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Alexandrov spaces with maximal number of extremal points

NINA LEBEDEVA

We show that any n–dimensional nonnegatively curved Alexandrov space with the
maximal possible number of extremal points is isometric to a quotient space of Rn

by an action of a crystallographic group. We describe all such actions.

53C45, 53C45, 20F55; 51K10

1 Introduction

If the space of directions at a point p in an Alexandrov space has diameter less than
or equal to �

2
, this point is called extremal. Equivalently, the one-point set fpg is an

extremal set as defined by G Perelman and A Petrunin in [11]. Yet equivalently, p is a
critical point of every distance function.

It has been proven by G Perelman [10] that every n–dimensional Alexandrov space
with nonnegative curvature has at most 2n extremal points. For completeness, we
present this proof in Section 1A. This proof is a slight modification of a proof of the
following problem in discrete geometry:

Problem Assume x1;x2; : : : ;xm is a collection of points in the n–dimensional Eu-
clidean space such that †xixj xk 6 �

2
for any distinct i , j and k . Show that m6 2n

and moreover, if mD 2n then the xi form the set of vertices of a right parallelepiped.

This problem posted by Erdős in [4] was solved by Danzer and Grünbaum in [3].

In this paper we study nonnegatively curved n–dimensional Alexandrov spaces with 2n

extremal points, we call such spaces n–boxes.

Classification of n–boxes is a folklore problem. Clearly, right parallelepipeds are boxes.
It was suggested [9] that these might be the only examples. Soon it was noticed [5]
that the boundary of the 3–dimensional Euclidean tetrahedron whose opposite edges
are equal (or equivalently, whose four faces are congruent triangles) is also a 2–box.
Later, it was conjectured [12] that all n–boxes have to be isometric to a quotient of
a flat torus by an action of a group of isometries which is isomorphic to a product of
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Z2 –groups. However, it turns out that not all n–boxes can be obtained this way. The
first counterexample arises in dimension 3; it is a space �02 constructed in this section.

Our main results are Theorems 1.1 and 1.3.

Theorem 1.1 For any n–box there exists a group � and a discrete cocompact isometric
action � ÕRn such that the n–box is isometric to the quotient space Rn=� .

Theorem 1.3 below describes all possible actions on Rn which produce n–boxes.
Proposition 1.1 implies that it is sufficient to describe the actions � ÕRn up to affine
conjugation. We first need the following:

Definition 1.2 Let � Õ Rn be a group action. We call a point x 2 Rn a singular
point (for the action � ÕRn ) if it is a unique fixed point for some subgroup of � .

Proposition 1.1 For a discrete action � Õ Rn by isometries the quotient space
ADRn=� is an Alexandrov space of nonnegative curvature. Moreover, a point e 2A
is extremal if and only if it is an image of a singular point.

In particular if two such actions are affine conjugate, then the number of extremal points
in the corresponding quotient spaces are equal.

Proof The space A is an Alexandrov space of nonnegative curvature because it is a
quotient space by isometric action of the Alexandrov space of nonnegative curvature
(see Burago, Gromov and Perelman [2, Corollary of 4.6]). Obviously, the image of any
singular point is a vertex in the polyhedron A, and any preimage of any vertex in A is
a singular point. It remains to note that for any discrete isometric action GÕ Sn�1 ,
the condition diam Sn�1=G <� implies that diam Sn�1=G 6 �=2, hence all vertices
in A are extremal points.

Recall that the Coxeter group associated with an n–polyhedron is the group generated
by reflections in its faces; such a group is defined together with an action on Rn . Let
us denote by

LnÕRn the action of the Coxeter group
Ln of the unit cube.

Theorem 1.3 Let � ÕRn be a subaction of
LnÕRn such that any vertex e of the

unit cube is an isolated fixed point for some subgroup of � . Then Rn=� is an n–box.

Moreover, all n–boxes arise from such actions �ÕRn or their affine conjugate actions.
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It is immediate from the theorem that Œ
Ln
W��D 2k for some k 2 f0; : : : ; n�1g. Note

that Theorem 1.3 makes possible to list all group actions which produce n–boxes. Let
us fix a set S of faces of the n–cube Q with the following property. Any vertex of Q

is the only intersection of all faces in S containing this vertex. Then the group action
generated by reflections in the elements of S gives an example of an action � ÕRn

described in Theorem 1.3 and any such an action can be obtained in this way. It remains
to find all isometric actions that are affine conjugate to the constructed action. This
is equivalent to finding all parallel metrics invariant with respect to reflections in the
elements of S . Therefore, one can think of any n–box as a space glued from 2k copies
of the cube equipped with a parallel metric g which is invariant under all reflections in
the elements of S .

Let us use our construction to classify n–boxes in low dimensions.

� For nD 1 there exists only one action, up to affine conjugation group actions,
which produces a 1–box. The corresponding quotient space I D Œ0; 1� carries a
1–parameter family of metrics.

� For nD 2 there exist two spaces (up to a choice of a parallel metric): the square
� D I � I and the double square �2 . The square � admits a 2–parameter
family of metrics; this family gives rise to all possible rectangles. The double
square �2 admits a 3–parameter family of metrics; this family gives rise to
surfaces of 3–simplexes whose opposite (nonintersecting) edges are equal. Such
simplexes are sometimes called disphenoids.

� For nD 3 there are five 3–boxes (up to a choice of a parallel metric): the cube
�D I� I� I ; the double cube �2 (obtained by gluing two copies of the cube
along their common boundary); doubling of the cube in the 5 faces �02 (obtained
by gluing two copies of the cube along 5 faces of their common boundary); the
product �002 D I��2 and the quotient �4 of the standard torus by the central
symmetry. The dimensions of the spaces of metrics are respectively 3, 3, 3, 4

and 6.

Structure of the paper In Section 1A, for the sake of completeness, we reproduce
the proof that n–dimensional Alexandrov space with nonnegative curvature has at most
2n extremal points.

The proof of Theorem 1.1 (Sections 2, 3 and 4) is organized into two steps.

In Sections 2 and 3 we show that an n–box A has to be a polyhedral space (Theorem 3.1).
According to Proposition 2.3, it is sufficient to show that each point p 2A has a conic
neighborhood (see Definition 2.4). This is proved in Key lemma 3.2.
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In Section 4, we show that A is a flat orbifold. By Proposition 2.4, it is sufficient to
show that an angle around any face of codimension 2 in A has to be � or 2� . This is
proved in Theorem 4.1.

In Sections 5, 6 and 7, we prove Theorem 1.3.

Acknowledgements I want to thank Anton Petrunin for bringing this problem to my
attention and for useful discussions, Dmitri Burago for careful reading the paper and
valuable notes, and Vasilisa Shramchenko for correcting my English. I am grateful to
the referee for helpful remarks and pointing out misprints.

The author thanks the Shapiro visitors program for support and the Mathematics
Department of Penn State University where this work was partially done. This paper is
also partially supported by RFBR grant 14-01-00062.

1A The upper estimate for the number of extremal points

In this subsection we give the proof (due to Erdős, Danzer, Grünbaum, Perelman) of
Theorem 1.4. We also introduce notation which are used further.

Theorem 1.4 The number of extremal points of an n–dimensional nonnegatively
curved Alexandrov space is at most 2n .

Denote by A an n–dimensional nonnegatively curved Alexandrov space.

We label the extremal points in A by e1; e2; : : : ; em .

For a triangle abc in A we denote by zazbzc a comparison triangle in R2 (ie a triangle
with the same lengths of sides). We denote by e†abc the angle at zb of the triangle zazbzc .

For a point a 2A we denote by †a the unite tangent space at a.

