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Instanton Floer homology with
Lagrangian boundary conditions

DIETMAR SALAMON
KATRIN WEHRHEIM

In this paper we define instanton Floer homology groups for a pair consisting of
a compact oriented 3—manifold with boundary and a Lagrangian submanifold of
the moduli space of flat SU(2)—connections over the boundary. We carry out the
construction for a general class of irreducible, monotone boundary conditions. The
main examples of such Lagrangian submanifolds are induced from a disjoint union
of handle bodies such that the union of the 3—manifold and the handle bodies is
an integral homology 3—sphere. The motivation for introducing these invariants
arises from our program for a proof of the Atiyah—Floer conjecture for Heegaard
splittings. We expect that our Floer homology groups are isomorphic to the usual
Floer homology groups of the closed 3—manifold in our main example and thus can
be used as a starting point for an adiabatic limit argument.

57R58; 58132

1 Introduction

In this paper we define instanton Floer homology groups for a pair consisting of
a compact oriented 3-manifold with boundary and a Lagrangian submanifold of
the moduli space of flat SU(2)—connections over the boundary. We carry out the
construction for a general class of irreducible, monotone boundary conditions. The
main examples of such Lagrangian submanifolds are induced from a disjoint union
of handle bodies such that the union of the 3—manifold and the handle bodies is an
integral homology 3—sphere. The motivation for introducing these invariants arises
from our program for a proof of the Atiyah—Floer conjecture for Heegaard splittings [3;
28]. We expect that our Floer homology groups are isomorphic to the usual Floer
homology groups (see Floer [14] and Donaldson [10]) of the closed 3-manifold in our
main example and thus can be used as a starting point for an adiabatic limit argument as
in Dostoglou and Salamon [12]. On the level of Euler characteristics, the Atiyah—Floer
conjecture was proven by Taubes [30].
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Floer homology groups for 3—manifolds with boundary were first constructed by
Fukaya [16] with a different method. His setup uses nontrivial SO(3)-bundles and
thus cannot immediately be used for the proof of the Atiyah-Floer conjecture where
the bundles are necessarily trivial. Our approach is motivated by the construction of a
Chern—Simons functional on 3—manifolds with boundary.

Let Y be a compact oriented 3—manifold with boundary and denote
¥ = 0Y, G :=SU(2), g:=su(2), (&,n):=—tr(€n)

for £, n € g. While many of the results in this paper carry over to general compact
Lie groups (and nontrivial bundles), our construction of Floer homology works in
this form only for G = SU(2) (where the bundles are necessarily trivial). The whole
story also carries over to nontrivial SO(3)-bundles, where the moduli spaces of flat
connections are nonsingular and monotone, however, in this paper we restrict to the
case G = SU(2).

The space A(X) := Q!(X, g) of connections on ¥ carries a natural symplectic form
1) o@p)i= [ (anp)

for o, B e T4 A(Z) = Q1 (Z, g), the action of the gauge group G(X) :=C>®(Z,G) on
A(X) is Hamiltonian, and the moment map is the curvature (see Atiyah and Bott [4]).
The (singular) symplectic quotient is the moduli space

Mz = Agu(2)/6(X) = A(2) /G(%)

of flat connections. We assume throughout that £ C A(X) is a gauge invariant,
monotone, irreducible Lagrangian submanifold in the following sense.

(L1) L is a Fréchet submanifold of .4(X), each tangent space T4 L is a Lagrangian
subspace of Q1(Z,g), £ C Apu(X), and L is invariant under G(X).

(L2) The quotient of £ by the based gauge group G.(X) is compact, connected,
simply connected, and 7,(L£/G,(X)) =0.

(L3) The zero connection is contained in £ and is nondegenerate (as a critical point
of the Chern—Simons functional). Moreover, every nontrivial flat connection
A e A(Y) with A|x € L is irreducible.

A detailed explanation and a finite dimensional characterization of these conditions is
given in Section 2. In particular, the assumptions imply that £ descends to a (singular)
Lagrangian submanifold L :=L/G(X) C My . If H is a disjoint union of handlebodies
with H = X then the subset Lz C A(Z) of all flat connections on ¥ that extend to
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Instanton Floer homology with Lagrangian boundary conditions 749

flat connections on Y satisfies (L1) and (L2). It satisfies (L3) if and only if ¥ Uy H
is an integral homology 3-sphere.

The space A(Y, L) := {4 € A(Y)| A|g € L} of connections on Y with boundary
values in £ carries a gauge invariant Chern—Simons functional

CSp: A(Y, L) — R/4xn%Z,

well defined up to an additive constant, whose differential is the usual Chern—Simons
1 —form (see Section 2). The critical points are the flat connections in A(Y, £). If we
fix a Riemannian metric g on Y then the gradient flow lines of the Chern—Simons
functional with respect to the L? inner product are smooth maps R — A(Y) : 5 — A(s)
satisfying the differential equation

) IgA+%F =0, A@)|sel VseR.

As in Floer’s original work [14], the main idea is to use the solutions of (2) to construct
a boundary operator on the chain complex generated by the gauge equivalence classes
of the nontrivial flat connections in Ag, (Y, £). This defines the Floer homology groups
HF(Y, £). To make this precise one needs perturbations that turn CS. into a Morse
function whose gradient flowlines satisfy Morse—Smale type transversality conditions.

We shall work with gauge invariant holonomy perturbations As: A(Y) — R as
in Taubes [30], Floer [14] and Donaldson [10] (see Section 2 and Appendix D).
The differential of /15 has the form dif(A)a = [y ( Xp(A)Aa) for a suitable map
Xp AY) — Q2(Y, g). The space of gauge equivalence classes of critical points of
the perturbed Chern—Simons functional CS. + iy will be denoted by

Rp:={A e AY.L)| F4+ Xp(A) =0} /G(Y)
and the perturbed gradient flow lines are solutions of the boundary value problem
3) ds A+ *x(Fq+ Xp(A4)) =0, AS)|z e L VseR.

The space of gauge equivalence classes of solutions of (3) that are asymptotic to
[A%F] e Ry as s tends to +o0o will be denoted by M(A~, AT; g, /). In the transverse
case with irreducible limits [A*] # 0 this moduli space is a manifold whose local
dimension near [A] € M(A™, A" g, f) is given by the Fredholm index § r(A) of a
suitable linearized operator. A crucial fact is the energy-index relation

2
8r(A) = ;Ef(A) +np(A7)—np(4™)

for the solutions of (3) with energy Ef(A) = [ ||83A||I{2 ¥)’ and with a function
nr: Ry — R. This is Floer’s monotonicity formula; it follows from the fact that
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750 Dietmar Salamon and Katrin Wehrheim

L/G,(X) is simply connected. The assumption on 7, is only needed for the orientabil-
ity of the moduli spaces.

Floer’s original work corresponds to the case dY = &. The object of the present
paper is to show that all of Floer’s ideas carry over to the case of nonempty boundary.
The upshot is that, for a generic perturbation /i, all critical points of CS. + hy are
nondegenerate and so Ry is a finite set, and that, for every pair [4%] e Ry the moduli
space M1 (A™, A" g, f) of index 1 connecting trajectories consists of finitely many
flow lines up to time shift. The monotonicity formula plays a central role in this
finiteness theorem. As a result we obtain a Floer chain complex

CR.(Y.L: /)= €D Z(4)

[4leRs\[0]

with boundary operator given by

A"y = Y #HM' (4. 4Tig. [)/R) (4T).
[A+]eR,\[0]

Here the connecting trajectories are counted with appropriate signs determined by
coherent orientations of the moduli spaces (Section 10). It then follows from gluing
and compactness theorems (Sections 7 and 9) that 3> = 0. The Floer homology groups
are defined by

HF.« (Y, L; f,g) :=kerd/im .

We shall prove that the Floer homology groups are independent of the choice of the
metric g and the perturbation f used to define them (Section 11).

Remark 1.1 In the handle body case we expect the Floer homology groups HF(Y, Lg)
to be naturally isomorphic to the instanton Floer homology groups of the homology
3—sphere Y Uy H. The proof will be carried out elsewhere.

Remark 1.2 An interesting special case arises from a Heegaard splitting M =
Hy Uy, H; of a homology 3—sphere into two handle bodies H; with dH; = ¥. We
obtain the Floer homology groups HF« ([0, 1] x X, Lg, x L) from the following
setup: The 3—manifold ¥ :=[0, 1]x ¥ has two boundary components Y = £ %, and
attaching the disjoint union of the handle bodies H := Hy LI H; yields the homology 3—
sphere Y Ug, s» H = M. The Lagrangian submanifoldis Ly, x Ly, =Ly C A(ZUY).
If this Floer homology is isomorphic to HF, (M), as expected, then the proof of the
Atiyah—Floer conjecture for M reduces to an adiabatic limit argument as in [12] which
identifies the symplectic Floer homology group of the pair of Lagrangian submanifolds
Lpy,, Ly, of the singular symplectic manifold My, := Agy(2)/G(X) with the Floer
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Instanton Floer homology with Lagrangian boundary conditions 751

homology groups HF([0, 1] x X, Ly, x Lg, ) defined in the present paper. Since My, is
a singular space, this requires as a preliminary step the very definition of the symplectic
Floer homology groups of Ly, and Ly, with Ly, := Ly, /G(Z).

Remark 1.3 If Hy, H;, H, are three handle bodies with boundary ¥ such that the
manifold M;; := H; Ux, H; is a homology 3—sphere for i # j, then there is a product
morphism

HF*(Y, EHO X ,CHl) XHF*(Y, ['Hl X ‘CHZ) — HF*(Y, 'CHO X EHz)’

where Y :=[0, 1]x 2. A key ingredient in the definition is the observation that (3) is the
perturbed anti-self-duality equation for a connection on R x Y in temporal gauge. Thus
Equation (3) can be generalized to a 4—manifold X with a boundary space-time splitting
and tubular ends (Section 6). The definition of the product morphism will be based on
the moduli space for the 4—manifold X = A x X, where A is a triangle (or rather a
disc with three cylindrical ends attached). The details will be carried out elsewhere.
We expect that our conjectural isomorphisms will intertwine the corresponding product
structures on the symplectic and instanton Floer homologies.

The construction of the Floer homology groups in the present paper is based on the
foundational analysis by Wehrheim [33; 35; 36] and Mrowka and Wehrheim [23] for
the solutions of the boundary value problem (2). In our exposition we follow the work
of Floer [14] and Donaldson [10] and explain the details whenever new phenomena
arise from our boundary value problem. Recall that the present Lagrangian boundary
conditions are a mix of first order conditions (flatness of the restriction to dY') and
semi-global conditions (pertaining the holonomy on 9Y ), so they cannot be treated by
standard nonlinear elliptic methods.

In Section 2 we recall the basic properties of the Chern—Simons functional on a 3—
manifold with boundary and in Section 3 we discuss the Hessian and establish the basic
properties of the linearized operator on R x Y . Section 4 examines the spectral flow and
the determinant line bundle for operators over S!xY . Section 5 establishes exponential
decay on tubular ends. Section 6 sets up the Fredholm theory for general 4—manifolds
with space-time splittings of the boundary and tubular ends. In the second half of the
section we focus on the tube R x Y, examine the spectral flow, and prove monotonicity.
Section 7 proves the compactness of the moduli spaces, based on [35; 36].

In Section 8 we establish transversality, using holonomy perturbations. The novel
difficulty here is that we do not have a geometric description of the bubbling effect at
the boundary. So, instead of a gluing theorem converse to bubbling, we use monotonicity
and work inductively on the energy levels. The second difficulty is that we need to keep
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the support of the perturbations away from the boundary, since the techniques of [36]
do not extend to the perturbed equation. As a result we cannot obtain an open and
dense set of regular perturbations but — still sufficient — we find a regular perturbation
up to index 7 near any given perturbation. In an appendix to this section we establish
the relevant unique continuation results. In the process we reprove Taubes’ unique
continuation result [31] for anti-self-dual connections that vanish to infinite order at
a point. This is needed to overcome difficulties arising from the nonlinear boundary
conditions. After these preparations, the construction of the Floer homology follows
the standard routine. For the gluing results in Section 9 we focus on the pregluing map
and the Banach manifold setup for the inverse function theorem. In Section 10 we
construct coherent orientations in the Lagrangian setting. The Floer homology groups
are defined in Section 11.

