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Uniqueness of instantaneously complete Ricci flows

PETER M TOPPING

We prove uniqueness of instantaneously complete Ricci flows on surfaces. We do not
require any bounds of any form on the curvature or its growth at infinity, nor on the
metric or its growth (other than that implied by instantaneous completeness). Coupled
with earlier work, this completes the well-posedness theory for instantaneously
complete Ricci flows on surfaces.

35K55, 53C44; 58J35

1 Introduction

Hamilton’s Ricci flow equation [15]

(1-1) @

@t
g.t/D�2 RicŒg.t/�

for an evolving smooth Riemannian metric g.t/ on a manifold M has a short-time
existence and uniqueness theory valid for closed M (see Hamilton [15] and DeTurck [8])
and also for noncompact M when the initial metric and subsequent flows are taken to be
complete and of bounded curvature; see Shi [23], Chen and Zhu [3] and Kotschwar [19].
The flow will exist until such time as the curvature blows up.

In this paper we are interested in the case that the domain is two-dimensional (also the
simplest setting for the Kähler Ricci flow) where the results are substantially stronger
(see Topping [24], Giesen and Topping [12], Ji, Mazzeo and Sesum [18] etc). The
first improvement is that the flow can be started with a completely general surface,
assumed neither to be of bounded curvature nor to be complete. It is then possible
to flow smoothly forward in time within the class of instantaneously complete Ricci
flows (ie so that g.t/ is complete once t > 0). The second improvement is that the
existence time of the flow can be given precisely in terms of the topology and area of
the initial surface, and in most cases the flow will exist for all time. In contrast to the
higher-dimensional theory, the flow will, in general, exist beyond the first time that
the curvature blows up (Giesen and Topping [14]) and indeed the curvature can be
unbounded for all time (Giesen and Topping [13]). The third improvement is that the
flow enjoys a type of maximality property over all Ricci flows with the same initial
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1478 Peter M Topping

surface (maximally stretched in the terminology of [12]) which already yields a soft
uniqueness result. The fourth improvement is that in most cases the asymptotics of the
flow can be explained in detail.

In [24] it was proposed that these instantaneously complete Ricci flows should be unique
(see also [12, Conjecture 1.5]), and partial results in this direction have been given for
specific incomplete initial surfaces [24], for surfaces covered (conformally) by C [12]
(exploiting work of Chen [2], Yau [28] and Rodriguez, Vázquez and Esteban [22]),
for surfaces of uniformly negative curvature (within a restricted class of flows; see
Giesen and Topping [11]) and for flows that are majorised by hyperbolic metrics (within
various restricted classes of flows; see [12] and Giesen [10]), in addition to the closed
case already covered by Hamilton [15] and the case that the initial metric and the flow
itself are assumed to be complete and of bounded curvature ([12, Theorem A.4], or
Chen and Zhu [3] and Kotschwar [19]). Moreover, Chen [2, Theorem 3.10] proved the
result under the additional assumptions that the initial metric is complete, of bounded
curvature, and noncollapsed.

In this paper, we fully settle the uniqueness question for instantaneously complete Ricci
flows. They are always unique, without any restriction:

Theorem 1.1 (Main theorem) Let g.t/ and xg.t/ be two instantaneously complete
Ricci flows on any surface M, defined for t 2 Œ0;T �, with g.0/ D xg.0/. Then
g.t/D xg.t/ for all t 2 Œ0;T �.

Coupled with earlier existence theory, particularly that of Giesen and the author [12],
which in turn incorporated the classical case of compact underlying surface dealt with
by Hamilton [16] and Chow [4] and drew on the literature for the logarithmic fast
diffusion equation (see below) we then have:

Theorem 1.2 (Incorporating [12]) Let .M2;g0/ be any smooth (connected) Rie-
mannian surface, possibly incomplete and/or with unbounded curvature. Depending on
the conformal type, we define T 2 .0;1� by1

T WD

8<:
1

4��.M/
Volg0

M if .M;g0/Š S2;C or RP2;

1 otherwise:

Then there exists a unique smooth Ricci flow g.t/ on M2 , defined for t 2 Œ0;T /, such
that:

1Note that in the case that M D C , we set T D 1 if Volg0
C D 1 . Here �.M/ is the Euler

characteristic.
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Uniqueness of instantaneously complete Ricci flows 1479

(1) g.0/D g0 .