Proof of Theorem 1.4 First, we have the following lemma:

Lemma 1.5 Let A be an Alexandrov space with curvature greater than or equal to 0,
x;y 2 A and e 2 A be an extremal point. Assume z is the midpoint of a shortest
path Œxy� in A. Then

jxzj D jyzj6 jezj:

Moreover, if jxzj D jezj then

†xze D e†xze; †ezy D e†ezy;

and there is a unique flat triangle xey in A with a given median Œez� (flat triangle
means here the subset of A isometric to the Euclidean triangle).

Geometry & Topology, Volume 19 (2015)



Alexandrov spaces with maximal number of extremal points 1497

Proof of Lemma 1.5 Let us assume the contrary, ie jxzj> jezj. Consider a compar-
ison triangle zxzezz for the chosen triangle xez . Let zy be a point on the line extension
of Œzxzz� such that j zyzzj D jzzzxj. Since jzxzzj> jzezzj, we have †zxze zy >�=2. From triangle
comparison, we have jeyj6 jze zyj. It follows that

†xey > e†xey >†zxze zy > �=2:

In particular, diam†e > �=2, which is a contradiction.

In the case of equality jxzj D jezj, by using the same comparison picture as above we
have †zxze zy D �=2. Reasoning by contradiction, assume †xze > e†xze . Then from
the triangle comparison we obtain je2xj< jze2zxj and hence

†xey > e†xey >†zxze zy D �=2;

which is a contradiction, proving angle equalities.

Now the existence of a flat triangle follows from Lemma 2.1.

Now, let us introduce additional notation:

(1) Denote by Wi the set of midpoints of all geodesics Œeix� with x 2A.

(2) Denote by Vi the Voronoi domain of ei ie

Vi D fx 2A j jeixj6 jej xj for all ig:

From Lemma 1.5, we have Wi � Vi for all i .

Further, consider a map 'i W Wi ! A, implicitly defined by the following relation:
x D '.z/ if z is a midpoint of a geodesic Œeix�.

By triangle comparison, we have

j'i.z/ 'i.z
0/j6 2 � jzz0j

for all z; z0 2Wi . In particular, the map 'i is well defined.

Hence
vol Vi > vol Wi > 1

2n � vol A:

Since mX
iD1

vol Vi D vol A;

we get m6 2n .

Note that from the proof we immediately get the following:

Corollary 1.1 Let A, n, m, Vi and Wi be as in the proof of Theorem 1.4. If mD 2n

then Wi D Vi and vol Vi D
1

2n � volA for all i .
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2 Preliminary statements

In this section we prove a number of technical statements needed in the proof of
Theorem 1.1.

2A Flat slices in Alexandrov space

Lemma 2.1 Let A be an n–dimensional Alexandrov space with nonnegative curvature
and Œpx1�; Œpx2�; : : : ; Œpxk � be geodesics in A.

Assume that
†xipxj D e†xipxj

for all i; j and that all directions "Œpxi � lie in a subcone E of TpA which is isometric
to a convex cone in the Euclidean space.

Then all geodesics Œpxi � lie in a subset of A which is isometric to a convex polyhedron
in the Euclidean space.

Proof Set zxi D logp xi 2 Tp and zp D logp p ( zp is the vertex of Tp ). Clearly

� zp; zx1; : : : ; zxk 2E ,
� jpxi j D j zpzxi j for each i ,
� jxixj j D jzxi zxj j for all i; j .

Since E is Euclidean, by the Kirszbraun theorem, there is a short map sW A!E such
that s.p/D zp and s.xi/D zxi for each i .

On the other hand the gradient exponent gexpp is also a short map. Thus the composition
f D s ı gexpp is also short. Clearly f does not move zxi and zp . It follows that f
does not move any point in Q D Conv. zp; zx1; : : : ; zxk/. Therefore, gexpp maps Q

isometrically into A.

2B Affine functions

In this section A is an Alexandrov space of nonnegative curvature.

Definition 2.2 Let ��A be an open subset and � 2R. A locally Lipschitz function
f W �!R is called �–quasiaffine if

.f ı 
 /00.t/� �

for any unit speed geodesic 
 in �. We also call 0–quasiaffine functions affine
functions.
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For an Alexandrov space A, its subset ��A and a function f W �!R we denote
by xA the doubling of A, by x� � xA the doubling of � and by xf W x� ! R the
tautological extension of f .

Definition 2.3 We say that a �–quasiaffine f W �!R satisfies the boundary condition
if xf W x�!R is �–quasiaffine.

For i 2 f1; 2g, assume fi W �!R to be a �i –quasiaffine function. Then f1Cf2 is
.�1C�2/–quasiaffine. Also for any real constant c , c �f1 is .c ��1/–quasiaffine.

2B.1 Cones and splittings For the proofs of Propositions 2.1 and 2.2 and Lemma 2.5,
we refer to Alexander and Bishop [1]. Functions considered in this paper are defined
on the whole Alexandrov space, but the proof works also for our local case. It suffices
to note that every shortest path between points in Br=4.p/ lies inside Br .p/.

Proposition 2.1 Let f1; f2; : : : ; fk be affine functions defined on a ball Br .p/�A

such that the functions 1; f1; f2; : : : ; fk form a linearly independent system. Then
the ball Br=4.p/ is isometric to an open ball in a product Rk �X for some metric
space X . Gradients rf1;rf2; : : : ;rfk are tangent to Rk fibers.

Definition 2.4 A point p 2 A admits a conic neighborhood if there is an isometry
from a neighborhood of p to an open set in a Euclidean cone, which sends p to the
vertex of the cone.

Proposition 2.2 Suppose a ball Br .p/ � A admits a 1–affine function f . Then
the ball Br=4 can be isometrically identified with an open ball in a Euclidean cone.
Gradients rf are tangent to rays of the cone. If rpf D 0 we have f D 1

2
dist2p C c

and the ball Br=4.p/ is a conic neighborhood of p .

Lemma 2.5 Let f be a �–quasiaffine function defined in some neighborhood U 3 p

in A and f satisfies the boundary condition. Then the tangent cone TpA splits along a
line with a direction rpf and dpf D hrpf; � i.

2B.2 Dimensions of spaces of affine functions

Definition 2.6 For a set F of affine functions defined in some neighborhood U 3 p

in A we denote by #L.F;p/ the maximal number of functions in F , say f1; : : : ; fk ,
such that the functions 1; f1; f2; : : : ; fk form a linear independent system in some
small ball Br .p/ � U . We note that since an affine function on every geodesic is
determined by its initial value and its initial derivative then #L.F;p/ does not depend
on r .
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For a set F of 1–affine functions defined in some neighborhood U 3 p in A we
define a set of affine functions F0 D

˚P
˛ifi j fi 2 F; ˛i 2R;

P
˛i D 0

	
and define

#A.F;p/ to be #L.F
0;p/.

It follows from Lemma 2.5 that the gradients of functions in F lie in a linear subspace
of TpA. Therefore we can define the following numbers: the dimension #L.rF;p/

of the vector subspace in TpA, generated by the gradients of functions in F and the
dimension #A.rF;p/ of the affine subspace generated by endpoints of these gradients.

Lemma 2.7 Let F be a finite set of affine functions defined in a ball Br .p/. Then

#L.F;p/D #L.rF;p/:

Let F be a finite set of 1–affine functions defined in a ball Br .p/. Then

#A.F;p/D #A.rF;p/:

Proof It follows from Lemma 2.5 that the differential of every affine (1–quasiaffine)
function is uniquely determined by its gradient and hence every affine (1–quasiaffine)
function f W Br .p/!R is determined by f .p/ and rpf . Now the proof is straight-
forward.

Corollary 2.1 Let F be a finite set of 1–affine functions defined in a ball Br .p/. Then
the ball Br=4.p/ can be isometrically identified with an open ball in R#A.rF;p/ � C ,
where C is a Euclidean cone. If #L.rF;p/ D #A.rF;p/, then the ball Br=4.p/ is
a conic neighborhood of p . Gradients of functions in F are tangent to products of
R#A.rF;p/ factors and rays of the cone C .