There are several appendices where we review standard techniques and adapt them
to our boundary value problems. Appendix A deals with the spectral flow for self-
adjoint operator families with varying domains. Appendix B discusses the Gelfand—
Robbin quotient, an abstract setting which relates self-adjoint operators with Lagrangian
subspaces. These results are needed for the index calculations and orientations in
Sections 4 and 6. Appendix C reviews the Agmon—Nirenberg unique continuation
technique used in Section 8. In Appendix D we discuss the basic analytic properties
of the holonomy perturbations and prove a compactness result needed in Section 7.
Appendix E deals with Lagrangian submanifolds in the space of connections. We
construct an L2—continuous trivialization of the tangent bundle TL, used in Sections 3
and 6, and a gauge invariant exponential map for £, used in Section 9.

Notation We denote the spaces of smooth connections and gauge transformations
on a manifold Z by A(Z) := Q!(Z,g) and G(Z) := C>®(Z,G). The gauge group
G(Z) acts on A(Z) by u*A := u~' Au + u~'du and the gauge equivalence class of
A € A(Z) is denoted by [A]. A connection A € A(Z) induces an exterior differential
dg: Q%(Z,9) — Qk+1(Z,g) via dgt := dt + [4 A 7]. Here [, -] denotes the Lie
bracket on g. The curvature of A is the 2—form F4:=dA + A A A and it satisfies
dygdgt = [F4 A t]. The space of flat connections is denoted by Ag,(Z) := {4 €
A(Z) ‘ F4 = 0}. Connections on X = R x Y or other 4—manifolds will be denoted
by A or E, whereas A denotes a connection on a 3—manifold ¥ or a 2-manifold X.
We say that a connection A = 4 4+ ®ds on R x Y is in temporal gauge on I x Y if

®|IxY EO.

Acknowledgements The second author gratefully acknowledges support by the Swiss
and US national science foundations and thanks IAS Princeton and FIM Ziirich for
their hospitality, during which most of this work was undertaken.
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Instanton Floer homology with Lagrangian boundary conditions 753

2 The Chern-Simons functional

Let Y be a compact oriented 3—manifold with boundary dY = ¥ and G = SU(2).
The Chern—Simons 1-form on A(Y) is defined by

4) o > /(FA/\a)
Y

for € T4AY) = QI (Y, g). If Y is closed, then (4) is the differential of the Chern—
Simons functional CS: A(Y) — R given by

CS(A) = %/

((A/\dA) + l(A/\[A/\A])).
v 3

It changes by
(5) CS(A) —CS(u*A) = 4n? deg(u)

under a gauge transformation u € G(Y); thus the Chern—Simons functional descends to
a circle valued function B(Y) := A(Y)/G(Y) — R /4727 which will still be denoted
by CS. If Y has nonempty boundary Y = X, then the differential of (4) is the
standard symplectic form (1) on A(X). To obtain a closed 1-form we restrict the
Chern—Simons 1—form to a subspace of connections satisfying a Lagrangian boundary
condition.

Lagrangian submanifolds

The relevant Lagrangian submanifolds of .A(X) were studied in detail by Wehrheim [33,
Section 4]. Following [33] we assume that £ C A(X) is a gauge invariant Lagrangian
submanifold satisfying (L.1). This condition can be rephrased as follows.

(L1) First, £ is contained in Ag,(X) and is invariant under the action of G(X).
Second, for some (and hence every) p > 2 the L?—closure of L is a Banach
submanifold of the space of L”—connections, A%?(X) := L?(Z, T*YX ® g).
Third, for every A € £ the tangent space T4L C Q!(Z, g) is Lagrangian, ie

(6) w(a,B)=0 VBeT L = aeTyL

for every o € Q1(Z, g).
Let £%? c A%?(Z) denote the L?—closure of £. Then £ = £%? N A(Z) and the
tangent space T4L of a smooth element 4 € £ — as in (L1) — is understood as the

intersection of the Banach tangent space T 4£%? with the space of smooth 1—forms.
This space is independent of p > 2 and coincides with the space of derivatives of smooth
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paths in £ passing through A.' This follows from a finite dimensional characterization
of the manifold property which we explain next.

A base point set is a finite set z C ¥ which intersects each component of ¥ in
precisely one point. For every base point set z the based gauge group G, (%) :={u €
G(X)|u(z) = 1} acts freely on A(X). Let 2g := dim H;(X) and pick 2g loops
in X that generate H;(X) with base points chosen from z. The holonomy around
these loops defines a map p;: Aga — G?2¢€ which is invariant under the action of the
based gauge group G,(X). If £ is a gauge invariant subset of Agy(X) then £%7
is a Banach submanifold of A%?(X) if and only if the image p,(£) C G*¢ of the
holonomy morphism is a smooth submanifold. There is however no well defined
moment map for the action of G,(X), so the symplectic structure does not descend
to the quotient. On the other hand, the quotient L := £/G(X) has singularities in
general, but it intersects the smooth part of the moduli space My := A (X)/G(X)
in a Lagrangian submanifold.

If £%7 ¢ A%P(X) is a Lagrangian submanifold then £ is gauge invariant if and
only if £ C Agy(X) [33, Section 4]. Condition (LL1) implies that £ is a totally real
submanifold with respect to the Hodge sx—operator for any metric on X, ie

QUZ,9) =TuLD*T4L VAeL.

The construction of Floer homology groups for the Chern—Simons 1—form will require
the following additional assumptions on L.

(L2) The quotient space L£/G.(X) is compact, connected, simply connected, and
w2(L/G,(X)) = 0 for some (and hence every) base point set z C X.

(L3) The zero connection is contained in £. It is nondegenerate in the sense that
da =0 <= « €imd for every o € Ty.A(Y, £). Moreover, every flat connection
in A(Y, £) that is not gauge equivalent to the zero connection is irreducible.

In (L2) the hypothesis that £/G,(X) is simply connected is needed to establish an
energy-index relation for the Chern—-Simons functional. The hypothesis 7, (£/G, (X)) =
0 is only used to orient the moduli spaces. It can be dropped if one wants to define
Floer homology with Z, coefficients. These two conditions imply that (L) is
isomorphic to 71 (Gz(X)) = 71(¢(X)) and the map 72(G:(%)) = m2(G(X)) — m2(L)
is surjective. To see this, note that £ is a fiber bundle over the base L£/G,(X) (see
[33, Lemma 4.3]). In particular, (L2) implies that (L) = Z70(Z) gince the fiber

1Tt is not clear whether one could also work with Hilbert submanifolds £ c A%2(%). This is

connected to subtle questions concerning the gauge action at this Sobolev borderline; see Mrowka and
‘Wehrheim [23].
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Instanton Floer homology with Lagrangian boundary conditions 755

G.(X) has fundamental group Z~ whenever X has N connected components. (For a
connected component X’ an isomorphism 71(G,(X’)) = Z is given by the degree of a
map S! x ¥ — SU(2) = S3))

The main example of a Lagrangian submanifold of .4(X) arises from the space of flat
connections on a disjoint union H of handle bodies” with boundary dH = X. Here &
is the same manifold as X but equipped with the opposite orientation. Given such a
manifold H define

Ly = {As |4 € Anu(H)}.

Lemma 2.1 Let H be a disjoint union of handle bodies with Y = X. Then the
following holds.

(1) Ly is a Lagrangian submanifold of A(X) that satisfies (L1) and (L2) and contains
the zero connection.

(i1) The zero connection is nondegenerate if and only if Y U H is a rational homology
3—sphere.

(iii) Every nontrivial flat connection in Aga (Y, L) is irreducible if and only if Y U H
is an integral homology 3 —sphere.

Proof That Ly satisfies (L1) was proved in [33, Lemma 4.6]. That Lz contains
the zero connection is obvious. That it satisfies (L2) follows from the fact that the
based holonomy map p, induces a homeomorphism from Lg/G,(¥) to G¥ with
G = SU(2) when X is connected and has genus g, and that

LHU. UHp /Yy G U UEg) = Ly, /G2 (21) X ... X LR, /G2, (Zm)
in the case of several connected components. This proves (i).

To prove (ii) we need to consider o € Q! (Y, g) with da = 0. The linearized Lagrangian
boundary condition on « is equivalent to the existence of an extension & € Q1 (Y UH, g)
with d& = 0. If H'(Y UH;R) =0 (or equivalently H;(Y UH;Q)=0), then any such
1-form is exact on Y U H and thus on Y . Conversely, if & € ker d, then nondegeneracy
implies @|y € imd and hence fy o = 0 for every loop y C Y. This implies that & is
also exact on Y U H since every loop in ¥ U H is homotopic to a loop in Y. This
proves (ii).

We prove (iii). Flat connections in A(Y, Lg) can be identified with flat connections in
A(Y U H). The gauge equivalence classes of irreducible but nontrivial connections

2 A handle body is an oriented 3—manifold with boundary that is obtained from a 3—ball by attaching
1-handles. Equivalently, it admits a Morse function with exactly one minimum, no critical points of index
2, and attaining its maximum on the boundary.
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are in one-to-one correspondence with nontrivial homomorphisms 71(Y U H) — S!.
These exist if and only if H;(Y U H;Z) # 0. |

Lagrangian submanifolds and representations

We characterize our Lagrangian submanifolds as subsets of the representation spaces
for Riemann surfaces. For simplicity we assume first that X is connected. Fix a base
point z € ¥ and choose based loops «y,...,ag, B1, ..., Bg representing a standard set
of generators? of the fundamental group. The based holonomy around the loops o; and
Bi gives rise to a map p,: A(X) — G?&. This map identifies the moduli space My, of
flat connections with the quotient of f~!(ll) by conjugation, where f: G?¢ — G is
defined by

@) f(xl,...,xg,yl,...yg):=]_[‘l.g=1x,-y,-xl-_1yi_l.
The correspondence between flat connections and representations is reformulated in (a)
and (b) below. Assertions (c) and (d) are the infinitesimal versions of these observations.
Remark 2.2 (a) Let w = (x1,...,Xg,)1,...Yg) € G2& . Then there exists a flat
connection A € Agy(X) with p;(A) = w if and only if f(w) = 1.
(b) Let A, A’ € Agy(X). Then A is gauge equivalent to A’ if and only if p,(A) is
conjugate to pz(A4").
(c) Let A € Agu(X), w:= p;(A), and © € T, G?*¢. Then d f(w)®d = 0 if and
only if there exists an a € Q!(Z, g) such that dyo = 0 and dp,(A)a = b .
(d) Let 4 € Agy(X) and o € Q1 (2, g). Denote w := p;(A4) and © := dp,(A).
Then « € imdy if and only if W belongs to the image of the infinitesimal
conjugate action Ly : g — Ty G?€ given by L& = Ew — wé.

While the identity element 1l € G is not a regular value of f', it follows from (c),(d)
that the differential dp,(4): Q1 (2, g) — TwG?¢ at a flat connection 4 € Aga(X)
identifies H/l1 .= kerdy/imdy (the virtual tangent space of My ) with the quotient
kerd f(w)/im Ly, at w = p;(A). The gauge invariant symplectic form (1) descends
to H/11 and thus induces a symplectic form

Qy: kerd f(w)/im Ly, xkerd f(w)/im L, — R
Qw(w,w):zfz(a/\a ),

where the (infinitesimal) connections 4 € Ag,(X) and o, «’ € kerdy are chosen
such that w = p;(A4), W = dp,(A)x, and W’ = dp;(A)a’. An explicit formula

3 The standard generators of 771 (X, z) satisfy the relation H?,:l a;Bia; 1 Bi 1.
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for this symplectic form at the point w = (xy,...,Xg, y1,...,yg) on the vectors
W=(E1x1,. . EgXg, V1, MgVg), W = (E1X1, ... EgXg, M V1, ... Mg Yg) is

g
(8) Qu@, @) = 3 (( (7 &ixi +x718ixi —8i—1). 1))

i=
— (7 iy + v 8ivi— 8i-1).€])).

