g.0/ exists for all time and converges in C1.M;g1/ to g1 as t !1.
The convergence occurs “slowly” in the sense that

C�1.1C t/�
1

p�2 � kg.t/�g1kC 2;˛.M;g1/
� C.1C t/�

1
p�2

for some constant C > 0.

The bulk of this article is devoted to the proof of Theorem 2. Our proof is based on an
adaptation of the remarkable tools developed by Simon and Adams–Simon in the study
of isolated singularities of minimal surfaces and harmonic maps to the parabolic setting
and, more specifically, to the Yamabe flow. As stated, three conditions need to be
checked for a critical point g1 to be a limit point of a slowly converging Yamabe flow.
Integrability and degeneracy are defined in Definition 8 and Lemma 9. The degeneracy
can be studied by looking at the spectrum of the Laplace operator �g1 . For a
degenerate metric, determining integrability (or lack thereof) depends on understanding
the set of constant scalar curvature metrics near g1 . For instance, if g1 is isolated
and degenerate, it must be nonintegrable. Lastly, the Adams–Simon condition ASp

(see Definition 10) concerns the first nontrivial term in the analytic expansion of the
Lyapunov–Schmidt reduction F of the Yamabe functional at g1 , whose order we
denote by p .

We give two criteria, of different nature, to check the condition ASp :

� The condition AS3 is satisfied whenever

F3.v/D�2.N � 1/.N � 2/Rg1

Z
M

v3 dVg1

does not vanish identically on the nullspace ƒ0 , which is the linear span of
functions v such that .n�1/�g1vCRg1vD 0. Of course, this can in principle
be computed once ƒ0 is explicitly known.

� When p> 3, the condition ASp holds if g1 is both degenerate and a strict local
minimum of the Yamabe functional.

The relevance of the second criterion is related to the solution of the Yamabe problem:
if .M; Œg�/ is not the round sphere with the associated conformal structure, then the
Yamabe functional Y is coercive and thus has a global minimum gmin . Hence, the
existence of polynomially converging flows is guaranteed by Theorem 2 whenever gmin

is isolated but degenerate (which is simply a condition on the spectrum of the Laplacian
of gmin ).

We give examples of the applicability of these criteria in the following two propositions.

Denote by Sk.R/ the round sphere of radius R in RkC1 .
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Proposition 3 Fix integers n;m> 1 and a closed m–dimensional Riemannian mani-
fold .M m;gM / with constant scalar curvature RgM

� 4.nC1/.mCn�1/. We denote
the complex projective space equipped with the Fubini–Study metric by .Pn;gFS /,
where the normalization of gFS is fixed so that S2nC1.1/! .Pn;gFS / is a Riemannian
submersion. Then the product metric .M m �Pn;gM ˚gFS / is a degenerate critical
point satisfying AS3 .

We remark that any closed manifold .M;gM / whose scalar curvature is a positive
constant may be rescaled to satisfy the conditions of the previous proposition.

Proposition 4 Let n > 2. The product metric on S1.1=
p

n� 2 / � Sn�1.1/ is a
nonintegrable critical point satisfying ASp for some p � 4.

There are not many examples of degenerate critical points of geometric functionals
where nonintegrability can be checked; see [1, Section 5]. In fact, it seems that our
second example is the first of a critical point which satisfies ASp for p > 3 (cf [1,
Remark 1.19], where the authors explain a method for checking AS3 that does not
work for p > 3).

In conclusion, we may construct examples of slowly converging Yamabe flows in a range
of conformal classes and in any dimension greater than 2. For example, Proposition 3
yields examples which are not conformally flat, while the metrics in Proposition 4 are
locally conformally flat.

Corollary 5 There exists a Yamabe flow in the conformal class of the metrics described
in Propositions 3 and 4 that converges to the given metrics exactly at a polynomial rate,
as in Theorem 2.

This seems to be the first construction of a slowly converging flow in the setting of
geometric flows of parabolic type. We expect that our methods can be adapted (possibly
with the added difficulty of a large gauge group) to produce slowly converging flows
for other (possibly degenerate) parabolic flows.

1.2 Outline of the proof of Theorem 2

The proof of Theorem 2 appears in Section 4. It is rather long and, at times, quite
technical, so we take the opportunity here to outline its structure.

Ultimately, we would like to construct a solution u.t/ to a quasilinear parabolic equation
that converges at a rate O..1C t/�1=.p�2// to the constant function 1. Intuitively, one
expects the slow convergence to be “generated” infinitesimally by the nonintegrable
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directions, namely from ƒ0 . At the same time, in order to use a fixed-point argument
to generate a polynomially converging flow it is most convenient to have a guess as to
what the leading order behavior of the flow ought to be, and then show that the actual
solution is a small perturbation, of order o..1C t/�1=.p�2//, of this guess. Fortunately,
the Adams–Simon condition precisely furnishes such an ansatz: the function '.t/ of
Lemma 15. The proof of Theorem 2 thus amounts to showing that we can find u.t/

solving the Yamabe flow with

(1) u.t/�'.t/D o
�
.1C t/�

1
p�2

�
:

We now explain the different steps to derive this estimate.

Step 1 Firstly, we would like to understand separately the behavior of the flow in ƒ0

(the kernel of the linearized Yamabe operator) and ƒ?
0

(the orthogonal complement)
directions. Thus, in Proposition 17 we prove that the Yamabe flow is equivalent to
two flows: the kernel-projected flow that takes place on ƒ0 and the kernel orthogonal-
projected flow that takes place on ƒ?

0
. There are two key points about this result that

make it useful. First, the kernel orthogonal-projected flow (see (12)) is a perturbation
of a linear parabolic equation. In other words, (12) is, of course, nonlinear, but it can
be considered as a linear equation since we prove an a priori estimate on the error term.
Second, the kernel-projected flow (see (11)) is a perturbation of a system of ODEs.
Again, we have a precise a priori estimate on the error term. That these estimates are
sufficiently strong will play a crucial role in a contraction mapping argument discussed
in Step 4 below.

The proof of Proposition 17 involves some rather tedious computations. First, in
Lemma 16, we reduce the Yamabe flow to the situation of a gradient flow. Indeed, the
Yamabe flow is certainly a gradient flow on the level of metrics but that is not quite the
case on the level of conformal factors. After this preparatory step, we project the flow
onto ƒ0 and its orthogonal complement, and try to reduce the resulting equations to
(12) and (11). This involves multiple applications of Taylor’s theorem, the Lyapunov–
Schmidt reduction (Proposition 7) and the estimates on D3Y (Appendix A). It also
uses the fact that the ansatz '.t/ allows an important cancellation that considerably
simplifies the kernel-projected piece, so that it can be reduced to a system of ODEs.

Step 2 We obtain a solution to the kernel-projected flow in a weighted Hölder norm
in Lemma 18. This norm precisely captures a polynomial rate of decay of the solution.

Step 3 We obtain a solution to the kernel orthogonal-projected flow, again in a
weighted norm, in Lemma 19. Here some care is needed since we must again work
with parabolic Hölder norms.
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Step 4 Finally, in Proposition 20, we set up a fixed-point argument in a Banach space
that uses the two different weighted norms (on ƒ0 and ƒ?

0
). Here one needs to be

quite careful with the order of decay of the error terms collected in the previous three
steps, in order to show that the map is a contraction. Once this is acheived, we have
the existence of a Yamabe flow. Moreover, the flow satisfies the estimate (1) because
we define the weighted norms so that any function which is a perturbation of '.t/ in
the given norm will fall off at a rate faster than '.t/.

1.3 Structure of the article

Section 2 is devoted to fixing the notation and recalling some basic facts about the
(volume-constrained) Yamabe functional, its analyticity and the Lyapunov–Schmidt
reduction near a critical point. In Section 3, we use the Łojasiewicz–Simon inequality
to prove Theorem 1. Then, in Section 4 we study polynomial convergence phenomena
for nonintegrable critical points, and in Section 5 we prove Propositions 3 and 4. The
computation of the third variation of the reduced Yamabe energy (namely of the formula
for F3 given above) is contained in Appendix A. Appendix B contains a proof of a
technical lemma needed for the proof of Proposition 4.

2 Definitions and preliminaries

The Yamabe functional is defined by

Y.g/ WD Vol.M;g/�
2
N

Z
M

Rg dVg;

where dVg is the Riemannian volume form associated to g , Rg denotes the scalar
curvature of g and N D 2n=.n� 2/.

If gDwN�2g1 for some positive w 2 C 2.M / and smooth metric g1 , then an alter-
native expression for the Yamabe functional (restricted to the conformal class of g ) is

Y.w/D

Z
M

�
.N C 2/jrg1wj

2
g1
CRg1w

2
�

dVg1�Z
M

wN dVg1

� 2
N

;

since RwN�2g1
D w1�N .Rg1w� .N C 2/�g1w/.

Consider the unit volume conformal class associated to the metric g1 ,

Œg1�1 WD

�
wN�2g1 W w 2 C 2;˛.M /; w > 0;

Z
M

wN dVg1 D 1

�
:
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In order to avoid ambiguities, we define the following notation: for k 2N , we denote
the k th differential of the Yamabe functional on Œg1�1 at the point w in the directions
v1; : : : ; vk by

DkY.w/Œv1; : : : ; vk �:

As we will see from (5), the functional v 7!DkY.w/Œv1; : : : ; vk�1; v� is in the image
of L2.M;g1/ under the natural embedding into C 2;˛.M;g1/

0 . Therefore, we will
also write

DkY.w/Œv1; : : : ; vk�1�

for this element of L2.M;g1/. When k D 1, we will drop the (second) brackets, and
thus consider DY.w/ 2L2.M;g1/.

We may write the differential of Y restricted to Œg1�1 as

1
2
DY.w/Œv�D

Z
M

�
�.N C 2/�g1wCRg1w� rwN�2g1

wN�1
�
v dVg1

D

Z
M

�
RwN�2g1

� rwN�2g1

�
wN�1v dVg1 ;

for v 2 C 2;˛.M;g1/. Here

rg D Vol.M;g/�1

Z
M

Rg dVg:

Regarded as an element of L2.M;g1/, we have that

(2) 1
2
DY.w/D�.N C 2/�1wCRg1w� rwN�2g1

wN�1:

As above, we have associated the metric wN�2g1 to the function w . This is clearly
a bijection, so we will continue to do so throughout. Thus, a unit volume metric g1
is a critical point for the Yamabe energy Y restricted to Œg1�1 exactly when g1 has
constant scalar curvature.

We now fix g1 to be a unit volume, constant scalar curvature metric. We denote
by CSC1 the set of unit volume, constant scalar curvature metrics in Œg1�1 and further
define the linearized Yamabe operator at g1 , L1 , by means of the formula

�.N � 2/

Z
M

wL1v dVg1 WD
1
2
D2Y.g1/Œv; w�

D
1

2

d

ds

ˇ̌̌
sD0

DY
�
.1C sv/N�2g1

�
Œw�

for v 2 C 2.M /. A computation shows that

L1v D .n� 1/�g1vCRg1v:
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We define ƒ0 WD kerL1 �L2.M;g1/.

Spectral theory shows that ƒ0 is finite-dimensional, since it is the eigenspace of the
Laplacian for the eigenvalue Rg1=.n� 1/. We will write ƒ?

0
for the L2.M;g1/

orthogonal complement. It is crucial throughout this work that the Yamabe functional
is an analytic map. Here we mean analytic in the sense of [33, Definition 8.8].

Lemma 6 Fix a metric g1 . The Yamabe functional is an analytic functional on
fu2C 2;˛.M;g1/ W u> 0g in the sense that for each w0 2C 2;˛.M;g1/ with w0> 0,
there is an � > 0 and bounded multilinear operators

Y.k/W C 2;˛.M;g1/
�k
!R for each k � 0

such that if kw�w0kC 2;˛ < � , then
P1

kD0kY.k/k � kw�w0k
k
C 2;˛ <1 and

Y.w/D
1X

kD0

Y.k/ .w�w0; w�w0; : : : ; w�w0/„ ƒ‚ …
k times

in C 2;˛.M;g1/:

It is not hard to verify this, by simply expanding the denominator of Y in a power
series around .