Proof Let us consider the set F0 D
˚P

˛ifi j fi 2 F; ˛i 2R;
P
˛i D 0

	
. Then F0

is a set of affine functions and #L.rF0;p/D #A.rF;p/, hence by Lemma 2.7 and
Proposition 2.1 we obtain that the ball Br=4.p/ is isometric to an open subset of
R#A.rF;p/ �X . Applying Proposition 2.2 we obtain that X is isometric to an open
subset in Euclidean cone. If #L.rF;p/ D #A.rF;p/, there are numbers ˛i such
that

P
˛i D 1 and

P
˛irpfi D 0. Then the function f D

P
˛ifi is 1–affine and

rpf D 0. Hence by Proposition 2.2, f D 1
2

dist2pC c and the ball Br=4.p/ is a conic
neighborhood of p .

2B.3 Moving lemma The next lemma is a technical tool for our proof of Lemma 3.3.
The lemma shows how we can move a point in the domain of some collection of
1–affine functions. Corollary 2.1 makes it possible to shift a point in a flat subset so
that the distances behave as Euclidean ones.
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Moving lemma 2.1 Let points x;p1; : : : ;pk 2 A and r > 0. Suppose that x does
not admit a conic neighborhood and the following conditions hold:

(i) The functions f1 D
1
2
� dist2p1

; : : : ; fk D
1
2
� dist2pk

are 1–affine in a neighbor-
hood Br .x/.

(ii) We have jp1xj D jp2xj D � � � D jpkxj.

Then there exists a unique unit vector v 2 Span.rf1; : : : ;rfk/ such that †.v;rf1/D

� � � D †.v;rfk/D ˛ < �=2 and a shortest path 
 W Œ0; r=4�! A, with 
 .0/D x and

 0.0/D v . For every point y D 
 .t/ where t 2 Œ0; r=4� we have the following:

(1) Some small neighborhoods of x and y are homothetic.
(2) We have fi.
 .t//D jrfi j cos.˛/t C 1

2
t2 , in particular jp1yj D � � � D jpkyj >

jp1xj.
(3) We have †.
 0.t//;rf1/D� � �D†.


0.t//;rfk/<˛ and #.rff1; : : : ; fkg;y/D

#.rff1; : : : ; fkg;x/.
(4) Suppose that for some p 2 A the corresponding function fp D

1
2
� dist2p is

1–affine in some neighborhood of y , fp.y/ D fi.y/ and †.ryfp; 

0.t// ¤

†.ryfi ; 

0.t//, then #A.ffp; f1; : : : ; fkg;y/D #A.ff1; : : : ; fkg;x/C 1.

Proof We apply Corollary 2.1 and obtain an isometric decomposition of Br=4.x/

as a subset of Rm � C , where m D #A.rF;p/ and C is a Euclidean cone. Vectors
rxf1; : : : ;rxfk are tangent to a subset of Rm �RC , namely a product of Rm and a
ray in C . We call this set a flat .mC 1/–slice.

For any set F of 1–affine functions one of the following equalities holds: #L.rF;p/D

#A.rF;p/C 1, or #L.rF;p/D #A.rF;p/. Since x does not have a conic neigh-
borhood by Corollary 2.1 we have

#L.rff1; : : : ; fkg;x/D #A.rff1; : : : ; fkg;x/C 1:

Hence there exists a unique unit vector v 2Span.rf1; : : : ;rfk/ such that †.v;rf1/D

� � � D †.v;rfk/D ˛ < �=2. Then there exists a shortest path 
 W Œ0; r=4�! A, with

 .0/ D x , 
 0.0/ D v in our flat .mC 1/–slice. Properties (1)–(3) follow from the
Euclidean structure.

We show (4) arguing by contradiction. Suppose the conclusion of (4) does not hold,
then

#A.rff1; : : : ; fk ; fpg;x/D #A.rff1; : : : ; fkg;x/:

Hence ryfp lies in the affine hull the endpoints of vectors ryf1; : : : ;ryfk . We
also know that jryfpj D jryf1j D jryf2j D � � � D jryfk j and †.
 0.t//;ryf1/ D

†.
 0.t//;ryf2/ D � � � D †.

0.t//;ryfk/. Then †.ryfp; 


0.t// D †.ryfi ; 

0.t//;

this is a contradiction.
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2B.4 Volume evolution for a gradient flow Given a semiconcave function f W A!
R, we denote by ˆt

f
W A!A the corresponding gradient flow for a time t .

Theorem 2.8 Let f be a �–concave function and ��A an open set. Then for every
t > 0, we have

volˆt
f .�/6 exp.n �� � t/ � vol�:

Moreover if the equality holds for some t > 0, then f is �–affine in � and satisfies
the boundary condition.

Proof Here we denote by 
� and 
C the tangent vectors of a curve 
 if we go
backward or forward correspondingly.

By �–concavity of f , we mean that

dpf .

C.a//C dqf .


C.b//> ��jpqj

for every unit speed shortest path 
 in � between p and q . To prove that f is
�–affine it suffices to show that this inequality turns into an equality. We consider
gradient curves p.t/ and q.t/ and let l be the distance function l.t/D jp.t/q.t/j.

By the first variation formula,

l 0.t/6 �.h
C.a/;rpf iC h

�.b/;rqf i/:

By definition of the gradient, for every point x and v 2 TxA we have hv;rxf i >
dxf .w/. Thus

l 0.t/6 �jpqj;

and applying Proposition 2.5 we obtain the required volume inequality. In the case
when this volume inequality becomes an equality, applying Proposition 2.5 we obtain
that l 0.t/D �jpqj. Hence

dpf .

C.a//D h
C.a/;rpf i; dqf .


�.b//D h
�.b/;rqf i;

and �–quasiaffinity follows.

To prove the boundary condition it is enough to check the 1–quasiaffinity on every
shortest path 
 W Œ�h; h�! x� intersecting @A only once at a point x D 
 .0/ 2 @A.
Clearly, it suffices to prove that dx

xf .�
C.0//D�dx
xf .
C.0//.

By the above, for every x 2 A\� we have dxf D hrxf; � i and hence the tangent
cone TxA splits along a line with a direction rxf . Then for every x 2 @A\� both
vectors rxf;�rxf lie in @TxA and are glued with themselves under doubling. Hence
the tangent cone of the doubling Tx

x� also splits along a line with a direction rx
xf .

Thus †.�
C.0/;rf /D � �†.
C.0/;rf / and dx
xf .
�.0//D�dx

xf .
C.0//.
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2C Polyhedral spaces

Definition 2.9 A metric on a simplicial complex S is called polyhedral if each simplex
in S is isometric to a simplex in a Euclidean space.

A metric space P is said to be polyhedral space if it is isometric to a simplicial complex
with a polyhedral metric.

For the proof of Proposition 2.4 we need the following definition.

Definition 2.10 A metric on a simplicial complex S is said to be spherically polyhedral
if each simplex in S is isometric to a simplex in the unit sphere in Rn .

A metric space P is said to be spherically polyhedral space if it is isometric to a
simplicial complex with a polyhedral metric.

The proof of the following characterization of polyhedral spaces can be found by the
author and Petrunin in [7].

Proposition 2.3 Let X be a compact length space. Assume that each point x 2 X

has a conic neighborhood. Then X is a polyhedral space.

2D Orbifolds

It is known that for any orbifold that can be equipped with a metric of constant curvature
the universal branched cover is a manifold. The following proposition is colloquially
known but we did not find appropriate reference. This proposition characterizes Rn –
quotient spaces or equivalently flat orbifolds among all polyhedral spaces.