In this formula §; = —(dhol(A)a)hol(A)~! is the infinitesimal holonomy along the
path ]—[lea,-ﬂioci_lﬂi_l , ie

§j = cj_l(Scj +cj_lcj__118cj_lcj- + ...+cj_1 ...01_150102 .G,
cii=xiyix; Ly, 8¢; = xiyi (v; ‘& yi — & +mi —x7 "mixi)x;ty
One should compare this with the identities f(w) =c¢j---cg = 1l and
df(w)(W) =cy...cg_18c, +C1...cg-28c,_Cg+...+8c¢2...cg =0.

Combining these we see that §., = 1. So on the torus X = T?2 the formula simplifies
to Qu (0, ') = (x1ex, ') = (y~'ny.&). Moreover, if T C G is any circle and
w € T?¢ C G?£ then the restriction of Q,, to R?¢ =~ T, T?¢ C kerd f(w) is the
standard symplectic form on Euclidean space. By construction and assertions (a-
d) above, 2 descends to the symplectic form on the (singular) symplectic quotient
7N 1)/G = Msx, = A(Z)/G(X). In fact, one can verify directly that Q is G—
invariant and that its kernel at each point is the tangent space to the G—orbit. Thus, on
the complement of the reducible set, {2 descends to a smooth symplectic structure on
the G—quotient.

In the case of the torus ¥ = T2 all points of f~!(1l) are reducible; in this case M
can be identified with the quotient of the moduli space of flat S!—connections by a
residual Z,-action with four isolated fixed points {(£1, 1)} (corresponding to the
same four points in G?). For a general surface X, the set of reducibles in f~!(1) is
the union | Jr g T28 over all maximal tori 7 C G. For g > 2 this set has codimension
4g —2 > 3g in G%8. So for a half dimensional submanifold N C G?£ the set of
irreducibles will always be dense in N . In the case of genus 2 the same is true if
we require Q|ty = 0, since the codimension of the set of reducibles is 3g but N
cannot intersect it in an open set since 2 is nondegenerate on each subtorus 728 of
the reducibles.

If ¥ has several connected components we fix a base point set z C ¥ and obtain
the 2—form 2 as sum of the 2—forms of the connected components. We then have
My = f~1(1)/G™®) where G™(®) acts by conjugation with a fixed group element
on each connected component and f: G*¢ — G™0(®) is the product of the relations (7)
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for each connected component. Now we can reformulate the assumptions (L.1)—(LL3)
on the Lagrangian submanifolds £ C A(X) as follows: £ = p; '(N) C A(X) is the
preimage of a submanifold N C G*& satisfying the following conditions.

L1l) NC f_l(ll), N is invariant under G™3®)  dim N = 3g,and Q|ty = 0.
(L2) N is compact, connected, simply connected, and m,(N) = 0.

L3) N N pz(Aga(Y)) contains (1, ..., 1) as isolated point and does not contain
any other reducible points (with respect to the conjugate action of G (3)),

The above discussion of the reducible locus shows that, by condition (L1), the quotient
L:=N/G™®) c My is Lagrangian at a dense set of smooth points.

The Chern-Simons functional

Fix a compact, connected, oriented 3—manifold Y with nonempty boundary Y = X
and a gauge invariant, monotone, irreducible Lagrangian submanifold £ C A(X)
satisfying (L1)—(L3). Then the restriction of the Chern—Simons 1—form (4) to the
submanifold

A(Y,L):={Ac A(Y) |Alg € L}

18 closed. It is the differential of the circle valued Chern—Simons functional
CSr: A(Y, L) — R/4n>Z
given by CS,(A) :=[CS(A, B)], where

1 1 1!
CS(4, B) := —/ ((A/\dA) + —(AAN[A /\A])) — —/ / (B(s)AdsB(s)) d
2 )y 3 2 Jo Jx
Here B: [0, 1] — L is a smooth path satisfying B(0) = A|x and B(1) =0.
Remark 2.3 Note that CS5(4, B) is the value of the Chern—Simons functional on the

connection A on ¥ := Y U ([0 1]x %) givenby 4 on Y and by B on [0, 1] x =. Here
we glue 3Y = ¥ to {0} x X, and on the new boundary Y = {1} x ¥ we have A=0.

Lemma 2.4 (i) The Chern—Simons functional CS(A, B) is invariant under homo-
topies of B with fixed endpoints.
(i) Ifu:[0,1]— G(X) satisfies u(0) = u(1) = 1 then

CS(A, B)—CS(A,u*B) = 4n?degu.
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(iii) If By, B;: [0, 1] = L are two paths with By(0) = B1(0) and By(1) = B1(1) =0
then there is a path u: [0, 1] = G(X) with u(0) = u(1) = 1 such that By is homotopic
to u* By (with fixed endpoints).

(iv) The circle valued function CS;: A(Y, L) — R/4n*7Z descends to the quotient
BY,L):=AY,L)/G(Y).

Proof The Chern—Simons functional is invariant under homotopies since

1
0SB =5 [ [ (0B B ) + (BN B()))

1

1
_ / / (81 B1(s)Ads B (s)) ds+[ / <B,(s)Aa,Bt(s>>] .
0 P >

0

for every smooth homotopy B;: [0, 1] — £ with fixed endpoints. The first term on the
right is the symplectic form on d; B¢, 03 By € TgL and the second term vanishes since
d;B¢(s) =0 for s =0, 1. Hence 0;,CS(A4, B;) = 0. This proves (i).

To prove (ii), we abbreviate S! := R/Z, define i#i: S' x ¥ — SU(2) by u(t,z) :=
u(t)(z), and calculate

2(CS(A4, B)—CS(A,u*B))
1
:/0 /Z(w BAYs(u B))—(B/\asB)) ds
1
:/ /((B/\dB(asu-u_l))+(du-u_l/\(BSB+d3(8su-u_1)) )) ds
0 JX
1
:/ /((B/\(2d(8su-u_1)+[B,8su-u_1]))+(du-u_1/\d(8su-u_1))) ds
0 JX

1
1
22/ /(FBAasu-u“) ——/ te(diz- @~ Adi-a Adi-a")
0 Jx 3 Jsixz
= 872 deg1l.

Here the first equation follows from the definitions, the second equation uses the
formula d;(u*B) = u~'(dyB 4+ dp(dsu - u~'))u, the third equation uses integration
by parts in s and the fact that du(0) = du(1) = 0, the fourth equation uses the formula
dOsu-u=") —0s(du-u=") =[du-u=', du - u~'] and integration by parts over X,
and the last equation follows from the fact that Fp() = 0 for every s and that the
standard volume form on SU(2) with integral 1 is 247 27* dvolgy(z) = —tr(du A
dit -~ ! Adii-ii~1). Thus we have proved (ii).
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To see (iii) note that the catenation of —By and B; is a loop in £ based at 0. It is
contractible in the base of the fibre bundle G,(X) — £ — £/G,(X) and hence it is
homotopic to a loop u: [0, 1] = G,(X) in the fibre based at #(0) = u(1) = 1. Now
the catenation of By, —By, and B; is homotopic with fixed endpoints to B on the
one hand, and on the other hand to the catenation of By with the loop u*0, which is
also homotopic to u* By.

It follows from (i—iii) that the map (A4, B) — CS (A, B) induces a circle valued function
CSr: A(Y,L) — R/4n>Z. We prove that this function is invariant under gauge
transformations. To see this we can use Remark 2.3 and extend any given u € G(Y)
to a gauge transformation 7 € G(Y) on ¥ := Y U ([0,1] x ) with | = 1. Such
an extension exists because G(X) is connected (which in turn follows from the fact
that G = SU(2) is connected, simply connected, and 7, (G) = 0). Hence assertion (iv)
follows from (5), which directly extends to gauge transformations that are trivial over
the boundary. This proves the lemma. |

Corollary 2.5 Let By € £ and u: [0, 1] - G(X) with u(0) = u(1) = 1. Then

1
/ /(u(s)*Bo/\as(u(s)*Bo))ds = 872 deg(u).
0 )

Proof The left hand side is twice the difference of the Chern—Simons functionals in
Lemma 2.4 (ii). O

Perturbations

We work with holonomy perturbations as in [30; 14; 10]. Let D :={z € C ‘ |z| <1} be
the closed unit disc and identify S' with R/Z, with the real coordinate denoted by 6.
Choose embeddings y; : S!xID < int(Y) fori =1,..., N such that the y; coincide on
aneighbourhood of {0} xID. We denote by p;: D x.A(Y) — G the map that assigns to a
pair (z, A) the holonomy of the connection A around the loop [0, 1] = Y : 0 — y;(6, z).
Then the map p = (p1.....pn): D x A(Y) — GV descends to a map between the
quotient spaces I x B(Y) — GV /G, where the action of G on GV is by simultaneous
conjugation and B(Y) := A(Y)/G(Y).

Now every smooth function f: D x GN¥ — R that is invariant under conjugation and
vanishes near the boundary induces a gauge invariant perturbation As: A(Y) — R
given by

hp(A) = /D f(z, p(z, A)) d?z.
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The differential diy(A4): T4 A(Y) — R has the form
) dhp(A)a = /Y(Xf(A)Aoz),

where Xr: A(Y) — Q2(Y, g) is a smooth map satisfying

(10)  dqXr(A) =0, Xpu™A)= u_le(A)u, dXr(A)d4é = [Xr(A),&]

for Ae A(Y), ueG(Y), £ € QOY, g). This follows from the gauge invariance of
hy (see Appendix D). Since dXr(A) is the Hessian of /1y we have

(11) /Y(de(A)oz/\ﬂ) :L(de(A),B/\a).

Moreover, Xr(A) is supported in the union of the thickened loops y; (S I'xD) and
hence in the interior of Y.

Critical points

The critical points of the perturbed Chern—Simons functional CS + Ay are the solutions
A € A(Y) of the equation

Fq+ Xp(A) =0, Aly € L.
Let Crit(CS + hyr) denote the set of critical points and abbreviate
Ry :=Crit(CSc + hr)/G(Y).

Associated to every critical point A € A(Y, L) of CS; + hy is a twisted deRham
complex

d dq+dXr(A) d
(12)  Q°(rg) = Q1Yo = QY. — 2°(Y.g),
where Q%AL(Y,g) = {ate(Y,g)|a|geTA|E£},

Q2(Y.g) = {r € Q2(Y,g)|t]s = o} .

The first operator in this complex is the infinitesimal action of the gauge group, the
second corresponds to the Hessian of the Chern—Simons functional, and the third to
the Bianchi identity. A critical point A4 is called irreducible if the cohomology group
Hg of (12) vanishes, ie the operator dg: Q°(Y, g) — Q' (Y, g) is injective. It is called
nondegenerate if the cohomology group Hi Y vanishes, ie for every o € T4 A(Y, L)
we have

(13) dgo +dXp(Aa =0 <= «ecimdy.
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This nondegeneracy means that the Hessian of the Chern—Simons functional is non-
degenerate on a local slice of the gauge action. In Section 8 we will prove that for
a generic perturbation every critical point is nondegenerate, ie CS + iy induces a
Morse function on the quotient B(Y, £).

Gradient flow lines

Fix a metric g on Y. Then a negative gradient flow line of the perturbed functional
CSc + hy is a connection A € A(R x Y) in temporal gauge, represented by a smooth
path R — A(Y) : s — A(s) that satisfies the boundary value problem

(14) 0sA+%(Fq+ Xp(4)) =0,  A(s)|gs €L VseR.

The energy of a solution is

By =3 [ (AP + |Ea+ X)),

In Section 5 we prove that (in the nondegenerate case) a solution A of (14) has finite
energy if and only if there exist critical points A1, A~ € Crit(CS. + h ) such that
A(s) converges exponentially to A* as s tends to +00. Denote the moduli space of
connecting trajectories from [A~] to [A™] by

(14), Ef(A) < oo,
M(A™,AT):={A e A™RxY) | /g(Y),

lim A(s) €[4T
s—+o0

where A"™P(R x Y') denotes the space of connections on R x Y in temporal gauge.
The analogue of Equation (14) for connections A = ®ds + A that are not in temporal
gauge is

(15) IsA—dq®+ *(Fq+ X7(A)) =0, A(s)lg e L VseR.

This equation can be written in the form

(16) Fpa+ Xp(A) +%(Fp + Xr(A)) =0, Alyxoy €L Vs eR,

where X¢(A)(s, y) = Xr(A(s))(p). In this form it generalizes to 4—manifolds with a

space time of the boundary and tubular ends.