R
M wN

0
dVg1/

�2=N and noting that the numerator is already a bilinear
function in w . Now, by a standard Lyapunov–Schmidt reduction (see [33, Theorem 4.H],
[28, Section 3]), we may use the implicit function theorem to show the following.

Proposition 7 There is � > 0 and an analytic map

ˆW ƒ0\fv W kvkL2 < �g ! C 2;˛.M;g1/\ƒ
?
0

such that ˆ.0/D 0, Dˆ.0/D 0,

(3) sup
kvk

L2<�; kwkL2�1



Dˆ.v/Œw�




L2 < 1;

and such that defining ‰.v/D 1CvCˆ.v/, then ‰.v/> 0, Vol.M; ‰.v/N�2g1/D 1

and

projƒ?
0
ŒDY.‰.v//�D projƒ?

0

�
.R‰.v/N�2g1

� r‰.v/N�2g1
/‰.v/N�1

�
D 0:

Furthermore,

projƒ0
ŒDY.‰.v//�D projƒ0

�
.R‰.v/N�2g1

� r‰.v/N�2g1
/‰.v/N�1

�
DDF;

where F W ƒ0 \ fv W kvkL2 � �g ! R is defined by F.v/ D Y.‰.v//. Finally, the
intersection of CSC1 with a small C 2;˛.M;g1/ neighborhood of 1 coincides with

S0 WD f‰.v/ W v 2ƒ0; kvkL2 < �;DF.v/D 0g;
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which is a real analytic subvariety (possibly singular) of the following .dimƒ0/–
dimensional real analytic submanifold of C 2;˛.M;g1/:

S WD f‰.v/ W v 2ƒ0; kvkL2 < �g:

This follows in the usual way from the analytic implicit function theorem; see [33,
Corollary 4.23]. We will refer to S as the natural constraint for the problem.

Definition 8 For g1 2 CSC1 , we say that g1 is integrable if for all v 2ƒ0 , there
is a path w.t/ 2 C 2..��; �/�M;g1/ such that w.t/N�2g1 2 CSC1 and w.0/D 1,
w0.0/ D v . Equivalently, g1 is integrable if and only if CSC1 agrees with S in a
small neighborhood of 1 in C 2;˛.M;g1/.

For our purposes, the following equivalent characterization of integrability is crucial:

Lemma 9 [1, Lemma 1] Integrability as defined above is equivalent to the func-
tional F (as defined in Proposition 7, the Lyapunov–Schmidt reduction) being constant
on a neighborhood of 0 inside ƒ0 .

We remark that if ƒ0D0, ie if L1 is injective, it is standard to call g1 a nondegenerate
critical point; if this holds, g1 is automatically integrable in the above sense. On the
other hand, if ƒ0 is nonempty, then we call g1 degenerate. We emphasize that there
are many examples of degenerate metrics; see for example [5].

Now suppose that g1 is a nonintegrable critical point. Because F.v/ is analytic (it is
the composition of two analytic functions), we may expand it in a power series

F.v/D F.0/C
X
j�p

Fj .v/;

where Fj is a degree-j homogeneous polynomial on ƒ0 and p is chosen so that Fp

is nonzero. We will call p the order of integrability of g1 . We will also need a further
hypothesis for nonintegrable critical points, introduced in [1].

Definition 10 We say that g1 satisfies the Adams–Simon positivity condition, ASp

for short (here p is the order of integrability of g1 ), if it is nonintegrable and FpjSk

attains a positive maximum for some yv 2Sk �ƒ0 . Recall that Fp is the lowest-degree
nonconstant term in the power series expansion of F.v/ around 0 and Sk is the unit
sphere1 in ƒ0 .

1Here we are using the inner product induced on ƒ0 coming from the L2 inner product on T1Œg1�1 .
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The Adams–Simon positivity condition is ultimately needed for the construction of the
function ' in Lemma 15, which serves as an approximate solution to the Yamabe flow
converging at a polynomial rate. It is an interesting question whether or not ASp is
a necessary condition for the existence of slowly converging examples in the elliptic
and parabolic settings.

An important observation is that when the order of integrability p is odd, the Adams–
Simon positivity condition is always satisfied. Moreover, the order of integrability (at a
critical point of Y ) always satisfies p � 3 as we recall in Appendix A. Furthermore,
we show there that

(4) F3.v/D�2.N � 1/.N � 2/Rg1

Z
M

v3 dVg1 :

3 The Łojasiewicz–Simon inequality and rate of convergence

One of the tools for controlling the rate of convergence of the Yamabe flow will be the
Łojasiewicz–Simon inequality. This was first proven for a certain class of geometric
functionals by Simon [27], who showed that the classical Łojasiewicz inequality for
analytic functions in finite dimensions could be extended to a Banach space setting.

Definition 11 (Łojasiewicz–Simon inequality) Suppose that B is a Banach space
and U � B is an open subset. Fix a functional E 2 C 2.U;R/, and denote by
DE 2C 1.U;B0/ its first derivative. (Here B0 is the dual Banach space to B.) We will
additionally fix a Banach space W with a continuous embedding W ,!B0 . For x0 2U

a critical point of E , ie DE.x0/D 0, we say that E satisfies the Łojasiewicz–Simon
inequality with exponent � 2 .0; 1

2
� near x0 if there exists a neighborhood x0 2V �U

as well as constants C > 0 such that

jE.x/�E.x0/j
1��
� CkDE.x/kW for all x 2 V :

Notice that if BDWDRn , this reduces to the classical Łojasiewicz inequality [20].
The Łojasiewicz–Simon inequality has recently received much attention; we will apply
the following general result to show that it holds in our setting:

Proposition 12 [12, Theorem 3.10] Fix B, U �B, E 2 C 2.U;R/, W ,!B0 and
x0 2 U with DE.x0/ D 0 as in the previous definition. We also define the second
derivative L WDD2E 2 C.U;B.B;B0//, where B.B;B0/ is the space of continuous
maps between the Banach spaces B and B0 . We will suppose that the following
hypotheses are satisfied:
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(A) The kernel ker L.x0/ � B is complemented in B, ie there exists a projec-
tion P 2 B.B;B/ such that range P D ker L.x0/. It follows from this that
BD ker L.x0/˚ ker P is a topological direct sum. Denote by P 0 2 B.B0;B0/
the adjoint map.

(B1) The map W ,!B0 is a continuous embedding.

(B2) The adjoint projection P 0 leaves W invariant.

(B3) The map DE is in C 1.U;W/.

(B4) We have range L.x0/D ker P 0\W.

Under these hypotheses, we may find a neighborhood U0 of 0 in ker L.x0/ and a
neighborhood U1 of 0 in ker P as well as a function H 2 C 1.U0;U1/ parametrizing
the natural constraint, ie˚

x 2 U0CU1 WDE.x0Cx/ 2 .ker L.x0//
0
	
D fxCH.x/ W x 2 U0g:

Recall that the natural constraint is then

S WD fx0CxCH.x/ W x 2 U0g:

Finally, suppose that the following holds:

(C) The function E.x0 C � / satisfies the Łojasiewicz inequality on the natural
constraint S with exponent � 2 .0; 1

2
�. More precisely, we assume that

jE.x0CxCH.x//�E.x0/j
1��
� CkDE.x0CxCH.x//kW

for all x 2 U0 .

Then the functional E satisfies the Łojasiewicz–Simon inequality near x0 with the
same exponent � 2 .0; 1

2
�.

Proposition 13 Suppose that g1 is a unit volume, constant scalar curvature metric.
There are � 2 .0; 1

2
�, � > 0 and C > 0 only depending on n and g1 such that for

u 2 C 2;˛.M;g1/ with ku� 1kC 2;˛.M;g1/
< � and Vol.M;uN�2g1/D 1, then

jruN�2g1
� rg1 j

1��
� CkDY.uN�2g1/kL2.M;g1/

:

If g1 is an integrable critical point, then � D 1
2

. If g1 is nonintegrable, then � D 1=p ,
where p is the order of integrability of g1 .
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Proof To verify this, we will show that the hypotheses of Proposition 12 are satisfied
for the Yamabe energy Y . We work with the Banach spaces B WD C 2;˛.M;g1/ and
W WDL2.M;g1/, and fix U a small enough ball around 1 in C 2;˛.M;g1/ so that
Proposition 7 is applicable in U .

Hypothesis (A) is the statement that ƒ0 D kerL1 is complemented in C 2;˛.M;g1/,
which is immediate by the following argument. One first checks that the L2 projection
map projƒ0

restricts to a continuous map from C 2;˛.M;g1/ onto ƒ0 (since, of course,
C 2;˛.M;g1/ ,!L2.M;g1/ is a continuous embedding); from this, it follows (see
[12, page 580]) that ƒ0

0
is complemented (by the map proj0ƒ0

) in the dual space
C 2;˛.M;g1/

0 , and its complement ƒ0?
0

may be canonically identified with .ƒ?
0
/0 .

Hypothesis (B) is satisfied as follows: Consider the map

(5) W WDL2.M;g1/ ,! C 2;˛.M;g1/
0; f 7!

�
' 7!

Z
M

f ' dVg1

�
:

(B1) This map is continuous.

(B2) The map proj0ƒ0
2 B.C 2;˛.M;g1/

0 / leaves L2.M;g1/ invariant; of course,
here we are considering the composition

projƒ0
W C 2;˛.M;g1/!ƒ0 ,! C 2;˛.M;g1/:

(B3) That DY 2 C 1.U;L2.M;g1// follows from the explicit form of DY given
above.

(B4) Finally, we must verify that rangeL1 D ƒ0?
0
\ L2.M;g/. The fact that

rangeL1 �ƒ0?0 \L2.M;g/ is obvious because L1 is formally self-adjoint
on L2 . The other inclusion follows from the L2 spectral decomposition of L1 .

Thus to prove the Łojasiewicz–Simon inequality with exponent � 2 .0; 1
2
�, it is enough

to check (C), ie that the Yamabe energy restricted to the natural constraint satisfies the
Łojasiewicz–Simon inequality with exponent � 2 .0; 1

2
�. Recall that in Proposition 7

we have defined F.v/D Y.‰.v//. In the integrable case, clearly F.v/� F.0/, so F

satisfies the Łojasiewicz–Simon inequality for � D 1
2

.

In general, F is an analytic function whose power series has its first nonzero term of
degree p , by definition. Thus we may conclude (see [12, Proposition 2.3(b)]) that F

satisfies the Łojasiewicz–Simon inequality with exponent � D 1=p .

The claim follows from this; we have replaced Y.u/ with ruN�2g1
in the left-hand

side of the inequality by using the assumption that uN�2g1 has unit volume.
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Now we show how the Łojasiewicz–Simon inequality yields quantitative estimates on
the rate of convergence of the Yamabe flow.

Proof of Theorem 1 We consider a Yamabe flow g.t/Du.t/N�2g1 which converges
to g1 in C 2.M;g1/ as t !1. We may assume without loss of generality that g1
and thus g.t/ have unit volume. In Proposition 13 we have shown there is a Łojasiewicz–
Simon inequality near g1 for some � 2 .0; 1

2
�. We emphasize that we are regarding

DY.g.t// as an element of L2.M;g1/, ie DY.g.t//D 2.Rg.t/� rg.t//u.t/
N�1 .