(2) g.t/ is instantaneously complete.

In addition, this Ricci flow g.t/ is maximally stretched (see Remark 1.3), and the Gauss
curvature Kg.t/ satisfies

Kg.t/ � �
1

2t

for t 2 .0;T /. If T <1, then we have

Volg.t/MD 4��.M/.T � t/! 0 as t % T

and, in particular, T is the maximal existence time.

Remark 1.3 Recall from [12] and [14, Remark 1.5] that the maximally stretched
assertion means that g.t/ lies “above” any another Ricci flow with the same or lower
initial data. More precisely, if 0 � a < b � T and zg.t/ is any Ricci flow on M
for t 2 Œa; b/ with zg.a/ � g.a/ (with zg.t/ not necessarily complete or of bounded
curvature) then zg.t/� g.t/ for every t 2 Œa; b/.

If one relaxes the notion in which the Ricci flow should attain its initial data, then
nonuniqueness can occur; see [25] by the author.

One can consider Theorem 1.2 also as the well-posedness theorem for the logarithmic
fast diffusion equation, a topic that has been studied extensively (see Daskalopoulos
and del Pino [7], DiBenedetto and Diller [9], Daskalopoulos and Kenig [6, Section 3.2]
and Vázquez [27, Section 8.2]). Ricci flow on surfaces M preserves the conformal
class of the metric and can be written

@

@t
g.t/D�2Kg.t/;

where K is the Gauss curvature of g.t/. In this case, we may take local isothermal
coordinates x and y , and write the flow g.t/D e2ujdzj2 WD e2u.dx2

C dy2/ for some
locally-defined, scalar, time-dependent function u which will then satisfy the local
equation

(1-2) @u

@t
D e�2u�uD�K:

The area density U WD e2u then satisfies

(1-3) @U

@t
D� log U:
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1480 Peter M Topping

This equation has been heavily studied in the case that the domain is R2 [6; 7; 9; 27]
with good existence theory, but troublesome uniqueness. This paper demonstrates that
instantaneous completeness is the right substitute for a growth (or other) condition in
this and all other cases. We note that the well-known result of Rodriguez, Vázquez and
Esteban [22] that in the special case of the domain being R2 , the maximally stretched
solution is uniquely characterised by the growth condition

(1-4)
1

U
� C

�
r2.log r/2

2t

�
for some constant C <1;

is subsumed in the statement of Theorem 1.1, as it was in [12] (see [12, Section 3.2],
where the ideas of [22] were combined in particular with Yau’s Schwarz lemma [28]).
The conformal factor 2t=.r log r/2 here is representing an expanding hyperbolic cusp,
and is therefore very natural, although it could be weakened further using Theorem 1.1.

Although Theorem 1.2 handles all surfaces as possible initial data, it may be instructive
to consider the special case that the initial surface is the flat two-dimensional disc
.D;g0/, which corresponds to the initial conformal factor u � 0. It is a spurious
feature of this example that it has zero curvature, so one Ricci flow continuation would
be the static solution. However, even amongst solutions u to (1-2) that are continuous
up to the boundary @D , the standard theory of parabolic equations tells us that we
are free to prescribe u on @D (that then giving uniqueness in this restricted class).
Theorem 1.2 tells us that there is another way of flowing, where we send in an infinite
amount of area at spatial infinity to make the metric immediately complete. The flow
will be smooth all the way down to t D 0, so for small time the flow will look a little
like a flat disc on the interior. However, in a boundary layer, the metric will look like
the Poincaré metric on the disc, scaled to have curvature � 1

2t
. By exploiting some

deep ideas of Perelman [20, Section 10] it can be shown that the thickness of the layer
where the flow is far from the flat disc is controlled by

p
t .

Theorem 1.1 implies in particular that there is only one way we can send in area from
infinity in order to make the surface complete. If we try to send in less, then the metric
will not be complete. If we try to send in more, then the nonlinearity acts as a damping
mechanism, and nothing reaches the interior. Theorem 1.1 implies that these effects
are exactly complementary.