The moduli space M(A™, AT) can also be described as the quotient of the space of all
finite energy solutions of (15) in temporal gauge outside of a compact set that converge
to AT as s — +oo. In this case the gauge group consists of gauge transformations that
are independent of s outside of a compact set and preserve A% at the ends. The study
of the moduli space is based on the analysis of the linearized operator for Equation
(15). As a first step we examine the Hessian of the Chern—Simons functional.
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3 The Hessian

In this section we establish the basic analytic properties of the Hessian of the Chern—
Simons functional and draw some conclusions on the structure of the set of critical
points and the linearized operator of the gradient flow lines.

We continue the notation of Section 2. The augmented Hessian of the perturbed
Chern-Simons functional at a connection A € A(Y, L) is the operator

swdg + *dX7(4) —d
(17) HA::( 4 _d*f() oA)'
A

The additional terms —d4 and —d? arise from a local slice condition. Think of H 4 as
an unbounded operator on the Hilbert space L2(Y, T*Y ® g) x L2(Y ® g) with dense
domain

domHy := {(a, ) € WHA(Y, T*Y @ g) x Wh2(Y, g)| % algy = 0, a|gy € T4L).
Here we abbreviate T4L := Ty L for A € A(Y, L).
The operator H 4 is symmetric: for a, B € Q1 (Y, g) and ¢, ¥ € QO(Y, g)
(Hala.9). (B.¥)) 2 — (2. ¢). Ha(B. V) ) 2

- / (Ao +dXp (Ao — xda@)AB) + / ((dg *a)AY)
Y Y

18
(19 - [ tantap+axsap—sann) - [ (oraip)

=[3y<aAﬂ>_Ay<¢,*ﬂ>+fw<*a,vf>.

If both (, ) and (B, ¥) belong to the domain of H 4, then the boundary conditions
guarantee that the last three integrals vanish. In particular, |, oy {a A B) is the symplectic
form on alyy. Blay € T4L. An L%—estimate for the Hessian is obtained from the
following elementary calculation: If (¢, ¢) € dom H 4 then

2
Mot )12 = [vdae — daol 2 + |d5e ]
2
= daelZ2 + [dagl2s + a5 —2fy<aA[FA,go]>

>5[, 9312 = C (@, @)I72-

Here the second equation follows from integration by parts. The inequality, with suitable
constants § > 0 and C, follows from the Cauchy—Schwarz inequality and [34, Theo-
rem 5.1] with p = 2. The resulting estimate ||(t, )| pr1.2 <872 | Hy(, @)l 2 +
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(C/8)Y2||(ar, )| 12 implies that H,4 has a finite dimensional kernel and a closed
image. In Proposition 3.1 below (which is the main result of this section) we will
identify the cokernel (im H4)™) with the kernel and thus prove that the Hessian is a
Fredholm operator and self-adjoint. We moreover establish the estimate for the Hessian
in general WX-P_Sobolev spaces. This will be used in the analysis of the linearized
operator on R x Y and for the exponential decay analysis.

Proposition 3.1 (i) Hy4 is a self-adjoint Fredholm operator.

(i) Forevery A € A(Y, L) and every integer k > 0 and every p > 1 there exists a
constant C such that the following holds. If (&, ¢) € dom H 4 and H 4(«, ¢) is of class
Wk-P then («, @) is of class WKt1-P and

H (@, ¢) H Wh+1p(y) = C(”HA(“’ ‘P)H wkp vy T H (a, w)HLP(Y))'
(iii) If F4 + Xy(A) =0 then ker Hy = H/L X HY, where

Hj :=kerds C Q°(Y.g).
(19) Hy :=ker(dq +dXy(4)) Nkerd} C Qy(Y, 9),
Qu(Y.g) :={aecQ!(Y.g)| xalyy =0. alyy € T4L}.

Definition 3.2 Let 4 € A(Y, £) be a critical point of the perturbed Chern—Simons
functional, ie F4+ Xr(A)=0. The connection A is called nondegenerate if Hj = 0;

it is called irreducible if Hg =0.

Remark 3.3 (i) The vector spaces Hg and H/L I in Proposition 3.1 are isomorphic
to the first two cohomology groups in the complex (12); they are the spaces of harmonic
representatives. Hence a critical point A € A(Y, £) is nondegenerate in the sense of
Definition 3.2 if and only if it satisfies (13).

(ii) Hypothesis (L3) says that 4 = 0 is nondegenerate for the zero perturbation f = 0.
Since the differential dXs(A) vanishes at A = 0 for every [/ (see Appendix D) it
follows that 4 = 0 is nondegenerate for any perturbation.

The proof of Proposition 3.1 requires some preparation. First, we need to introduce
norms for the boundary terms in the upcoming estimates. Let p* denote the dual
exponent of p given by 1/p + 1/p* = 1. We define the following norms (which
strictly speaking depend on Y') for a smooth function ¢: ¥ =09Y — g

l@llowi-1/p.0¢sy == nf{ 1@l 10 yy | Plz = @},

[s{@.¥)dvoly
lolow-ro = sup 22 |
0£¢veQ9(Z,g) ”w”le—l/n*.p*(E)
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For a 2—form 7 € Q2(X, g) the corresponding norms are understood as the norms
of the function %7 € Q°(X, g). The following estimates for these boundary Sobolev
norms will be useful.

Lemma 3.4 For Aec A(Y) and « € Q(Y, g) we have

f (dgandgy ) — (aA[Fq, ¥])
ldais@I2)|ypr1/p0y = sup It 19 1l 1. s
0#£ Y eQ0(Y,g) wirm(Y)

Moreover, if A € A(Y, L) is a critical point of CS; + hy then

”dAlz(“|E)HbW 1/p.p(x) = < (1+ 14l Loo(ry) ”dA“"‘de(A)“HLP(Y)

Proof By definition we have

[z (dais (@) )] _ \fY (and )]
Y#0 ”w”le—l/l’*«l’*()D) w;éo ||¢||W1p ()

HdA|>: (o) HbW—l/n.n(g) =

El

where the supremum runs over all nonzero functions ¥ € Q°(Y, g). Now the first
identity follows from d{aAdqv¥ ) = (dgaAdq ¥ ) — (aA[F4,¥]). If A€ A(Y, L) is
a critical point of CS. + Ay then Fyq + Xr(A4) = 0 and hence

dgoa +dXr(A)a)Ad
[dats @) pp—1/mn sy = SUP [y ( (da + d X7 (Da)rdgy )]
¥#0 ”lp”Wl.n*(Y)
< (14 4]l Lo (ry) [ daer + d X7 (D] Ly

where we have used (10) and (11). This proves the lemma. O

The following lemma provides the basic estimates for Proposition 3.1. The first part is
a regularity statement which goes a long way towards identifying the dual domain of
‘H 4 with its domain (thus establishing self-adjointness). The second part is an estimate
for the Hessian on pairs (o, ¢) that do not necessarily satisfy the boundary conditions.
This degree of generality is necessary since the Lagrangian boundary conditions are
nonlinear, so differences in A(Y, £) or derivatives of tangent vectors only satisfy the
boundary conditions up to some small curvature term.

Lemma 3.5 The following holds for every p > 1 and every A € A(Y, L).
(1) If (a,9) € LP(Y,T*Y ® g) x L?(Y, g) and there is a constant ¢ such that

(20) 'fy(% (*dAﬁ—dAl/f))—[Y(%dZﬂ)‘ <clB.Vlpr )
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for every (B,V) € SZI(Y, g) X QO(Y,g) with Blay € dA|EQO(Z,g) and *f|yy =
0, then (a,¢) € WHP(Y, T*Y @ g) x WLP(Y, g) and it satisfies *a|yy = 0 and
d4),, (@lpy) = 0 in the weak sense.

(i) There is a constant C such that
| (. 0) ”WU’(Y) = C(”*dA“ _dA‘PHLP(Y) + delaHLP(Y) + | (e, 9) ”LP(Y)
+ [els | ypi-rmn ey + HdAlz(O‘|E)”bw—l/m(z))
forall « € Q1 (Y, g) and ¢ € QO(Y, g).

Before we prove this lemma let us draw a conclusion that will be useful for the
exponential decay analysis.

Corollary 3.6 Let p > 1 and A € A(Y, L) be a nondegenerate critical point of
CSr + hy. Then there is a constant C such that

letl 1oy = C(HdA“ +dXp (D] oy + e oy

+ ez Hlefl/N’(E) + “ Hj(a|z)) Ll’(E))

for every a € Q1 (Y, g), where Hj: QY(Z, g) - TyuLt denotes the L? orthogonal
projection onto the L? orthogonal complement of T 4L.

Proof By Lemma 3.5 (ii) with ¢ = 0 we have
HO‘HWLP(Y) = C(HdAaHLP(Y) + ”dZ“HLP(Y) + H“HLP(Y)
+ H*O‘|>3”bW1—l/v-n(z) + ”dAlz(0‘|E)wa—1/n~n(2))

= C/(HdA“ + dXy (A HLP(Y) + ”d;klo‘ HLI’(Y)

Fxalz ooy + [ Ti@D)] o+ lol o).

Here we have used the estimate H dXr(A)a H o) =€ el z.# vy of Proposition D.1 (iv)
and Lemma 3.4. We added the term H Hj(odg)ﬂ Lr(z) ON the right since
M (a|z) =0 = a|y € T4L

and the restriction of the operator H 4 to the subspace {(«,0)} C dom H4 is injective.
Hence the operator o +— (dA(x +dXyr(A)a, Ao, xa|s, Hj(a|g)) is injective and it
follows that the compact term [||[»(y on the right can be dropped. This proves the
corollary. O
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Proof of Lemma 3.5 It suffices to prove the lemma in the case *A|3y = 0. The
general case can be reduced to this by a compact perturbation of the operator (leaving
the boundary conditions fixed). To prove (i) consider a pair (&, ¢) € L? (Y, T*Y ® g) x
LP(Y,g) that satisfies (20) with a constant c. Let ¢ € Q°(Y, g) with %MY =0 and
choose (B, V) = (d4¢,0). Then *B|sy =0 and B|yy = d 4| ({|x) and hence, by (20),

21) VY“"’AA“ =c ”dA§||Lp*(Y>+‘/Y(“’*[FA@D‘

< (c+clAllLooqyy + 1 Fall ooy lletll o) 1S g1y

Hence it follows from the regularity theory for the Neumann problem (see Agmon,
Douglis and Nirenberg [1] or eg Wehrheim [34, Theorem 2.3°]) that ¢ € WI’P(Y, 9)
and

(22) lelliwiory < Cle+ 1 @)Lrr))
for a suitable constant C = C(A).

Now fix a vector field Z € Vect(Y) with |[Z]|foo(y) <1 that is perpendicular to Y .
Then it follows from (20) with § =0 and ¥ = L7 that

[ (eaez0) SC||EZ§||Lp*(y)+V (Ol,[A,EZE])‘
Y Y

(23)
< (4 141 ooy Il o) 1€ o

for every ¢ € Q°(Y, g). Choosing ¥ =0 and 8 = *(LZg /\d§) gives
[ taduzena)

<cllizgAdllpp* vy + ‘/Y(QD,dA(LZg/\df))‘ + ‘/Y(Ol,*[A/\*(tzg/\df)])‘

24) = (c+CzlellLrary + 1 AllLsory 1@ Lo ) 18 1w10%

for every ¢ € QO(Y, g) with ¢|sy =0, where Cz := dez gl Loo(yy- Here we have
used (20) with 8|5y = 0 and B|sy = 0. Combining (23) and (24) we obtain the
estimate

| (@@).86)| = e+ € V@ DlLor) el

Y
for every ¢ € QO(Y, g) with |3y = 0 and a suitable constant C’ = C’(4, Z) (see [34,
Theorem 5.3 (ii)]). This implies «(Z) € W2 (Y, g) and

(25) le(D) w1 ry < Cle + 1@ @)l Lrry)-
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where the constant C depends on A and the vector field Z. This proves the interior
regularity of « as well as the regularity of its normal component. Moreover, partial
integration now shows that, for every ¢ € Q°(Y, g) with ¢|sy = 0, we have

ad
‘ /a la2). 5 >‘ < (2 + C" @ Ol Loy + 14@Z) | Locr)) 1oy -
In particular, we can fix any normal derivative % = g € Q%(3Y, g) and find an admis-
sible function ¢ € Q°(Y, g) with ¢|3y = 0 and ||¢ lw1.0% (y) arbitrarily small. Thus
we have faY(a(Z), g) =0 forall g € Q°0Y,g), and hence a(Z) = 0 for normal
vector fields Z, ie xa|gy = 0.