Choose t0 so that for t � t0 , ku.t/� 1kC 0.M;g1/
�

1
2

. We then have that

d

dt
.rg.t/� rg1/D�

2

N �2

Z
M

.Rg.t/� rg.t//
2u.t/N dVg1

� �c

Z
M

.Rg.t/� rg.t//
2u.t/2N�2 dVg1

D�ckDY.g.t//k2
L2.M;g1/

� �c.rg.t/� rg1/
2�2� ;

where c> 0 is a constant depending only on n and g1 (that may vary at each step). Let
us first assume that the Łojasiewicz–Simon inequality is satisfied with � D 1

2
, ie that

we are in the integrable case. The previous inequality yields rg.t/ � rg1 � Ce�2ıt ,
for ı > 0 depending only on n and g1 and C > 0 depending on g.0/ (chosen so that
this actually holds for all t � 0). On the other hand, if the Łojasiewicz–Simon inequality
holds with � 2 .0; 1

2
/ then the same argument shows that rg.t/�rg1�C.1Ct/1=.2��1/:

Recall that the evolution equation for the conformal factor uD u.t/ is given by

@u

@t
D�

u

N �2

�
Rg.t/� rg.t/

�
:

Thus, exploiting the fact that the flow converges in C 2 , we may use the Łojasiewicz–
Simon inequality to compute

d

dt
.rg.t/� rg1/

�
D �.rg.t/� rg1/

��1 d

dt
.rg.t/� rg1/

� �c�.rg.t/� rg1/
��1
kDY.g.t//k2

L2.M;g1/

� �c�kDY.g.t//kL2.M;g1/
� �c�




@u
@t





L2.M;g1/

:

Thus, if � D 1
2

(recall lim
t!1

u.t/D 1),

ku.t/� 1kL2.M;g1/
�

Z 1
t




@u
@s





L2.M;g1/

ds

� �c

Z 1
t

d

ds
Œ.rg.s/� rg1/

1
2 � ds D c.rg.t/� rg1/

1
2 � Ce�ıt :
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If � 2 .0; 1
2
/, a similar computation yields ku.t/� 1kL2.M;g1/

� C.1C t/��=.1�2�/:

To obtain C 2 estimates, we may interpolate between L2.M;g/ and W k;2.M;g/

for k large enough: interpolation [4, Theorem 6.4.5] and Sobolev embedding yield
some constant � 2 .0; 1/ such that

ku.t/� 1kC 2;˛.M;g1/
� ku.t/� 1k

�

L2.M;g1/
ku.t/� 1k

1��

W k;2.M;g1/
:

Because u.t/ is converging to 1 in C 2;˛ (and thus in C1 by parabolic Schauder
estimates and bootstrapping), the second term is uniformly bounded. Thus, exponential
(polynomial) decay of the L2 norm give exponential (polynomial) decay of the C 2;˛

norm as well.

Remark 14 The assumption in Theorem 1 that u.t/ converges in C 2;˛ to the constant
function 1 can be weakened to assuming merely that the Yamabe flow converges in
LN .M;g0/. Indeed, it is possible to show that the latter already implies the flow has
a smooth limit to which it converges in C 2;˛ . The LN convergence is equivalent
to saying that the flow converges in the Ebin L2 metric on the space of Riemannian
metrics, restricted to the conformal class [15, Section 4].

4 Slowly converging Yamabe flows

In this section, we show that given a nonintegrable critical point g1 satisfying a
particular hypothesis, there exists a Yamabe flow g.t/ such that g.t/ converges to g1
exactly at a polynomial rate. This shows that the conditions in Theorem 1 are nearly
sharp. We will do so by adapting the arguments of Adams and Simon [1] to the parabolic
setting. (In [1, Section 6], the authors remark that their results should extend to the
parabolic setting, but this requires some serious work. Moreover, the Yamabe functional
does not completely fit into their framework because of the volume normalization term.)

4.1 Projecting the Yamabe flow with estimates

The goal of this subsection is to obtain an equivalent formulation of the Yamabe
flow in terms of two flows: one taking place on the finite-dimensional space ƒ0 (the
“kernel-projected flow”), and the other on the infinite-dimensional complement ƒ?

0

(the “kernel orthogonal-projected flow”). The a priori estimates of Proposition 17 make
this possible.

The next lemma will provide a function which approximately solves the Yamabe flow.
The remaining parts of this section will be devoted to perturbing it to an exact solution
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of the flow. Here and in the sequel we will always use f 0.t/ to denote the time
derivative of a function f .t/. The constant T should be thought of as a large, but
fixed, parameter. Because none of the constants in the bounds that we will derive in
Proposition 17 depend implicitly on T , we will be allowed to take T large in the final
step of the proof of Theorem 2.

Lemma 15 Assume that g1 satisfies ASp as defined in Definition 10, ie FpjSk�1

achieves a positive maximum for some point yv in the unit sphere Sk�1 �ƒ0 . Then,
for any fixed T � 0, the function

(6) '.t/ WD '.t;T /D .T C t/�
1

p�2

�
2.N �2/

p.p�2/Fp.yv/

� 1
p�2
yv

solves 2.N � 2/'0CDFp.'/D 0.

Proof Assume that FpjSk�1 achieves a positive maximum at yv . Then, for any � 2R,

(7) DFp.�yv/D pj�jp�1Fp.yv/yv:

The reason for this is that Fp is p–homogeneous, so it is some function on Sk�1

times rp . The Sk�1 part has zero gradient at yv by assumption, so the gradient must be
radial. The exact form follows from differentiating the rp part along with scaling. Thus

DFp.'/Dp.TCt/�1� 1
p�2

�
2.N �2/

p.p�2/Fp.yv/

�1C 1
p�2

Fp.yv/yvD
2.N �2/

p�2
.TCt/�1'.t/:

Since '0.t/D�.p� 2/�1.T C t/�1'.t/; the claim follows.

In the next result and subsequently in this section, we will always denote by kf .t/kC k;˛

the parabolic C k;˛ norm on .t; t C 1/�M . More precisely, for ˛ 2 .0; 1/, we define
the seminorm

jf .t/jC 0;˛ D sup
.si;xi /2.t;tC1/�M

.s1;x1/ 6D.s2;t2/

jf .s1;x1/�f .s2;x2/j�
dg1.x1;x2/2Cjt1� t2j

�˛
2

and for k � 0 and ˛ 2 .0; 1/, we define the norm

(8) kf .t/kC k;˛ D

X
jˇjC2j�k

sup
.t;tC1/�M

jDˇ
xD

j
t f jC

X
jˇjC2jDk

jDˇ
xD

j
t f jC 0;˛ ;

where the norm and derivatives in the sum are taken with respect to g1 . When we
mean an alternative norm, we will always indicate the domain.
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The reason that we have chosen these norms is that they will be needed to close
the fixed-point iteration argument in Proposition 20; showing that a certain map is a
contraction map will use parabolic Schauder estimates (shown in Lemma 19), which
require the chosen norms. Hence, we will use these norms throughout this section.

First, we prove a preliminary lemma, which allows us to estimate the difference between
DY.u/ and the term u2�N DY.u/ that appears on the right-hand side of the evolution
equation (13) for the conformal factor under the Yamabe flow. This will allow us to
reduce this evolution equation to a gradient flow. Intuitively, this is clear since u is
approximately 1, but the point is to show that the difference .u2�N � 1/DY.u/ is
sufficiently small with respect to certain weighted norms that will be used in the proof
of the contraction mapping argument in Section 4.4.

Lemma 16 There exists T0 > 0, �0 > 0 and c > 0, all depending on g1 and yv ,
such that the following holds: Fix T > T0 . Then, for '.t/ as in Lemma 15 and
w 2 C 2;˛.M � Œ0;1//, defining u WD‰.'Cw

?

/Cw? , the term

E

?

0 .w/ WD projƒ0

�
DY.u/u2�N

�DY.u/
�

satisfies

kE
?

0.w/kC 0;˛ � c
�
.TCt/�1� 1

p�2Ckw
?

k
p�1

C 0;˛Ckw
?
kC 2;˛

��
.TCt/�

1
p�2CkwkC 2;˛

�
;

kE

?

0.w1/�E

?

0.w2/kC 0;˛

� c
�
.T C t/�1� 1

p�2 Ckw

?

1k
p�1

C 0;˛ Ckw

?

2k
p�1

C 0;˛ Ckw
?
1 kC 2;˛ Ckw?2 kC 2;˛

�
�kw1�w2kC 2;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

��
kw

?

1k
p�2

C 0;˛ Ckw

?

2k
p�2

C 0;˛

�
�kw

?

1 �w

?

2kC 0;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

�
kw?

1
�w?

2
kC 2;˛ :

Identical estimates hold for E?
0
.w/ WD projƒ?

0
.DY.u/u2�N �DY.u//. Here, we are

using the parabolic Hölder norms on .t; tC1/�M as defined above; the bounds hold for
each fixed t � 0, with the constants independent of T and t .

Proof First,

u2�N
D 1C

Z 1

0

d

ds

��
1C s .'Cw

?

Cˆ.'Cw

?

/Cw?/„ ƒ‚ …
WD�

�2�N �
ds

D 1C .2�N /

Z 1

0

.1C s�/1�N� ds:
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So, letting E0.w/ WDDY.u/u2�N �DY.u/, we have that

(9) kE0.w/kC 0;˛

� ckDY.u/kC 0;˛

�
k'kC 0;˛ Ckw

?

kC 0;˛ Ckˆ.'Cw

?

/kC 0;˛ Ckw?kC 0;˛

�
� ckDY.u/kC 0;˛

�
.T C t/�

1
p�2 Ckw

?

kC 0;˛ Ckw?kC 0;˛

�
:

We have used the fact that ˆ.0/D 0 and ˆ W ƒ0! C 2;˛.M;g1/ is a differentiable
map. Taylor’s theorem shows that for  s;r WD 1C r.'Cw

?

Cˆ.'Cw

?

/C sw?/,

DY.u/DDY.‰.'Cw

?

//C

Z 1

0

D2Y. s;1/Œw
?� ds

DDY.‰.'Cw

?

//� 2.N � 2/L1w?

C

Z 1

0

Z s

0

D3Y. s;Qs/Œw
?; 'Cw

?

Cˆ.'Cw

?

/C sw?� d Qs ds

D projƒ0
DY.‰.'Cw

?

//� 2.N � 2/L1w?

C

Z 1

0

Z s

0

D3Y. s;Qs/Œw
?; 'Cw

?

Cˆ.'Cw

?

/C sw?� d Qs ds

DDF.'Cw

?

/� 2.N � 2/L1w?

C

Z 1

0

Z s

0

D3Y. s;Qs/Œw
?; 'Cw

?

Cˆ.'Cw

?

/C sw?� d Qs ds:

In the last line, we used the bound (27) on D3Y discussed in Appendix A. Now,
observe that DF.0/DD2F.0/D � � � DDp�1F.0/D 0, by definition of p , the order
of integrability. Therefore, Taylor’s theorem shows that

kDF.'Cw

?

/kC 0;˛ � ck'Cw?k
p�1

C 0;˛ � c
�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛

�
:

Bounding the other two terms in the above expression for DY.u/ (using again the
bound (27) on D3Y ), we have that

(10) kDY.u/kC 0;˛ � c
�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛ Ckw
?
kC 2;˛

�
:

We define
E

?

0 .w/ WD projƒ0
E0.w/; E?0 .w/ WD projƒ?

0
E0.w/:

The asserted bounds for E

?

0
.w/ follow from the bound (9) on E0.w/, the estimate

(10) and the continuity of the map projƒ0
W C 0;˛.M;g1/!ƒ0 ,

kprojƒ0
f kC 0;˛.M;g1/

� ckprojƒ0
f kL2.M;g1/

� ckf kL2.M;g1/
� ckf kC 0;˛.M;g1/

;
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where the first inequality follows because of the finite dimensionality of ƒ0 . Note
that this is a spatial bound, so it does not include the t –Hölder norm, but the desired
space-time norm bound follows easily from it: if f is time-dependent,

k.projƒ0
f /.t1/� .projƒ0

f /.t2/kC 0;˛.M;g1/
D kprojƒ0

.f .t1/�f .t2//kC 0;˛.M;g1/

� ckf .t1/�f .t2/kC 0;˛.M;g1/
:

Dividing by jt1� t2j
˛=2 and taking the supremum over all such t1; t2 2 .t; t C 1/, the

asserted bound follows. The bound for E

?

0
.w1/�E

?

0
.w2/ follows similarly. This,

combined with the bound (9) on E0.w/ and the estimate (10), implies by the triangle
inequality that identical estimates hold also for E?

0
.w/.

The next result reduces the Yamabe flow to two flows, one on ƒ0 and the other on ƒ?
0

.

Proposition 17 There exists T0 > 0, �0 > 0 and c > 0, all depending on g1 and yv ,
such that the following holds: Fix T > T0 . Then, for '.t/ as in Lemma 15 and
w 2 C 2;˛.M � Œ0;1//, there are functions E

?

.w/ and E?.w/ such that u WD‰.'C

w

?

/Cw? is a solution to the Yamabe flow if and only if

2.N � 2/.w
?

/0CD2Fp.'/w
?

DE
?

.w/;(11)

.w?/0�L1w? DE?.w/:(12)

Here, as long as kwkC 2;˛ � �0 , the error terms E

?

and E? satisfy

kE

?

