
Geometry & Topology 13 (2009) 277–318 277

Wrinkled fibrations on near-symplectic manifolds

YANKI LEKILI

APPENDIX B BY R İNANÇ BAYKUR

Motivated by the programmes initiated by Taubes and Perutz, we study the geometry
of near-symplectic 4–manifolds, ie, manifolds equipped with a closed 2–form which
is symplectic outside a union of embedded 1–dimensional submanifolds, and broken
Lefschetz fibrations on them; see Auroux, Donaldson and Katzarkov [3] and Gay and
Kirby [8]. We present a set of four moves which allow us to pass from any given
broken fibration to any other which is deformation equivalent to it. Moreover, we
study the change of the near-symplectic geometry under each of these moves. The
arguments rely on the introduction of a more general class of maps, which we call
wrinkled fibrations and which allow us to rely on classical singularity theory. Finally,
we illustrate these constructions by showing how one can merge components of the
zero-set of the near-symplectic form. We also disprove a conjecture of Gay and Kirby
by showing that any achiral broken Lefschetz fibration can be turned into a broken
Lefschetz fibration by applying a sequence of our moves.

57M50; 57R17, 57R45

1 Introduction

1.1 Near-symplectic manifolds

Let X be a smooth, oriented 4–manifold. Then a closed 2–form ! is called near-
symplectic if !2 � 0 and there is a metric g such that ! is self-dual harmonic and
transverse to the 0–section of ƒC . Equivalently, without referring to any metric, one
could define a closed 2–form ! to be near-symplectic if for any point x 2X either
!2

x > 0, or !x D 0, and the intrinsic gradient .r!/x W TxX !ƒ2T �x X has maximal
rank, which is 3.

The zero-set Z of such a 2–form is a 1–dimensional submanifold of X . If X is
compact and bC

2
.X / > 0 then Hodge theory gives a near-symplectic form ! on X .

Clearly, in this case Z is just a collection of disjoint circles. Furthermore, by deforming
! , one can show that on any near-symplectic manifold, one can reduce the number
of circles to 1; this was proved by Perutz [12]. We give a new proof of this result in
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Theorem 6.1 as an application of the techniques developed in this paper. Of course, the
last circle cannot be removed unless the underlying manifold is symplectic.

Interesting topological information about X is captured by the natural decomposition
of the normal bundle of these circles, provided by the near-symplectic form. More
precisely, transversality of ! implies that r!W NZ!ƒCX is an isomorphism, where
NZ is the normal bundle to the zero-set of ! . This enables us to orient the zero-set
Z . Now consider the quadratic form NZ ! R, v ! h�.z/rv!; vi, where z is a
nonvanishing oriented vector field on Z . As dwD 0, this quadratic form is symmetric
and has trace zero. It follows that it has three real eigenvalues everywhere, where two
are positive and one is negative. Then NZ D LC˚L� , where L˙ are the positive
and negative eigen-subbundles respectively. In particular, this allows us to divide the
zero-set into two pieces, the even circles where the line bundle L� is orientable, and the
odd circles where L� is not orientable. This definition is motivated by the following
result of Gompf that the number of even circles is equal to 1�b1CbC

2
modulo 2 [12].

In particular, observe that if there is only one zero circle which is even, the manifold
X cannot be symplectic.

In this paper, we will be interested in local deformations of near-symplectic forms on
a 4–manifold. An important such deformation is provided by the Luttinger–Simpson
model given on D4 � R4 where the birth (or death) of a circle can be observed
explicitly [12]:

!s D 3�.x2
C t2
� s/.dt ^ dxC dy ^ dz/C 6�y.tdt ^ dzCxdx ^ dz/

�2z.dx ^ dyC dt ^ dz/C 2y.dt ^ dyC dz ^ dx/

for � � 1=6.

We will see that this is not the only type of deformation of near-symplectic forms. One
of the goals of this paper is to identify such deformations and interpret them in terms
of the singular fibrations associated to them.

1.2 Wrinkled fibrations

A broken fibration on a closed 4–manifold X is a smooth map to a closed surface with
singular set AtB , where A is a finite set of singularities of Lefschetz type where around
a point in A the fibration is locally modeled in oriented charts by the complex map
.w; z/! w2C z2 , and B is a 1–dimensional submanifold along which the singularity
of the fibration is locally modeled by the real map .t;x;y; z/! .t;x2Cy2� z2/, B

corresponding to t D 0. We remark here that we do not require the broken fibrations to
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be embeddings when restricted to their critical point set. In particular, this means that
the critical value set may include double points.

There have been two different approaches to constructions of broken fibrations on
4–manifolds. The first approach is by Auroux, Donaldson and Katzarkov [3] based
on approximately holomorphic techniques, generalizing the construction of Lefschetz
pencils on symplectic manifolds. The more recent approach is due to Gay and Kirby [8],
where the fibration structure is constructed explicitly in two pieces in the form of open
books, and then Eliashberg’s classification of overtwisted contact structures as well as
Giroux’s theorem of stabilization of open books are invoked to glue these two pieces
together to form an achiral broken fibration. Achiral here refers to the existence of
finitely many Lefschetz type singularities with the opposite orientation on the domain,
namely the singularity is modeled by the complex map .w; z/! xw2C z2 .

There is a correspondence between broken fibrations and near-symplectic manifolds
up to blow-up, in analogy with the correspondence between Lefschetz fibrations and
symplectic manifolds up to blow-up. More precisely, given a broken fibration on a
4–manifold X with the property that there is a class h 2H 2.X / such that h.F / > 0

for every component F of every fibre, it is possible to find a near-symplectic form on
X such that the regular fibres are symplectic and the zero-set of the near-symplectic
form is the same as the 1–dimensional critical point set of the broken fibration. This
is an adaptation due to Auroux, Donaldson and Katzarkov of Gompf’s generalization
of Thurston’s argument used in finding a symplectic form on a Lefschetz fibration.
Conversely, in [3], it is proven that on every 4–manifold with bC

2
.X / > 0 (recall that

this is equivalent to X being near-symplectic), there exists a broken fibration if we
blow up enough. One of the questions of interest that remains to be answered is to
determine how unique this broken fibration is. In particular, we would like to find a
set of moves on broken fibrations relating two different broken fibrations on a given
4–manifold. One of the main themes of this paper is the discussion of a set of moves
which allows one to pass from one broken fibration structure to another.

In this paper, we will consider a slightly more general type of fibration, where we will
allow cuspidal singularities on the critical value set of the fibration. These type of
fibrations occur naturally when one considers deformations of the broken fibrations.
We will also discuss a local modification of a cuspidal singularity (without changing
the diffeomorphism type of the underlying manifold structure) in order to get a broken
fibration. Therefore, one can first deform a broken fibration to obtain a wrinkled
fibration, then apply certain moves to this wrinkled fibration, and finally modify the
wrinkled fibration in a neighborhood of cuspidal singularities to get a genuine broken
fibration. In this way, one obtains a set of moves on broken fibrations on a given
4–manifold.
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Let X be a closed 4–manifold, and † be a 2–dimensional surface. We say that a
map f W X ! † has a cusp singularity at a point p 2 X , if around p , f is locally
modeled in oriented charts by the map .t;x;y; z/! .t;x3 � 3xt C y2 � z2/. This
is what is known as the Whitney tuck mapping; the critical point set is a smooth arc,
fx2 D t;y D 0; z D 0g, whereas the critical value set is a cusp, namely it is given
by C D f.t; s/W 4t3 D s2g. This is the generic model for a family of functions fftg,
which are Morse except for finitely many values of t ; see Arnol 0d [2]. The signs of the
terms y2 and z2 are chosen so that the functions ft have only index 1 or 2 critical
points. More precisely, if f W R3 ! R is a Morse function with only index 1 or 2

critical points, then F W R4! R2 given by .t;x;y; z/! .t; f .x;y; z// is a broken
fibration with critical set in correspondence with the critical points of f . Notice that
the functions ft .x;y; z/D x3 � 3xt C y2 � z2 are Morse except at t D 0, where a
birth of critical points occur.

Definition 1.1 A wrinkled fibration on a closed 4–manifold X is a smooth map f to
a closed surface which is a broken fibration when restricted to XnC , where C is a
finite set such that around each point in C , f has cusp singularities. We say that a
fibration is purely wrinkled if it has no isolated Lefschetz-type singularities.

It might be more appropriate to call these fibrations “broken fibrations with cusps”,
to avoid confusion with the terminology introduced by Eliashberg and Mishachev [7].
The reason for our choice of terminology is that wrinkled fibrations can typically be
obtained from broken Lefschetz fibrations by applying wrinkling moves (see move 4

in Section 3) which eliminates a Lefschetz type singularity and introduces a wrinkled
fibration structure. Conversely, as mentioned above, it is possible to locally modify a
wrinkled fibration by smoothing out the cusp singularity at the expense of introducing
a Lefschetz type singularity and hence get a broken fibration.

Theorem 1.2

(a) Every wrinkled fibration is homotopic to a broken fibration by a homotopy
supported near cusp singularities.

(b) Every broken fibration is homotopic to a purely wrinkled fibration by a homotopy
supported near Lefschetz singularities.

The first part of this paper is concentrated on a set of moves on wrinkled fibrations and
corresponding moves on broken fibrations. All of these moves keep the diffeomorphism
type of the total space unchanged. We remark here that, as will be explained below,
these moves occur as deformations of wrinkled fibrations and not as deformations of
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broken fibrations. To be more precise, by a deformation of wrinkled fibrations we
mean a one-parameter family of maps which is a wrinkled fibration for all but finitely
many values of the parameter. In fact, as we will see, an infinitesimal deformation of a
broken fibration gives a wrinkled fibration whereas the wrinkled fibrations are stable
under infinitesimal deformations. This is indeed the main reason for extending the
definition of the broken fibrations to wrinkled fibrations.

In the second part, using techniques from singularity theory, we prove that our list of
moves is complete in the sense that any generic infinitesimal deformation of a wrinkled
fibration which does not have any Lefschetz type singularity is given by one of the
moves that we exhibited in Section 3. Furthermore, as we will see in Section 3, it is
always possible to deform a wrinkled fibration infinitesimally so that the Lefschetz
type singularities are eliminated.

Theorem 1.3

(a) Any one-parameter family deformation of a purely wrinkled fibration is homo-
topic rel endpoints to one which realizes a sequence of births, merges, flips, their
inverses and isotopies staying within the class of purely wrinkled fibrations.