To deal with the tangential components near the boundary dY = ¥ we use normal
geodesics to identify a neighbourhood of the boundary with [0, €) x X with the split
metric dt? 4 g;, where (g1)tef0,¢) is a smooth family of metrics on X. In this splitting
we write

o=ax+adt

for ax € LP([0,&) x 2, T*S ®g) and a € WIP([0,¢) x =, g). Then

aly=0 =0, lallpi.r < Cle+ 1@ @) Lray)

by (25). From now on *, d, and d* will denote the Hodge operator, the exterior
derivative, and its adjoint on X. We abbreviate I := [0, ¢) and denote by C5°(I x X)
the space of functions with compact support in (0, ¢) x X. Then the inequality (20)
can be rewritten as

/ (as, (x0:Bs — xdb +dy) )
IxX%

_/Ixz(av (3: ¢ —+dBx)) +/zxz(¢’ (0:b—d*Bz))| <c|(Bz.b. ‘/’)”LP*(IxE)

forall Bz € C°(I x X, T*E ®g) and b, ¥ € Ci°(I x X, g). Partial integration in the
terms involving a and ¢ then yields

< (c+lalwrr +lelwr) 1B, b.y) Lo .

/ (ars. (3B —db— ) )
IxXY

Since C§°(1 x X) is dense in LP" (I x ) we obtain 9,05 € LP(I x T, T*S ® g)
and *xdax,d*ax € LP(I x X, g) with corresponding estimates. Hence Vyayx is of
class L? (see eg [35, Lemma 2.9]); so «x is of class WP and satisfies the estimate

lesllprr < Cle+ llallwrr + lellwrr + laslp)
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with yet another constant C'. In combination with (22) and (25) this proves the regularity
claimed in (i) and the estimate

1. @)llw1.ory = Cle+ @ DllLe))-

To prove the second boundary condition on «|yy we use partial integration in (20) to

obtain
/ (anB)
>

for every p € Q!(Y. g) with 8|z =0 and B|x € dg) Q%(Z, g). In particular, we
can fix Bz = dg) & for any & € C*(X, g) and find admissible g € Q! (Y, g) with
*f|x = 0 and ||:3||LP*(Y) arbitrarily small. Thus we have [y (aAdy|; &) =0 for all
£ QY%= g), that is dy|5 (@|x) = 0 in the weak sense. This proves (i).

< (¢ + 1daallLocry + 1440l Locry) 18I Loy

To prove (i) let («r, ) € Q1(Y, g) x QO(Y, g) be given and choose y € Q!(Y, g) such
that

xy |y = *aly, Yz =0, IV lwreay =2l *alsllpwi-1/p.0(5)

and denote o’ :=a—y. There is a constant Co=Cy(4) > 0 such that || H4(y, 0)l| Lr(y) <
Coll * a|s lpw1-1/p.0(5) and hence

|HA( @) ”Lp(y) < Hala, )|l Lryy + Co x|zl ppi-1/p.0(s) =: C.

Then it follows from (18) that, for every pair (8,v) € Q1 (Y, g) x QO(Y, g) with
*xfB|x = 0, we have

(26) (@ ). Ha(B,¥))| = c 1B oy + '/E(Omﬂ)'-

Let ¢ € QO(Y, g) with %kjy = 0 and choose (B, V) = (d4¢,0). Then, by Lemma
3.4, we have

< | dais @) py—1/00 ¢y 1S Iwros v

‘fzmdm
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and hence, by (26),
‘ / <¢,AA;>‘ - ‘((ahm,HA(dAc, 0))— / (o, *[FA,;D'
Y Y

= clldalll Loy + '/E(a/\dAZ)’ + o[ Loy 1 Eall ooy 1l o vy
< C(”HA(CY, (,0) ”LI’(Y) + ”*al): ”le_l/PsP(E)

+ HdAlz(“|E)wa—l/v-p(2) + Ha”LP(Y)) Hé‘“WlsP*(Y)

for a suitable constant C = C(A). (Compare this with (21).) As in the proof of (i) this
implies

leliwrrary = C(||HA(O‘"/’) ”LP(Y) + |xalx Hle—l/w(z)

+ HdAlz(“|E)wa—1/M(2) + (@) ”LP(Y))

with a possibly larger constant C'. (Compare this with (22).) To prove the same estimate
for a’ (and hence for o) one can repeat the argument in the proof of (i), because in
this part of the argument the inequality (26) is only needed for (B8, ¥) with x|y =0
and B|x = 0. This proves (ii) and the lemma. |

Proof of Proposition 3.1 We prove (ii) by induction. Observe that
@7) Hde(A)aHWk,p(m =C ||0‘||Wk,p(y)

for all o € Q1(Y, g) and a constant C = C(4, f), by Proposition D.1 (iv). Hence it
suffices to prove the estimate with f = 0. For £ = 0 regularity holds by assumption
and the estimate follows from Lemma 3.5 (ii), using the fact that d 4. Q%= g) CTYL,
so dg|5. (a]x) = 0. (For p =2 an elementary proof of the estimate was given at the
beginning of the section.) Thus we have proved (ii) for k = 0. It follows that H 4 has
a finite dimensional kernel and a closed image.

Now let k£ > 1 and suppose that (ii) has been established for k—1. Let («, ¢) € dom H 4
and assume that H 4 («, ¢) is of class wk.p, By the induction hypothesis (o, ¢) is of
class W*P and

(et @) lwro vy < C(IHA @) lwr—1.0 vy + (. @) Lr(7))-

Let Xq,..., X; € Vect(Y). Then, using the symmetry of H 4 and integration by parts,
we obtain for every smooth pair (8, v) € Q1(Y) x Q°(Y) with compact support in
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the interior of Y, we have

(L, Lo, (@ @) Ha(B Y]

(@ 0). Ly, -+ L5, Ha (B )|

(e 9) . Hally -+ L (Bov))| + Cull@ @) lwrico 1B ) Lo
(Lx, - Lx Halen9) . (Bov))| + Cull@ @)ooy I B ) Lo
Co(IHa(@. @) lwencry + 1@ ) lweo ) 1B Lo vy

IA

|

A

with uniform constants C;. This estimate extends to the W 1:? * —closure, so it holds
for all (B, 1) with zero boundary conditions. However, in order to apply Lemma
3.5 (i) to the pair Ly, --- Ly, (o, ¢) we would have to allow for more general test
functions (B8, ¥). Unfortunately, this weak equation does not extend directly, but
we can still use the arguments of Lemma 3.5. For that purpose let the vector fields
X1,..., X; € Vect(Y) be tangential to the boundary. Then the boundary condition
xa|py = 0 will be preserved, and the Lie derivatives Ly, in the following all have
a dual E}‘(i which does not include a boundary term. To adapt the proof of Lemma
35(@) to Ly, -+ Ly, (a, @) instead of (c, ¢) we replace (21) and (23), which use test
functions with nonzero boundary values.

Instead of (21) we calculate for all ¢ € QO(Y, g) with %|8Y =0 and with a Wk-7_
approximation Q°(Y,g) > ¢; — ¢

(Lx, ... Lx,0. Dagl)] =j1_i)ngo\(dAﬁX1 o Lxpj, dgl)]

< lim (|<£X1 o Lxda0j . d48)| + Crllgj lr.s ||§||W1,,,*)

j—o0
= (L, - Lxedag, L3 dal)| + Crlig s 1€y 1.mm
<|(Lx,...Lx, xdscx, dAﬁ}li)‘ + [(Lx, ... Lx, (xdga —dge), dal)|
+ Collellwrp ISl .o
< |(xdga, daLy ... L3, 0)|+ [(xdga. [Lk, ... LY, .da]L, )]
+ Ca(Il + dgar—dagllms + @l [l .0
< Ca(IHale. @)llwrr + 1. @) lprn) 1S+
with uniform constants C;. Here the components of [E}‘(k e C}z, dA]C;‘(lg‘ are sums

of derivatives of ¢ including at most one normal derivative, so all but one derivative
can be moved to the left hand side *d o by partial integration. Moreover, we have
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used the fact that dAE}k . ﬁ}l |ay € T4L to obtain
(*dAa,dAEj‘Yk . ..C}lf) = (a, *[FA,E}"(k . ..E}'}lf)
=(Lyx, ... Lx, *[Fanal,l).
The last term can be estimated by ||a|lyx.» S]] 7% -

Instead of (23) we pick a W*-?_approximation Q!(Y,g) 3 aj — «a satisfying the
boundary condition *aj|3y = 0 and hence *Ly, ... Ly, aj|sy = 0. Then we obtain
for all ¢ € Q°(Y, g)

wal...ﬁxka,d(czm‘

fjl_i)n;o ( /Y(/lxl ---EXkaj,dA(ﬁzf))' + Cy[|ej ||Wk,p||§||W1,p*)
< lim ( / (Lx, ...ﬁXkd;aj,ﬁzé')‘ + Gl .o ||§||W1p*)

[ <LX2...chd;a,c;lﬁz;>‘ T Collallprn Il
< 1x, o L&l L2 + ol 1 ine
< Cy(IHatee )i + 1@ @) len) [l

with uniform constants C;. Now the remaining arguments of Lemma 3.5 (i) go through
to prove the regularity Ly, ... Ly, (o, ¢) € WP and the estimate

28) [ Lxy - Lx (@) = C UHal. @) i + 1 @) lrrr)

for the tangential derivatives and in the interior. To control the normal derivatives near
the boundary we use the same splitting as in Lemma 3.5 (i). If H4(«, ¢) € W5 then
this argument shows that

das € da—xdp + WEP(I xS, T*S ® g),
da ed*as + WEP(Ix 3, g),
30 € *dfs + WEP(I x T, g).

This can be used iteratively to replace the derivatives in (28) by normal derivatives.
It then follows from the assumption H4(c, ¢) € W¥? and the induction hypothesis
(o, 9) € WEP that (a, ¢) € WKtTLP and

(. @) lwrretr.0 = C (HA, @) lrier + (. @)l Lp) -
This finishes the proof of (ii).
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We prove (iii). If F4+ X7(A4) =0 and (c, ) € ker H 4, then the pair («, ¢) is smooth
by (ii). Integration by parts shows that *d4a + *dXr(A4)a is orthogonal to d4¢, hence
both vanish, so the kernel has the required form.

To prove (i) we first show that the cokernel of H 4 agrees with its kernel. Let («, ¢) €
L2(Y, T*Y) x L(Y) be orthogonal to the image of H4. Denote by H the operator
of Lemma 3.5 for the perturbation f = 0. Then

<(a’(p)’H(ﬂ’ V) >L2 = —(O[, *de(A)IB )LZ = C”(ﬂ? 1ﬂ)”L2

for some constant ¢ and every pair (8, ¥) € Q1 (Y, g)xQ°(Y, g) satisfying the boundary
conditions *f8|gy = 0 and B|sy € T4L. Hence it follows from Lemma 3.5 (i) that
aec Wh2(Y, T*Y) and ¢ € W2(Y). So by (18)

0= [ (Waect dXy(a—sdap)nB) + [ (@rxany)
Y Y

~ [ tanr+ [ toonpi [ (v

for all B € Q(Y.g) and ¥ € Q°(Y,g). (See (19) for the definition of Q% (Y,g).)
Taking *f8|3y =0, Blagy =0, and ¥ |5y = O this implies

*dga + *dXp(A)a —dge =0, o =0.
Taking (B8, ¥) € dom H4 we then get

Ay(aAﬁ)+Ay(*a,W)=0

for every B € QL(Y, g) and every ¥ € Q°(Y, g). This (re-)proves *a|yy = 0 and,
since f|yy can take any value in the Lagrangian subspace T4L, it also shows that
o|gy € T4L. Thus we have identified the cokernel of H 4 with its kernel. Since the
kernel is finite dimensional, this proves that H 4 is a Fredholm operator. Furthermore,
every symmetric Fredholm operator with this property is self-adjoint. (Let x € dom H*,
ie (x,Hy)={z,y) forall y €dom’H and some z in the target space. By assumption
we can write z = zo+Hx; with zo € (im H)* and x; € dom . Then, using symmetry,
we have (x —x1,Hy) = (zp,y) = 0 for all y € imH Ndom . The latter is a
complement of ker’ H C domH so we obtain x — x; € (imH)+ = ker’H C domH
and hence x € domH.) This proves the proposition. |

The set of critical points

Using the properties of the Hessian we can now show finiteness of the set of gauge
equivalence classes of critical points of the Chern—Simons functional, where the critical
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points are assumed to be nondegenerate. More generally, we establish a compactness
result that will be needed to achieve nondegeneracy by a transversality construction.