.w/kC 0;˛

� c
�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛ Ckw
?
kC 2;˛

��
.T C t/�

1
p�2 CkwkC 2;˛

�
C c.T C t/�

p
p�2 C c.T C t/�

p�1
p�2 kw

?

kC 0;˛ C c.T C t/�
p�3
p�2 kw

?

k
2
C 0;˛

C ckw

?

k
p�1

C 0;˛ C c
�
.T C t/�

1
p�2 CkwkC 2;˛

�
kw?kC 2;˛ ;

kE

?

.w1/�E

?

.w2/kC 0;˛

� c
�
.T C t/�1� 1

p�2 Ckw

?

1k
p�1

C 0;˛ Ckw

?

2k
p�1

C 0;˛ Ckw
?
1 kC 2;˛ Ckw?2 kC 2;˛

�
�kw1�w2kC 2;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

��
kw

?

1k
p�2

C 0;˛ Ckw

?

2k
p�2

C 0;˛

�
�kw

?

1 �w

?

2kC 0;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

�
kw?1 �w

?
2 kC 2;˛
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C c
�
.T C t/�

p�3
p�2 .kw

?

1kC 0;˛ Ckw

?

2kC 0;˛ /Ckw

?

1k
p�2

C 0;˛ Ckw

?

2k
p�2

C 0;˛

�
�kw

?

1 �w

?

2kC 0;˛

C c.T C t/�
p�1
p�2 kw

?

1 �w

?

2kC 0;˛ ;

kE?.w/kC 0;˛

� c
�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛ Ckw
?
kC 2;˛

��
.T C t/�

1
p�2 CkwkC 2;˛

�
C c

�
.T C t/�

1
p�2 CkwkC 2;˛

�
kw?kC 2;˛

C c
�
.T C t/�

1
p�2 CkwkC 2;˛

��
.T C t/�1� 1

p�2 Ckw0kC 0;˛

�
;

kE?.w1/�E?.w2/kC 0;˛

� c
�
.T C t/�1� 1

p�2 Ckw

?

1k
p�1

C 0;˛ Ckw

?

2k
p�1

C 0;˛ Ckw
?
1 kC 2;˛ Ckw?2 kC 2;˛

�
�kw1�w2kC 2;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

��
kw

?

1k
p�2

C 0;˛ Ckw

?

2k
p�2

C 0;˛

�
�kw

?

1 �w

?

2kC 0;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

�
kw?1 �w

?
2 kC 2;˛

C c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

�
kw01�w

0
2kC 0;˛

C c
�
.T C t/�1� 1

p�2 Ckw01kC 0;˛ Ckw02kC 0;˛

�
kw1�w2kC 2;˛ :

Here we are using the parabolic Hölder norms on .t; t C 1/�M as defined above; the
bounds hold for each fixed t � 0, with the constants independent of T and t .

Proof Recall that u is a solution to the Yamabe flow if and only if

(13) .N �2/
@u

@t
D�

1
2
DY.u/u2�N

D .N C2/u2�N�1u�R1u3�N
CruN�2g1

u;

where, as always in this article, Y is defined on the unit volume conformal class and
D. � / is the corresponding constrained differential. We now project the Yamabe flow
equation onto ƒ0 and ƒ?

0
, so u solves the Yamabe flow if and only if the following

two equations are satisfied:

2.N � 2/.'Cw

?

/0

D� projƒ0

�
DY

�
1C'Cw

?

Cˆ.'Cw

?

/Cw?
�
u.t/2�N

�
CE

?

0.w/;

2.N � 2/
�
ˆ.'Cw

?

/Cw?
�0

D� projƒ?
0

�
DY

�
1C'Cw

?

Cˆ.'Cw

?

/Cw?
�
u.t/2�N

�
CE?0 .w/:
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Here we emphasize that (as in the previous section) we are considering DY.w/ as a
function on M , via the L2.M;g1/ pairing. In other words, we are using (2). Now
we claim that we may use Taylor’s theorem to show that

projƒ0
DY

�
1C'Cw

?

Cˆ.'Cw

?

/Cw?
�

D projƒ0
DY

�
1C'Cw

?

Cˆ.'Cw

?

/
�
CE

?

1.w/;

with the bounds

kE

?

1.w/kC 0;˛ � c
�
.T C t/�

1
p�2 CkwkC 2;˛

�
kw?kC 2;˛ ;

kE

?

1.w1/�E

?

1.w2/kC 0;˛ � c.kw1kC 2;˛ Ckw2kC 2;˛ /kw?1 �w
?
2 kC 2;˛ :

These follow from the integral form of the remainder in Taylor’s theorem. Defining
 s;r WD 1C r.'Cw

?

Cˆ.'Cw

?

/C sw?/, we have

E

?

1.w/D

Z 1

0

d

ds
projƒ0

DY
�
1C'Cw

?

Cˆ.'Cw

?

/C sw?
�

ds

D

Z 1

0

projƒ0

d

ds
DY. s;1/ ds

D

Z 1

0

projƒ0
D2Y

�
 N�2

s;1 g1
�
Œw?� ds

D

Z 1

0

projƒ0
D2Y.g1/Œw?� ds

C

Z 1

0

Z s

0

projƒ0

d

d Qs
D2Y

�
 N�2
Qs g1

�
Œw?� d Qsds

D�2.N �2/

Z 1

0

projƒ0
L1w? ds

C

Z 1

0

Z s

0

projƒ0

d

d Qs
D2Y

�
 N�2

s;Qs g1
�
Œw?� d Qsds

D

Z 1

0

Z s

0

projƒ0

d

d Qs
D2Y

�
 N�2

s;Qs g1
�
Œw?� d Qsds

D

Z 1

0

Z s

0

projƒ0
D3Y

�
 N�2

s;zs g1
��
w?; 'Cw

?

Cˆ.'Cw

?

/C sw?
�

d Qsds:

The C 0;˛ norm of D3Y. N�2
s;zs

g1/Œw
?; 'Cw

?

Cˆ.'Cw

?

/C sw?� is uniformly
bounded by

c
�
.T C t/�

1
p�2 CkwkC 2;˛

�
kw?kC 2;˛
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(as long as we choose T � T0 large enough and kwkC 2;� � �0 small enough to ensure
that  s;zs is sufficiently close to 1 in C 2;˛ ). This is discussed at the end of Appendix A,
along with the corresponding bound for E

?

1
.w1/�E

?

1
.w2/.

Recall that F.v/ WD Y.‰.v// and that

projƒ0
DY

�
1C'Cw

?

Cˆ.'Cw

?

/
�
DDF.'Cw

?

/;

using the Lyapunov–Schmidt reduction (Proposition 7). Furthermore, by analyticity
(Lemma 6 and Proposition 7) DF has a convergent power series representation around 0

with lowest-order term of order p� 1. Thus, as long as 'Cw

?

is small enough, we
may write

DF.'Cw

?

/DDF.'/CD2F.'/.w

?

/CE

?

2 .w

?

/;

where

kE

?

2.w

?

/kC 0;˛ � c
�
.T C t/�

p�3
p�2 Ckw

?

k
p�3

C 0;˛

�
kw

?

k
2
C 0;˛ ;

kE

?

2.w

?

1 /�E

?

2.w

?

2 /kC 0;˛

� c
�
.T C t/�

p�3
p�2 .kw

?

1kC 0;˛ Ckw

?

2kC 0;˛ /Ckw

?

1k
p�2

C 0;˛ Ckw

?

2k
p�2

C 0;˛

�
�kw

?

1 �w
?

2kC 0;˛ :

We prove this in the case that ƒ0 has dimension equal to one, namely for k D 1; the
higher-dimensional case follows from a similar argument using multi-index notation.
We have that

DF.z/D

1X
jDp�1

cj zj :

Thus

kE

?

2.w

?

/kC 0;˛ D





 1X
jDp�1

cj

�
.'Cw

?

/j �'j
� j'j�1w

?�




C 0;˛

D





 1X
jDp�1

jX
lD2

cj

�
j

l

�
'j�l.w

?

/l






C 0;˛

�

1X
jDp�1

jX
lD2

jcj j

�
j

l

�
k'k

j�l

C 0;˛kw

?

k
l
C 0;˛

� kw

?

k
2
C 0;˛

1X
jDp�1

jX
lD2

jcj j

�
j

l

��
k'k

j�2

C 0;˛ Ckw

?

k
j�2

C 0;˛

�
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� kw

?

k
2
C 0;˛

1X
jDp�1

jcj j2
j
�
k'k

j�2

C 0;˛ Ckw

?

k
j�2

C 0;˛

�
� 2p�1

k'k
p�3

C 0;˛kw

?

k
p�1

C 0;˛

1X
jDp�1

jcj j2
jC1�p

k'k
jC1�p

C 0;˛

C 2p�1
kw

?

k
p�1

C 0;˛

1X
jDp�1

jcj j2
jC1�p

kw

?

k
jC1�p

C 0;˛ :

Because Dp�1F.z/ has an absolutely convergent power series for every z sufficiently
close to 0, choosing �0 small enough, T0 large enough, and using Lemma 15, we may
guarantee that both sums are bounded above by 1. The asserted bound on E

?

2
.w

?

/

follows. A similar argument yields the other bound.

These arguments show that the ƒ0 –component of the Yamabe flow may be written as

2.N � 2/.'0C .w

?

/0 /D�DF.'/�D2F.'/.w

?

/CE

?

1 .w/�E

?

2 .w

?

/:

Now, expanding F in a power series, F D F.0/C
P1

jDp Fj , we may write the above
expression as

2.N � 2/.'0C .w
?

/0/D�DFp.'/�D2Fp.'/.w
?

/CE
?

1.w/�E
?

2.w
?

/CE
?

3.w/„ ƒ‚ …
WDE

?

.w/

;

where
E

?

3 .w/D
X

j�pC1

.DFj .'/CD2Fj .'/w

?

/:

By analyticity, this converges in eg C 0;˛ for k'kC 2;˛ and kwkC 2;˛ small enough.
Because each term in the sum is a homogeneous polynomial, we get the following
error bound by using the formula for ' :

kE

?

3.w/kC 0;˛ � c
�
.T C t/�

p
p�2 C .T C t/�

p�1
p�2 kw

?

kC 0;˛

�
;

kE

?

3.w1/�E

?

3.w2/kC 0;˛ � c.T C t/�
p�1
p�2 kw

?

1 �w

?

2kC 0;˛ :

Therefore, by Lemma 15, w

?

needs to satisfy the equation

2.N � 2/.w

?

/0CD2Fp.'/w

?

DE

?

.w/;

where E

?

.w/ satisfies the asserted bounds.

Now we turn to the ƒ?
0

portion of the Yamabe flow. First, recall that by Proposition 7,

projƒ?
0

DY
�
‰.'Cw

?

/
�
D 0:
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Combined with the fact that Dprojƒ?
0

DY at 1 equals �2.N � 2/projƒ?
0
L1 (this

follows because D and projƒ?
0

commute), we thus may use Taylor’s theorem to write
(using the fact that L1 is linear)

projƒ?
0

DY
�
‰.'Cw

?

/Cw?
�
D�2.N � 2/L1w?�E?1 .w/;

where

kE?1 .w/kC 0;˛ � c
�
.T C t/�

1
p�2 CkwkC 2;˛

�
kw?kC 2;˛ ;

kE?1 .w1/�E?1 .w2/kC 0;˛ � c
�
kw1kC 2;˛ Ckw2kC 2;˛

�
kw?1 �w

?
2 kC 2;˛

C c
�
kw?1 kC 2;˛ Ckw?2 kC 2;˛

�
kw1�w2kC 2;˛ :

To check this, we write

projƒ?
0

DY
�
‰.'Cw

?

/Cw?
�

D projƒ?
0

DY
�
‰.'Cw

?

/
�
C

Z 1

0

d

ds
projƒ?

0
DY

�
‰.'Cw

?

/C sw?
�

ds

D

Z 1

0

projƒ?
0

D2Y
�
‰.'Cw

?

/C sw?
�
Œw?� ds

D�2.N � 2/L1w?

C

Z 1

0

�
projƒ?

0
D2Y

�
‰.'Cw

?

/C sw?
�
Œw?�� projƒ?