(b) Given two broken fibrations, suppose that after perturbing them to purely wrin-
kled fibrations, the resulting fibrations are deformation equivalent. Then one can
get from one broken fibration to the other one by a sequence of birth, merging,
flipping and wrinkling moves, their inverses and isotopies staying within the
class of broken fibrations.

As in the case of broken fibrations, one can define a wrinkled pencil on X to be a
wrinkled fibration f W XnP ! †, where P is a finite set and around a point in P ,
the fibration is locally modeled in oriented charts by the complex map .w; z/! w=z .
Note that, after blowing up X at the points P , one can get a wrinkled fibration. It
is possible to construct a natural near-symplectic form that is “adapted” to a given
wrinkled pencil. The key property of this form is that it should restrict to a symplectic
form on the smooth fibres of the given wrinkled fibration. Therefore, we can equip
every wrinkled pencil with a well-defined deformation class of near-symplectic forms.
It is natural thus to study what happens to this class after each move that was described
on the previous paragraph. This will be discussed Section 5 of the paper.

In Section 6, we give a number of applications of our moves on broken fibrations.
Notably, by considering the mirror image of the wrinkling move, we prove that we
can turn an achiral Lefschetz singularity into a wrinkled map and then into a broken
fibration, without losing equatoriality of the round handles (for the topologically
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minded, a description of this move in terms of handlebody decompositions is given
in Appendix B by Baykur). This provides the following simplification of the result of
Gay and Kirby in [8]:

Theorem 1.4 Let X be an arbitrary closed 4–manifold and let F be a closed surface
in X with F �F D 0. Then there exists a broken Lefschetz fibration from X to S2

with embedded singular locus and with F as a fibre. Furthermore, one can arrange so
that the singular set on the base consists of circles parallel to the equator.

We remark that this disproves Conjecture 1:2 of Gay and Kirby in [8] about the essen-
tialness of including achiral Lefschetz singularities for broken fibrations on arbitrary
closed 4–manifolds. See also the work of Baykur [5] and the recent paper by Akbulut
and Karakurt [1].

Finally, here we would like to discuss our main motivation for studying the particular
structure of broken fibrations and their deformations, the wrinkled fibrations.

1.3 Seiberg–Witten invariants and Lagrangian matching invariants

In [6], Donaldson and Smith define an invariant of a symplectic manifold X by counting
holomorphic sections of a relative Hilbert scheme that is constructed from a Lefschetz
fibration on a blow-up of X . More precisely, by Donaldson’s celebrated theorem,
there exists a Lefschetz fibration f W X 0 ! S2 , where X 0 is some blow-up of X .
Then, for any natural number r , Donaldson and Smith give a construction of a relative
Hilbert scheme F W Xr .f /! S2 , where the fibre over a regular value p of f is the
symmetric product †r .f �1.p//. In fact, Xr .f / is a resolution of singularities for
the relative symmetric product, which is the fibration obtained by taking the r –th
symmetric product of each fibre. They then define their standard surface count, which
is some Gromov invariant counting pseudoholomorphic sections of Xr .f /. Usher, in
[15], proves that this invariant is the Gromov invariant of the underlying symplectic
4–manifold X . Finally, we know that this is in turn equal to the Seiberg–Witten
invariant of X by the seminal work of Taubes [14]. Therefore, one obtains a geometric
formulation of the Seiberg–Witten invariant for a symplectic manifold X on a Lefschetz
fibration structure associated to X , which also shows in particular that this invariant is
independent of the Lefschetz fibration structure.

A similar but technically not so straightforward generalization of this method of getting
an invariant from a Lefschetz fibration is described by Perutz [13] for the case of broken
fibrations, thus giving an invariant for all smooth 4–manifolds with bC

2
.X / > 0. These

are called Lagrangian matching invariants. Here we give a quick sketch of the definition
of these invariants.
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Suppose X is a near-symplectic manifold with only one zero circle Z , and f W X!S2

is a broken fibration with one circle of singularity along the equator of S2 . Take out
a thin annulus neighborhood of the equator and write N and S for the closed discs
that contain the north pole and the south pole respectively. Let X N D f �1.N / and
X S D f �1.S/, and suppose the fibre genus of X N is g and the fibre genus of X S is
g�1. Consider the relative Hilbert schemes Hilbr

N .X
N / and Hilbr�1

S .X S /. These are
symplectic manifolds with boundaries Y N

r D†
r
S1.@X

N / and Y S
r�1
D†r�1

S1 .@X
S /,

respectively.

Perutz then constructs a subfibre bundle Q of the fibre product Y N
r �S1 Y S

r ! S1

which constitutes the Lagrangian boundary conditions for the pairs of pseudoholomor-
phic sections of Hilbr

N .X
N / and Hilbr�1

S .X S / in the following sense: One defines
LX ;f to be a Gromov invariant for pairs .uN ;uS / of pseudoholomorphic sections
of Hilbr

N
.X N / and Hilbr�1

S
.X S / such that the boundary values .uN j@N ;uS j@S / lie

in Q.

Now, the big conjecture in this field is of course the conjecture that Lagrangian matching
invariants equal the Seiberg–Witten invariants. This has been verified by Perutz [13]
in several cases, notably in the case of symplectic manifolds as mentioned above,
and when the underlying manifold is of the form S1 �M 3 , for any M which is a
Z–homology–.S1 �S2/ and for connected sums.

An important problem to be explored is that the Lagrangian matching invariant is not
yet known to be an invariant of the given 4–manifold. In other words, it is an invariant
of the near-symplectic manifold together with a given broken fibration structure. Our
next task in this field will be to show that the Lagrangian matching invariant stays an
invariant under the set of moves that we describe in this paper. We believe that our set
of moves will be enough to pass from a given broken fibration structure on a manifold
to any other broken fibration structure on the same manifold under suitable hypotheses
on the homotopy type of the fibration map. We have strong evidence for this since, as
was mentioned above, the set of moves that we discuss in this paper are sufficient to
pass from a given broken fibration to any one-parameter deformation of it. These two
hypotheses would imply that the Lagrangian matching invariant is really an invariant
of the underlying manifold. We believe that these steps will play an important role in
proving the big conjecture mentioned above.

Acknowledgements The author is grateful to his PhD supervisor Denis Auroux for
valuable suggestions and comments. He is also indebted to Tim Perutz for encouraging
and helpful remarks and to the referee for useful comments. Thanks also to Karl
Luttinger for sharing a copy of the unpublished manuscript [10] and to Robion Kirby

Geometry & Topology, Volume 13 (2009)



284 Yankı Lekili

for his interest in this work. This work was partially supported by an NSF grant
(DMS-0600148).

2 A local modification on wrinkled fibrations

Recall from the introduction that a cusp singularity is given locally by the map F W R4!

R2 given by:
.t;x;y; z/! .t;x3

� 3xt Cy2
� z2/

The critical point set is a smooth arc, fx2D t;y D 0; zD 0g, whereas the critical value
set is a cusp, namely it is given by C D f.t; s/W 4t3 D s2g.

The idea is to modify a neighborhood of the singular point of the cusp with an allowed
model for broken fibrations without changing the topology. We will do this by surgering
out a neighborhood of the cuspidal singularity and gluing back in a neighborhood of
an arc together with a Lefschetz type singular point as shown in Figure 1. The issue is
to make sure that the fibration structures match outside the neighborhood.

X

a

c

a

b b

s

t

Figure 1: Local modification

Restricting to a neighborhood of the origin, we get a map F W D4 ! D2 and C

divides the image into two regions, where the fibres above the “interior region” are
punctured tori, whereas the fibres above the “exterior region” are discs, as shown
in Figure 1. Furthermore, looking above the line ft D 1=2g, one sees that as the
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parameter s converges to C from below, s! 1=
p

2, one of the generating loops of
the homology of the torus collapses to a point , and as s converges to C from above,
s!�1=

p
2 the other generator collapses to a point. This is evident from the fact that

f1=2.x;y; z/ D x3 � .3=2/xC y2 � z2 restricted to the preimage of ft D 1=2g is a
Morse function on D3 with 2 critical points of indices 1 and 2 which cancel each
other.

Now consider the D2 –valued broken fibration structure described on the right of
Figure 1. Let us denote this fibration by pW X !D2 . This fibration is cooked up so
that it matches above a neighborhood of the boundary of D2 with the fibre structure
of the map F . On the other hand, by introducing a Lefschetz type singularity, we are
able to have a broken fibration structure, where the vanishing cycles are described on
the right of the Figure 1. In order to perform a local surgery to pass from the map
F to the described broken fibration p , it remains to show that the total space X is
diffeomorphic to D4 . This will be accomplished by giving a handle decomposition of
X , and showing that it is in fact obtained by attaching one 1–handle and one 2–handle
to D4 , in such a way that they can be cancelled.

Let us now describe X explicitly. Denote the standard loops generating homology of
a regular fibre by a and b . As shown in Figure 1, restricting to the line ft D 1=2g,
as s approaches to C from below, a collapses to a point and as s approaches to C

from above, b collapses. (This is to be consistent with the fibre structure of F .) Now
the monodromy around the Lefschetz type singularity must be the Dehn twist along
c D a� b , denoted by �a�b so that �a�b.a/D b , where we oriented a and b so that
a � b D�1. Therefore, restricting to the line s D 0, as t approaches to the singularity
a� b collapses to a point. (Here by c D a� b we really denote an embedded loop c

which is equal to Œa�b� as a homology class.) We remark here that, just as in Lefschetz
fibrations, a diagram indicating the fibre structure and vanishing cycles along relevant
paths is enough to determine a broken (or wrinkled) fibration uniquely on a disc. We
now have an explicit understanding of the various vanishing cycles for X. Next we
proceed to describe the corresponding handle diagram. We first restrict to the preimage
of the region shown in Figure 2. This is clearly diffeomorphic to the total space X .
Now divide this region into 3 parts as shown in Figure 2. The preimage of region 0

is just D2 �D2 D D4 . We claim that the preimage of regions 0 and 1 together is
D4[ 1–handle, and the preimage of all three regions is D4[ 1–handle [ 2–handle
in such a way that the attaching sphere of the 2–handle intersects the belt sphere of the
1–handle transversely at a single point, so that these two handles can be cancelled.

In this picture, it is more convenient to fix the reference fibre above a point which lies
between regions 1 and 2 as shown in the Figure 2. Just for simplicity, we can choose an
identification of this reference fibre with the previous choice using the parallel transport
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X X

a a

c c

s

t

0
1 2

0
1 2

Figure 2: Handle decomposition of the total space

along a simple arc above the Lefschetz singularity so that the vanishing cycles in this
new reference fibre are given as shown. Finally, observe that we can isotope the base
so that the 1–dimensional singular set is straightened to a line.