Proposition 3.7 Fix a Lagrangian submanifold £ C A(X) that satisfies (L1) and an
integer k > 1. Let fV be a sequence of perturbations converging to f in the Ck+!
topology and A” € A(Y, L) be a sequence of critical points of CS; + hygv. Then
there is a sequence of gauge transformations u” € G(Y) such that (u’)* A" has a C¥
convergent subsequence.

Moreover, if all the critical points of CS; + hy are nondegenerate, then Ry is a finite
set.

Proof Fix a constant p > 4. The critical points of CS; + hpv are S ! _invariant
solutions of the perturbed anti-self-duality equation on S! x Y and, by Proposition
D.1 (iii), they satisfy a uniform L°° bound on the curvature. Hence, by Uhlenbeck’s
weak compactness theorem (see Uhlenbeck [32] or Wehrheim [34, Theorem A]), there
is a sequence of gauge transformations u” € G(Y) such that (#”)* A" is bounded in
WP Passing to a subsequence, we may assume that (1”)* A” converges strongly
in C° and weakly in W1 to a connection 4 € AP (Y, £). The limit connection
is a (weak) solution of Fy + Xr (A) = 0 and hence, by [35, Theorem A], is gauge
equivalent to a smooth solution. Applying a further sequence of gauge transformation
we may assume that 4 is smooth and, by the local slice theorem (eg [34, Theorem F]),
that

(29) (@) 4" —4)=0.  *(u")*4" = A)lpy =0.

It now follows by induction that (1¥)* A¥ is uniformly bounded in WX+1-2  Namely,
if (u¥)* A" is uniformly bounded in W/>? for any j € {1,...,k} then the curvature
Fvyxqv = —Xpv ((u¥)* AV) is uniformly bounded in WP by Proposition D.1 (iii),
and hence (1”)*A" is uniformly bounded in W/+1:2 by [35, Theorem 2.6]. Since
the Sobolev embedding WX+1:7 < Ck is compact, the sequence (1”)* 4” must have
a Ck convergent subsequence.

To prove finiteness in the nondegenerate case it remains to show that nondegenerate
critical points are isolated in the quotient A(Y, £)/G(Y). Thuslet A be a nondegenerate
critical point and AV € A(Y, £) be a sequence of critical points converging to A4
in the W1-? topology (for some p > 2). Then, by the local slice theorem, there
exists a sequence of gauge transformations u” € G(Y), converging to 1 in the W?2-?
topology, such that (u”)* A" satisfies (29). Since A''?(Y, L) is a gauge invariant
Banach submanifold of A!*?(Y) it follows that the intersection with a local slice gives
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rise to a Banach submanifold

— P —
Xy = {a ewhr Ty gg) | B0 e =0 lalw <o }

A+ae AVP(Y, L)

for ¢ > 0 sufficiently small. The tangent space of X4 at A4 is
T X4 = {a eWLP(Y, T*Y ®g) | #alg =0, a|y € TL, dia = 0} .
Define the map F4: X4 x {cp e WHP(Y,g) | ¢ L ker dA} — L?(Y, T*Y ® g) by
Fale,¢) :=*(Fgyq + Xp(A+a)) —dgp.
It has a zero at the origin, and we claim that its differential
dF4(0,0)(a@, 9) = *(dq@ +dXp(A)d) —dyg9

is bijective. The injectivity follows from the nondegeneracy of A and the fact that
imdy L im * (dq + dXy(A4)). To check the surjectivity notice that dF4(0,0) is
the first factor of the Hessian H 4. The Hessian is self-adjoint by Proposition 3.1
with cokernel (imHy)' = kerHy = H}Lf x HY, so the cokernel of dF4(0,0) is
H/l1, £ Which vanishes by the nondegeneracy assumption. This proves that d¥4(0, 0)
is bijective. Since (u”)*A4Y — A € X, converges to zero in the W!# norm and
Fa((u¥)*AY — A,0) = 0 for every v, it then follows from the inverse function theorem
that (u”)*AY = A for v sufficiently large. This proves the proposition. a

For nondegenerate critical points (that is, H}I, = 0) we have the following control on
the kernel of the Hessian, H/ff =kerdy C QO(Y, g), which measures reducibility.

Remark 3.8 The twisted cohomology groups Hg form a vector bundle over the space
of pairs (f, A) with A a nondegenerate critical point of CS; + ¢ . In particular, the
dimension cannot jump. This follows from the general fact that the cohomology groups
H° form a vector bundle over the space of all chain complexes with H! = 0. To see
this consider two chain complexes
Lo e 0L e o

of operators with closed images (between Hilbert spaces) and assume that the first
homology of the unperturbed complex vanishes, H! = kerd!/imd® = 0. (Then the
homology of the other complex, H 11, = ker(d! + P')/im (d° + P?) also vanishes for
sufficiently small perturbation P.) Choose a complement D! C C! of imd® = kerd!
and let IT: C! — C!/ D" be the projection. Then ITod®: C°® — C!/D! is surjective
and the restriction d'|p1: D! — C? is an injective operator with a closed image. If
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Pi: C! — C'1 are sufficiently small then ITo (d® + P°): C® — C!/D! is still
surjective and (d! + P')|pi: D' — C? is still injective. From the latter and the
identity (d' 4+ P')o(d®+ P°) = 0 it follows that Hy = ker(d® + P°) agrees with the
kernel of the surjective map ITo(d®+ P?). Now let D® C C° be a complement of H° =
kerd®, then TTod®|po: D® — C1/ D! is bijective, and so is TTo (d°+ P%)|po: D° —
C'/D! for sufficiently small P°. Its inverse is an injective map Ip: C'/D! — C°
with image D that depends continuously on P and satisfies ITo (d® + P%) o Ip =1d.
Now 7p := IpoIlo(d® + P%: C° — C° is a projection, 7p o mp = 7p, with
kermp =ker(ITo(d® + P%)) =im (1 —7p) and imp =im Ip = D® =ker(l —7p).
The opposite projection 1 — 7 p then provides an isomorphism H° = kerd® — ker(ITo
(d° 4+ P%)) = Hg that depends continuously on P.

The linearized operator on R x Y

Next, we shall use the above results on the Hessian to establish some basic properties
of the linearized operator for (14). Let / C R be an open interval and A = A4 & ds €
A(I xY) such that A(s)|gy € £ forevery s € I. A g—valued 1-formon I XY has
the form o + ¢ ds with a(s) € Q1 (Y, g) and ¢(s) € Q°(Y, g). Thus we shall identify
QU(I x Y, g) with the space of pairs (o, ¢) of smooth maps a: I — Q!(Y, g) and
@: I — Q°(Y,g). For any integer k > 1 and any p > 1 let Wg’p(l xY, T*Y ® g)
denote the space of WX _regular 1—forms a: I x Y — T*Y ® g that satisfy the
boundary conditions

(30) *a(s)lay =0, a(9)|ay € Ta)L
for all s € I. (The first equation arises from a gauge fixing condition.)

Remark 3.9 The boundary conditions (30) are meaningful for every « of class W 17
with p > 1. In this case we have a(s)|sy € L? (X, T*X ® g) for almost all s € I, so
there is a Hodge decomposition

a(s)|gy = o +dys) 5§ + *dg ()51

and the second condition in (30) means that 7 = 0 and ag € T4(s)| £. In other words,
a(s)|yy lies in the L?—closure of T 4(5)| £. This L?—closure is Lagrangian in the
following sense: If « € L?(X, T*X ® g), then « lies in the L? —closure of T4 L if
and only if [x(a A B) = 0 for all smooth f € T4L. (This extends the Lagrangian
condition (6) to nonsmooth tangent vectors.)

On a general 4-manifold X, the linearized operator Dy for (16) with a gauge fixing
condition has the form

Q'(X,9) = Q¥ T (X, 9) xQ%X,9): @ ((dal& +dXp(A)E) T, —di@) .

Geometry € Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 777

In the case X = I x Y we identify Q2T (X, g) x Q°(X, g) with the space of pairs of
maps I — Q1(Y, g) and T — Q°(Y, g), using the formula

o= % (*a(s) —a(s) A ds)

for self-dual 2—forms on [ x Y. With this notation the linearized operator

Da: WEP(I XY, T'Y @ g) x WEP(I x Y, g)
S WP xY, T'Y @ g) x WE—LP(I x Y, g)
for I x Y is given by
Dy := Vs +Hys),
where Vg 1= d; + [®, -|; explicitly,

a\  Vsa+*dgqa+*xdXp(A)a —dge
Gb DA(w) _( Vs —djo '

Here we have dropped the argument s in the notation, eg d4¢ stands for the path

s > dg(s)@(s) of g—valued 1—-forms on Y.

Remark 3.10 The formal adjoint operator has the form
'D;g =—-Vs+ HA(s)-

It is isomorphic to an operator of type Vs 4+ H,4 via time reversal. Namely, if
o: (=) xY — I xY denotes the reflection in the s—coordinate, then

Di(B.¥)oo =Dgxp(Boo, Y o0)
for every pair of smooth maps B: I — Q1 (Y, g) and v: I — Q°(Y, g).

The following theorem provides the basic regularity (i) and estimate (ii) for the Fredholm
theory of Dy and will also be needed to prove exponential decay. The L? —regularity
has been established in [35] by techniques that do not extend to p = 2. Here we prove
the L2-regularity using the analytic properties of the Hessian. A fundamental problem
18 that its domain varies with the connection, unlike in the closed case. The variation
will be controlled in step 1 of the proof, using a trivialization of the tangent bundle of
L in Appendix E. This control then allows to apply the general theory of Appendix A

Theorem 3.11 For every integer k > 0, every p > 1, and every compact subinterval
J C I there is a constant C such that the following holds.

(i) Assume k = 0 and define p* := p/(p—1). Let
(, ) € LP(I xY, T*Y @ g) x LP(I x Y, g)
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and suppose that there is a constant ¢ such that

32) ‘ /1 DL @) <elB D )

for every compactly supported smooth map (B8,y): I — Q1(Y,g) x QO(Y, g) satisfy-
ing (30). Then (&, ¢)| yxy is of class WP and satisfies the boundary condition (30)
and the estimate

It ) 1.0 rxyy = CIDA(@. @) Lo rxyy + 1@ @) Lo 1x1))-

(i) Assumek >1.1If (a,) e WHP(I x Y, T*Y ® g) x WH-P(I x Y, g) satisfies (30)
and Dy (a, @) is of class WP | then («a, ¢)|sxy is of class WK+1:P and

(e, @) lwr+1.0 75y < CIPa(@. @)l axyy + 1@ @)L xy))-

Proof Using the estimates on the perturbation d X (A) in Proposition D.1 (iv) we
may assume without loss of generality that /' = 0. Fix sg € J. We prove the result for
a neighbourhood of s¢ in four steps.
Step 1 After shrinking I, there exists a family of bijective linear operators
0(): @'(Y.0) xQ°(Y.9) > Q' (Y. ) x 2°(Y. 9),
parametrized by s € I, such that the following holds.
(a) Forevery s € I and every (a,¢) € Q1(Y,g) x QO(Y, g)
(a0, @) € dom H 4(s,) = O(s)(a, @) € domH 4y).

(b) For every integer k > 0 and every p > 1 the operator family Q induces a

continuous linear operator from Wllgc’p (I xY, T*Y ® g) x Wllgc’p (I xY,g) to
itself.

Let U C A(Y, £) be a neighbourhood of A(sg) that is open in the C°—topology and
{Q4}4ecy be an operator family which satisfies the requirements of Theorem E.2.
Shrink 7 so that A(s) € U for every s € I. Then the operators Q(s) := Q 4(5) X Id
satisfy the requirements of Step 1.