0
D2Y.1/Œw?�

�
ds:

Given this, we may control the asserted C 0;˛ bounds by the C 2;˛ norm of ' and w ,
by an argument similar to that used for E

?

1
. (The derivative of ‰ is uniformly bounded

near 0 by Proposition 7.)

We also consider ˆ.'Cw

?

/0 WDE?
2
.w/ as an error term, as it satisfies

kE?2 .w/kC 0;˛ � c
�
.T C t/�

1
p�2 CkwkC 2;˛

��
.T C t/�1� 1

p�2 Ckw0kC 0;˛

�
;

kE?2 .w1/�E?2 .w2/kC 0;˛

� c
�
.T C t/�

1
p�2 Ckw1kC 2;˛ Ckw2kC 2;˛

�
kw01�w

0
2kC 0;˛

Cc
�
.T C t/�1� 1

p�2 Ckw01kC 0;˛ Ckw02kC 0;˛

�
kw1�w2kC 2;˛ :

Here we have used (3) and have controlled kwkL2 by the C 2;˛ norm. Thus the
kernel-orthogonal component of the Yamabe flow is

.w?/0 D L1w?CE?.w/;

where E?.w/ satisfies the asserted bounds. Combining the ƒ0 equation with the ƒ?
0

equation finishes the proof.
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4.2 Solving the kernel-projected flow with polynomial decay estimates

In this subsection we solve the kernel-projected flow (11). First, from the definition
of ' in (6) and the fact that D2Fp is homogeneous of degree p� 2,

D2Fp.'/D .T C t/�1
�

2.N �2/

p.p�2/Fp.yv/

�
D2Fp.yv/:

Diagonalize the Hessian term, and denote by �1; : : : ; �k the eigenvalues of

2.N �2/

p.p�2/Fp.yv/
D2Fp.yv/:

Let ei be an orthonormal basis in which this Hessian is diagonalized. Thus, the
kernel-projected flow is equivalent to the following system of ODEs for2 vi WD w

?

� ei .

(14) .N � 2/v0i C
�i

T C t
vi DE

?

i WDE

?

� ei ; i D 1; : : : ; k:

Fix for the rest of this subsection a number 
 fulfilling 
 62
n

�1

2.N �2/
; : : : ;

�k

2.N �2/

o
:

Define the weighted norms

kuk
C

0;˛


WD sup

t>0

�
.T C t/
ku.t/kC 0;˛

�
and kuk

C
0;˛

1;


WD kuk
C

0;˛


Cku0k

C
0;˛

1C


:

We recall that these Hölder norms are space-time norms on the interval .t; t C 1/�M ,
as defined in (8).

Given 
 as above, let …0 D…0.
 / denote the linear subspace of ƒ0 generated by
the eigenvectors of 2.N � 2/=.p.p � 2/Fp.yv//D

2Fp.yv/ whose eigenvalue, say �,
satisfies �> 2.N �2/
 . Moreover, let proj…0

W ƒ0!…0 be the corresponding linear
projector.

The next lemma concerns the system (14).

Lemma 18 For any T > 0 such that kE

?

kC 0;˛

1C

<1, there is a unique u with

u.t/ 2 ƒ0 , t 2 Œ0;1/, satisfying kukC 0


<1, proj…0

.u.0// D 0, and such that
vi WD u � ei solves the system (14). Furthermore, we have the bound

kuk
C

0;˛

1;


� CkE

?

k
C

0;˛

1C


:

Proof Letting

wj WD .T C t/
�j

2.N�2/ vj ;

2Using, as above, the natural L2 inner product on ƒ0 regarded as a subset of T1Œg1�1 .
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the system (14) is equivalent to

w0j D
1

2.N �2/
.T C t/

�j
2.N�2/E

?

j ; j D 1; : : : ; k:

Suppose that j is such that 
 > �j=.2.N � 2//. Then, we claim that we may solve
the j th ODE as

wj .t/D j̨ � .2.N � 2//�1

Z 1
t

.T C �/
�j

2.N�2/E

?

j .�/ d�;

which would give

uj .t/D .TCt/�
�j

2.N�2/ j̨�.2.N�2//�1.TCt/�
�j

2.N�2/

Z 1
t

.TC�/
�j

2.N�2/E

?

j .�/ d�:

This amounts to checking that the integral converges under our assumptions on E

?

:ˇ̌̌̌
.T C t/�

�j
2.N�2/

Z 1
t

.T C �/
�j

2.N�2/E

?

i .�/ d�

ˇ̌̌̌
� .T C t/�

�j
2.N�2/ kE

?

j kC 0
1C


Z 1
t

.T C �/
�i

2.N�2/
�
�1d�

D

�

 �

�j

2.N � 2/

��1
.T C t/�

�j
2.N�2/ kE

?

i kC 0
1C


.T C t/
�j

2.N�2/
�


D Ci.T C t/�
kE

?

j kC 0
1C


:

The previous estimate also shows that, since by assumption 
 > �j=.2.N � 2//, to
have kuk

C
0;˛



<1, it must hold that j̨ D 0.

On the other hand, if 
 < �j=.2.N � 2//, we may solve the ODE as

wj .t/D j̨ C .2.N � 2//�1

Z t

0

.T C �/
�j

2.N�2/E

?

j .�/ d�:

By requiring proj…0
u.0/D 0, we see that j̨ D 0. As a result, the bounds for kujkC 0




follow from a similar calculation as before.

Combining these two cases proves existence, uniqueness and the kukC 0



bound. It thus
remains to prove the inequality kuk

C
0;˛

1;


� CkE

?

k
C

0;˛

1C


:

By finite dimensionality, the (spatial) C 0;˛.M / Hölder norms of each basis element
in ƒ0 are uniformly bounded. Thus, it remains to show that the desired inequality
holds for the Hölder norm in the time direction, along with the same thing for u0.t/.
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(The general space-time norm will then be bounded by the triangle inequality.) Suppose
that j is such that 
 > �j=.2.N � 2//. Then, we have seen above that

uj .t/D�.2.N � 2//�1.T C t/�
�j

2.N�2/

Z 1
t

.T C �/
�j

2.N�2/E

?

j .�/ d�:

Notice that

u0j .t/D �j .T C t/�
�j

2.N�2/
�1

Z 1
t

.T C �/
�j

2.N�2/E

?

j .�/ d� � .2.N � 2//�1E

?

j .t/:

Thus

ku0jkC 0;˛ � C





.T C t/�
�j

2.N�2/
�1

Z 1
t

.T C �/
�j

2.N�2/E

?

j.�/ d�






C 1

CCkE

?

j.t/kC 0;˛

� C





.T C t/�
�j

2.N�2/
�2

Z 1
t

.T C �/
�j

2.N�2/E

?

j.�/ d�






C 0

CCkE

?

j.t/kC 0;˛

� C.T C t/�1�

kE

?

j kC 0;˛

1C


:

We may use the C 0 bound on u0j to obtain a Hölder estimate for uj . From this, the
claimed inequality follows.

4.3 Solving the kernel-orthogonal projected flow

Define the weighted norms

kukL2
q
D sup

t2Œ0;1/

�
.T C t/qku.t/kL2.M /

�
;

where the L2 norm is the spatial norm of u.t/ on M , taken with respect to g1 , and

kuk
C

2;˛
q
D sup

t�0

�
.T C t/qku.t/kC 2;˛

�
;

where, as usual, the Hölder norms are the space-time norms defined in (8). Also, let

ƒ" WD spanf' 2 C1.M / W L1'C ı' D 0; ı < 0g;

ƒ# WD spanf' 2 C1.M / W L1'C ı' D 0; ı > 0gL
2

:

From the spectral theory of the Laplacian, L2.M;g1/ D ƒ" ˚ƒ0 ˚ƒ# and ƒ"
and ƒ0 are finite-dimensional. Write the nonnegative integers as an ordered union
N DK"[K0[K# , where the ordering of the indices comes from an ordering of the
eigenfunctions of the Laplacian �g1 and the partitioning of N corresponds to which
of ƒ#; ƒ0 or ƒ" the k th eigenfunction of �g1 lies in.
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Lemma 19 For any T > 0 and q <1 such that kE?kL2
q
<1, there is a unique

u.t/ with u.t/ 2ƒ?
0

, t 2 Œ0;1/, satisfying kukL2
q
<1, projƒ#.u.0//D 0 and

(15) u0 D L1uCE?:

Furthermore, kukL2
q
� CkE?kL2

q
and kuk

C
2;˛
q
� CkE?k

C
0;˛
q
:

Proof Recall that

(16) .N � 2/L1 D .N C 2/�1C .N � 2/R1:

Let 'i be an eigenfunction (with eigenvalue ıi ) of 1
2
L1 which is orthogonal to the

kernel ƒ0 . The flow equation (15) reduces to the system

(17) u0i C ıiui DE?i ;

where E?i D hE
?; 'ii and ui D hu; 'ii. This is equivalent to

(18) .eıi tui/
0
D eıi tE?i :

Thus, we may represent the components of the solution as

u?i .t/D

8̂̂<̂
:̂
ˇie
�ıi t
C e�ıi t

Z t

0

eıi�E?i .�/ d� for i 2K#;

ˇie
�ıi t
� e�ıi t

Z 1
t

eıi�E?i .�/ d� for i 2K":

In particular, we have that

u.t/D
X

j2K#

�
ǰ e�ıj t

C e�ıj t

Z t

0

eıj �E?j .�/ d�

�
'j

C

X
j2K"

�
ǰ e�ıj t

� e�ıj t

Z 1
t

eıj �E?j .�/ d�

�
'j :

This sum is in an L2 sense (but then elliptic regularity guarantees that the sum converges
uniformly on compact time intervals). We note that for i 2K" , if kukL2

q
<1 then

necessarily ˇi D 0. Furthermore, by requiring that projƒ# u.0/ D 0, we also have
ˇi D 0 for i 2K# .
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We can write the following integral bounds for u:



 X
j2K#

uj .t/'j





2

L2

�

X
j2K#

�Z t

0

eıj .��t/E?j .�/ d�

�2

�

X
j2K#

�Z t

0

eımin.��t/E?j .�/ d�

�2

�





Z t

0

eımin.��t/E?.�/ d�





2

L2

;

where ımin D minj2K# ıj and in the last step we made use of the Parseval identity.
Taking square roots gives



 X

j2K#

uj .t/'j






L2

�





Z t

0

eımin.��t/E?.�/ d�






L2

�

Z t

0

eımin.��t/
kE?kL2 d�

hence we can finally make use of our decay assumption on E? to get



 X
j2K#

uj .t/'j






L2

� kE?kq

Z t

0

eımin.��t/.T C �/�q d�:

We bound the integral asZ t

0

eımin.��t/.T C �/�q d�

D

Z t=2

0

eımin.��t/.T C �/�q d� C

Z t

t=2

eımin.��t/.T C �/�q d�

� T �q

Z t=2

0

eımin.��t/ d� C .T C t=2/�q

Z t

t=2

eımin.��t/ d�

� ı�1
minT �q.e�ımint=2

� e�ımint /C ı�1
min.T C t=2/�q.1� e�ımint=2/:

From this we see that



 X
j2K#

uj .t/'j






L2

� CkE?kL2
q
.T C t/�q:

A similar argument holds for the K" terms. From this, the asserted bounds for kukL2
q

follow readily.

The rest of the proof is devoted to showing that the C
2;˛
q bounds follow from the L2

q

bounds. By interior parabolic Schauder estimates [19, Theorem 4.9], we have that
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for t � 1,

ku.t/kC 2;˛ � C
�

sup
s2.t�1;tC1/�M

ju.s;x/jC kE?kC 0;˛..t�1;tC1/�M /

�
:

We emphasize that the C 2;˛ norm on the left-hand side is the space-time norm on
.t; t C 1/�M , as defined in (8).