Proposition 2.4 A polyhedral space P D .S; d/ is isometric to a quotient space
Rn=� for a discrete action by isometries � ÕRn if and only if:

(1) The simplicial complex S of P is an n–dimensional pseudomanifold, ie S is
connected; any simplex in S is a face of a simplex of dimension n; the link
of every simplex of dimension less than or equal to n� 2 is connected; every
simplex of dimension n� 1 belongs to at most two simplexes of dimension n.

(2) For any point x on a face F of codimension 2 in P , the normal cone NxF of F

at x is isometric to a quotient of R2 by a subgroup of rotations. Namely, NxF

is isometric to a cone over S1 of length 2 ��=k or to a cone over an interval of
length �=k for some k 2N .
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Proof The “only if” part is obvious. To prove the “if” part it is sufficient to check
that P is an orbifold, ie for any point x in P the tangent space is of the form Rn=� .

It is convenient to prove the same statement as in our Proposition for a spherical
polyhedral space in place of polyhedral space by and for Sn=� in place of Rn=� . So
let us say that a space is ‘good’ if it is polyhedral or spherical polyhedral space and
possesses (1) and (2).

We prove by inverse induction on dimension that every ‘good’ space is isometric
to Rn=� or Sn=� . The base k D 2 follows because of condition (2). Suppose any
‘good’ space of dimension k � 1 is isometric to Rk�1=� or Sk�1=� . Then for any
k–dimensional ‘good’ space P and any point x 2 P the unit tangent space †xP is a
spherical polyhedral space which inherits properties (1) and (2) and hence is ‘good’.
Hence by the induction hypothesis †xP D Sk=� and P is an orbifold. This proves
the induction step.

2E Volume preserving C 1–Lipschitz D isometry

The proof of the following fact can be found by Li in [8].

Proposition 2.5 Let X and Y be m–dimensional Alexandrov spaces, �� Xn@X an
open set and f W �! Y a 1–Lipschitz volume preserving map. Then f is a locally
distance preserving; ie for every point x 2� there is a neighborhood �x 3 x such that
the restriction f j�x is a distance preserving map.

3 Any n–box is a polyhedral space

In what follows we denote by A an n–box.

We keep the notation for ei , Vi , Wi and 'i for all i 2 f1; 2; : : : ; 2ng from Section 1A.
According to Corollary 1.1, Vi DWi for all i .

Denote by Ci the cutlocus of ei ; ie the set of points z 2 Anfeig which do not lie in
the interior of every shortest path Œeix�.

In this section we prove the following result:

Theorem 3.1 Every n–box is a polyhedral space.

Proposition 2.3 implies that it is sufficient to prove the following lemma:

Key lemma 3.2 Every point x 2A has a conic neighborhood.

Proposition 3.1 Each function fi D
1
2
�dist2ei

is 1–quasiaffine and satisfies the bound-
ary condition in A nCi .
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Proof It is sufficient to note the restriction ˆln 2
fi
jWi

coincides with 'i . Then from
Corollary 1.1 and Theorem 2.8 it follows that fi is 1–quasiaffine and satisfies the
boundary condition.

Proof of Key lemma 3.2 It follows from Proposition 3.1 that for every point x 2 Vi

the function fi is 1–affine in a neighborhood of x . Therefore, we can define for a
given point x 2A an index set Jx � f1; : : : ; ng and a positive integer #.x/ as follows:

Jx D fi 2 f1; : : : ; ng j x 2 Vig;

#.x/D #Affi j i 2 Jxg:

According to Lemma 2.7 and Corollary 2.1 we have that #.x/ 6 n for every x 2 A.
Moreover if #.x/D n then x has a flat neighborhood.

The main technical point of the proof of the Key lemma 3.2 is the following:

Lemma 3.3 Assume a point x 2A has no conic neighborhood. Then there is a point
x0 2 A such that a neighborhood of x0 is homothetic to a neighborhood of x and
#.x0/ > #.x/.

We prove this lemma in Section 3A.

Now to prove Key lemma 3.2 we argue by contradiction. Let us assume the contrary,
ie there is a point x 2A which has no conic neighborhood.

Applying Lemma 3.3 for x0 D x , we get a point x1 with a neighborhood homothetic
to a neighborhood of x0 and #.x1/ > #.x0/C 1. In particular, x1 does not admit a
conic neighborhood.

Therefore we can apply Lemma 3.3 .nC 1/ times to get a point xnC1 2A such that
#.xnC1/> nC 1. We arrive to a contradiction since #.z/6 n for any z 2A.

3A Proof of Lemma 3.3

For each i the sets Vi and Ci are closed and disjoint. Hence Proposition 3.1 implies
that there exists r0 > 0 such that for every i and x 2 Vi the function 1

2
dist2ei

is
1–quasiaffine in B4r0

.x/.

Now we fix x 2A and suppose that x does not have a conic neighborhood. We apply
Moving lemma 2.1 for x and ffi j i 2 Jxg. We can shift x equidistantly from points
ei for i 2 Jx so that the points still lie in all Vi for i 2 Jx . We continue until we meet
a domain Vj for some j 62 Jx . Let us formulate the exact statement.
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Let 
0W Œ0; r0�!A be the shortest path from Moving lemma 2.1. We have a dichotomy:

(1) There exists a minimal value t0 2 .0; r0�, such that 
0.t0/2Vj for some j0 62Jx .
Set y D 
0.t0/ 2 Vj0

and fi D
1
2

dist2ei
, for i 2 Jx [ fj0g. We have the angle

inequality †.ryfj0
; 
 0.t// >†.ryfi ; 


0.t// (indeed, otherwise we would have
that fj0

.t0��/6fi.t0��/ for sufficiently small � > 0, this would contradict the
choice of t0 ). Thus we can apply Moving Moving lemma 2.1(4) with p WD ej0

,
fpDfj0

D
1
2

dist2ej0
. Then some small neighborhoods of x and y are homothetic

and

#.y/> #A.ffi j i 2 Jxg[ ffj0
g;y/D #A.ffi j i 2 Jxg;x/C 1D #.x/C 1:

(2) The shortest path 
0.Œ0; r0�/ does not intersect any Vj for j 62 Jx .
In this case we apply Moving lemma 2.1 recursively for x1 D 
0.r0/ and so on.
After k iteration we have an estimate fi.xk/ > .jrxfi j cos.˛0/r0/ � k , i 2 Jx

where ˛0 D†.rxfi ; 

0
0
.0//. The diameter of A is finite, therefore after finitely

many steps we arrive at case (1).

4 n–boxes are flat orbifolds

In this section we finish the proof of Theorem 1.1.

Note that according to Theorem 3.1 and Proposition 2.4, it suffices to show the follow-
ing:

Theorem 4.1 Let an n–dimensional polyhedral space A be a box. Then the normal
cone for each face of codimension 2 in A is isometric to one of the following spaces:
R2 , RC �R, RC �RC or a cone over a circle of length � .

The proof of this theorem is in Section 4A.

Let A be an n–box. We keep the same notation as above: ei denote extremal points
of A, Vi the corresponding Voronoi domain, Ci the cut locus of ei ; i 2 f1; 2; : : : ; 2ng.
A minimizing geodesic Œeiej � between two extremal points is called an edge. For any
k–dimensional B �A we define relint.B/ to be the subset of all points in B such that
some small ball neighborhood in B is isometric to a Euclidean k–dimensional ball.

Let p 2 A be a point which lies on a face of codimension 2; ie TpAD Rm�2 �L,
where L denotes a 2–dimensional cone containing no lines. Take the set of all points
in A with tangent cone isometric to Rm�2 �L; we call its closure H hyperedge (we
name it this way since H has codimension 2 in A).
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Here are the simplest properties of hyperedges of n–boxes:

Lemma 4.2 Let H be a hyperedge. Then:

(1) H contains at least one vertex ei .