The uniqueness of Theorem 1.1 serves to finish the well-posedness theory for this
equation, and highlights the Ricci flow constructed in [12] as the natural one to study
both in general and as a tool to understand spectral and dynamical properties of surfaces
(see Albin, Aldana and Rochon [1] for example) and their uniformisation. As a by-
product, it also immediately implies that in the special case that the initial surface is
complete and of bounded curvature, then the Ricci flow from Theorem 1.2 coincides
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Uniqueness of instantaneously complete Ricci flows 1481

with the now-standard Ricci flow constructed by Shi [23], as originally proved in [12,
Theorem 1.8] (although Shi’s flow will not exist for as long [14]).

One application of uniqueness is a comparison principle that can allow us to compare
Ricci flows whose behaviour on the ‘boundary at infinity’ is unknown. For example,
whenever we have an instantaneously complete Ricci flow g.t/, perhaps a Ricci soliton
flow that we have written down explicitly, maybe with unbounded curvature, then it
must be maximally stretched by Theorem 1.2 (as a result of Theorem 1.1), and all
other Ricci flows starting at or below g.0/, possibly incomplete and/or with unbounded
curvature, must lie below g.t/, however they behave ‘at infinity’.

A further application is that it is often useful to know that an instantaneously complete
Ricci flow that has arisen in a construction (for example as a limit of other Ricci flows)
is the flow that would have arisen from the existence theory using the same initial
metric, and Theorem 1.1 provides this for us. For example, the argument in [26] would
have been simplified by knowing that a Ricci flow of possibly unbounded curvature
that starts at a complete soliton metric is necessarily the corresponding soliton flow
while it is known to be complete. Theorem 1.1 guarantees that it is.

Finally we remark that the estimates from this paper imply stability results for two-
dimensional Ricci flow.

2 Proof of the uniqueness in Theorem 1.1

We are free to assume that the Ricci flow xg.t/ of Theorem 1.1 is a maximally stretched
solution arising from [12, Theorem 1.3] (ie from the existence part of Theorem 1.2)
and that g.t/ is any other instantaneously complete Ricci flow with g.0/D xg.0/. By
the Uniformisation theorem, the universal cover of M must be conformally equivalent
to S2 , C or D , and it suffices to prove that the lifts of g.t/ and xg.t/ to the universal
cover agree. In the case that the universal cover is S2 , then we are in the closed case
that was dealt with originally by Hamilton [15] (see also [17]). In the case that the
universal cover is C , Giesen and the author already proved the result [12, Section 3.2]
based on an estimate of Rodriguez, Vázquez and Esteban [22]. It therefore suffices to
assume that MDD , the two-dimensional disc.

Since we know that g.t/� xg.t/ by the maximally stretched property, and g.0/D xg.0/,
we need only show that relative to g.t/, the flow xg.t/ cannot lift off as time increases.
The key result is the following quantitative estimate that considers the area measured
with respect to g.t/ of a smaller (concentric) disc Dr WD fz 2C W jzj< rg �D , and
constrains how much larger it could be if we were allowed to make the metric arbitrarily
larger on the boundary of a larger disc DR �D , where r <R< 1.

Geometry & Topology, Volume 19 (2015)



1482 Peter M Topping

Lemma 2.1 (Interior area estimate) Fix r0 2 .0; 1/ and 
 2 .0; 1
2
/. Then for R 2

.r0; 1/ sufficiently close to 1, depending on r0 , the following holds. Suppose g.t/ is
any instantaneously complete Ricci flow on D , for t 2 Œ0;T �, and G.t/ is any Ricci
flow on DR with the properties that G.0/Dg.0/ and G.t/�g.t/ on DR for t 2 Œ0;T �.
Then for all t 2 Œ0;T �, we have

(2-1) Volg.t/Dr0
� VolG.t/Dr0

� Volg.t/Dr0
C

C.
; r0/t

Œ� log.� log R/�

:

In practice we will take G.t/ to be the restriction to DR of the maximally stretched
Ricci flow xg.t/ on the entire disc D with xg.0/D g.0/. In that case, if we fix r0 and

 as in the lemma, and apply the lemma for larger and larger R 2 .r0; 1/ we obtain in
the limit that

Volxg.t/Dr0
D Volg.t/Dr0

;

from which we deduce that g.t/D xg.t/ on Dr0
because xg.t/� g.t/. By taking the

limit r0% 1, we find that g.t/D xg.t/ throughout D for all t 2 Œ0;T �, which completes
the proof of Theorem 1.1, modulo Lemma 2.1.