We claim that for � > 0, there exists c.�/ > 0 such that for any function ' 2C 0;˛.M /,

sup
x2M

j'.x/j � c.�/k'kL2.M /C �k'kC 0;˛.M /:

This follows immediately from an argument by contradiction in conjunction with the
Arzelà–Ascoli theorem. Using this in the Schauder estimate (bounding the supremum
of the spatial C 0;˛.M / norm over t 2 .t �1; tC1/ by the space-time Hölder norm on
.t � 1; t C 1/�M ) we get

ku.t/kC 2;˛ � C
�

sup
s2.t�1;tC1/

ku.s;x/kL2.M /CkE
?
kC 0;˛..t�1;tC1/�M /

�
CC�ku.t/kC 0;˛..t�1;tC1/�M /:

Multiplying by .T C t/q and taking the supremum over t � 1 yields

sup
t�1

�
.T C t/qku.t/kC 2;˛

�
�C

�
sup
t�0

�
.T C t/qku.s;x/kL2.M /

�
C sup

t�0

�
.T C t/qkE?kC 0;˛..t;tC1/�M /

��
CC� sup

t�0

�
.T C t/qku.t/kC 0;˛..t�1;tC1/�M /

�
D C.kukL2

q
CkE?k

C
0;˛
q
/CC�kuk

C
0;˛
q

� C.kE?kL2
q
CkE?k

C
0;˛
q
/CC�kuk

C
0;˛
q

� CkE?k
C

0;˛
q
CC�kuk

C
0;˛
q
:

To finish the proof, it remains to extend the supremum up to t D 0, because then
we may absorb the second term back into the left-hand side of the inequality by
choosing � sufficiently small. This may be achieved via global Schauder estimates [19,
Theorem 4.28]:

ku.t/kC 2;˛..0;1/�M / � C
�

sup
s2.0;1/

ku.s;x/kL2.M /C �kukC 0;˛..0;1/�M /

CkE?kC 0;˛..0;2/�M /Cku.0/kC 2;˛.M /

�
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Note that

u.0/D�
X

j2K"

�Z 1
0

eıj �E?j .�/ d�

�
'j :

The space ƒ" is finite-dimensional, so there must be a uniform constant C > 0 such
that k'jkC 2;˛.M / � Ck'jkL2.M / for all j 2K" . Using this we have that

ku.0/k2
C 2;˛.M /

� C
X

j2K"

�Z 1
0

eıj �E?j .�/ d�

�2

k'jk
2
C 2;˛.M /

� C
X

j2K"

�Z 1
0

eıj �E?j .�/ d�

�2

k'jk
2
L2.M /

D Cku.0/k2
L2.M /

:

Using the L2
q bound obtained above, we may extend the supremum to t � 0 and get the

desired Hölder bounds (absorbing, as commented before, the C 0;˛ norms of u into the
left-hand side, by choosing � small).

4.4 Construction of a slowly converging flow

To proceed further, we define the norm

kf k�
 WD kprojƒ0
f k

C
0;˛

1;


Ckprojƒ?
0
f k

C
2;˛

1C


:

Recall that

kuk
C

0;˛

1;


D sup
t�0

�
.T C t/
ku.t/kC 0;˛

�
C sup

t�0

�
.T C t/1C
ku0.t/kC 0;˛

�
;

kuk
C

2;˛

1C


D sup
t�0

�
.T C t/1C
ku.t/kC 2;˛

�
;

where the Hölder norms are the space-time Hölder norms defined in (8). For 
 to be
specified below, we define X to be the Banach space of functions f with kf k�
 <1.

Proposition 20 Assume that g1 satisfies ASp . We may thus fix a point where
FpjSk�1 achieves a positive maximum and denote it by yv . Define

'.t/D .T C t/�
1

p�2

�
2.N �2/

p.p�2/Fp.yv/

� 1
p�2
yv;

as in Lemma 15. Then, there exists C > 0, T > 0, .p� 2/�1 < 
 < 2.p� 2/�1 and
u.t/ 2 C1.M � .0;1// such that u.t/ > 0 for all t > 0, g.t/ WD u.t/N�2g1 is a
solution to the Yamabe flow and

w ?

.t/Cˆ.'.t/Cw

?

.t//Cw?.t/


�


D ku.t/�'.t/� 1k�
 � C:
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Proof We fix 1=.p�2/ < 
 < 2=.p�2/ so that 
 62
n

�1

2.N �2/
; : : : ;

�k

2.N �2/

o
. By

Proposition 17, it is enough to solve

2.N � 2/.w

?

/0CD2Fp.'/w

?

DE

?

.w/; .w?/0�L1w? DE?.w/;

for w.t/ with kwk�
 < C . To do so, we will use the contraction mapping method. We
define a map

S W fw 2X W kwk�
 � 1g !X D fw W kwk�
 <1g;

by defining u WD projƒ0
S.w/ to be the solution of

2.N � 2/u0CD2Fp.'/uDE

?

.w/

and v WD projƒ?
0

S.w/ to be the solution of

v0�L1v DE?.w/:

Thus, we have defined the map S.w/ by its orthogonal projections onto ƒ0 and ƒ?
0

.
These solutions exist, in the right function spaces, by combining the bounds for the
error terms in Proposition 17 with Lemmas 18 and 19. Furthermore, we have the
explicit bound

kprojƒ0
S.w/k

C
0;˛

1;


� ckE

?

.w/k
C

0;˛

1C


� c sup
t�0

.T C t/1C

�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛ Ckw
?
kC 2;˛

�
�
�
.T C t/�

1
p�2 CkwkC 2;˛

�
C c sup

t�0

�
.T C t/
�

2
p�2 C .T C t/
�

1
p�2 kw

?

kC 2;˛

�
C c sup

t�0

�
.T C t/
C

1
p�2 kw

?

k
2
C 2;˛ C .T C t/1C
kw

?

k
p�1

C 2;˛

�
C c sup

t�0

.T C t/1C
kw?k2
C 2;˛

� c
�
T 
� 2

p�2 C .T �
1

p�2 CT .p�2/. 1
p�2
�
//kwk�


�
:

Here, we have absorbed powers of .T C t/ into the various w norms and bounded the
result by kwk�
 . Note that the w? terms in kwk�
 are multiplied by .T C t/1C
 , but
the w

?

term in kwk�
 is only multiplied by .T C t/
 , so we cannot absorb as high
of a power of .T C t/ into it. (Fortunately, the w

?

terms are all raised to a large
power, or already multiplied by an appropriately decaying power of .T C t/, as is
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easily checked.) In the last step, we have used the bound

kw

?

kC 2;˛..t;tC1/�M / � c
�
kw

?

kC 0;˛..t;tC1/�M /Ck.w

?

/0kC 0;˛..t;tC1/�M /

�
:

This is a consequence of the fact that ƒ0 is finite-dimensional (so any two norms on it
are uniformly equivalent)3 and that the parabolic C 2;˛ Hölder norms only contain at
most one time derivative (which does not come paired with any spatial derivatives).
Similarly,

kprojƒ?
0

S.w/k
C

2;˛

1C


� kE?.w/k
C

0;˛

1C


� c sup
t�0

�
.T C t/1C


�
.T C t/�1� 1

p�2 Ckw

?

k
p�1

C 0;˛ Ckw
?
kC 2;˛

�
�
�
.T C t/�

1
p�2 CkwkC 2;˛

��
C c sup

t�0

��
.T C t/1C
�

1
p�2 C .T C t/1C
kwkC 2;˛

�
kw?kC 2;˛

�
C c sup

t�0

��
.T C t/1C
�

1
p�2 C .T C t/1C
kwkC 2;˛

�
�
�
.T C t/�1� 1

p�2 Ckw0kC 0;˛

��
� c

�
T 
� 2

p�2 C .T �
1

p�2 CT .p�2/. 1
p�2
�
//kwk�


�
:

Thus, because 
 2
�
1=.p�2/; 2=.p�2/

�
, by choosing T large enough we can ensure

that S maps fw W kwk�
 � 1g �X into itself. Finally, we check that we can guarantee
that S is a contraction mapping by taking T even larger if necessary. The following
inequalities are proven by the same argument we have just used:

kprojƒ0
S.w1/� projƒ0

S.w2/kC 0
1;

� c.T �

1
p�2 CT .p�2/. 1

p�2
�
//kw1�w2k

�

 ;

kprojƒ?
0

S.w1/� projƒ?
0

S.w2/kC 2;˛

1C


� c.T �
1

p�2 CT .p�2/. 1
p�2
�
//kw1�w2k

�

 :

Thus, by enlarging T if necessary, we have that S is a contraction map. This finishes
the proof.

We now show how the previous proposition yields solutions converging at exactly a
polynomial rate.

Proof of Theorem 2 From Proposition 17, we have constructed '.t/ and u.t/ so that

'.t/D .T C t/�
1

p�2

�
2.N �2/

p.p�2/Fp.yv/

� 1
p�2
yv;

3We note that the space-time C k;˛ norms on ƒ0 are not all uniformly equivalent because time-
dependence of the functions turns the space into an infinite-dimensional vector space. In our inequality, we
used that spatial C k;˛ norms of any element in ƒ0 are all equivalent to any other spatial C k0;˛0 norm.
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u.t/N�2g1 is a solution to the Yamabe flow, and

u.t/D 1C'.t/C zw.t/ WD 1C'.t/Cw

?

.t/Cˆ.'.t/Cw

?

.t//Cw?.t/;

where zw.t/ satisfies (in particular) k zwkC 0 �C.1C t/�
 for some C > 0 and all t � 0.
We have arranged that 
 > 1=.p � 2/, which implies that '.t/ is decaying slower
than zw.t/. Thus

ku.t/� 1kC 0 � C.1C t/�
1

p�2

as t !1. From this, the assertion follows.

5 Examples satisfying ASp

In this section we provide explicit examples of metrics which satisfy ASp for both
p D 3 and p � 4. This allows us, via Theorem 2, to conclude the existence of slowly
converging Yamabe flows.

5.1 Examples which satisfy AS3

In this subsection we prove Proposition 3. Suppose that we are given integers n;m> 1

and a closed m–dimensional Riemannian manifold .M m;gM / with constant scalar
curvature RgM

� 4.nC 1/.mC n � 1/. We denote the complex projective space
equipped with the Fubini–Study metric by .Pn;gFS /. (We normalize the Fubini–Study
metric so the map S2nC1 ! Pn from the unit sphere is a submersion.) We will
show that the product metric .M m � Pn;gM ˚ gFS / is a degenerate critical point
satisfying AS3 . Recall that this implies that the metric is nonintegrable by Lemma 9.

Write g WD gM ˚gFS . Because RgFS
D 4n.nC1/ [22, page 86], the scalar curvature

of g satisfies Rg D 4.nC 1/.mC n� 1/C 4n.nC 1/D 4.nC 1/.mC 2n� 1/. The
dimension of M m � Pn is mC 2n, so ƒ0 consists of eigenfunctions of �g with
eigenvalue Rg=.mC2n�1/D 4.nC1/. Because �1.gFS /D 4.nC1/ [3, Proposition
C.III.1], we see that .M m�Pn;g/ is degenerate; for any first eigenfunction v on Pn ,
the function 1˝v on M m�Pn will be an eigenfunction of �g with eigenvalue 4.nC1/.

The eigenfunctions of �gFS
may be explicitly constructed by considering polynomials

on Cn which are homogeneous of degree k in both z and z and which are harmonic.
These polynomials restrict to S2nC1 and are invariant under the natural S1 action, so
they descend to the quotient. This is described in detail in [3, Proposition C.III.1]. By
a recent observation of Kröncke [17, page 25], the harmonic polynomial h.z; z/ WD

z1z2C z2z1C z2z3C z3z2C z3z1C z1z3 , defined on CnC1 for n� 2, descends to a
first eigenfunction v of �gFS

for which
R

Pn v
3 dVgFS

6D 0. The function 1˝ v is an
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eigenfunction of �g with eigenvalue 4.nC 1/, so it is an element of ƒ0 . Moreover,
by Fubini’s theorem,

R
M m�Pn.1˝ v/

3 dVg D Vol.M m;gM /
R

Pn v
3 dVgFS

6D 0: Thus
we see that .M m�Pn;g/ is degenerate and by (4), the function F3 is not everywhere
zero on ƒ0 . This shows that .M m �Pn;g/ satisfies AS3 , as claimed.