Next, we are in a position to see the handle decomposition very explicitly. In fact,
the preimage of the regions 0 and 1 can be thought of as .D3 [ 1–handle/ �D1 ,
where the D1 is the s direction. The belt circle of this 3–dimensional 1–handle
corresponds to the vanishing cycle a on a regular fibre above the region 1, to be
precise, fix the regular fibre F above a point p in region 1, say p lies on the s D 0

line. Now .D3 [ 1–handle/ �D1 D D4 [ 1–handle where the belt sphere of this
latter 4–dimensional 1–handle intersects F at a. Now, by construction starting from
F as one approaches to Lefschetz singularity the loop c collapses to a point. It is a
standard fact of Lefschetz fibrations that gluing the preimage of region 2 corresponds
to a 2–dimensional handle attachment with attaching circle being the loop c on F [9].
(In fact, if one considers the local model .z; w/! z2Cw2 , then Re.z2Cw2/ is a
Morse function with one critical point of index 2 at the origin.) Therefore, we conclude
that X DD4 [ 1–handle [ 2–handle with belt sphere of the 1–handle intersects the
attaching circle of the 2–handle transversely at exactly one point, and this intersection
point is precisely the intersection of the loop a and the loop c on F . Finally, applying
the cancellation theorem of handle attachments, we conclude that X DD4 as required.

It is of interest to note that one could as well replace a cusp singularity with a broken
arc singularity and an achiral Lefschetz singularity, where vanishing cycles for the
cusp are given by a and b as before, and the vanishing cycle for the achiral Lefschetz
singularity is given by c D aC b (since one must now have ��1

c .a/ D �b ). The
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difference between a Lefschetz singularity and an achiral Lefschetz singularity with
the same vanishing cycle is in the framing of the corresponding 2–handle attachment.
Namely, a Lefschetz singularity corresponds to �1–framing with respect to the fibre
framing whereas an achiral Lefschetz singularity corresponds to C1–framing. The
cancellation theorem of handle attachments does not see the framings, therefore the
proof is verbatim.

We remark here that the local modification described in this section is not given as
a deformation, in the sense that we have not explained how to give a one-parameter
family of wrinkled fibrations which starts from the fibration depicted on the left side
of Figure 1 and ends at the fibration given on the right side of Figure 1. We will
actually give such a family in the next section, which will in fact give yet another
way of proving the validity of the above move. However, we chose to present the
above proof first, as it is considerably simpler and in fact this enabled the author to
discover more complicated modifications described in Section 3, which come equipped
with deformations. Afterwards, we were able to recover the above modification as a
composition of these deformations.

3 A set of deformations on wrinkled fibrations

In this section, we describe a set of moves on wrinkled fibrations. We first give three
such moves which are deformations of wrinkled fibrations and the corresponding defor-
mations which end up being broken fibrations are obtained by applying the modification
described in Section 2, which as was mentioned there, is indeed a deformation. Note
that this was not proved in the previous section. This will be accomplished after we
describe the last move which enables us to turn a Lefschetz singularity into three cusp
singularities.

Move 1 (Birth) Consider the wrinkling map FsW R�R3!R2 , as defined by Eliash-
berg and Mishachev [7]:

.t;x;y; z/! .t;x3
C 3.t2

� s/xCy2
� z2/

For s < 0, this is a genuine fibre bundle, ie, there is no singularity. At s D 0, the
only singularity is at the origin. This is a degenerate map, which is not an allowed
singularity for a wrinkled fibration. For s > 0, the critical point set of Fs is the circle
fx2C t2 D s;y D z D 0g, whereas the critical value set Cs is a wrinkle shown on the
left of Figure 3. This is clearly a wrinkled map. Therefore, we have a deformation
of wrinkled maps, the only subtle change being at s D 0, where birth of the wrinkle
happens.
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X X

a

c d

b

Figure 3: Creation of a circle singularity along with two point singularities

Now, fix s D 1. Considering the wrinkle as obtained from gluing two cusps together,
we can apply the local modification of Section 2 to obtain a broken fibration on R4

with singular set a circle together with two point singularities as shown on the right
of Figure 3. Note that one has to check that the configuration of the vanishing cycles
matches the model in Section 2. Conveniently, we can check this on the vertical line
t D 0. Then the map becomes .0;x;y; z/! .0;x3 � 3xC y2 � z2/, and this is the
same map that was used in Section 2, therefore the configuration of the vanishing cycles
matches the model in Section 2. Namely, on t D 0, the two vanishing cycles obtained
from approaching to C from below and from above starting from the origin, intersect
transversely at a point.

Thus, given a broken fibration on any 4–manifold, we can restrict the fibration to a D2

on the base where the fibration is regular, and also restrict the fibres to obtain D2�D2 .
Then, apply the move just described to obtain a new fibration, where the singular set is
changed by an addition of a circle and two points. Furthermore, the fibre genus above
the points in the interior of this new singular circle increases by 1.

We remark that this move on broken fibrations was first observed by Perutz in Propo-
sition 1:4 of [13], where he proves that the total space of the closed fibre case of the
fibration on the right of Figure 3 is diffeomorphic to S2 �S2 . Here, we were able to
divide this move into two pieces by allowing cusp singularities, which indicates that
the local move of Section 2 is a more basic move.
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Move 2 (Merging) Let us now describe another move which corresponds to merging
two singular circles to obtain one circle together with two Lefschetz type singularities.
We begin with the local picture described on the left side of Figure 4. The lines which
separate regions on the base indicate the critical value set. The vanishing cycles obtained
from moving towards the upper line and moving towards the lower line are assumed
to intersect transversely at a singular point. The standard model for such a broken
fibration F W R4!R2 is given by the map .t;x;y; z/! .t;x3� 3xCy2� z2/. The
critical value set of this map is given by two horizontal lines, and the configuration of
the vanishing cycles is as described. Now consider the map FsW R�R3!R defined
by:

.t;x;y; z/! .t;x3
C 3.s� t2/xCy2

� z2/

Then for s< 0, Fs is isotopic to F , with critical value set C Df.t;u/W 4.t2�s/3Du2g.
For s < 0, C consists of two simple curves and is isotopic to the left side of Figure 4.
At s D 0, as before, we have a more degenerate map. This is where a subtle change in
the fibration structure occurs. For s > 0, we get a wrinkled map with critical value set,
including two cusp singularities, isotopic to the model depicted in the middle part of
Figure 4. Note that the picture on Figure 4 is drawn so that the maps are equal outside
of a neighborhood of the origin, to ensure that when restricted to D4 , the maps agree
on a neighborhood of the boundary. Finally, we apply the local modification model
from Section 2 to each cuspidal singularity to get a new broken fibration. Therefore,
we obtain a move of broken fibrations, namely whenever one has the configuration
described on the left side of Figure 4, one can surger out a D4 and glue in the right
side of Figure 4 to obtain a new configuration.

We remark here that to apply a merging move, one needs a configuration as in the
left side of Figure 4, in particular it is necessary that the vanishing cycles intersect
transversely at a unique point. On the other hand, to apply an inverse merging move
the following two conditions are necessary. Referring to the right part of Figure 4, one
needs to make sure that, fixing a reference fibre halfway along a path connecting the
Lefschetz singularity and the broken singularity on the left, the vanishing cycles for
the Lefschetz singularity and the broken singularities should intersect transversely at
a point. Exactly the same configuration is required on the right side of the fibration.
However, we would like to point out that there is no compatibility condition required for
the two sides as long as the fibres in the middle region are connected. Namely, to give
an embedding of the fibration depicted on the right side of Figure 4 into a fibration that
has the same base and whose vanishing cycles satisfy the condition described above,
one divides the base into three pieces: a piece on the left that includes the Lefschetz
singularity and the broken singularity, a middle piece which is a smooth fibration, and
a piece on the right which includes the Lefschetz singularity and the broken singularity.
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Figure 4: Merging singular circles

Since the vanishing cycles are as prescribed above, it is easy to construct a fibrewise
embedding of the total spaces of the pieces on the left and on the right. Namely, given
two simple closed curves intersecting transversely at one point on a fibre F , it is always
possible to find a diffeomorphism of F such that those two curves are standardized,
in the sense that they sit in the standard way as part of an embedding of a punctured
torus to F . Finally in order to give an embedding of the total space of the middle
piece, one needs to give a fibrewise embedding of the disc fibration D2 �D2 such
that, if we consider the base D2 as Œ0; 1�2 , the embedding is already prescribed above
f0; 1g � Œ0; 1�. But now, it is easy to extend this to a fibrewise embedding of D2 �D2

by just flowing the fibers above f0g � Œ0; 1� to fibres above f1g � Œ0; 1� since the set of
embeddings of D2 to a fibre F is clearly connected provided that F is connected.

Move 3 (Flipping) This move is originally due to Auroux. The observation was that
for a given near-symplectic manifold .X; !/, if one considers possible broken fibrations
adapted to .X; !/, the rotation number of the image of a given component of the zero-
set of ! is not fixed a priori. If one considers a one-parameter family of deformations
of broken fibrations, one can possibly get a flip through a real cusp. However, here
we discuss this move in an alternative way to the original approach, using the local
modification discussed in Section 2. Consider the map FsW R�R3!R2 given by:

.t;x;y; z/! .t;x4
�x2sCxt Cy2

� z2/
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Then for s < 0, the critical value set consists of a simple curve and Fs is isotopic
to the map described on the left side of Figure 5. At s D 0, we have a higher order
singularity and as before this is where a subtle change in the fibration structure occurs.
For s>0, we get a wrinkled map with critical value set, including two cusp singularities,
isotopic to the model depicted in the middle part of Figure 5. This map still induces an
immersion on the critical point set away from the cusp singularities, however now we
have a double point as shown in Figure 5.

XX

a

b

c

Figure 5: Flipping

One can fix a reference fibre in the interior region (the high-genus region) as in the
middle portion of Figure 5 so that the vanishing cycles for the three paths drawn are the
given loops a, b , c . Indeed, we know from the local model of a cusp singularity that
the vanishing cycles corresponding to each branch of a cusp intersect transversely once.
Therefore, the vanishing cycle for the path going up intersects both the vanishing cycle
for the lower left path and the vanishing cycle for the lower right path transversely at
a point. Furthermore, we know that the two latter vanishing cycles are disjoint since
the critical point set in the total space is embedded, and they cannot be homotopic,
since otherwise the fibres above the bottom region would have a sphere component.
Now, once these intersection properties are understood, it is easy to see that there is
a diffeomorphism of the twice punctured torus that sends any configuration of three
simple closed curves satisfying the above properties to a, b and c .