(2) If a vertex ej 62H then H � Cj .

Proof Let us keep notation L for a 2–dimensional cone from the definition of a
hyperedge.

(1) Indeed, take a point x 2 H with a tangent cone isometric to Rm�2 �L. Then
x 2 Vi for some i 2 f1; : : : ; 2ng. Then x is a midpoint of some shortest path Œeiy�.
Hence for all points z 2 .eiy/ the tangent cone TzA is isometric to Rm�2 �L. Thus
ei 2H .

(2) Let us assume the contrary. Then there exist a vertex ej 62H and a point x 62Cj with
a tangent cone isometric to Rm�2 �L. Hence the shortest path Œej x� can be extended
to some shortest path Œej y�, then for all points z 2 .ej y/ the tangent cone TzA is
isometric to Rm�2 �L. Then ej 2H , this is a contradiction.

4A Proof of Theorem 4.1

Definition 4.3 Let A be a box and H �A a hyperedge. We say that a vertex ei 2A
pushes H in a vertex ej 2H if there exists a flat .n�2/–dimensional simplex ��H ,
such that ej 2�� Ci .

Definition 4.4 Let A be a box and H �A a hyperedge. We say that H separates a
vertex ei 2A from a vertex ej 2H if there exists a flat .n� 2/–dimensional simplex
��H , such that ej 2�� Ci and

relint.'�1
i .4//\Vk D¿ for every k ¤ i; j:

To prove Theorem 4.1, we need the following lemma:

Lemma 4.5 Let A be a box and H a hyperedge. Then there are vertices ei 2A and
ej 2H such that H separates ei from ej .

The proof of this lemma is in Section 4B. Now let us show how Theorem 4.1 follows
from Lemma 4.5.
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Proof of Theorem 4.1 Let us introduce some notation:

� Ki denotes the completion of A nCi equipped with an intrinsic metric.

� Clearly Ki is isometric to 2�Vi . Denote by  i W g
�1
i .Vi/!Ki the homothety

centered at ei and with coefficient 2.

� gi W Ki!A is the corresponding gluing map (which is piecewise linear).

Note that in these notation we have gi ı i ıg�1
i D 'i .

To prove Theorem 4.1 we take a hyperedge H containing a given .n�2/–dimensional
face, apply Lemma 4.5 and obtain that H separates some vertices ei 2A, ej 2H . Let �
be from Definition 4.4. It is sufficient now to prove that for some point x 2 relint.�/
the normal cone to H at this point is one of the 4 cones described in the theorem. We
can assume that � is sufficiently small so that g�1

i .relint.�// are disjoint isometric
copies of relint.�/. By �1; : : : ; �l we denote closures of its preimages and by
e1
j 2�1; : : : ; e

l
j 2�l the corresponding preimages of ej .

The next lemma describes a possible structure of the tangent space of a point in the
preimage g�1

i .int.�//.

Lemma 4.6 Using our notation, let a point x 2 g�1
i .int.�// � @Ki . Then there are

two possibilities:

(1) If  �1
i .x/ 62 @Ki then TxKi DRn�1 �RC .

(2) If  �1
i .x/ 2 @Ki then TxKi DRn�2 �RC �RC .

Proof We can assume that x 2�1 . For y D  �1
i .x/ we know, that TyKi contains

an isometric copy of Rn�2�R. Hence TyKi DRn or TyKi DRn�1�RC . We know
also that  �1

i .�1/ is a flat .n� 2/ simplex equidistant from ei and e1
j with midpoint

 �1
i .e1

j / as a vertex. In a small neighborhood U of y we have that

g�1
i .Vi/\U D fz 2 U j jzei j6 jze1

j jg:

It follows that Ty.g
�1
i .Vi// can be presented as one part of perpendicular bisection

of TyKi with respect to eie
1
j . Thus we have

� Ty.g
�1
i .Vi//DRn�1 �RC if TyKi DRn ;

� Ty.g
�1
i .Vi//DRn�2 �RC �RC if TyKi DRn�1 �RC .

It remains to note that Ty.g
�1
i .Vi// is isometric to TxKi .

Geometry & Topology, Volume 19 (2015)



Alexandrov spaces with maximal number of extremal points 1509

Lemma 4.7 For a point x 2 g�1.Ci/ � @Ki the condition  �1
i .x/ 2 @Ki implies

gi.x/ 2 @A.

Proof This follows since our space is polyhedral and gi.@Ki/ nCi � @A.

We can consider the space Ki as the result of a cutting off the polyhedral space A
along .n� 1/–polyhedral subspace Ci . The map gi glues A back from Ki . Then if
the point x 2 Ci has l preimages x1; : : : ;xl 2Ki under gi , its tangent space Tx can
be glued out from the tangent spaces Tx1

; : : : ;Txl
. We write this as

Tx D Tx1
t � � � tTxl

;

and the gluing maps are dx1
gi W Tx1

! Tx; : : : ; dxl
gi W Txl

! Tx .

Fix x and let g�1
i .x/D fx1; : : : ;xlg �Ki . Then there are two possibilities:

(1) If �� @A, then:
(a) For some 1 6 k0 6 l the point  �1.xk0

/ 62 @Ki . Then by Lemma 4.6
Txk
DRn�1 �RC , l D 1 and Tx DRn�1 �RC .

(b) For all k 2f1; : : : ; lg points  �1.xk/2@Ki . Then Txk
DRn�2�RC�RC .

This is only possible if l D 1 and Txk
DRn�2 �RC �RC or l D 2 and

TxADRn�1 �RC .

(2) If int.�/\@AD¿, then in this case Lemma 4.7 implies that for all k 2f1; : : : ; lg,
 �1.xk/ 62 @Ki and by Lemma 4.6 Txk

D Rn�1 �RC . This only possible if
l D 1 and TxADRm�2�L, where L is a cone over S1 of length � or l D 2

and TxADRn .

This completes the proof of Theorem 4.1.

4B Proof of Lemma 4.5

Let us note that if there is a vertex, say e1 62H , then the proof would be much simpler.
It would be sufficient to take the shortest edge between vertices in H and outside H .
So the difficulty is if there is no such a vertex.

To find vertices separated by H we start with Lemma 4.8 to find a pair of vertices ei , ej

such that ei presses down H at ej . Then we can decrease the distance jeiej j between
points with the same property using Lemma 4.9 until we find a pair of vertices, such
that H separates one from the other.

Lemma 4.8 Let A be a box. Then for any hyperedge H �A there are vertices ei 2A
and ej 2H such that ei pushes H in ej .
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Proof Suppose there exists at least one vertex ei 62 H ; then ei pushes H in every
vertex ej 2H . Otherwise consider any flat n–simplex with vertices in fe1; : : : ; e2ng

say 4ei0
;:::;ein

. The existence of such a simplex can be proved by using the same
construction as in the proof of Section 3A: moving out from vertices we can find a
point x 2A with #.x/D n and from Lemma 2.1 it follows that corresponding nC 1

vertices form flat n simplex. Since the codimension of H is 2, one of the vertices ei1
,

ei2
; : : : ; ein

has to push H in ei0
.

Lemma 4.9 Let ei and ej be two vertices and H a hyperedge in an n–box A and
ej 2H . Assume ei pushes H in ej but H does not separate ei from ej . Then there
is k ¤ i; j such that

maxfjekei j; jekej jg< jeiej j

and one of the following holds:

� ek pushes H in ej .

� ek 2H and ei pushes H in ek .

To prove Lemma 4.9 we need the following:

Sublemma 4.10 For any vertices ei , ek and a point x 2 Vi \Vk there is a shortest
path Œ'i.x/ek � inside Ci .