Step 2 We prove (i) for p = 2.

Abbreviate
H:=L*(Y.T*Y ® g) x L*(Y. g)
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and let W(s) C H be the subspace of (&, ) € WI2(Y, T*Y ® g) x W12(Y, g) that
satisfy the boundary conditions

xalygy =0,  afpy € TqnL.

Let Q be as in Step 1, so each Q(s) induces an operator on H that descends to
a Hilbert space isomorphism from W(sg) to W(s). Then, by Proposition 3.1 with
p = 2, the operator family H 4(5): W(s) — H satisfies the conditions (W1)~(W2) and
(A1)—(A2) in Appendix A for every compact subinterval of /. Hence the estimate
in (i) with p = 2 follows from Lemma A.2 and a cutoff function argument, and the
regularity statement follows from Theorem A.3.

Step 3 We prove (i) for p # 2.

The result follows from [35, Theorem C]. The intervals / and J can be replaced by S'!
by using cutoff functions, and one can interchange D} and Dg+ 4 in (32) by reversing
time as in Remark 3.10. Then [35, Theorem C (iii)] implies that (&, ¢) o o is of class
W L7 (with corresponding estimate). The same holds for («, ¢), and partial integration
as in (18) implies that

CIB. I Lo = ‘/1 Y(Dx(ﬁ,l/f), (a.¢)) = ((B.¥). Dala.9))

[ (anB)+ (. ¥).
Ix0Y

Here we can choose any compactly supported B|xay: I — T4L C Q1(3Y, g) and
Vlrxay: I — Q°(Y, g) and extend them to I x Y with ||(B, V)|l p* arbitrarily small.
Thus the above estimate implies that « satisfies the boundary conditions a(s)|yy €
T4(s)L and xa(s)|yy = 0.

Step 4 We prove (ii).

The assertion of (ii) continues to be meaningful for k = 0; we prove it by induction on
k. For k = 0 the regularity statement holds by assumption and the estimate follows
from (i). Fix an integer k£ > 1 and assume, by induction, that (ii) has been established
with k replaced by k£ — 1. Let

(0, 9) e WHP(I XY, T*Y @ g) x WHP(I x Y, g)
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such that (30) holds and

(B. V) :=Da(a, ) € WEP(I x Y, T*Y @ g) x WE-P(I x Y, g).
Denote (¢, ¢') := Q3:(Q7 (@ 9)),
and (B9 = 0(3:(Q7" (B.9) — (3:(27' D4 0) 07 (@. ).

Then (o’, ¢’) satisfies the hypotheses of (i) and hence is of class W ! and satisfies
the boundary conditions (30). Thus

Dale.¢) = (B.¥)
is of class W5~1-7  Hence, by the induction hypothesis, (&', ¢’) is of class Wk:P and

1@ ) lwrrrxry < CLllB ) wr—1oaxyy + 1@ @) Lraxy))
<GB W) lwrraxyy + 1 ) lwrsrxy))-

Since (o', ¢’) = (3sa, d5¢0) — (35 Q) O~ (@, @), this implies that (dsa, 5¢) is of class
Wk-P and

1@se, 3s9) lw.r () < C3(IDa @ @) e rxyy + 1@ @) ko axy))
< C4(IDa(@. ) lwk.oaxyy + 1. @) | Lrrxy))-

It remains to establish regularity and estimates for («, ¢) in L?(J, Wk*T1.P(Y)). To
see it note that H(a, ¢) = Da (o, ) — Vs(a, @) is of class L?(J, WP (Y)). By
Proposition 3.1, (x(s), ¢(s)) € Wk+L.P(Y) for almost every s € J and
||(Ol, ¢)||lplp(_],Wk+l,p(Y))
S ALCONOI A
= Co [ (IMaw @D iy + 1) 0D ry) ds
= Cs (IPA@ O ry + 1@ O 1o rry) -

This completes the proof. |

Remark 3.12 The proof of Theorem 3.11 carries over word for word to the case
where the metric and perturbation on ¥ depend smoothly on s € 1.

We finish this section with a complete description of the linearized operator for the
trivial gradient flow line at an irreducible, nondegenerate critical point.
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Theorem 3.13 Let A € A(Y, £) be a critical point of the perturbed Chern—Simons
functional CS; + hy such that HIS =0 and H/II = 0. Then the operator

0
Dy:=—+Hy
as

on LP(RxY, T*Y ® g) x LP(R x Y, g) with domain
dom Dy := {(a, 0) e WIP(R x Y, T*Y ® g) x WIP(R x Y, g)

*ao(8)|gy =0, a(s)|gy € T4L Vs € R}
is a Banach space isomorphism for every p > 1.

Proof For p =2 it follows from [26, Theorem A] and Proposition 3.1 that D4 is
a Fredholm operator of index zero; that it is bijective follows from the inequality (8)
in [26]. Another argument is given in [10, Proposition 3.4]; it is based on the fact
that 4 is a bijective self-adjoint Fredholm operator, and on the local L?—regularity
(Theorem 3.11). The case p # 2 can be reduced to the case p = 2 by Donaldson’s
argument in [10, Proposition 3.21]; it uses in addition the local L?-regularity in
Theorem 3.11. (For an adaptation of Donaldson’s argument to the symplectic case
see [29, Lemma 2.4].) O

4 Operators on the product S x Y

In this section we study the anti-self-duality operator on SU(2)-bundles over the
product S! x Y with Lagrangian boundary conditions. Our goal is, first, to establish a
formula for the Fredholm index and, second, to prove that the relevant determinant line
bundle is orientable. Both results are proved with the same technique. The problem
can be reduced to the case of a suitable closed 3—manifold ¥ Uy Y’ by means of an
abstract argument involving the Gelfand—Robbin quotient.

Throughout we fix a compact connected oriented 3—manifold ¥ with nonempty bound-
ary Y = X and a gauge invariant, monotone Lagrangian submanifold £ C A(X)
satisfying (L1)—(L2). We identify S' =~ R/Z. Every gauge transformation v: ¥ —
G = SU(2) determines a principal SU(2)-bundle P, — S! x Y defined by

_ RxYxG
=—
A connection on P, with Lagrangian boundary conditions is a pair of smooth maps
A: R — A(Y, L) and ®: R — QO(Y, g) satisfying

(33) A(s+1) = v* A(), O(s+ 1) = v ' D(s)v.

Py: [s, y,ul=[s+ 1, y,v(y)ul.
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The space of such connections will be denoted by A( Py, £) and we write A = dds+ A
or (A, ®) for the elements of A(P,, L). The space

AS' <Y, L) :={(v,A) | A € A(Py. L)}

is a groupoid. We will see that it has several connected components, correspond-
ing to m1(L/G,(X)) respectively the degree of v: (Y,dY) — (G, 1I). A morphism
from (vg, Ag) to (vy,A;) is a smooth gauge transformation u: R — G(Y) on R x Y
satisfying

vy = u(s) Tvou(s + 1),

(34
) Al = M*Ao‘

We abbreviate (34) by (vy, Ay) =: u*(vg, Ag). In the case vog = vy = v a map u that
satisfies the first equation in (34) is a gauge transformation on P, . Since the gauge
group G(Y) is connected there is, for every pair vy, v1 € G(Y), a gauge transformation
u: R — G(Y) that satisfies the first equation in (34).

Fix a perturbation Xs. Then every pair (v,A) = (v, 4, ®) € A(S! x Y, £) determines
Sobolev spaces

WEP(STx Y. g):={p € W, k»r(Rx Y. ) |o(s + 1) = v "p(s)v},
WEP(SIx Y, T*Y ® g) := {a € W, k(R XY, g) la(s+1) = v a(s)v},

loc

Wk (8" xV.TY @) = {a € WPP(S' x V. T*Y @) | (30)}

and an anti-self-duality operator

Dya: Wel (S Y.T'Y ®@g) x WEP (ST x Y. g)
— WELP(STx Y, T*Y @ g) x WELP(S! x Y, g)

given by Dy s := Vi + H 4(s) respectively by (31) as in Section 3.
Definition 4.1 The degree of a pair (v, A) = (v, 4, ®) € A(S! x Y, £) is the integer

1 1
deg(v, A) := ——/0 /Y(FAABSA)dS.

472
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Remark 4.2 (i) The degree is an integer because it is the difference of the Chern—
Simons functionals. Explicitly,

deg(v,A) = — ! /lf(A/\asA)ds
0 JX

82
s=1

_#[/Y((A/\dA)—i-é(A/\[A/\A]))]

= 4;_2 (CS(A(O), A|s#B)—CS(A(1), B))

s=0

= 5 (CSeqaOD ~es:040))) = 0 € B/Z.

Here B: [0, 1] — L is a smooth path from B(0) = A(1)|x to B(1) =0 and A|s#B is
the catenation of A|x: [0,1] — £ with B.

(i) If vlg =1 then A(s+ 1)|x = A(s)|x and, by (5),

1 1
deg(v,A)=deg(v)—8n—2/0 /E(A/\BSA)ds.

The last term is the symplectic action of the loop R/Z — L : s + A(s)|x, multiplied
by the factor 1/472.

(iii) Ifv=1Tand A(s)|x =u(s)*A(0)|x with u(s+1) =u(s) € G(X) then deg(v, A)
is minus the degree of the map u: S! x ¥ — G; see Corollary 2.5.
Theorem 4.3 Fix p > 1 and an integer k > 1. Then the following holds.

(i) Two pairs (v,A), (v',A’) € A(S! x Y, L) belong to the same component of
A(S'xY, £) if and only if they have the same degree.

(ii) For every pair (v, A) € A(S! x Y, L) the operator Dy, is Fredholm and
index(D, o) = 8deg(v, A).

(iii) The determinant line bundle det — A(S' x Y, L) with fibers det(D,, 4) is ori-
entable.

(iv) Let u: R — G(Y) be a morphism from (v, A) to (v, A’) = (u*v,u*A). Then
(v, A) and (u*v,u*A) have the same degree and the induced isomorphism

u*: det(Dv,A) —> det(D(u*v,u*A))

is orientation preserving (ie the map on orientations agrees with the one induced by a
homotopy).
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The proof of (ii) will be based on an identification of the index with the spectral flow of
the Hessian. Both the index and orientation results in (ii)—(iv) require a description of
the space of self-adjoint boundary conditions for the Hessian on a pair of domains with
matching boundary. We will use it to homotop from Lagrangian boundary conditions
to the diagonal (representing the closed case). More precisely, we will use the abstract
setting of Appendix B.

We think of the div-grad-curl operator on Y as an unbounded operator
*d —d
D::(—d* 0 ): Wo — H
on the Hilbert space
H:=L*Y,T*Y @ g) ® L*(Y. g)
with the dense domain

dom D := Wy := W, (Y, T*Y ® g) ® W, (Y. g).

With this domain D is symmetric and injective and has a closed image, see Lemma 4.4
below. Hence D satisfies the assumptions of Appendix B and thus defines a symplectic
Hilbert space, the Gelfand—Robbin quotient

V :=dom D*/dom D = W/ W,, w(E,n):=(D*En)— (& D*n),

where W :=dom D* is the domain of the adjoint operator D*. The crucial property
of the Gelfand—Robbin quotient is the fact that self-adjoint extensions of D are in
one-to-one correspondence with Lagrangian subspaces of V.

If A € A(Y) is a smooth connection on Y then the restricted (unperturbed) Hessian
Halw,: Wo — H is an unbounded operator on H with domain Wj. It is a compact
perturbation of the div-grad-curl operator D. The next lemma shows how these
operators fit into the setting of Appendix B.

Lemma 4.4 (i) For every smooth connection A € A(Y') on Y the operator
HAlWO: WO — H

is symmetric, injective, and has a closed image. Its domain Wy is dense in H, the
graph norm of H 4 on W, is equivalent to the W -2 —norm, and the inclusion Wy — H
is compact.

(ii) For every A € A(Y) the domain of the dual operator (H4|w,)* is equal to W
and the symplectic form on the quotient W / Wy is given by

w@,n)=/3y<mﬂ>—/w<so,*ﬂ>+Ay<*oe,w>.
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for smooth elements & = («, ¢) and n = (B,¥) in W,

(iii) The kernel of (H4|w;,)* determines a Lagrangian subspace

ker(Halwy)* + Wo

cV.
W

Ao(A) :=

If two connections A, A’ € A(Y) coincide in a neighbourhood of the boundary 0Y
then Ao(A’) is a compact perturbation of Ag(A).