5.2 Examples satisfying ASp for p � 4

This subsection is devoted to the detailed study of the Yamabe problem on S1.R/�Sn�1 .
Our goal is to obtain examples in any dimension n� 3 of a nonintegrable critical point
of Y which satisfies the condition ASp for some p � 4, as defined in Definition 10.
The study involves properties of a certain period function �.˛/ defined below. Here
we start by giving an overview of Schoen’s discussion [25], supplying detailed proofs.
The main new observation is that these facts imply the existence of a constant scalar
curvature metric satisfying the assumptions of Theorem 2. We observe that the same
ODE which we analyze has been considered from a different perspective in [21], where
the authors analyze moduli spaces of singular Yamabe metrics.

5.2.1 An ODE parametrizing all solutions of the Yamabe problem We consider
a one-parameter family of conformal classes ŒgT � on S1 �Sn�1 represented by the
natural product metric S1.T=2�/�Sn�1.1/. (Here Sk.r/ is the k–sphere of radius r

in RkC1 .) We will write t for the coordinate on S1.T=2�/.

Proposition 21 [25] Let u0 D ..n � 2/=n/
1
4
.n�2/

D .2=N /1=.N�2/ . Then there
exists a map � W .u0; 1/!R>0 which parametrizes solutions to the Yamabe problem
on S1 �Sn�1 in the following sense: For a given T > 0, up to scaling the conformal
factor, the complete list of constant scalar curvature metrics in ŒgT � is (i) the product
metric and (ii) a metric of the form u.t/N�2gT , where u.t/ solves the ODE

4u00� .n� 2/2uC n.n� 2/u
nC2
n�2 D 0;

with initial conditions .u.t0/;u0.t0// D .˛; 0/ for some t0 2 S1.T=2�/. Here ˛ 2
.u0; 1/ is any solution of �.˛/D T=k , with k an arbitrary positive integer.

Proof We will follow Schoen and look for solutions to the Yamabe problem with
constant scalar curvature n.n�1/ (equal to that of the unit sphere), and in doing so we
drop the volume constraint. A crucial observation is that by a result of Caffarelli, Gidas
and Spruck (following the classical work of Gidas, Ni and Nirenberg), a constant scalar
curvature metric in ŒgT � must have conformal class only depending on the S1 variable t ;
see [11; 16]. This reduces the problem to studying an ODE rather than a PDE.
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It will be convenient to lift the analysis to the universal cover R � Sn�1 and use
.t; �/ 2 R�Rn with j�j D 1 as coordinates. In particular, we will forget about gT

for now and consider instead the metric g D dt2C gSn�1.1/ on R� Sn�1 . Then a
solution to the Yamabe problem in ŒgT � will correspond to a function u.t/ on R�Sn�1

(depending only on the first factor) with period T in t and for which u.t/4=.n�2/g

has constant scalar curvature n.n� 1/.

Now, u.t/4=.n�2/g having constant scalar curvature n.n�1/ is equivalent to the ODE

(19) 4u00� .n� 2/2uC n.n� 2/u
nC2
n�2 D 0

as Rg DRgSn�1.1/
D .n� 1/.n� 2/ and

n.n� 1/DRuN�2g D�.N C 2/u�
nC2
n�2

�
u00�

1

NC2
Rgu

�
:

There is an obvious solution to (19) given by the constant u.t/�u0D ..n�2/=n/
1
4
.n�2/ .

This simply corresponds to the rescaling of gT so that it has scalar curvature n.n� 1/,
as desired.

There is a second explicit solution to (19) obtained by considering R � Sn�1 as
the coordinate patch of Sn given by Sn � fN;Sg, the sphere minus two antipo-
dal points. The restriction of the standard metric on Sn to Sn � fN;Sg, which
has scalar curvature n.n � 1/, then produces a solution to (19) as long as we can
check that this metric is conformally related to g . To see this, notice that the map
‰W .R�Sn�1;g/! .Rn�f0g;gEuc/, .t; �/ 7! et� is conformal, because

‰�gEuc D‰
�.dr2

C r2gSn�1/D e2tdt2
C e2tgSn�1 D e2tg;

where gEuc denotes the Euclidean metric on Rn n f0g. On the other hand, by stereo-
graphic projection the spherical coordinate patch on Rn n f0g has the metric

gSn D
4gEuc

.1C r2/2
; where r D jxj with x 2Rn n f0g:

Thus ‰�.gSn/ D .4e2t=.1 C e2t /2/g D .cosh t/�2g . Therefore we have another
solution to (19) given by u1.t/D .cosh t/�.n�2/=2 . Of course, the metric u1.t/

4=.n�2/g

does not descend to the quotient S1.T=2�/ � Sn�1 (and it is not even a complete
metric on R�Sn�1 ) but it will prove useful in the sequel.

By setting v D du=dt , (19) can be converted to a first-order system

(20) d

dt
.u; v/DX.u; v/;
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where the vector field X on the uv–plane is defined by

X.u; v/D

�
v;
.n�2/2u�n.n�2/u

nC2
n�2

4

�
:

We note that the second component of X is negative when u> u0 and positive when
u< u0 . From the above analysis, we know that

(21) .u.t/; v.t//D .u1.t/;u
0
1.t//D

�
.cosh t/�

n�2
2 ;

�
1

4
�

n

8

� sinh t

.cosh t/n=2

�
is a solution to (20). Letting t D 0, we see that .1; 0/ is on this integral curve.
Additionally, letting t !˙1 (note here that n � 3), we see that the curve tends to
.0; 0/. Thus, the orbit associated to u1 along with .0; 0/ encloses a region � with
compact closure �, and such � is invariant under the flow since its boundary is a
homoclinic cycle (ie a trajectory that limits to the same critical point at t D˙1).

Claim 22 Any periodic solution with u> 0 for all time must lie inside �.

Proof By the previous comments, it suffices to consider a trajectory 
 .t/D .u.t/; v.t//
in R2 n�. Observe that

(22) 4v0.t/D n.n� 2/u
�
uN�2

0 �uN�2
�
:

Thus, whenever u.t/ > u0 we have v0.t/ < 0. We divide the proof into two cases.

Case 1 u.0/ > u0 . In this case, since 
 .t/ is defined globally for t 2 R and is
periodic, we claim that there exists O0 such that u.O0/ D u0 and v0.t/ < 0 for
t 2 .0;O0/. Indeed, if it were not the case, monotonicity of the second component
of 
 should immediately imply that the corresponding trajectory of 
 . � / is unbounded,
contradicting the periodicity assumption.

As a result, clearly v.O0/ < 0, hence the system implies u0.O0/ < 0 and thus it
follows that v.t/ > v.O0/ for t >O0 . Since 
 is global, it must remain in the right
half-space (as u> 0) and by monotonicity of the second component it follows that 

must approach .0; 0/ as t %1. But then it is not periodic. (Note that in fact, by
time-reversal symmetry, 
 should be a homoclinic cycle.)

Case 2 u.0/ < u0 . We can assume v.0/ > 0, since otherwise the last part of the proof
of Case 1 applies. Thus v.0/ > 0, and therefore u0.0/ > 0 and v0.0/ > 0. It follows
once again that 
 crosses the vertical line uD u0 , and then we are in Case 1.
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Claim 23 Suppose that 
˛.t/D .u.t/; v.t// solves (20) and that 
˛.0/D .˛; 0/ 2�.
Then either 
˛ � .u0; 0/ or 
˛ is a smooth periodic orbit contained in � � @�.
Furthermore, if u0 � ˛1 < ˛2 , then 
˛1

is enclosed by 
˛2
.

Proof For the first statement, let us start by observing that (by compactness of �) any
such solution 
˛.t/ must be defined for all times and 
˛.t/D 
˛.�t/ for all t 2R by
means of a standard ODE uniqueness argument (as X.u; v/DX.u;�v/). To proceed
further, let us recall that the flow (20) is generated by the Hamiltonian (see [21, (2.3)])

(23) H.u; v/D 2v2
C
.n�2/2.uN �u2/

2
:

The corresponding conservation law (together with the fact that H.u; 0/D 0 implies
u 2 f0; 1g) rules out the existence of solutions 
˛ such that limt!C1 
˛.t/D .0; 0/

(and thus limt!�1 
˛.t/ D .0; 0/ as well) or limt!C1 
˛.t/ D .1; 0/ (and thus
limt!�1 
˛.t/D .1; 0/) whenever ˛2 .0; 1/. Then the first claim follows from the fact
that for ˛2 .0; 1/, 
˛ must intersect the u–axis (exactly) twice and away from the zeros
of the vector field X . Then, by the time-reversal symmetry, we conclude that 
˛ must be
periodic, hence also smooth. These arguments show in particular that Im 
˛ for such ˛
is diffeomorphic to S1 . Uniqueness of solutions to ODEs then implies the last claim.

Finally, this allows us to conclude the general classification of constant scalar curvature
metrics in ŒgT �. Any constant curvature metric must depend only on the t variable and
thus lift to a solution u.t/ to the ODE (19) on R. The solution must be periodic of
period T=k for some positive integer k , as the metric descends to S1.T=2�/�Sn�1 .
Thus, by the above claim, there exists ˛ 2 .u0; 1/ such that u.t/ solves the ODE with
initial conditions .˛; 0/ (after possibly shifting u.t/ by a rotation of S1 ). Of course,
if k > 1, then what we mean here is that the conformal factor on S1.T=2�/�Sn�1

is u.t/ concatenated k times. By definition �.˛/D T=k . This completes the proof
of Proposition 21.

5.2.2 The period function

Lemma 24 [25] The period function �.˛/ is continuous on the interval .u0; 1/.
Furthermore, it satisfies:

.i/ lim
˛%1

�.˛/DC1:

.ii/ lim
˛&u0

�.˛/D .n� 2/�1=22� WD T0:
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Proof (i) Suppose that there is a sequence ˛k % 1 such that �.˛k/� C for some
constant C . By possibly extracting a subsequence, we may assume limk!1 �.˛k/D

T1 < 1. Now consider the points 
˛k
.1

2
T1/. By making use of the equation

H.˛k ; 0/ D H.u˛k
.1

2
�.˛k//; 0/, we now claim that u˛k

.1
2
�.˛k//! 0 as k !1.

Indeed, u˛k
.1

2
�.˛k// 2 Œ0;u0�, so we may assume that it converges to some value u1

by further extracting a subsequence. Thus, taking the limit of H.u˛k
.1

2
�.˛k//; 0/D

H.˛k ; 0/ as k!1, we get that

(24) u2
1.u

N�2
1 � 1/D 0:

However, because u1 � u0 , the second factor must be negative, so u1 D 0. Thus,
we see that 
˛k

.1
2
T1/ must converge to .0; 0/. On the other hand, by continuous

dependence of solutions to ODEs on their initial data, 
˛k
.1

2
T1/ must converge to


1.
1
2
T1/, which cannot be .0; 0/. This is a contradiction.

(ii) We will show this by proving that as ˛& u0 , if we rescale the solutions, then
they converge to a solution of the linearized ODE around .u0; 0/. We shift u0 to the
origin and blow up by defining .zu; zv/D

�
.u� u0/=.˛ � u0/; v=.˛ � u0/

�
. Thus the

ODE becomes

(25) d

dt
.zu; zv/D zX˛ WD

�
zv;

n.n�2/

4

.˛�u0/zuCu0

˛�u0

�
uN�2

0 �..˛�u0/zuCu0/
N�2

��
:

Notice that under the rescaling, the trajectory z
˛ encircles the origin and contains the
point .1; 0/. Moreover, as ˛& u0 the vector field zX˛ converges to

(26) zXu0
D

�
zv;�

n.n�2/.N �2/

4
uN�2

0 zu
�
D .zv; .2� n/zu/:

Thus, the solution to the linearized equation is

z
u0
WD
�
cos..n� 2/1=2t/;�.n� 2/1=2 sin..n� 2/1=2t/

�
;

which is periodic with period given by T0 WD .n� 2/�1=22� .

Now, we claim first that the �.˛/ are bounded as ˛! u0 , say �.˛/� 5
2
T0 . Suppose

not, so there are k !1 and ˛k & u0 such that �.˛k/ >
5
2
T0 . Now, on the one

hand, by continuous dependence on initial data and due to the explicit formula of z
u0
,

we have that for any fixed t 2 .1
2
T0;T0/ and for k large enough, the trajectory

z
˛k
.t/ has zv˛k

.t/� � > 0. On the other hand (by Claim 23), since we have assumed
that T0 <

2
5
�.˛k/ <

1
2
�.˛k/, z
˛k

.t/ must always have zv˛k
.t/ < 0, because 1

2
�.˛k/

is the first (positive) time when z
˛k
crosses the zu–axis. This is a contradiction.