Proof By Lemma 1.5 there is a flat triangle eiek'i.x/ with median Œxek � and right
angle at ek . If some point of the edge Œ'i.x/ek � of this triangle does not lie in Ci then
we would have diam†ek

> �=2, contradiction.

Proof of Lemma 4.9 In conditions of our lemma there exists an .n� 2/–simplex �
with a vertex m 2 '�1

i .ej / such that 'i.�/�H and �� Vi \Vk for some k ¤ i; j .
Then by Lemma 1.5 there is a flat triangle eiej ek with median Œekm� and right angle
in ek . Then

maxfjekei j; jekej jg< jeiej j:

Now if ek pushes H in ej the proof is completed. Suppose contrary. We can assume
that relint.'i.�//�A nCk . By Sublemma 4.10 for every point y 2 'i.�/ there is a
shortest path Œyek � inside Ci , if in addition y 62 Ck then Œyek ��H . Then points of all
such shortest paths for y 2 relint.'i.�// form an .n� 2/–dimensional subset of H .
In particular ek 2H and ej presses down H at ek .
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5 The structure of the action of the orbifold group of an
n–box

Now we are in position to prove Theorem 1.3.

In what follows we assume that � ÕRn is a discrete cocompact action by isometries
and … W Rn! Rn=� denotes the projection. Let us denote by E the set of singular
points for � ÕRn .

It follows from Proposition 1.1 that Rn=� is a box if and only if the number of � –
orbits in E is 2n . This implies in particular the first part of Theorem 1.3. We reduce the
second part of Theorem 1.3 to three propositions below in this section. To formulate
the propositions we need some definitions and notation.

For any x 2 E we denote by Vx its Voronoy cell with respect to E , ie

Vx D fz 2Rn
j jz�xj6 jz�yj for every y 2 Eg:

Given x 2Rn , we denote by �#
x �O.n/ the action of the stabilizer �x on the vector

space Rn .

Definition 5.1 We say that an action � ÕRn has a reflection property if E ¤¿ and
for any adjacent x;y 2 E (ie dim.Vx \Vy/D n� 1) the stabilizer �x can only fix or
reflect the point y : �#

x.f
�!xyg/D f�!xy;��!xyg.

We say that a discrete subset E �Rn is a lattice if there is a finite set of generating
vectors Ea1; : : : ; Eal such that for any point x 2E we have

E D fxC k1 � Ea1C k2 � Ea2C � � �C kl � Eal j k1; k2; : : : ; kl 2 Zg:

If the dimension of the affine hull of E equals k we say that E is a k–lattice.

We say that a group � ÕRn reflects generating vectors Ea1; : : : ; Eal if for any x 2E

and i D 1; : : : ; l we have that �#
x.fEaig/D fEai ;�Eaig.

The second part of Theorem 1.3 follows from Theorem 1.1 and the next three proposi-
tions.

Proposition 5.1 Assume that the number of � –orbits in E be 2n . Then � ÕRn has
a reflection property.

We prove this in Section 6.

Proposition 5.2 Let an action � Õ Rn have a reflection property. Then E is an n–
lattice. Moreover, there exist n generating vectors for E and � reflects these generating
vectors.
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The proof is in Section 7.

Proposition 5.3 Let the number of �–orbits in E be 2n . Suppose that E is a lattice
and there exist n generating linearly independent vectors Ea1; : : : ; Ean for E such that �
reflects this generating vectors.

Then the action � Õ Rn is affine conjugate to a subaction of the Coxeter group
associated to the unit cube.

Proof Let us denote by �� a subgroup of � generated by stabilizers of all singular
points. Let us denote by 2 � E the set of vectors

˚Pn
iD1 2˛i Eai j k1; : : : ; kn 2 Z

	
.

Since �� reflects the generating set we have that for any y 2 E , ��.y/ � yC 2 � E .
The set E is invariant under � and the number of orbits equals 2n . Hence we have that
��.y/DyC2 �E for any y 2 E . By the same arguments we obtain that �.y/DyC2 �E
for any y 2 E . Therefore �.y/D ��.y/, hence � D �� .

We fix coordinates in Rn : a point O 2Rn and an orthonormal basis e1; : : : ; en . LetLn Õ Rn be the corresponding action of the Coxeter group of the unit cube. We
define an affine map on the basis: F.x0/DO , for some point x0 2 E and F.ai/D ei .
We define an action GÕRn by G D F ı� ıF�1 , this action is affine conjugate to
the action � ÕRn . We have that the integer lattice Zn is the set of singular points of
the action G Õ Rn , the group G is generated by stabilizers of points of Zn and G

reflects the generating set e1; : : : ; en of the lattice Zn . It follows that G 6
Ln .

6 Properties of a group action for an n–box

In this section we prove Proposition 5.1. The quotient space Rn=� is an n–box, we
denote it by A and keep all notation for n–boxes we used before.

We precede the proof by three lemmas. The first two are technical facts about
Voronoy domains, and Lemma 6.3 is the main geometric observation for our proof of
Proposition 5.1:

Lemma 6.1 Let M D Rk or M D Sk and G Õ M be a discrete cocompact
action by isometries. Let us denote the quotient space M=G by M 0 . Let p be
the projection M ! M 0 . We fix some finite collection of points s1; : : : ; sl 2 M 0

and consider Voronoy decompositions of M 0 and of M with respect to the sets
fs1; : : : ; slg and p�1.fs1; : : : ; slg/ respectively. Then for every i 2 f1; : : : ; lg and
every point s 2 p�1.si/ �M the corresponding Voronoy domain Vs �M can be
characterized by the following property: a point y 2 Vs if and only if .y 2 p�1.Vsi

//

and .jsyj D jsip.y/j/.
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Proof The proof is straightforward and uses just two properties of the projection
map: the map p does not increase distances and for any x;y 2 M 0 there exist
x0 2 p�1.x/;y0 2 p�1.y/ such that jx0y0j D jxyj.

Lemma 6.2 For any two points e0
i 2…

�1.ei/ and e0
j 2…

�1.ej / such that Ve0
i
\Ve0

j
¤

¿ the projection … is a distance preserving map, that is

j….e0
i /….e

0
j /j D je

0
i e0

j j D jeiej j:

Proof Let a point x lie in Ve0
i
\Ve0

j
. By Lemma 6.1 we have that ….x/ 2 Vi \Vj .

Then by Lemma 1.5 there exists a unique flat totally geodesic triangle eiej….x/ and
the triangle e0

i e0
j x is its isometric lifting.

Lemma 6.3 Let Sk be a k–dimensional sphere, G a discrete subgroup of isometries
of Sk , BDSk=G with a projection pW Sk!B and diam B 6�=2. Suppose that for
a point v 2 Sk the following holds: there exists a .k � 1/–dimensional subset F � B

such that jp.v/xj D �=2 for all x 2 F (further we refer to this as “�=2–property”).
Then the orbit of v contains exactly two points: G.v/D fv; v�g, where v� 2 Sk is
the diametrical point for v .

Proof For a point w 2 Sk , we denote by S?w the equator fy 2 Sk j jywj D �=2g.
We consider the Voronoy decomposition of Sk with respect to the set p�1.p.v//.
Lemma 6.1 implies that p�1.F /\Vw � S?w for any w 2 p�1.p.v//. Since for any
w 2 p�1.p.v// diam.Vw/ 6 �=2 and dim.p�1.F // D k � 1 there are exactly two
Voronoy domains, which are semispheres and the set p�1.p.v//DG.v/ consists of
two diametric points.