On the right side of Figure 5, it follows from monodromy considerations (recall that
the monodromy around a Lefschetz singularity is the Dehn twist along the vanishing
cycle) as in Section 2 that the vanishing cycles for Lefschetz type singularities are
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as follows: Going along the line segment that connects the two singularities, as one
approaches the singularity on the left, the cycle aC b vanishes, and as one approaches
the singularity on the right, the cycle c � b vanishes.

Now, we will pass to another kind of deformation which is different in nature from
the ones that are described above. Note that for a general smooth map F W R4!R2 ,
the differential dFpW R4 ! R2 at a critical point p can have rank either 0 or 1.
If the rank is 1, then around p we can find local coordinates such that F is of
the form .t;x;y; z/! .t; f .t;x;y; z// by the inverse function theorem. Similarly,
any perturbation Fs of F around p can be expressed in the form .t;x;y; z/ !

.t; fs.t;x;y; z//. Therefore, the above moves involved the case where the deformation
is focused around a critical point p of F such that dF has rank 1. In the case of a
wrinkled fibration, these are precisely the points lying in the 1–dimensional part of the
critical point set. In fact, any generic deformation around such a critical point is given
by one of the above deformations in some coordinate chart. We will elaborate more on
this point in the next section using techniques from singularity theory. Our next move
will be deforming F around a point p such that dFp vanishes. For our purposes, these
correspond to deforming a wrinkled fibration around a Lefschetz type singularity.

Move 4 (Wrinkling) Around a Lefschetz type singularity, we have oriented charts
where F W R4!R2 is given by .t;x;y; z/! .t2�x2C y2� z2; 2txC 2yz/, or in
complex coordinates uD tCix and vD yCiz , F is given by .u; v/!u2Cv2 . Now
the simplest nontrivial deformation of such a map is given by the map FsW C2!C
defined by

.u; v/! u2
C v2

C s Re u

or in real coordinates:

.t;x;y; z/! .t2
�x2

Cy2
� z2
C st; 2txC 2yz/

The stability of this map follows from a standard result in singularity theory; see
Morin [11]. Therefore, the family Fs , for s2 Œ0; 1�, indeed gives us a family of wrinkled
fibrations. The critical points of Fs are the solutions of x2Ct2C.st/=2D 0;yD zD 0.
This circle can be parametrized by t D �.s=4/.1C cos �/, x D .s=4/ sin � , and the
critical value set is given by f.�.s2=8/.1Ccos �/.2�cos �/;�.s2=8/.1Ccos �/ sin �/ W
� 2 Œ0; 2��g. It is easily checked that this equation defines a curve with 3 cusps. F0 is
the standard map around a Lefschetz type singularity, and Fs for s > 0 is a wrinkled
fibration with 3 wrinkles as shown in Figure 6. We will refer to the critical value set of
this map as triple cuspoid.

The vanishing cycles are a, b and d D bC c , where a,b and d are depicted on the
right side of Figure 6. The curves a, b and c , which also appear in the middle picture
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X

a
b

d

Figure 6: Wrinkling

of Figure 5, are taken to be the standard set of generators for the doubly punctured torus.
As shown in Figure 6, we can in fact arrange so that d passes through the intersection
point of a and b and intersects a and b transversely at that point.

The importance of this configuration is that all three cycles intersect at a point trans-
versely and there is no path connecting the two boundary components of the doubly
punctured torus that does not intersect these three cycles. More precisely, given a
configuration of 3 simple closed curves on a doubly punctured torus with this property,
there is a diffeomorphism of the doubly punctured torus which brings the set of curves
to the curves a, b and d as in Figure 6 (d is a simple closed curve that is homologous
to bC c and passes through the intersection point of a and b ).

A way to see that the vanishing cycles are as claimed is by considering the fibre above a
point w as a double covering of C branched along 2 or 4 points depending on whether
w lies outside of the triple cuspoid or in the interior region bounded by the triple cuspoid.
Specifically, the fibre above w is given by v2 Dw�u2� s Re u, and projecting to the
u component gives a double cover of C branched along fu 2 CWu2C s Re uD wg.
Let w D w1C iw2 , then in real coordinates one can express the branch locus as:

t2
�x2

C st D w1

2tx D w2

For the rest of the argument, assume for simplicity that sD 2. Take a regular value lying
in the interior region of the critical values of Fs , such as w D .w1; w2/D .�1=2; 0/.
Connect this to the exterior by the arc of points .�k=2; 0/, k 2 Œ1; 3�. One can calculate
that the branch points are given by either t D 0, and x D ˙

p
k=2, or x D 0, and
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t D �1˙
p

4� 2k=2. Note that, when k < 2 , we have four branch points (fibre
is double punctured torus) , and when k > 2 we have two (fibre is cylinder). The
change is the first two branch points corresponding to t D 0 more or less stay the same,
whereas the branch points corresponding to x D 0 come together along a segment and
disappear when k > 2.

a
b

d

a b

d

projection to

u–component

Figure 7: The fibre as a double branched cover

To get the other vanishing cycles one has to vary w in other directions. The second one
can be obtained by w1 D�1=2 and w2 D 2k where k goes from 0 to 1 and the third
one can be obtained by w1 D�1=2 and w2 D 2k where k goes from 0 to �1. One
can then see that depending on k we get 4 branch points if we are in the interior region
of the critical values or we have 2 solutions if we are in the exterior. Corresponding
to each of the two variations as above, there are two points in the branch locus which
come together whereas the other two stay more or less the same. More precisely, one
can verify that corresponding to each direction, the four branch locus points collapse
either along a, b or d as described in Figure 7.

The preimages of these paths by the branched covering map are precisely the vanishing
cycles which were also denoted by a, b and d on the doubly punctured torus (Figure 7).
Hence one concludes that the three vanishing cycles intersect transversely at a point.
Moreover, it is easy to see by explicit calculation as above that as one approaches a
cuspidal point for the fibration Fs , in the branched covering picture three of the four
branch points come together. For example, if the vanishing cycles a and b collapse as
one approaches a cusp singularity of Fs , then the end points of the paths a and b come
together in the base of the branched cover picture. Reversing our viewpoint, as one
crosses a cusp singularity from the low-genus side to the high-genus side the topology
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of the fibres of Fs is modified by a surgery in a neighborhood of a point in the fibre,
which is the preimage of one of the two branch points of the double branched covering
map. More precisely, the surgery that we mean is removing a tubular disc neighborhood
of a point and gluing back in a punctured torus. We will use this important observation
in the next paragraph.

Deformation of a wrinkled fibration to a broken fibration Now, we are ready
to prove that the local modification of Section 2 can be obtained by a combination
of merging, flipping and wrinkling deformations. Therefore, as promised the local
modification given in Section 2 is also a deformation of wrinkled fibrations. The
outcome of this paragraph is the statement that any wrinkled fibration can be deformed
to obtain a genuine broken fibration.

X

Figure 8: Local deformation

Following Figure 8, first we deform the Lefschetz singularity to a triple wrinkle by
applying the wrinkling deformation. Now the key observation here is that we can
arrange so that the vanishing cycles corresponding to the bottom cusp of the triple
cuspoid do not interfere with the vanishing cycle corresponding to the arc we started
with. We will explain this in detail below. Therefore, we can isotope the fibration to
the third picture in Figure 8. Next, we will verify that one can perform a merging move
along the dotted line depicted in the third picture in Figure 8. For this one just needs to
verify that the relevant vanishing cycles are in the correct configuration so as to match
with the starting point of the local model for the merging move. This will allow us to
pass to the fourth picture. Finally, we perform two flipping moves to get to the final
result that we wanted.

Let us now describe the missing pieces of the proof in more detail. First, let’s see
why one can isotope the second fibration to the third fibration in Figure 8. For this,
we will need to identify various vanishing cycles for the second fibration and observe
indeed that the vanishing cycles corresponding to the bottom cusp do not interfere
with the vanishing cycle corresponding to the arc. For the fibration that we start with,
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X

a b b ˛

ˇ

b

a bq

p

Figure 9: Reference fibres

fix a reference fibre at a point p halfway between the Lefschetz singularity and the
singular arc. Recall that the fibre is a punctured torus, and without loss of generality
we can assume that the vanishing cycle for the Lefschetz singularity is the a curve and
moving towards the arc singularity the b curve vanishes, where a and b are drawn
on the left side of in Figure 9. Now, let’s apply the wrinkling move to the Lefschetz
singularity. Consider a line segment from p to a central point q of the triple wrinkle
passing through a cusp point (drawn as a dotted line on the right side of Figure 9). As
described in the previous section, starting from p if we move along this line segment
the fibre above p undergoes a surgery around a neighborhood of a point on the fibre
and the genus increases by 1. Now since the wrinkling move only affects a tubular
neighborhood of the curve a, after the modification of the Lefschetz singularity by
wrinkling move we can choose a reference fibre that is based at the point q which
looks like the one drawn in the middle of Figure 9. In particular, the part of the fibre
above p outside of the tubular neighborhood of a is canonically identified to the part
of the fibre above q outside the doubly punctured torus that appeared after surgery.
More importantly, this latter surgery occurs around a neighborhood of a point which
can be isotoped (if necessary) to be disjoint from the b curve. Hence one can parallel
transport the b curve from the fibre above p to the fibre above q , since the place where
the surgery occurs is disjoint form the curve b . In particular, the image of b in the fibre
above q is disjoint from the vanishing cycles that correspond to the cusp singularity,
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which are two simple closed curves on the doubly punctured torus which intersect
transversely, we denote them by ˛ and ˇ . Therefore, by applying a diffeomorphism of
the doubly punctured torus if necessary the reference fibre above q can be chosen as
shown on the right side of Figure 9. Now, it is clear that one can isotope the second
fibration to the third fibration in Figure 8, since the vanishing cycle b is disjoint from
˛ and ˇ .

Next, to pass from the third fibration to the fourth fibration in Figure 8, we use a
merging move. In order to do that, we need to understand the vanishing cycles above
the dotted line segment in the third picture in Figure 8. Choose a reference fibre above
a point in the middle of the dotted line segment. As before, we can standardize it so
that it looks like the right side of Figure 9. Now, as one goes down the curve b vanishes
and as one goes up the vanishing cycle 
 has the properties that it lies in the doubly
punctured torus, intersects ˛ and ˇ at their intersection point and any path connecting
the boundary circles of the doubly punctured torus has to intersect the union of ˛ , ˇ
and 
 . Therefore, comparing Figure 9 with Figure 6, b has to intersect 
 once. Hence
we can perform a merging move.