That being said, because �.˛/ is bounded for ˛ close to u0 , for any ˛k & ˛ we may
assume that �.˛k/! T for some T . By continuous dependence of ODEs on their
parameters, thus limk!1 z
˛k

.1
2
�.˛k// D z
u0

.1
2
T /. Because all z
˛k

.1
2
�.˛k// have
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zu � 0 and lie on the zv D 0 axis, we see that limk!1 z
˛k
.1

2
�.˛k// D .�1; 0/ and,

at the same time, necessarily T D .2qC 1/T0 for some integer q 2N . But if q > 0

then we would have T � 3T0 , contradicting our previous argument which showed that
T � 5

2
T0 instead. Hence q D 0, so T D T0 , and this completes the proof of (ii).

Continuity of �.˛/ follows by a similar argument as the one used in (i).

5.2.3 Checking ASp for p � 4 Proposition 4 follows from the next result.

Proposition 25 The product metric g1 on S1.T0=2�/ � Sn�1.1/ is a degenerate
critical point of the Yamabe functional. When n > 2 it is nonintegrable, a global
minimum of the Yamabe energy, and satisfies ASp for some even p � 4.

Proof We start by proving degeneracy. Note that Rg1 DRgSn�1.1/
D .n� 2/.n� 1/

so it suffices to show that �1.g1/D n� 2. The eigenvalues of g1 are the sums of
those of each of its factors. Therefore

�1.g1/Dmin
˚
�1.S

n�1.1//; �1.S
1.T0=2�//

	
Dminfn� 1; .T0=2�/

�2
g D n� 2:

Monotonicity of the period function follows from the general result [6, Lemma 1.2] or
from [13]. We review the proof in our special setting in Appendix B, as it seems not to be
well-known to experts. Nonintegrability is now immediate since '1.t/ WD sin.

p
n� 2t/

is an eigenfunction of L1 , while Proposition 21 and the fact that �.˛/ is strictly
increasing imply that g1 is the only critical point of the Yamabe energy: because �.˛/
is strictly increasing and lim˛&u0

�.˛/D T0 , there cannot be ˛ 2 .u0; 1/ and integers
k � 1 such that �.˛/ D T0=k . Thus, ƒ0 is one-dimensional, but 1 is the unique
critical point of Y in Œg1�1 , so g1 must be nonintegrable. Notice that because 1 is
the unique critical point of Y in Œg1�1 , the solution of the Yamabe problem guarantees
that it is the global minimum of the Yamabe energy on Œg1�1 .

Now, because g is a nonintegrable critical point, the function F.v/ defined on ƒ0 in
Proposition 7 is necessarily nonconstant. Furthermore, because g is a unique global
minimum for the Yamabe problem in its conformal class, we see that Y.1/ < Y.w/
for any wN�2g1 2 Œg1�1 with w 6� 1. In particular, this yields that if v 6D 0 then
necessarily F.0/ < F.v/. Thus, denoting by p the order of integrability of g , it is
clear that Fp must be everywhere nonnegative (if it were not, we could take v small
enough so that Taylor’s theorem would imply that F.v/ < F.0/, contradicting the
previous argument). From this, it is clear that p � 3 and in fact has to be even. (We
remark that one can directly check p ¤ 3 because D3F.0/Œ'1; '1; '1�D 0 by using
the explicit form of F3.v/ given in (4).)
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Appendix A: Computing F3

In this appendix we compute the term F3 (see Proposition 7 and the subsequent
discussion) for a metric g1 with constant scalar curvature. We believe this computation
is of certain interest because, as the reader may check from what follows, the higher-
order polynomials Fp for p � 4 cannot be determined explicitly, since this would
require stronger information on the reduction map ˆ (or, equivalently, on ‰ ) at the
linearization point than we actually have according to Proposition 7.

We denote by h � ; � i the L2.M;g1/ pairing and refer the reader to Section 2 for the
notation concerning differentials and gradients. First, we will show that F1.v/ D

F2.v/ D 0. To check this, notice that DF.w/Œv� D DY.‰.w//
�
D‰.w/Œv�

�
. Thus,

DF.0/ D 0, since DY.1/ D 0 as 1 is a critical point of the Yamabe functional (by
assumption, g1 2 CSC1 ) and of course ‰.0/D 1. Therefore, F1 D 0. Similarly,

D2F.w/Œv;u�DD2Y.‰.w//
�
D‰.w/Œu�;D‰.w/Œv�

�
ChDY.‰.w//;D2‰.w/Œv;u�i:

When setting w D 0, we have ‰.0/D 1;D‰.0/D Id and

D2F.0/Œv;u�DD2Y.1/Œu; v�ChDY.1/;D2‰.0/Œv;u�i

D �2.N � 2/hL1u; viC hDY.1/;D2‰.0/Œv;u�i:

As before, the second term vanishes. The first term vanishes because v is in the kernel
of the linearization of L1 , by assumption.

As observed in [1, Remark 1.19], one may explicitly compute F3 without explicit
knowledge of ‰ (and this is what typically makes AS3 simpler to check than ASp with
p>3 in the examples). We will use this observation and check that to compute D3F.0/,
one may in fact compute D3 zF .0/, where zF W ƒ0!R is defined by zF .v/D Y.1Cv/.
We first compute D3F :

D3F.w/Œv;u; z�DD3Y.‰.w//
�
D‰.w/Œv�;D‰.w/Œu�;D‰.w/Œz�

�
CD2Y.‰.w//

�
D2‰.w/Œu; z�;D‰.w/Œv�

�
CD2Y.‰.w//

�
D‰.w/Œu�;D2‰.w/Œv; z�

�
CD2Y.‰.w//

�
D‰.w/Œz�;D2‰.w/Œv;u�

�
C
˝
DY.‰.w//;D3‰.w/Œv;u; z�

˛
Setting w D 0 and using similar considerations as before (in particular noting that
D2Y.1/Œ � � is self-adjoint), we obtain D3F.0/Œv;u; z� D D3Y.1/Œv;u; z�: Perform-
ing the same computation for D3 zF .0/ yields the same result. Next, we compute
D3 zF .0/. Recall from Section 2 that the differential of the Yamabe energy is given
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by 1
2
DY.w/Œv�D

R
M Œ�.N C2/�g1wCRg1w� rwN�2g1

wN�1�v dVg1 : The first
two terms are linear in w , so when computing the third derivative of Y at 1, they will
vanish. Let us then concentrate on the third term. Because rwN�2g1

D Y.w/, we have
already shown that the first and second directional derivatives of this expression in
directions in ƒ0 vanish at w D 1. Hence we see that

D3Y.1/Œu; z; v�D�2.N � 1/.N � 2/rg1

Z
M

uzv dVg1

for u; z; v 2ƒ0 , proving (4).

In this final paragraph (contrary to the rest of this section) we will use the space-
time C k;˛ norms on an interval .t; t C 1/�M , as in Section 4. One can observe that,
by repeating the argument used above for w such that kw�1kC 2;˛ < 1, it is clear that
the C 0;˛ norm of D3Y.w/Œv;u�, regarded (via the L2.M;g1/ pairing) as a function
on M , can be bounded by a uniform constant times the C 2;˛ norm of u times that
of v . More precisely,

(27) kD3Y.w/Œu; v�kC 0;˛ � CkukC 2;˛kvkC 2;˛

for some uniform C >0. Furthermore, for w1; w2 such that kwi�1kC 2;˛ <1 (iD1; 2),
we have

kD3Y.w1/Œv; v��D3Y.w2/Œu;u�kC 0;˛ � C
�
kw1kC 2;˛ Ckw2kC 2;˛

�
�
�
kukC 2;˛ CkvkC 2;˛

�
ku� vkC 2;˛

for some uniform C > 0. These facts are used in the proofs of Lemma 16 and
Proposition 17.

Appendix B: Monotonicity of the period function

Here we review the proof of [6, Lemma 1.2] in our special setting. Recalling (23),
define the “potential energy” U.u/D 1

2
H �v2D .2=.N �2//2.uN �u2/. Its absolute

minimum in the range .0; 1/ is attained at uD u0 . Denote by �ˇ.t/D .u.t/; v.t// the
solution of (20) with �ˇ.0/D .u0; ˇ/2�, where ˇ 2 Œ0;

p
�U.u0// and �0D .u0; 0/.

This solution intersects the u–axis at exactly two points that we denote by .z�.ˇ/; 0/
and .zC.ˇ/; 0/ with z�.ˇ/ < zC.ˇ/.

Since v D du

dt
and dt D

du

v
D

dup
H=2�U

, the half-period of �ˇ.t/ is given by

1
2
�.ˇ/D

Z zC.ˇ/

u0

dup
H.ˇ/=2�U.u/

�

Z z�.ˇ/

u0

dup
H.ˇ/=2�U.u/

;
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where H.ˇ/ D 2ˇ2 C 2U.u0/. Notice that U.z˙.ˇ// D
1
2
H.ˇ/ D ˇ2 C U.u0/,

whence differentiation in ˇ gives .@U=@u/.z˙.ˇ//z0˙.ˇ/ D 2ˇ . Thus, by setting
aD 1

ˇ

p
U.u/�U.u0/, we get 1

2
�.ˇ/D

R 1
0 .zC� z�/

0.ˇt/.dt=
p

1� t2/. The advan-
tage of this formula is its simple dependence on ˇ : it suffices to show now that zC�z� is
convex in ˇ2 .0;

p
�U.u0//, where we note that �U.u0/D .N�2/�1.2=N /N=.N�2/ .

Geometrically, this means that the “width” of the domains enclosed by the image of �ˇ
is convex as a function of their “height” 2ˇ . Differentiation in ˇ yields

1
2
z00˙.ˇ/D

U 02� 2U 00.U �U.u0//

U 03
.z˙.ˇ//:

L’Hôpital’s rule applied twice, using that limˇ!0 z˙.ˇ/D u0 and U 0.u0/ D 0, im-
mediately gives limˇ!0

1
2
z00
˙
.ˇ/D�U 000.u0/=.3U 002.u0//DWA< 0. The convexity

claim follows if 1
2
z00C.ˇ/ � A � 1

2
z00�.ˇ/, for ˇ 2 .0;

p
�U.u0//. Since the sign of

U 0.z˙/ (which is the sign of the denominator of z00
˙

) is ˙, both inequalities follow
if F.u/ WD U 02 � 2U 00.U �U.u0//�AU 03 � 0 on u 2 .0; 1/. Now, we have that
U 00.u/D .2=.N � 2//2.N.N � 1/uN�2� 2/ is negative on

.0;u�/ WD
�
0;
�

2

N.N �1/

� 1
N�2

�
� .0; 1/;

so, as U 000 > 0, F 0 D�2U 000.U �U.u0//� 3AU 02U 00 � 0, ie F does not increase in
that range. Therefore, it suffices to show that F � 0 on .u�; 1/. In that regime (where
U 00 > 0), consider the function H WD F=U 00 , and compute

H 0 D
U 02U 000

U 002
�

h
A
�
U 0�

3U 002

U 000

�
� 1

i
:

Denote the expression inside the brackets by K and note that the sign of H equals
the sign of K . Now

K0 DA
�
U 00�

6U 00U 0002�3U 0000U 002

U 0002

�
or K0 D

AU 00

U 0002
.�5U 0002C 3U 0000U 00/;

whose sign is opposite to the signs of the expressions in the parantheses, that we
denote by L. But LD�9

2
.U 00/8=3..U 00/�2=3/00 , and .U 00/�2=3 is seen to be convex

on .u�; 1/; thus K0 � 0 there (as U 00 > 0 there). Now, K vanishes at u0 , so K � 0

and H 0 � 0 on .u0; 1/. But F.u0/DH.u0/D 0, so H � 0 and F � 0 on .u0; 1/.
Further, K must be negative on .u�;u0/, as K0 � 0 on .u�; 1/ while K.u0/ D 0.
Thus H 0 � 0 on .u�;u0/, so H is nonincreasing there; but H.u0/D 0, so we must
have H � 0 also on .u�;u0/. In conclusion, F � 0 on .0; 1/, as desired.
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