Proof of Proposition 5.1 Let us fix some adjacent points e0
i 2…

�1.ei/, e0
j 2…

�1.ej /.
Let m0 be a midpoint between them. Let mD….m0/. It follows from Lemma 6.2 that
je0

i e0
j jD jeiej j and jeimjD jej mj, hence by Corollary 1.1 we have that the midpoint m

lies in Vi \Vj . Then applying Lemma 6.1 we obtain that m0 2 Ve0
i
\Ve0

j
. It follows

from the definition of adjacent vertices and convexity of Voronoy domains that there
exists a flat .n� 1/–triangle �0 with a vertex m0 such that �0 � Ve0

i
\Ve0

j
. Hence

there exists a flat .n�1/–triangle � with a vertex mD….m0/ such that ��Vei
\Vej

(indeed we can take a sufficiently small triangle in ….�0/).

We consider the action of the stabilizer on the unit sphere �e0
j
Õ †e0

j
Rn and the

corresponding quotient space †e0
j
Rn=�e0

j
D †ej

A, and denote the corresponding
projection by pW †e0

j
Rn!†ej

A. To prove the reflection property we apply Lemma 6.3
to this action, the vector

v D
��!

e0
j e0

i =je
0
j e0

i j
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(as a point in †e0
j
Rn ) and the set F D dm'i.†m�/. It is not difficult to see that

the map dm'W TmVi ! Tej
A does not decrease dimensions (indeed, this map is a

gluing map), hence dim F D n� 2. To verify conditions of Lemma 6.3 it remains to
prove �=2–property for the vector v and the set F . For any vector w 2 †m� we
have that w ? eiej because � � Vei

\ Vej
. For this vector we can construct a flat

totally geodesic triangle eiej x in A (as in Lemma 1.5) such that †eiej x D �=2 and
the vector w is a tangent vector to this triangle at m. By the definition of the map 'i

we have d'i.w/ D Eej x=jej xj, let us note that p.v/ D Eej m=jej mj. We obtain that
d'i.w/? p.v/, then conclusion of Lemma 6.3 implies that the stabilizer �e0

j
can only

fix or reflect e0
i .

7 Reflection property gives a lattice of singular points

In this section we prove Proposition 5.2.

For a point x 2 E we denote the set of all adjacent vertices by

S.x/D fy 2 E j dim.Vx \Vy/D n� 1g:

The main technical point of the proof is the following:

Lemma 7.1 Let an action �ÕRn have the reflection property. Let x2E , y; z2S.x/,
and let us denote z� D yC�!xz . Then

z� 2 E :

The proof of this lemma is in Section 7A. In Section 7B we finish the proof of
Proposition 5.2.

7A Proof of Lemma 7.1

We consider two cases. First, every element of the stabilizer �x may reflect or fix
points y and z only simultaneously. The proof of this case is in Section 7A.1 (see
Lemma 7.3(2)). The other possibility is if there exists an element in �x that reflects
point y and fixes point z , the proof for this case is in Section 7A.2.

For any two points x;y 2Rk we will denote by cx W Rk !Rk the central symmetry
with the center x and by cxy W Rk ! Rk the symmetry with an axis xy . For points
x1; : : : ;xl we denote by hx1; : : : ;xli the affine hull of these points. Then in the
first case �xjhx;y;zi D fid jhx;y;zi; cxjhx;y;zig and in the second case �xjhx;y;zi D

fid jhx;y;zi; cxjhx;y;zi; cxy jhx;y;zi; cxzjhx;y;zig.
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7A.1 The order of �xjhx;y;zi equals 2 For any two points x;y 2 Rn we denote
the stabilizer by �x;y D �x \�y and by �#

x;y �O.n/ the action of this stabilizer on
the associate vector space Rn . For any tree points x;y; z 2Rn we denote the stabilizer
of these points by �x;y;z D �x \�y \�z .

First we prove one auxiliary statement:

Lemma 7.2 For a point x 2 S.y/ and every vector v 2 Rn , if �#
x;y.v/ D fvg then

�#
y.v/D fv;�vg.

Proof We can find points x1; : : : ;xn�12S.y/, such that vectors �!yx;��!yx1; : : : ;
����!yxn�1

are linearly independent. Let P D fv 2 Rn j �#
x;y.v/D vg. Reordering if necessary

we can assume that x D x0;x1; : : : ;xk 2 P and xkC1; : : : ;xn�1 62 P . We know that
�#

y.
��!yxi/D f

��!yxi ;�
��!yxig for every i D 0; : : : ; n�1. Then considering the group action

for the decomposition in our basis v D v0��!yx0C � � �C v
n�1����!yxn�1 we obtain that for

every v 2P coordinates vkC1D � � � D vn�1D 0, ie P Dhx0; : : : ;xki. Then for every
v 2 P we have �#

y.v/D fv;�vg.

Lemma 7.3 In conditions of Lemma 7.1 suppose additionally that

�xjhx;y;zi D fid jhx;y;zi; cy jhx;y;zig:

Then

(1) �y jhx;y;zi D fid jhx;y;zi; cy jhx;y;zig,

(2) z� 2 E .

Proof (1) Conditions of the lemma imply that

�#
x;y.f
�!xzg/D f�!xzg and �!xz D

��!
yz�;

then by Lemma 7.2 �y.
��!
yz�/D f

��!
yz�;�

��!
yz�g. Then for every 
 2 �y we have


 .
�!
xz/D�!xz and 
 .

��!
yz�/D

��!
yz�

or

 .�!xz/D��!xz and 
 .

��!
yz�/D�

��!
yz�:

Then (1) follows.

(2) For every v ¤ 0 we want to find 
 2 �z� such that 
 .v/¤ v . We consider two
possibilities.

First if �x;y;z.v/¤ fvg we can find the required element 
 2 �x;y;z � �z� .
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If �x;y;z.v/Dfvg then for arbitrary three elements 
x 2�x n�x;y;z , 
y 2�y n�x;y;z ,

z 2 �z n�x;y;z by Lemma 7.2 we will have 
x.v/D �v; 
z.v/D �v; 
z.v/D �v .
Then 
x ı 
y ı 
z.v/D�v and 
x ı 
y ı 
z.z

�/D z� .

7A.2 The order of �xjhx;y;zi equals 4 In this subsection we are in conditions of
Lemma 7.1 and assume that the order of the group �xjhx;y;zi is 4.

Definition 7.4 Let vectors v1; v2 2 Rn and W be a subset of vectors in Rn . The
angle chain between v1 and v2 through the set W is the ordered set of vectors
w1; : : : ; wk 2W with the following property:

†.v1; w1/¤
�

2
; †.w1; w2/¤

�

2
; : : : ; †.wk�1; wk/¤

�

2
; †.wk ; v2/¤

�

2
:

We say that two .n� 1/–faces of a convex polyhedron in Rn are adjacent if they have
a common .n� 2/–face.

First we prove the following lemmas.

Lemma 7.5 Suppose we are in the conditions of Lemma 7.1 and the order of the
group �xjhx;y;zi is 4. Then there is no angle chain between �!xy and �!xz through the
set of vectors f�!xt j t 2S.x/g and �!xy ?�!xz .

Proof It is sufficient to note that if there would be such an angle chain, then the stabi-
lizer �x could fix or reflect vectors �!xy and �!xz only simultaneously. This contradicts
to the fact that the order of the group �xjhx;y;zi is 4.

We introduce the following notation for half spaces and hyperplanes determined by a
vector v 2Rn or by an origin x 2Rn and a vector v 2Rn :

H�v D fw 2Rn
jhw; vi6 jvj2g; H�x;v D fy 2Rn

jh
�!xy; vi6 jvj2g;

H 0
v D fw 2Rn

jhw; vi D jvj2g; H 0
x:v D fy 2Rn

jh
�!xy; vi D jvj2g:

We need the following observation in geometry of convex polyhedra.

Lemma 7.6 Let an n–dimensional convex polyhedron F �Rn be represented as an
intersection of half spaces F D \H�vi

for the set of vectors V D fv1; : : : ; vkg � Rn

and suppose this set is minimal (or equivalently that all intersections Fi DH 0
vi
\F are

hyperfaces in F ). Suppose in addition that there is no angle chain between v1 and v2

through the set V and that v1 ? v2 .