Finally, we apply two flipping moves to the fourth fibration in Figure 8 to pass to the
fifth fibration. These are also allowed, since the configuration of ˛ , 
 , b and the
configuration of ˇ , 
 , b match the configuration of a, b , c in Figure 5 of the flipping
move. This completes the proof of the fact that the fibration on the left of Figure 8 is a
deformation of the fibration on the right.

4 Generic deformations of wrinkled fibrations and .1; 1/–
stability

In this section, we prove that the set of moves listed in the Section 3 are sufficient to
produce any deformation of wrinkled fibrations. More precisely, we prove the following
theorem:

Theorem 4.1 Let X be a compact 4–manifold, and let FsW X !† be a deformation
of wrinkled fibrations. Then it is possible to deform F0 to F1 by applying to F0 a
sequence of the four moves described in Section 3 and isotopies staying within the class
of wrinkled fibrations.

Proof First, observe that we can get rid of the Lefschetz type singularities of F0 and
F1 using the wrinkling move. So we can assume that F0 and F1 have no Lefschetz
type singularities. Also, since Lefschetz type singularities are unstable under small
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deformations, we can assume that the deformation does not create any new Lefschetz
singularity. More precisely, we perturb the deformation by keeping the end points
fixed so that we avoid any creation of critical points where dFs vanishes. This is
possible since purely wrinkled fibrations are stable under small perturbation whereas
the existence of points where dFs vanishes is not generic. Therefore, we have reduced
to the case where Fs is a wrinkled fibration except for finitely many values of s such that
Fs has no Lefschetz singularity for all s . So, we can assume that around a critical point
p of Fs0

for any s0 2 Œ0; 1�, we have coordinate charts so that for s 2 Œs0� �; s0C ��,
FsW R4! R2 is given by .t;x;y; z/! .t; fs.t;x;y; z// and fs0

.0/D dfs0
.0/D 0.

We will next show that generically fs is given by one of the 3 models described in
Section 3 corresponding to the moves birth, merging and flipping. For this, we will
introduce the notion of .1; 1/–stable unfoldings following Wassermann [16] and give a
classification of such maps using the machinery developed in [16], which in turn is
based on the celebrated classification of unfoldings by Thom.

Definition 4.2 Let f W R5!R and gW R5!R be map germs with f .0/Dg.0/D 0.
With f we associate a germ F W R5!R3 , defined by

F.s; t;x;y; z/D .s; t; f .s; t;x;y; z//:

Similarly we associate a germ GW R5 ! R3 with g , given by G.s; t;x;y; z/ D

.s; t;g.s; t;x;y; z//. We say that f and g are .1; 1/–equivalent if there are germs at
0, ˆ 2 Diff.R5/;ƒ 2 Diff.R3/ and  2 Diff.R2/, and � 2 Diff.R/ fixing the origin
such that the following diagram commutes:

R5
F //

ˆ
��

R3
p //

ƒ
��

R2
q //

 

��

R

�

��
R5

G // R3
p // R2

q // R

where pW R3 ! R2 is the projection onto the first factor and qW R2 ! R is the
projection onto the first factor.

Note that if a one-parameter family deformation Fs of wrinkled fibrations is rep-
resented by .t;x;y; z/ ! .t; f .s; t;x;y; z// in some coordinate charts and g is
.1; 1/–equivalent to f , then we can find coordinate charts such that the deformation
is represented by .t;x;y; z/ ! .t;g.s; t;x;y; z// in these new coordinate charts.
Therefore, in order to complete the proof of Theorem 4.1, we need a classification
theorem of generic functions up to .1; 1/–equivalence, which we state after making
precise what generic means.
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Definition 4.3 Let E.Rn;Rp/ be the set of germs at 0 of smooth mappings from
Rn!Rp . Let E.s; t;x;y; z/D E.R5;R/; E.s; t/D E.R2;R/; E.s/D E.R;R/ such
that the labels reflect the parameters that we are using.

Let f W R5! R with f .0/D 0 and let F W R5! R3 be given by F.s; t;x;y; z/D

.s; t; f .s; t;x;y; z//. We say that f is infinitesimally .1; 1/–stable if

E.s; t;x;y; z/D
D@f
@x
;
@f

@y
;
@f

@z

E
E.s; t;x;y; z/C

D@f
@t

E
E.s; t/

C

D@f
@s

E
E.s/CF�E.R3;R/:

One may interpret this condition geometrically as saying roughly that the “tangent
space” at f to the .1; 1/–equivalence class of f is maximal, ie is equal to the “tangent
space” to the unique maximal ideal in E.R5;R/ consisting of the set of germs f such
that f .0/D 0.

We remark here that by Theorem 3:15 in [16] any perturbation of a .1; 1/–stable germ
in weak C1–topology can be represented by a .1; 1/–stable germ. Therefore, in this
sense, a generic deformation will be .1; 1/–stable.

Theorem 4.4 Let f W R5 ! R be a .1; 1/–stable germ with f .0/ D 0. Then f is
.1; 1/–equivalent to one of the following functions as germs:

h0.s; t;x;y; z/D˙x2
˙y2

˙ z2 Morse singularity

h1.s; t;x;y; z/D x3
C tx˙y2

˙ z2 Cusp singularity

h2.s; t;x;y; z/D x3
C t2xC sx˙y2

˙ z2 Birth move

h3.s; t;x;y; z/D x3
� t2xC sx˙y2

˙ z2 Merging move

h4.s; t;x;y; z/D x4
Cx2sCxt ˙y2

˙ z2 Flipping move

The proof of Theorem 4.4 is given in Appendix A. This completes the proof of
Theorem 4.1 where the signs in the statement of Theorem 4.4 are determined by
imposing the condition that the maps become wrinkled fibrations.

5 The corresponding deformations on near-symplectic mani-
folds

Theorem 5.1 Let X be a compact 4–manifold, and let f W XnP !† be a wrinkled
pencil. Let Z denote the 1–dimensional part of the critical value set of f . Suppose that
there exists a cohomology class h 2H 2.X / such that h.F / > 0 for every component
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F of every fibre of f , then there exist a near-symplectic form ! on X , with zero set
Z and such that ! restricts to a symplectic form on the smooth fibres of the fibration.
Moreover, ! determines a deformation class of near-symplectic forms canonically
associated to f .

Note that if every component of every fibre of f contains a point in P , then the
cohomological assumption holds automatically. We will not give a full proof of this
theorem as the proof in [3] applies here almost verbatim. The only modification required
is in part 1 of the proof given in [3], where one constructs a near-symplectic form
positive on the fibres which is defined only in a neighborhood of the critical point
set. For the wrinkled fibrations, we introduce a new type of singularity on the critical
value set, namely the cusp singularity. Therefore one needs to say a word about how to
construct a near-symplectic form positive on the fibres for the local model of the cusp
singularity. For that, recall the local model for the cusp singularity. To wit, we have
oriented charts where the wrinkled fibration is given by:

f W .t;x;y; z/! .t;x3
� 3xt Cy2

� z2/

Now, consider the 2–form ! D dt ^ dft C�.dt ^ dft /, where ft .x;y; z/ D x3 �

3xtCy2�z2 are Morse except at t D 0. This form is self-dual by construction. Since
ft is Morse except at t D 0, this form is transverse to the 0–section of ƒC . The
only missing property for ! to be near-symplectic is that it be closed. In fact, in this
specific example of ft that we are considering ! is not closed. The reason that we
are considering this specific ! is because it is positive on the fibres by construction.
Therefore, we want to modify ! by adding some terms so that it is closed and at the
same time preserve the property that it is positive on the fibres. In this section, this will
be the general scheme for finding explicit near-symplectic forms on a given fibration.
One such modification is as follows:

z! D dt ^ dft C�.dt ^ dft /�y.3dt ^ dzC 6xdz ^ dx/

However, in order to control the positivity we need to ensure that the extra terms we
added are small when evaluated on a basis of a fibre. Therefore, we multiply that
term with an � > 0, and in order to have a closed form we need to also multiply
the dx ^ dt C dy ^ dz component of dt ^ dft C �.dt ^ dft / also by � . In what
follows, we will do this modification several times, therefore we introduce a scaling
map R�W �

2
C!�2

C given by:

R�.dt ^ dxC dy ^ dz/D �.dt ^ dxC dy ^ dz/

R�.dt ^ dyC dz ^ dx/D .dt ^ dyC dz ^ dx/

R�.dt ^ dzC dx ^ dy/D .dt ^ dzC dx ^ dy/
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So finally we have our near-symplectic form given by:

!� DR�.dt ^ dft C�.dt ^ dft //� �y.3dt ^ dzC 6xdz ^ dx/

D 3�.x2
� t/.dt ^ dxC dy ^ dz/

C2ydt ^ dyC .2y � 6�xy/dz ^ dx

�.2zC 3�y/dt ^ dz� 2zdx ^ dy

Now, choose � � 1=6. Then one can check easily that !� is a near-symplectic form on
D4 and its restriction to smooth fibres of f are symplectic. Thus, we can use !� for
the local construction in the proof of Theorem 5.1.

Theorem 5.1 tells us that there is a natural deformation class of near-symplectic forms
on each of the local models of wrinkled fibrations. In what follows, we will give explicit
models of near-symplectic forms for each of the local model of wrinkled fibrations
described in the previous sections. Furthermore, we will provide one-parameter families
for the deformations corresponding to the 4 moves given in Section 3. These will be
near-symplectic cobordisms in the sense of the following definition given by Perutz [12].

Definition 5.2 A one-parameter family f!sgs2Œa;b� of closed 2–forms on X is called
a near-symplectic cobordism if, for all .x; s/ 2X � Œa; b�, either .!s ^!s/.x/ > 0 or,
!s.x/D 0 and .r!/.x; s/ has rank 3.

The strategy will be the same as the construction of the local model around a cusp
singularity. We first exhibit a 2–form positive on the fibres which is not necessarily
closed. Then we modify it by adding small terms. We will mostly restrict the domain of
the wrinkled fibration to D4 to ensure positivity. Since every deformation is local and
the critical value set lies in D4 , this is not different from the previous considerations.