The rest of the paper is devoted to proving Lemma 2.1. Indeed we will prove a slightly
stronger statement that we give in Lemma 3.3. The basic technique of the proof of
these estimates is to define a weighted area consisting of the integral of a certain cut-off
function ' WD! Œ0; 1� with support in DR , and identically equal to 1 on Dr0

, and
control the evolution of the difference of the weighted areas defined with respect to g.t/

and G.t/, in a manner reminiscent of the work of Rodriguez, Vázquez and Esteban [22]
mentioned above (see also [9]). Great care is required to choose the cut-off ' in order
to measure the right flux of area in our case.

3 Proof of the interior area estimate, Lemma 2.1

We begin the proof working under the hypotheses of Lemma 2.1, except that we do not
assume for the moment that G.0/D g.0/.

In order to respect the geometry of the situation, and dramatically reduce the number
of logarithms in computations, we will view the (punctured) disc conformally as a
half-cylinder .0;1/�S1 , and take (isothermal) logarithmic polar coordinates .s; �/
instead of the standard Cartesian isothermal coordinates .x;y/, where

s D� log r D�1
2

log.x2
Cy2/;

ie xC iy D e�.sCi�/ for � 2 S1 DR=.2�Z/.
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Uniqueness of instantaneously complete Ricci flows 1483

In these coordinates, the conformal factor of the complete hyperbolic metric gpoin D

H.ds2
C d�2/ on D is given by

(3-1) H.s/D
1

sinh2 s

for s > 0. The so-called big bang Ricci flow is then given by 2tgpoin for t > 0. We
will also use these coordinates to write the Ricci flows g.t/ D U.ds2

C d�2/ and
G.t/D V .ds2

C d�2/ for s > 0 and s > S WD � log R respectively, where the scalar
functions U and V will then satisfy (1-3). By hypothesis, we have U � V . Moreover,
from [12, Lemma 2.1(i)] (and [11], based on a combination of Chen’s scalar curvature
estimates [2] and the Schwarz–Pick–Ahlfors–Yau lemma) we know that the big bang
Ricci flow lies below any instantaneously complete Ricci flow, ie 2tgpoin � g.t/ for
t > 0. Thus we have

(3-2) 2tH � U � V:

We are free to make the assumption that r0 2 .
1
2
; 1/, ie s0 WD � log r0 � log 2, since

reducing r0 only makes (2-1) weaker, and we also assume that R� r1=3
0

, ie that

(3-3) S WD � log R� 1
3
.� log r0/DW

1
3
s0:

Because sinh.s/ is convex for s > 0, and hence sinh.s/ � sinh.log 2/ s=log 2 D

3s=.4 log 2/ for s 2 .0; log 2/, the assumption s0 � log 2 allows us to combine (3-1)
and (3-2) to give

(3-4) U�1
�

C s2

t

for s 2 .0; s0/ and universal C .

In order to prove Lemma 2.1, we will consider the evolution of the difference of
time-dependent weighted areas

(3-5) J.t/ WD

Z
DR

'd�G.t/�

Z
DR

'd�g.t/ D

Z
S1

Z 1
S

.V �U /' ds d�;

for an appropriate rotationally symmetric cut-off function ' WD! Œ0; 1� with support
in DR , and which is identically equal to 1 on Dr0

. We will normally view ' as
a function of s . Later we will arrange, amongst other things, that '.s/ is smooth
away from s D S and s D s0=2, and C 1 for all s > 0. Later when we assume that
g.0/ D G.0/, we will have J.0/ D 0. Thus Lemma 2.1 reduces to controlling the
quantity

J.t/�

Z
Dr0

d�G.t/�

Z
Dr0

d�g.t/ D VolG.t/Dr0
�Volg.t/Dr0

:

Geometry & Topology, Volume 19 (2015)