Then faces F1 DH 0
v1
\F and F2 DH 0

v2
\F are adjacent.
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Proof We consider a partition of V into 3 subsets. V1 is a subset of those vectors
in V that have an angle chain to v1 through V ; V2 is a subset of those vectors in V

that have an angle chain to v2 through V and V3 D V n .V1[V2/.

Let LDH 0
v1
\H 0

v2
. For any vector w2Rn we denote by wL the orthogonal projection

of w to L.

Let hw DH�w \L, then hw is a halfspace in L with a normal vector wL . Set

I1 D

\
w2V1

hw; I2 D

\
w2V2

hw; I3 D

\
w2V3

hw:

We claim that

(i) dim Ii D n� 2, for i D 1; 2; 3,

(ii) for wi 2 Vi wj 2 Vj we have wL
i ? w

L
j if i ¤ j .

Let us first note, that these two properties imply that dim.I1\ I2\ I3/D n� 2. This
would imply the lemma, because F1\F2 D

T
w2V hw D I1\ I2\ I3 .

Let us show (i) and (ii).

We define sets W1 D fv 2 V j hv; v2i D 0g and W2 D fv 2 V j hv; v1i D 0g. Let note
that: V DW1[W2 , W1 � V1 , W2 � V2 and W1\W2 � V3 .

We define
J1 D

\
w2W1

hw; J2 D

\
w2W2

hw:

We consider J1 as an intersection

J1 D

� \
w2W1

H�w \H 0
v1

�
\L�H 0

v1
:

Let us note that:

(1) L is a hyperplane in H 0
v1

with a normal vector v2 .

(2) For every w 2W1 the set Hw\H 0
v1

is a half space in H 0
v1

with a normal vector
orthogonal to v2 .

(3) We have dim.
T
w2W1

H�w \H 0
v1
/ D n � 1 (this follows from the inclusionT

w2W1
H�w \H 0

v1
� F1 ).

These three properties imply that dim J1Dn�1. By the same arguments dim J2Dn�1.
We know that I1 � J1 , I2 � J2 and I3 � J1[J2 , hence (i) follows.

For any w1 2 W1 and w2 2 W2 the condition w1 ? w2 implies that wL
1
? wL

2
;

hence (ii) follows.
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For two points x;y 2 E we denote the common .n� 1/–face of polyhedra Vx and Vy

by Vxy D Vx \Vy .

Lemma 7.7 Suppose that points x;y; z2E , xy?xz and faces Vxy , Vxz are adjacent.
Suppose in addition that for any point y� 2S.y/\hx;y; zi we have yy� ? yx . Then
the point z� D xC�!xyC�!xz 2 E .

Proof Consider the intersection VxyzDVxy\Vxz , this intersection is an .n�2/–face
of polyhedron Vx and hence it is an .n� 2/–face of polyhedron Vy (because of the
Voronoy decomposition structure). We can represent Vy as an intersection

Vy D

\
t2S.y/

H�
y;.1=2/

�!
yt
:

Hence there exist two points y1;y2 2S.y/\ hx;y; zi such that

Vxyz �H 0

.1=2/
�!
yy1

\H 0

.1=2/
�!
yy2

:

One of these points, say y1 , coincides with x . Then the other point, y2 , coincides
with z� .

Proof of Lemma 7.1 We can represent Vx as an intersection

Vx D

\
t2S.x/

H�
x;.1=2/

�!
xt
:

Because of Lemma 7.5 we can apply Lemma 7.6 to F D Vx , F1 D Vxy , F2 D Vxz

and obtain that faces F1 D Vxy , F2 D Vxz are adjacent. We apply Lemma 7.7 and
then Lemma 7.1 follows.

7B

Here we finish the proof of Proposition 5.2. The proposition follows directly from the
next two lemmas.

Lemma 7.8 The set E is a lattice with generating vectors f�!xygy2S.x/ .

Proof We know that

(1) Vx D

\
t2S.x/

H�
x;.1=2/

�!
xt
D

\
t2Enx

H�
x;.1=2/

�!
xt
:

First we show that for every x;y 2 E ,

(2) S.y/DS.x/C�!xy:
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Indeed Lemma 7.1 implies that for any x;y 2 E such that y 2S.x/ (further we call
such points adjacent) we have S.x/C�!xy � E and hence by (1) Vy � VxC

�!xy . Then
changing x and y we obtain the equality (2) in this case. For arbitrary x;y 2 E the
equality (2) can be obtained by joining x and y with a chain of adjacent points.

To show Lemma 7.8 it is sufficient to prove that for any x;y; z 2 E we have xC�!xyC
�!xz 2 E x��!xy 2 E . The second inclusion needs the central symmetry of the set S.x/,
that follows from the reflection property. After this both inclusions can be proved by
using (2) and joining correspondent points with a chain of adjacent points.

The next lemma shows that we can reduce our generating set for E to the n generating
vectors with the same property that � reflects this vectors.

Lemma 7.9 Suppose S 2Rn is an n–lattice with a generating set a1; : : : ; as , G is a
subgroup of isometries of Rn which reflects this generating set. Then there exists an
n–generating set b1; : : : ; bn for S such that G reflects this generating set.

Proof It is known that there exists an n–generating set for any n–lattice (sometimes
it is called a short basis), so the problem is to find an n–generating set reflected by G .

We define an equivalence relation on the generating set a1; : : : ; as . We set ai� � aj�

if there is an angle chain connecting ai� and aj� through fa1; : : : ; asg. We denote by
q1; : : : ; ql the equivalence classes. Let note that vectors from the different classes are
mutually orthogonal, equivalently vectors can be fixed or reflected by stabilizers Gx

(where x 2 S ) only simultaneously.

We fix a point x 2 S . For every equivalence class we consider a lattice

Si D

�
xC

X
a2qi

naa; na 2 Z

�
;

then

S D

lM
iD1

Si :

Let d.i/ be the dimension of the affine hull of Si , then we can choose a d.i/–basis
for Si . (We note that this basis is independent on the choice of x 2 S ). Vectors of this
basis are reflected by G because any stabilizer can act on every Si only identically or
by central symmetry. Then the union of these d.i/–bases is an n–basis for S reflected
by G .
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8 Comments and open questions

Let us describe here how some problems about the number of extremal subsets can be
reformulated algebraically.

Let � Õ Rn be an effective discrete group action by isometries. Then the quotient
space ADRn=� is an Alexandrov space of nonnegative curvature. Extremal subsets
in such an Alexandrov space can be described in terms of the group action.

We call a subset E � Rn a singular subset (for the action � Õ Rn ) if it is a set of
all fixed point for some subgroup of � , (we call a 0–dimensional singular subset a
singular point). Note that since the action is effective every subgroup that fixes some
point is finite. Also, every finite subgroup fixes some nonempty affine subset.

It is not difficult to show that a subset of A is a primitive extremal subset if and only
if it is an image of a singular subset in Rn . Therefore there is a bijection between
maximal finite subgroups of � up to conjugation and primitive extremal subsets in A.

Denote by N.�ÕRn/ the number of orbits of singular points and by M.�/ the number
of maximal finite subgroups in � up to conjugation. It follows that N.� Õ Rn/ 6
M.�/. Some maximal subgroups of � might fix affine subspaces of positive dimension,
therefore M.�/ might be strictly bigger than N.� Õ Rn/. From Theorem 1.4 we
have the following:

Corollary 8.1 For any cocompact effective discrete action by isometries �ÕRn , we
have N.� ÕRn/6 2n .

We believe that the following stronger statement is true.

Conjecture For any cocompact effective discrete action by isometries � ÕRn , we
have M.�/6 2n .

There is a discussion on this conjecture; see [6].
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