Deformation 1 (Birth) The deformation is given by FsW D
4!R2 :

.t;x;y; z/! .t;x3
C 3.t2

� s/xCy2
� z2/

Let fs D x3C 3.t2� s/Cy2� z2 . Consider the deformation:

(1) !s DR�.dt ^ dfsC�.dt ^ dfs//C 6�y.tdt ^ dzCxdx ^ dz/

This form is closed and if we choose ��1=6, it is near-symplectic on D4 . Furthermore,
an easy calculation shows that !s is symplectic on smooth fibres of Fs . Now, here we
remark that !s is in fact precisely the Luttinger–Simpson model of birth of a circle
singularity which was defined in the introduction to this paper. Therefore, the maps Fs

gives a family of wrinkled fibrations adapted to the model of Luttinger–Simpson of
near-symplectic cobordism !s .
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Deformation 2 (Merging) The deformation is given by FsW D
4!R2 :

.t;x;y; z/! .t;x3
C 3.s� t2/xCy2

� z2/

Let fs D x3C 3.s� t2/Cy2� z2 . Consider the deformation:

(2) !s DR�.dt ^ dfsC�.dt ^ dfs//� 6�y.tdt ^ dzCxdz ^ dx/

As before, this form is closed and for � � 1=6, it is near-symplectic on D4 . This is
a variation of the birth model, the zero-set undergoes a surgery by addition of a one
handle. Again, this is a near-symplectic cobordism, and the family Fs is adapted to
!s , ie, the restriction of !s to smooth fibres of Fs is positive.

Deformation 3 (Flipping) We again follow the same strategy as above. However,
in this case we do not need to restrict to D4 . Namely, consider the deformation for
flipping move given by FsW R�R3!R2 :

.t;x;y; z/! .t;x4
�x2sCxt Cy2

� z2/

Now, let fs D x4�x2sCxt Cy2� z2 . Then we calculate:

dt ^ dfsC�.dt ^ dfs/D .4x3
� 2xsC t/.dt ^ dxC dy ^ dz/

C2y.dt ^ dyC dz ^ dx/

�2z.dt ^ dzC dx ^ dy/

This form is positive when restricted to the smooth fibres of Fs by design. However,
this form is not closed. Therefore, to make it closed we modify it naively as follows.

!s D .4x3
� 2xsC t/.dt ^ dxC dy ^ dz/

C.2y � 2z/dt ^ dyC .12x2
� 2sC 2/ydz ^ dx(3)

�.2zCy/dt ^ dz� .12x2
� 2sC 1/2zdx ^ dy

Now !s is closed and in fact an easy calculation shows that for s � 1=3, !s is still
positive when restricted to the smooth fibres of Fs . Furthermore, the zero locus of
!s is exactly the critical point set of Fs . Therefore, we conclude that !s in fact
belongs to the canonical class of near-symplectic forms provided by Theorem 5.1 for
the fibration Fs . Furthermore, the near-symplectic cobordism !s for s 2 Œ�1; 1=3� is
through near-symplectic forms, that is, for each s 2 Œ�1; 1=3�, !s is near-symplectic
and adapted to Fs in the sense of Theorem 5.1. Hence, we conclude that the flipping
move does not alter the near-symplectic geometry.
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Deformation 4 (Wrinkling) Recall the wrinkling move given by FsW R4!R2 :

.t;x;y; z/! .t2
C st �x2

Cy2
� z2; 2txC 2yz/

Let fs D t2C st �x2Cy2� z2 and gD 2txC 2yz . Then a natural candidate for an
adapted near-symplectic form for Fs is given by dfs ^dgC�.dfs ^dg/ However, as
before,

�.dfs ^ dg/D ..2t C s/2t C 4x2/dy ^ dzC .4y2
C 4z2/dt ^ dx

C..2t C s/2z� 4xy/dz ^ dxC .4xy � 4tz/dt ^ dy

C..2t C s/2yC 4xz/dx ^ dy � .4xzC 4ty/dt ^ dz

is not closed. Therefore we modify it to the following form:

�s D ..2t C s/2t C 4x2/dy ^ dzC .4y2
C 4z2/dt ^ dx

C2..2t C s/2z� 4xy/dz ^ dxC 2.4xy � 4tz� sz/dt ^ dy

It is an easy calculation to check that �s is closed and positive when restricted to
the fibres of Fs . Now, in order to get a near-symplectic form, we restrict to D4 , so
FsW D

4 ! D2 , and to �s we add a large multiple of the pullback of the standard
symplectic form on D2 by Fs . Thus,

(4) !s D k.dfs ^ dg/C �s

for k large enough is an adapted near-symplectic form, that is, it vanishes exactly at
the critical value set of Fs and restricts positively to smooth fibres of Fs . Observe that,
here also we can see a birth of a zero-circle happens as s goes through negative values
to positive values. Therefore, it is possible that this form is deformation equivalent
through near-symplectic forms to Luttinger–Simpson model.

6 Applications

Merging of zero-sets

Here we reprove Theorem 1.4 in [12] using moves on broken fibrations.

Theorem 6.1 Given a connected near-symplectic manifold .X; !0/, with !0 having
a zero-set with n components, where n� 1, one can find a near-symplectic cobordism
!Œ0;1� such that !1 has k components for any given k � 1. Furthermore, this near-
symplectic cobordism is equipped with an adapted wrinkled pencil.
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Our proof will be obtained by applying moves on a broken pencil adapted to the given
near-symplectic manifold. However, one can ignore the base points of the pencil
since all the modifications will take place away from them. In this way, we obtain a
quicker proof as well as our deformation includes a deformation of wrinkled fibrations
associated to it.

Proof Choose an adapted broken pencil for .X; !0/ which exists by the main construc-
tion in [3]. The proof is divided into two parts according to increasing or decreasing
the number of components of the zero-set.

First, let’s show that we can add a new component. Restrict the given pencil to a smooth
D2 fibration over D2 , which is isolated from the singularities of the broken pencil and
apply the birth move. Deformation 1 above, tells us that this gives us a near-symplectic
cobordism !Œ0;1� , where !1 has one more component in its zero-set.

Second, let’s show that if n> 1, we can find a near-symplectic cobordism where the
number of components decreases by 1. This part will be longer, since we can’t directly
apply the merging move as the configuration needed for the merging move is not always
possible to achieve. However, we will apply an alternative combination of moves to
produce a merging of zero-components in the total space. First, choose two distinct
components of the zero-set. Now, connect these components by a path ˛W Œ0; 1�!X

such that the following properties are satisfied.

� ˛�1.Z/D f0; 1g where Z is the zero set of !0 .

� ˛0.0/; ˛0.1/2LC , where LC is the positive eigen-subbundle of NZ as defined
in the introduction.

� ˛ is transversal to the fibres of the broken pencil.

Clearly, such paths are in abundance. Indeed, locally near the end points it’s easy to
build the path using the local models; and everywhere else, being transverse to the
fibres is generic. Restrict the pencil to a neighborhood N D U [V [W of ˛ , where
U and W are preimages of a small neighborhood of the image of ˛.0/ and ˛.1/,
and V is a tubular neighborhood ˛ . Then we have a picture as depicted on the left
of Figure 10, where the fibres depicted lie in U and W . The preimage of the middle
region is V , at each fibre this cuts out a disc. Now, we can apply two flipping moves
to both sides, and obtain a fibration as depicted in the middle part of Figure 10.

Notice that these flipping moves do not alter the deformation class of the near-symplectic
form and hence the isotopy class of the zero-set is unchanged after these moves, only
the broken pencil structure has been changed. Finally, given such a configuration, we
can apply an inverse merging move to the fibration (See the remark at the end of the
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XX XXX X

Im˛ Im˛

Figure 10: Merging of zero-circles along the path ˛

description of the merging move in Section 3). In the total space this corresponds to
merging of the zero-sets and the deformation of the near-symplectic form is given in
the form of a near-symplectic cobordism as in Deformation 2, given by the formula 2,
except s must be replaced by �s , as we apply an inverse merging move.

Broken fibrations with connected fibres

Another application of the techniques discussed in this paper is due to Baykur and also
appears in [5]. Here we reconstruct that argument for the sake of completeness.

Theorem 6.2 Given a connected near-symplectic manifold .X; !/, one can always
find a broken pencil f W X ! S2 , adapted to ! , the fibres of which are connected.

Therefore, in order to define Perutz’s Lagrangian matching invariant one can always
start with a broken fibration with connected fibres. This indeed simplifies some of
discussions in [13] and allows us to define Lagrangian matching invariant for a slightly
larger number of Spinc structures.

Proof For simplicity, we start with the case where the zero-set of ! consists of a
single component. Now, observe that, by perturbing ! away from its zero-set, and
using the main result in [3], we can ensure that there exists an adapted broken pencil for
the perturbed near-symplectic form. Since the perturbation can be taken to be arbitrarily
small, the latter broken pencil will be adapted to ! as well. Without loss of generality
we can assume that there are no base points, otherwise we blow-up first, apply the
argument below and blow-down in the end.
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Either the fibres are connected or suppose the fibres above the northern hemisphere
have genera g , and the fibres above the southern hemisphere have genera g1 , g2 such
that g1Cg2D g . Since X is connected, this is the only possibility as the fibres above
the “high-genus side” have to be connected. Furthermore, we can assume that there are
no Lefschetz-type singularities in the “low-genus side” since they can be isotoped to the
“high-genus side”. This is simply because starting from a regular fibre in the southern
hemisphere adjoining a Lefschetz singularity means adding a 2–handle, and adjoining
a broken singularity means adding a 1–handle. But the order of adding these handles
can be reversed by an isotopy, therefore one can first add the 1–handle corresponding
to the broken singularity, then add the 2–handles corresponding to the Lefschetz-type
singularities. Therefore, we can assume that the fibration is trivial above the southern
hemisphere. So, the preimage of a neighborhood of the southern hemisphere is given
as in Figure 11.

X X X X X X X X

g1Cg2

g

g1Cg2

gC1 g

gC1

g

Figure 11: Making the fibres connected

Now, we apply two flipping moves to pass to the middle picture in Figure 11. Finally,
to obtain the final fibration depicted on the right, we perform an isotopy interchanging
the two “legs” of the flips in the middle. This is allowed, since if we consider an arc
cutting these “legs” transversely as shown in the middle picture in Figure 11 as a dotted
line, the topology of the fibre changes by first vanishing of a separating cycle (that is, a
2–handle attachment) and then attaching a 1–handle. Again, the order of attachment
does not matter, hence by an isotopy one can obtain a broken fibration where the fibres
are connected.