1484 Peter M Topping

To do this, we differentiate (3-5) in time, using (1-3) to obtain

(3-6) dJ

dt
D

Z
S1

Z 1
S

@

@t
.V �U /' dsd� D

Z
S1

Z 1
S

�.log V � log U /' dsd�

D

Z
S1

Z 1
S

.log V � log U /'00.s/ dsd�;

where � D @2=@s2 C @2=@�2 and the integration by parts is valid because V and
U have the same asymptotics at s D 1. For � 2 .0; 1/ and x � 0, we know that
log.1Cx/� 1

�
x� , and therefore with �D 
=.1C 
 / 2 .0; 1

3
/ we have

log V � log U D log.1C .V �U /=U /�
1C 





�
V �U

U

�
=.1C
/
;

which we may insert into (3-6). If we make the additional assumption that '00.s/� 0

for s 2 .s0=2; s0/ (as we shall arrange below) then we have

(3-7) dJ

dt
� C.
 /

Z
S1

Z s0=2

S

�
V �U

U

�
=.1C
/
j'00.s/j dsd�:

and applying Hölder’s inequality, we find that

(3-8) dJ

dt
� C.
 /

�Z
S1

Z s0=2

S

ŒV �U �' dsd�
�
=.1C
/

�

�Z
S1

Z s0=2

S

U�
 j'00j1C
'�
 dsd�
�1=.1C
/

� C.
 /J



1C


�Z s0=2

S

�
s2

t

�

j'00j1C
'�
 ds

�1=.1C
/

;

where we have used (3-5), (3-2) and (3-4) in the last inequality. Defining

(3-9) Q WD

Z s0=2

S

s2

j'00j1C
'�
 ds;

we then have the main differential inequality

(3-10) d

dt
J 1=.1C
/

� C.
 /t�
=.1C
/Q1=.1C
/:

We would like now to carefully choose the cut-off function ' so that we can be sure
of good bounds on Q. This will allow us to integrate (3-10) to finish the proof. The
function ' will be derived from the following specific function for which we compile
some elementary facts.

Geometry & Topology, Volume 19 (2015)
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Proposition 3.1 (Flux function) For a2 .0; 1/, the function f W Œa; 1�!R defined by

(3-11) f .�/D
1

.� log a/

�
�.log � � log a/� .� � a/

�
satisfies:

.i/ f .a/D 0:

.ii/ f .1/D 1� 1�a
.� log a/

2 .0; 1/:

.iii/ f 0.�/D 1
.� log a/

�
log � � log a

�
� 0:

.iv/ f 0.a/D 0:

.v/ f 0.1/D 1:

.vi/ f 00.�/D 1
�.� log a/

� 0:

In particular, we can extend f to a C 1 function f WR! Œ0; 1�, smooth except at � D a

and � D 1, with the properties that

.a/ f .�/D 0 for all � � a;

.b/ f .�/D 1 for all � � 2;

.c/ f 00.�/� 0 for all � 2 .1; 2�:

f

�

1

a 1 2

Figure 1: The flux function f

The C 1 cut-off function ' W .0;1/! Œ0; 1� will arise as an appropriate scaling of
f . Indeed, for our S WD � log R > 0 and s0 WD � log r0 < 1, with our standing
assumption that S � s0=3, we can then set aD 2S=s0 2 .0; 1/ and define

'.s/D f
�

2s

s0

�
;
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which is smooth except at s D S and s D s0=2, and satisfies

.i/ '.s/D 0 for s 2 .0;S �,

.ii/ '.s/D 1 for s � s0,

.iii/ '00.s/� 0 for all s 2 .s0=2; s0/.

With this choice of ' , we will be able to control Q from (3-9):

Proposition 3.2 Q�
C.
 /

.� log r0/ Œlog.� log r0/� log.� log R/�

:

Accepting this proposition for a moment, we can then integrate (3-10) to give

J
1

1C
 .t/�J
1

1C
 .0/� C.
 /t
1

1C


�
1

.� log r0/ Œlog.� log r0/� log.� log R/�


� 1
1C


;

and we have proved the following lemma.