When the zero locus of ! consists of more than one circle, these various circles live in
disjoint parts of the fibers above the equator of S2 . We can again push the Lefschetz
fibers to the high genus side (northern hemisphere) and ensure that the fibration is trivial
above the southern hemisphere. Since the modification explained above is local in the
fibre (it only affects a neighborhood of the vanishing cycle for the broken singularity), it
can be performed simultaneously on each of the circles. Pictorially this again amounts
to the transition shown in Figure 11, but with several circles “stacked” on top of each
other in disjoint parts of the fiber.
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Removing achiral Lefschetz singularities

In this paragraph, we prove that any achiral Lefschetz singularity can be replaced with
a circle of broken singularities and three Lefschetz singularities. Recall that an achiral
Lefschetz singularity is modeled in orientation preserving charts by the complex map
.w; z/! xw2C z2 .

Now, given an achiral Lefschetz singularity we can consider the same deformation that
was used in the wrinkling move in Section 3. Namely, let FsW C2!C given by:

.w; z/! xw2
C z2

C s Rew

The map Fs is identical to that considered in Section 3 up to the orientation-reversing
diffeomorphism .w; z/! . xw; z/. Thus its critical values and vanishing cycles are the
same as in Section 3 up to a reversal of the orientation of the fibre. Namely, when s> 0,
we observe a birth of a circle of singularities and we get a wrinkled fibration with 3

cusps as on the right side of Figure 6 (except the configuration of the vanishing cycles
is reversed). Next, apply the local modification discussed in Section 2 to replace each
of the three cusps in the base by a smooth arc and a Lefschetz singularity. Thus, we
have replaced a neighborhood of an achiral singularity with a genuine broken fibration
with a new circle of broken singularities together with three Lefschetz singularities.

We remark that the new singular circle obtained here is an even circle, whereas the new
singular circle obtained in the original wrinkling move is an odd circle. (The notions
of even and odd circles were defined in the introduction.) The fact that the original
wrinkling move yields an odd circle follows from the fact that on a near-symplectic
manifold the number of even circles is equal to 1�b1CbC

2
modulo 2, as was mentioned

in the introduction. A more direct way to see this is as follows: After modifying the
cusps as in Section 2, we obtain a singular circle of broken singularities and three
Lefschetz singularities. Take a small disc including the three Lefschetz singularities but
not intersecting the singular circle. Fix a reference fibre above a point on the boundary
of this disc such that the curve a vanishes as one approaches the broken singularity. In
Figure 7, after modifying the cusps, the reference fibre we are fixing is on the lower
left side of the picture. The monodromy around the boundary of this disc is given
by the composition of three right handed Dehn twists corresponding to the Lefschetz
singularities. Again, from Figure 7 and the calculation of vanishing cycles in Section
2, one can conclude that this monodromy is given by �D �aCd ı �b�d ı �a�b . From
this, we see that �.a/D�a, which shows that the circle is an odd circle. Now, in the
above perturbation for the achiral Lefschetz singularity case, all the configuration is
the same except, the base picture in Figure 7 is reflected so that the counter-clockwise
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ordering of a; b; d is changed to a; d; b . Then, one calculates the monodromy to be

�D �aCb ı �bCd ı �a�d

which gives �.a/D a. Hence the singular circle obtained is an even circle.

Corollary 6.3 Let X be an arbitrary closed 4–manifold and let F be a closed surface
in X with F �F D 0. Then there exists a broken Lefschetz fibration from X to S2

with embedded singular locus, and having F as a fibre. Furthermore, one can arrange
so that the singular set on the base consists of circles parallel to the equator with the
genera of the fibres in increasing order from one pole to the other.

Proof The existence follows from Gay and Kirby’s theorem [8], and the above
modification of achiral Lefschetz singularities. Let’s prove that this can be done in
a certain way so that the singular set on the base consists of circles parallel to the
equator. First, note that Gay and Kirby’s proof places the round singularities on the
tropics of Cancer and Capricorn and the “highest-genus region” is the annular region
between the tropics. Now move any Lefschetz or achiral Lefschetz singularities in
the southern hemisphere towards the equatorial region (moving across circles towards
the higher genus region as in Theorem 6.2). Then in the southern hemisphere we are
left with only a bunch of parallel circles on the tropic of Capricorn; the corresponding
round 1–handles all get attached along disjoint braids (ie the circle attachments can be
stacked on top of each other or commuted). This is what we need to be able to apply
the move on Figure 11 (ie, on all the circles simultaneously, placing them on top of
each other and in different parts of the fibers: first two flipping moves, then an isotopy
exactly as in the argument in Theorem 6.2. Consequently, we still have circles on the
tropic of Capricorn, but oriented in the opposite way (genus increases towards south
pole), and some Lefschetz fibers near the south pole (created by the flips in Figure 11)
and the previously given Lefschetz and anti-Lefschetz fibers near the equator. The
latter can now be moved towards the north pole by crossing the circles at tropic of
Capricorn. Therefore, we can assume that the singular circles are equatorial with all
the circles oriented the same way and the “highest-genus region” is over the south
pole. Now, we transform one of the achiral singularities to a circle singularity and
three Lefschetz singularities. Next, push all the remaining Lefschetz singularities and
the achiral singularities (left between the previous circles and the new circle) across
the new circle (into the even higher genus region), so the circle is now in equatorial
position (parallel to the previous circles). Finally, we repeat this process until there are
no more achiral Lefschetz singularities left.
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7 A summary of moves and further questions

The table below summarizes our set of moves. Only the base parts of the fibrations
are drawn. Each move is drawn in pairs, as a move on wrinkled fibrations and as
a move on the corresponding broken fibrations obtained by replacing each wrinkle
by an arc together with a Lefschetz type singularity as was discussed in Section 2.
Also the references to the formulas concerning the changes in the naturally associated
near-symplectic forms provided by Theorem 5.1 are given.

X

XX

XX

X

XX

X X

Birth

Merging

Flipping

Wrinkling

Wrinkled
fibration

Broken
fibration

Near-symplectic
form

Luttinger–Simpson
birth model.
See (1).

Merging model.
See (2).

No change in the
deformation class
of near-symplectic
form. See (3).

Another birth model.
See (4).

Figure 12: Table of moves

The next important task that we would like to address in the future is to prove that
the Lagrangian matching invariant that was described in the introduction is invariant
under the set of moves described in this paper. Of equal importance is the problem
of determining the set of equivalence classes of deformations of broken fibrations on
a given 4–manifold. The author believes that homotopic broken fibrations should be
deformation equivalent. That is, we would like to prove that some sort of h–principle
holds for wrinkled fibrations. The main difficulty here is that wrinkled fibrations are
constrained to have indefinite Hessian along the critical points.
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Appendix A Classification of .1; 1/–stable unfoldings

Throughout, we denote by E.n/ the set of germs at 0 2Rn of smooth mappings from
Rn to R, and m.n/ is the unique maximal ideal of E.n/ consisting of those germs f
such that f .0/D 0.

Definition A.1 Let �2m.n/. An r –dimensional unfolding of � is a germ f 2E.nCr/

such that f jRn D �.

For the next definition, recall the definition of .1; 1/–equivalence of unfoldings was
given in Definition 4.2.

Definition A.2 Let f 2m.nCdC2/ and let g 2m.nC2/. We say f .1; 1/–reduces
to g if there is a nondegenerate quadratic form Q on Rd such that f is .1; 1/–
equivalent to the germ g0 2m.nC d C 2/ given by g0.s; t;x;y/D g.s; t;x/CQ.y/

for s 2R; t 2R;x 2Rn;y 2Rd .

We will give a classification .1; 1/–stable unfoldings up to .1; 1/–equivalence based on
the algorithm described by Wassermann [16]. We shall make direct use of the lemmas
and theorems in [16] without restating them here.

Theorem A.3 Let f 2 m.nC 2/ be a .1; 1/–stable unfolding of � 2 m.n/2 . Then
either f has Morse singularity at 0, or f .1; 1/–reduces to a unique one of the
following unfoldings hi of germs vi :

vi hi

v0.x/D x3h0.s; t;x/D x3
C tx

v1.x/D x3h1.s; t;x/D x3
C t2xC sx

v2.x/D x3h2.s; t;x/D x3
� t2xC sx

v3.x/D x4h3.s; t;x/D x4
C sx2

C tx

We follow the same method as Wassermann’s classification of .3; 1/–stable unfoldings
in [16]. In particular, the following special case of Theorem 4:11 from [16] plays a
crucial role in the classification. We say that f 2m.nC 2/ is 2–stable if

E.u;x/D
D@f
@x

E
E.u;x/C

D@f
@u

E
E.u/CF�E.R3/

where F.u;x/ D .u; f .u;x// for u 2 R2;x 2 Rn . This notion is very similar to
.1; 1/–stability which was given in Definition 4.3. The difference is that here we do
not distinguish the variables s and t . In particular, .1; 1/–stability implies 2–stability.
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Theorem A.4 Let g2m.nC2/ be a .1; 1/–stable unfolding of �2m.n/, and suppose
that f 2m.nC 2/ is a 2–stable unfolding of �. Then there exists a polynomial germ
p2m.R/ of degree at most 2 such that g is .1; 1/–equivalent to either f .sCp.t/; t;x/

or f .t; sCp.t/;x/.

Proof of Theorem A.3 If f is .1; 1/–stable, then f is 2–stable and hence f has a
simple singularity or f reduces (in the sense of Definition 2:24 of [16]) to a unique
one of the unfoldings gi in Thom’s list of seven elementary catastrophes (see Theorem
2:20 of [16]). If the latter case occurs, then � reduces to a unique one of the germs �i

in Thom’s list. By Lemma 4:18 of [16], if � reduces to �i then f .1; 1/–reduces to
a two-dimensional unfolding h of �i which by Lemma 4:17 of [16] must be .1; 1/–
stable. Moreover, Lemma 4:19 together with Lemma 4:20 in [16] implies that the
set of .1; 1/–stable unfoldings of �i to which f .1; 1/–reduces is exactly the .1; 1/–
equivalence class of h. Hence to complete the proof we need only to show that for
each germ �i in Thom’s list, the list of Theorem A.3 gives exactly the classification of
.1; 1/–stable unfoldings of �i up to .1; 1/–equivalence.

First, consider the case of �1.x/D x3: By Theorem A.4, a .1; 1/–stable unfolding f
up to .1; 1/–equivalence of �1.x/D x3 is either x3C tx or of the form x3C .sC

at2C bt/x where a; b 2 R. The former case is h0 , so we concentrate on the latter
case.

Corollary 4:13 of [16] gives the .1; 1/–stable condition for f as:

E.t;x/D
D@f0

@x

E
E.t;x/C

D@f0

@t

E
E.t/CR

D@f
@s

ˇ̌̌
fsD0g

E
Ch1; f0iE.t/

Cm.t/2E.t;x/Cm.t;x/4

where f0 D f jfsD0g . Thus, f is .1; 1/–stable if and only if

E.t;x/D h3x2
C .at2

C bt/iE.t;x/Ch2atxC bxiE.t/CRhxi

Ch1;x3
C .at2

C bt/xiE.t/Cm.t/2E.t;x/Cm.t;x/4:

An easy calculation then reveals that f is .1; 1/–stable if and only if a or b is nonzero.
Suppose b ¤ 0, then we change coordinates by setting t 0 D sC at2C bt; s0 D s and
get f is .1; 1/–equivalent to h0 . On the other hand, if b D 0, then by scaling t , we
obtain that f is .1; 1/–equivalent to either h1 or h2 . Furthermore, it is clear that none
of h0 , h1 and h2 are .1; 1/–equivalent.

Now consider the case of �2.x/ D x4 . By Theorem A.4, a .1; 1/–stable unfolding
f up to .1; 1/–equivalence of �2.x/D x4 is either x4C .sC at2C bt/x2C tx or
x4C tx2C .sC at2C bt/x , where a; b 2R. In order to determine for which values

Geometry & Topology, Volume 13 (2009)



312 R İ Baykur

of a and b these maps are .1; 1/–stable, we again apply the criteria given by Corollary
4:13 of [16]. Suppose first f is given by x4C .sC at2C bt/x2C tx . Then f is
.1; 1/–stable if and only if

E.t;x/D h4x3
C 2at2xC 2btxC tiE.t;x/Ch2atx2

C bx2
CxiE.t/CRhx2

i

Ch1;x4
C .at2

C bt/x2
C txiE.t/Cm.t/2E.t;x/Cm.t;x/4:

It turns out that in this case f is .1; 1/–stable for all values of a and b . By Lemma
4:9 of [16] stably homotopic .1; 1/–stable germs are .1; 1/–equivalent. Therefore we
can set aD b D 0 and conclude that f is .1; 1/–equivalent to h3 D x4C sx2C tx .

Finally, suppose that f is given by x4C tx2C .sCat2C bt/x . Then Corollary 4:13

of [16] yields that f is .1; 1/–stable if and only if

E.t;x/D h4x3
C 2txC at2

C btiE.t;x/Chx2
C 2atxC bxiE.t/CRhxi

Ch1;x4
C tx2

C .at2
C bt/xiE.t/Cm.t/2E.t;x/Cm.t;x/4:

It is then an easy calculation to conclude that f is .1; 1/–stable if and only if b is
nonzero. Next, we again apply Lemma 4:9 of [16] to set aD 0, and conclude that f
is .1; 1/–equivalent to x4C tx2C .sC bt/x . Now, we change coordinates by setting
t 0D sCbt; s0D�s=b . Then f becomes x4C .s0C t 0=b/x2C t 0x . So we are back to
the previous case, hence we conclude that f is .1; 1/–equivalent to h3 , as desired.

Appendix B Handlebody argument for modifying achiral
Lefschetz singularities (by R İ Baykur)1

In [5] we gave a handlebody description of a broken Lefschetz fibration on CP2 as a
counterexample to Gay and Kirby’s conjecture on the necessity of negative Lefschetz
singularities for generalized fibrations on arbitrary 4–manifolds, and pointed out how
this picture could be used to modify any given broken achiral Lefschetz fibration to a
genuine broken Lefschetz fibration. Our general argument makes use of the following
handlebody picture of a broken Lefschetz fibration over a disk, which can replace a
regular neighborhood of a fiber with negative Lefschetz singularity:

Here the diagram is drawn from the “higher side”, where there are three Lefschetz
handles and a round 2–handle attached to a fiber of genus gC1; so over the boundary
of the base disk we have fibers of genus g . The 2–handles corresponding to Lefschetz
handles have fiber framing minus one, and the 2–handle of the round 2–handle given

1Received on 28 June 2008
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Figure 13: The broken Lefschetz fibration over a disk to replace the neigh-
borhood of a negative node

in red has fiber framing zero. The reader can turn to [4] for the conventions we use to
depict broken Lefschetz fibrations in this appendix.

To show that both fibrations have the same total space we proceed as follows: Using
the 0–framed 2–handle of the round 2–handle we split the diagram as in Figure 14,
where we also switch to the dotted-circle notation to perform the rest of our handle
calculus. We can now cancel the 2–handle of the round 2–handle against the 1–handle
it is linked with. Keeping the upper part of the diagram with 2g 1–handles and
the 0–framed 2–handle as it is, we will simplify the remaining part of the diagram
where we have one 1–handle, three 2–handles, and a 3–handle. We first slide the
.C1/–framed 2–handles over the .�2/–framed 2–handle to separate them from the
bottom left 1–handle, and cancel this 1–handle against this .�2/–framed 2–handle.
We then get two .C1/–framed unknots, linking once. One more handle slide separates
an unknotted 2–handle with framing 0, and this 2–handle can be canceled against the
3–handle. The .C1/–framed 2–handle we are left with still links with the 1–handle
contained in the upper part of the diagram, thus giving us a handlebody picture of a
genus g fibration over a disk and with one negative Lefschetz singularity.

Relying on the construction of Gay and Kirby in [8], the above argument yields a
handlebody proof of the existence of broken Lefschetz fibrations on arbitrary closed
smooth oriented 4–manifolds. (Another handlebody proof of this existence result is
given by Akbulut and Karakurt [1], where the achirality is avoided in a rather different
way.) The purpose of the current appendix is to reconstruct our picture locally on
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Figure 14: Simplification of the handle diagram

a twice punctured torus in the fiber and with a 3–fold symmetry so as to provide a
comparable picture with Lekili’s achiral modification argument that uses singularity
theory, given in Section 6 of his paper. One can certainly localize the handlebody
picture we had in Figure 13 by throwing away the 0–framed 2–handle corresponding
to the fiber and all the 1–handles but the three 1–handles the Lefschetz 2–handles
are linked with. However, in order to achieve the 3–fold symmetry, we also need to
rearrange the Lefschetz 2–handles. This symmetric picture and many observations
contained in the following paragraphs arose during the author’s conversations with
David Gay.

In Figure 15 we see the twice punctured torus fiber, along with the vanishing cycles of
three (positive) Lefschetz handles and a red curve which is the 2–handle of the round
2–handle. The 3–handle completes the round 2–handle. To show that this picture
indeed gives a broken Lefschetz fibration over a disk one only needs to check that
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⋃
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Figure 15: The handlebody picture with a 3–fold symmetry, which is ob-
tained by rotating the diagram 2�=3 degrees clockwise while shifting the
order of the Lefschetz 2–handles (towards the page) by one. All the 2–
handles but the 2–handle of the round 2–handle given in red have fiber
framing minus one

the attaching sphere of the 2–handle of the round 2–handle is sent to itself when the
three Dehn twists prescribed by the Lefschetz handles are applied to it. Let us label
the curves on the fiber as in Figure 16. After applying the first right-handed Dehn
twist along C1 one sees that the image of C can be isotoped so that it is positioned
with respect to the curve C2 as C was positioned with respect to C1 in the first place
(Figure 16). From the obvious 3–fold symmetry one can conclude that after applying
the right-handed Dehn twists along C1 , C2 and C3 , the curve C gets mapped onto
itself (with the same orientation).

It remains to verify two things: First is to see that the total space of this fibration (which
in fact is the 4–ball) is the same as that of a fibration with an annulus fiber and a single
negative Lefschetz singularity attached along a separating curve on an annulus. The
required calculus for this is similar to the one we have given above, and will be left to
the reader. Secondly, we double check that the reduced monodromy of the fibration
over the boundary of the base disk in the former fibration is equivalent to that of the
latter. This allows us to interchange these pieces while matching the fibrations along the
boundary, and therefore to extend the given fibrations on the rest. For this, recall that
the mapping class group of the annulus is generated by a Dehn twist along a boundary
parallel curve. So it suffices to understand the effect of the reduced monodromy on a
simple arc A that runs from one boundary component to another; see Figure 17. The
curve C1 does not intersect A, so the first nontrivially acting curve is C2 . The image
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C1
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C C1.C /

Figure 16: On the left: The vanishing cycles on the fundamental domain of a
twice punctured torus. On the right: The image of C under the right-handed
Dehn twist along C1 , represented by C1.C / , can be isotoped on the fiber to
the dashed red curve.

of A under the Dehn twist along C2 is given on the first picture in Figure 17 by the
dashed blue curve. The blue curve C3C2C1.A/ in the second picture is the image
of A after all three Dehn twists are applied. This is where the round 2–handle gets
into action. We can slide the curve C3C2C1.A/ over the red curve (twice) and get the
dashed blue curve given in the third picture in Figure 17. However, the third picture
describes the effect of a left-handed Dehn twist along the curve � , which is a boundary
parallel curve on the annulus obtained after surgering the punctured torus along the red
curve. Hence the two monodromies are the same.

We would like to finish with a few observations. The Figure 18 drawn in the most
symmetric fashion presents a different choice of three vanishing cycles D1 , D2 and
D3 on the twice punctured torus, and through similar arguments as above one can see
that this picture stands for a broken Lefschetz fibration that can be used to replace
a positive Lefschetz singularity locally. This contains the nontrivial part of Perutz’s
example of a broken Lefschetz fibration (Example 1.3 in [12]; also see Example 3.2
in [4]), and corresponds to the broken Lefschetz fibration that Lekili obtains after
perturbing a positive Lefschetz singularity in his paper. One can then draw the curves
C1 , C2 and C3 by joining the vertices of the hexagon formed by D1 , D2 , D3 in the
center as in Figure 18, and get the picture we had above (Figure 16, on the left) up
to isotopy. From the very symmetry of the picture it is now easy to generalize our
constructions to twice punctured .4nC 2/–gons, for any n � 1, and thus to obtain
various broken Lefschetz fibrations with higher fiber genera over disks.
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Figure 17: Calculation of the reduced monodromy
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Figure 18: “Full symmetry.” Vanishing cycles used in the modification
around both positive and negative Lefschetz singularities are given.
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[1] S Akbulut, Ç Karakurt, Every 4–manifold is BLF arXiv:0803.2297

[2] V I Arnol 0d, The theory of singularities and its applications, Lezioni Fermiane. [Fermi
Lectures], Accademia Nazionale dei Lincei, Rome (1991) MR1122147

Geometry & Topology, Volume 13 (2009)

http://arxiv.org/abs/0803.2297
http://www.ams.org/mathscinet-getitem?mr=1122147


318 Yankı Lekili and R İ Baykur
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