Lemma 3.3 Suppose r0 2 .
1
2
; 1/, R 2 .r

1=3
0
; 1/ � .r0; 1/ and 
 2 .0; 1

2
/. Suppose

g.t/ is any instantaneously complete Ricci flow on D for t 2 Œ0;T �, and G.t/ is any
Ricci flow on DR with the property that G.t/� g.t/ on DR for t 2 Œ0;T �. Then, for
all t 2 Œ0;T �, we have

(3-12)
�
VolG.t/Dr0

�Volg.t/Dr0

� 1
1C


�
�
VolG.0/DR �Volg.0/DR

� 1
1C


CC.
 /

�
t

.� log r0/Œlog.� log r0/� log.� log R/�


� 1
1C


:

In the setting of Lemma 2.1, we also know that G.0/ D g.0/, and so Lemma 3.3
immediately implies Lemma 2.1.

4 Estimating Q

It remains to prove Proposition 3.2, estimating Q. We begin by changing coordinates
in (3-9), setting � D 2s=s0 (keeping aD 2S=s0 ) so that

(4-1) QD

Z 1

a

�s0�

2

�2
��s0

2

��2
jf 00.�/j

�1C

f .�/�


�s0

2

�
d�

D
2

s0

Z 1

a

�2

jf 00j1C
f �
 d�

D
2

s0

Z 1

a

�
�1.� log a/�1Œ�.log � � log a/� .� � a/��
 d�;
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where we have used the definition of f in (3-11) and Proposition 3.1(vi). In order to
proceed further, we must split the integral into a part on which � is of the order of a

(let us say for � 2 .a; e2a/), and the remaining part where � is bounded away from
a (ie � 2 .e2a; 1/). Here we are assuming that e2a < 1; if not, we can estimate the
whole range � 2 .a; 1/ in one go, and the computation below simplifies a lot.

To deal with the range � 2 .e2a; 1/, we change variables from � to ˛ WD log �
a

, so
˛ 2 .2;� log a/. Within this range we can estimate

�.log � � log a/� .� � a/�
�

2
.log � � log a/C

�

2

�
log.e2a/� log a

�
� .� � a/

D
�

2

�
log �

a

�
C a�

�

2

�
log �

a

�
:

Therefore,

(4-2) Q1 WD
2

s0

Z 1

e2a

�
�1.� log a/�1
�
�.log � � log a/� .� � a/

��

d�

�
2

s0

Z 1

e2a

�
�1.� log a/�1
h
�

2

�
log �

a

�i�

d�

�
C.
 /

s0

.� log a/�1

Z 1

e2a

��1
h
log �

a

i�

d�

�
C.
 /

s0

.� log a/�1

Z � log a

2

˛�
d˛ �
C.
 /

s0

.� log a/�
 :

Meanwhile, to deal with the range � 2 .a; e2a/, we recall that for x 2 .�1; 0�, we have
log.1Cx/� x� 1

2
x2 . Therefore

log a� log � D log
�
1C

�
a

�
� 1

��
�

�
a

�
� 1

�
�

1
2

�
a

�
� 1

�2

and hence �
�.log � � log a/� .� � a/

�
�

1

2�
.� � a/2

for � > a. We may therefore estimate

(4-3) Q2 WD
2

s0

Z e2a

a

�
�1.� log a/�1
�
�.log � � log a/� .� � a/

��

d�

�
C.
 /

s0

Z e2a

a

a
�1.� log a/�1
h

1

�
.� � a/2

i�

d�

D
C.
 /

s0

.� log a/�1

Z e2

1

ˇ
 .ˇ� 1/�2
dˇ �
C.
 /

s0

.� log a/�1;
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where we have changed variables from � to ˇD �=a, and used the fact that 
 2 .0; 1
2
/.

Combining (4-1), (4-2) and (4-3), we find that

(4-4) QDQ1CQ2 �
C.
 /

s0

�
.� log a/�1

C .� log a/�

�
�

C.
 /

s0

.� log a/�


because by (3-3) we know that � log a� � log 2
3

. Finally, we appeal again to (3-3) to
see that log s0� log S � log 3, and thus

� log aD log s0� log S � log 2�

�
1�

log 2

log 3

�
.log s0� log S/:

When combined with (4-4) we conclude that

Q�
C.
 /

s0

.log s0� log S/�
 ;

as claimed in the proposition.

5 Further refinements

The same ideas as above also give the following improvement of Lemma 3.3 in which
we do not assume that the flows are ordered.

Lemma 5.1 Suppose r0 2 .
1
2
; 1/, R 2 .r

1=3
0
; 1/ � .r0; 1/ and 
 2 .0; 1

2
/. Suppose

g.t/ is any instantaneously complete Ricci flow on D , for t 2 Œ0;T �, and G.t/ is any
Ricci flow on DR . Defining, for ��DR , the volume excess

VolExt � WD VolG.t/�t �Volg.t/�t ;

where �t WD fx 2� j G.t/� g.t/ at xg, we have for all t 2 Œ0;T � that

(5-1)
�
VolExt Dr0

� 1
1C
 �

�
VolEx0 DR

� 1
1C


CC.
 /

�
t

.� log r0/Œlog.� log r0/� log.� log R/�


� 1
1C


:

The only change to the proof in Section 3 is to replace the definition of J.t/ in (3-5) by

J.t/ WD

Z
S1

Z 1
S

.V �U /C' dsd�;

where xC WDmaxfx; 0g. One of the equalities in (3-6) becomes an inequality, but we
still obtain (3-10) for this new J .
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This improvement of the main estimate, together with the directly analogous estimates
on C (as given in [12] and [22]) and S2 (which is trivial because we can set ' �
1), gives the following alternative to Theorem 1.1, which is the key to resolving
the uniqueness issue for Ricci flows on general fixed surfaces starting with certain
Alexandrov spaces, following on from Richard [21], as explained in [5].

Theorem 5.2 Suppose that g.t/ and xg.t/ are two conformally equivalent complete
Ricci flows on a surface M, defined for t 2 .0;T �, both with curvature uniformly
bounded from below and with

(5-2) lim
t#0

Volg.t/�D lim
t#0

Volxg.t/�<1

for all �b M. Then g.t/D xg.t/ for all t 2 .0;T �.

Proof By lifting both flows to the universal cover of M, we may assume that M is
either S2 , D or C . The S2 case is effectively covered by the work of Richard [21].
The D case will be given below, using Lemma 5.1. The C case will then be identical,
except that one replaces Lemma 5.1 by the analogous estimates from [12] based on the
estimate of Rodriguez, Vázquez and Esteban [22], and we omit it.

Let us write g.t/DU.dx2
Cdy2/ and xg.t/D V .dx2

Cdy2/ on the disc D . By scaling
both flows (multiplying each by a large positive constant, and scaling time by the
corresponding factor) we may assume that the curvatures of each flow are bounded
below by �1. By (1-2), we then know that the conformal factors cannot increase very
fast, ie

@U

@t
� 2U;

and e�2tU is monotonically decreasing in t . By (5-2), for all �b D , we know that U

and thus e�2tU are uniformly bounded in L1.�/ as t # 0, and thus by the monotone
convergence theorem, we have convergence of e�2tU and thus U in L1.�/ to some
limit function W 2L1

loc.D/ as t # 0. The same argument may be applied to V to give,
by (5-2), the same limit W . In particular, we have

(5-3)
Z
�

jV �U jdxdy! 0 as t # 0:

We may now apply Lemma 5.1 to the flows g.tC "/ and xg.tC "/ for " 2 .0;T /. This
tells us that for all r0 2 .

1
2
; 1/, R 2 .r1=3

0
; 1/� .r0; 1/, 
 2 .0; 1

2
/ and 0< " < t , we
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have

(5-4)
�Z

Dr0

jV �U jC dxdy
ˇ̌̌
t

� 1
1C


�

�Z
DR

jV �U jC dxdy
ˇ̌̌
"

� 1
1C


D
�
VolExt�"Dr0

� 1
1C
 �

�
VolEx0 DR

� 1
1C


� C.
 /

�
t � "

.� log r0/Œlog.� log r0/� log.� log R/�


� 1
1C


:

By (5-3), when we let " # 0, we obtainZ
Dr0

jV �U jC dxdy
ˇ̌̌
t
�

C.
 / t

.� log r0/Œlog.� log r0/� log.� log R/�

:

We may now take the limit R" 1 and then r0 " 1 to conclude that V �U . By repeating
the same argument with U and V switched, we find that g.t/D xg.t/ as desired.
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