Proof The operator H 4w, is symmetric by (18) and it has a closed image by Lemma
3.5 (ii). To prove that it is injective let (a, ¢) € ker H4 N W,. Extend A to an S!—
invariant connection & on S' xY and (@, ) to an S'—invariant 1-form £ =a + ¢ ds
on S! x Y. Then d‘E"E =0, d5¢ =0, and & vanishes on the (nonempty) boundary.
Near the boundary we choose coordinates (s,7,z) € S! x [0, &) x ¥ so that (¢, z) are
normal geodesic coordinates on Y . Interchanging s and ¢ we can first bring & into
temporal gauge with respect to ¢ and then use Lemma 8.7 (ii) to deduce that £ vanishes
near the boundary. Since Y is connected it follows from an open and closed argument
that £ vanishes identically. The graph norm of H4 on W, is given by (35) below.
The boundary term vanishes on W, and hence this norm is equivalent to the W !-2
norm. The compactness of the inclusion Wy — H follows from Rellich’s theorem.
This proves (i).

The domain of the dual operator and the symplectic form are independent of 4 because
the difference H4|pw,—D = (Ha—Ho)|w,: Wo — H extends to a bounded self-adjoint
operator from H to itself. The formula for the symplectic form follows from (18).

Assertion (iii) follows from Lemma B.11. This uses the fact that the difference operator
A= Halwy)* — (Ha'lwy)*: W — H is compact since it coincides with Aoto W,
Here W: W — W, is a bounded map, given by multiplication with a cutoff function
¥ € CP(Y, [0, 1]), ¥ lsupp(4—ar =1, the inclusion «: Wy — H is compact by (i), and
A: H — H is bounded. This proves the lemma. |

Remark 4.5 (i) The symplectic Hilbert space (V, ) can be viewed as a space of
boundary data for the Hessian, containing the space

Q(Y,9) x Q%Y. g)

~ Ol 0 0
Wo N (@1(Y. ) x 0¥, q)) = - (F@x (=0 x 2. 0)

of smooth boundary data as a dense subspace; see Lemma 4.6 below. The isomorphism
isby [(«, )] = (x|gy, @lay, *= (ka|gy)). In this notation, an explicit formula for the
symplectic form is given in Lemma 4.4 (ii).
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(ii) The space Q' (Y, g) x Q°(Y, g) of smooth pairs (a, ¢) is contained in the domain
of the dual operator, and the restriction of (H4|p;,)* to this subspace agrees with H4.
The graph norm on Q1(Y, g) x Q°(Y, g) C dom (H4|m;)* is

1. @11+ = 1@ O 2y + Idae | To gy + 157y

d 22 2/ ) F ,Ol 2/ ,d o).

The dual domain W = dom (H4|w,)* is the completion of Q1(Y, g) x QO(Y, g) with
respect to this norm. It is bounded by the W 1-2—norm and hence

Wy =WV, T*Y @ g) & W'2(Y.g) C W.

Moreover, it follows from interior elliptic regularity that every element of the dual
domain W is of class W12 on every compact subset of the interior of ¥ . However,
W is not contained in W;’z; see Lemma 4.6 below.

The next Lemma gives a precise description for the spaces W and V, including
some parts of weak regularity. However, our theory does not depend on the explicit
description of these spaces. In our applications we only use the fact that the Gelfand—
Robbin quotient is independent of the connection, see Lemma 4.4. In the following we
slightly abuse notation and identify the Gelfand—Robbin quotient V = W /W, with
the orthogonal complement of Wy in W in the graph norm of D*. Remark B.1 (ii)
shows that it is given by

V ={£ edom D* | D*§ e dom D*, D*D*§ +& =0}.

Lemma 4.6 (i) The space V admits an orthogonal Lagrangian splitting
V=AgDAq, A()Z:D*Al, A=V Nim D,
where A is the orthogonal projection of the kernel of D* onto V.

(i1) The space W admits an orthogonal splitting W = Wy @& Aoy ® A1, where Wy and
Ay are closed subspaces of W;’z and Ay is a closed subspace of H =: L%,.

(iii) The spaces of smooth elements are dense in Aoy, A1, V', and W (with respect to
the graph norm of D*). The restriction map

(36) £ =(a,p) =&y = (a]z. ¢z, *=(xax))

on the smooth elements extends continuously to Ay and A . This gives rise to injective
operators

AO —> W£1/2,2’ Al —> Wzl:/2,2
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with closed images. Here we denote ng/z,z = (W;:/z,z)* and

W)é/z,z - W1/2=2(E,T*E R0) ® WI/Z’Z(E,g) ® WI/Z’Z(E,g).

Proof The splitting in (i) is the one in Remark B.1 (iii) with A = A(J)-. To prove (ii)
we examine the operator D* D of Lemma B.4. On smooth elements this is the Laplace—
Beltrami operator. Hence its domain is

dom (D*D) = {5 € Wo| sup (DE, Dn)ga

0o = WoNWy?
newy ||77||L2

by elliptic regularlty This implies that dom D* Nim D = D(Wy N W ) is a closed
subspace of W . One can also think of D* as a bounded linear operator from L2
to Wy S (WO)* see the proof of Lemma B.4. Then the operator

37) Wp? — Wy 2 x Wal?2 g (D*D*E +£,&|5)

is bijective, by elliptic regularity and the Sobolev trace theorem, and VN W
the preimage of {O} X Wl/ 2 under this operator. Hence V N W % isalsoa closed
subspace of W % and so is the space

A1 = (VA Wy?) N (dom D* Nim D).
Next, the kernel of D* is a closed subspace of L% and hence, so is the space

Ao ={E— (14 D*D) " &|£ eker D*}.

See Remark B.1 (ii) for the projection W — V'; the formula simplifies for & € ker D*.
This proves (ii).

We prove that the spaces of smooth elements are dense in Ag, Ay, V, and W.
Any element in A; can be approximated by a smooth sequence in A;: The W 12—

approximation by any smooth sequence converges in the graph norm of D* and projects
under the map I1, in Remark B.5 to a convergent smooth sequence in A;. Since
Ao = D*Aq, this shows that the smooth elements are dense in A as well as in
W=WoDAyd A;.

That the restriction map (36) extends to an injective bounded linear operator from A
onto a closed subspace of Wy, 1/2.2 follows by restricting the isomorphism (37) to the
closed subspace Ay of V' N W . Next we prove that the map (36) sends Ag to a
closed subspace of W™ 172, 2(Z) For this it is convenient to use the following norms
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forEe W:

— w(&,n)
”SlE”WE—l/Z,z = sup W’
TIGW;’Z n W)},Z

2 2
P— —+ D*

By definition there is a constant ¢ > 0 such that

1§12l z1r22 = c €D

for every £ € W. Thus (36) is a bounded linear operator from W to Wy 1/2.2,

Moreover, A is complete both with respect to the graph norm of D* and the W 12—
norm, and the former is bounded above by the latter. Hence, by the open mapping
theorem, there is a constant § > 0 such that

Inlpx =8 lnllyr2 Ve
Now let £ € Ay be given. Then D*§ € Ay C W;’Z and hence

D*
€5l 202 8 sup &1 5 506 D)
* pew, 2 Inllp= = 1D p

=38l p -

Since Ay is a closed subspace of W, the operator Ag — Wy, /2.2, & £|x is injective
and has a closed image. This proves the lemma. |

Remark 4.7 The dual domain W admits another orthogonal splitting
W = (dom D* Nim D) @ ker D*

where dom D* Nim D is a closed subspace of W;’Z and the kernel of D* is a closed
subspace of L%,. It can be described as the image under D* of the space of harmonic
pairs & = (a, B) € W;’Z:

ker D* = {(*da —dg. —d*a) | (o, @) € W2, d*de + dd*a = 0, d*dp = o} .

This can also be used to prove that the restriction map (36) maps the kernel of D* to
Wy /2.2, 1 @ is a W12 harmonic function on Y then its restriction to the boundary

is of class W1/2:2 and its normal derivative on the boundary is of class w122,

Yet another splitting of W can be obtained from eigenspace decompositions along the
lines of Atiyah—Patodi—Singer [5]. The operator D has the form J(9; + B) near the
boundary, where J? = —1 and B is a self-adjoint first order Fredholm operator over
%.. The decomposition involves the eigenspaces of B [8].
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Proof of Theorem 4.3 It suffices to prove the theorem for Xy = 0 because any two
perturbations are homotopic and result in compact perturbations of the operators D, o
and hence in isomorphic determinant line bundles.

We prove (i). By Lemma 2.4 the degree depends only on the homotopy class of (v, A).
Given such a pair, there is a smooth path [0,1] = G(Y) : T — v® with v® = v and
v! = 1, because G(Y) is connected. Let u*: R — G(Y') be the smooth path of gauge
transformations constructed in Lemma 4.8 below with X = pt and define

AT = W")*A.

Then 7 + (v%, A%) is a smooth path in A(S! x Y, £) connecting (v°, A%) = (v, A)
to a pair of the form (1, A'). Hence we may assume without loss of generality that
v=v'=1and A,A’ € A(P,L) where P = P; = S' xY x G. Now the map

AP, L) = C®(S1. L) : A Algiyx

is a homotopy equivalence. Hence (i) follows from the fact that, by (L2), every
loop in £ is homotopic to a loop of the form R/Z — L : s +— u(s)*Ag with
u(s+ 1) =u(s) € G(X), and that the homotopy class of such a loop is characterized
by the degree of the map u: S! x ¥ — G.

We prove (ii). That the operator D,, o has a finite dimensional kernel and a closed image
follows immediately from the estimate in Theorem 3.11 (ii) and Rellich’s theorem
(see [21, Lemma A.1.1]). That it has a finite dimensional cokernel follows from the
regularity results in Theorem 3.11 and Remark 3.10. (The dual operator has a finite
dimensional kernel.) Thus we have proved that D, o is a Fredholm operator for every
pair (v,A) € A(S! x Y, £). The regularity theory in Theorem 3.11 also shows that
its kernel and cokernel, and hence also the Fredholm index, are independent of k£ and
p. Moreover, the Fredholm index depends only on the homotopy class of (v, A); to
see this one can use the argument in the proof of Step 1 in Theorem 3.11 to reduce
the problem to small deformations with constant domain and then use the stability
properties of the Fredholm index. So by (i) it suffices to consider one pair (v, A) in
each degree. Hence we can assume

vy=1, ®=0, A@)|y=0

for all s and an open neighbourhood N CY of 9Y . Then deg(v, A) = deg(v). Choose
a handle body Y’ with dY" = X and extend A(s) smoothly by the trivial connection
on Y’ to obtain a smooth connection A(s) on the closed 3—manifold

Y:=YUsY’
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for every s. Note that Z(s +1)= E*Z(s), where v € 9(17) agrees with v on Y and
isequal to 1 on Y’. Let H() denote the Hessian on Y’ (at the trivial connection) and
H 4(s) the Hessian on Y, both with the same boundary Lagrangian Ty L. These are
self-adjoint Fredholm operators, by Proposition 3.1. The Hessian (17) over the closed
manifold ¥ will be denoted by Hi A(s)- Choose & > 0 such that the operators H/ +eld,
H4(0) + €ld, and Hi A(0) + ¢ld are all bijective. We shall introduce the spectral flow
Mspec (as defined in Appendix A) and prove that

index(Dy,4) = fspec({(Has) + €1d) & (Hg + gld)}se[o,l])
(38) = pspee ({HGs) + 1d g0, 17)
= index(D; &) = 8deg(v) = 8deg(v, A).

Here Dy x = Vs + Hi A(s) denotes the anti-self-duality operator on the twisted bundle
Py over S'x Y.

To prove (38) we may assume k =1 and p = 2. In this case the first and third equations
follow from Theorem A.5, the fourth equation follows from the Atiyah—Singer index
theorem (the second Chern class of the principal bundle Py — S x Y is the degree of
), and the last equation is obvious from the definitions. To prove the second equation
in (38) consider the operator family

D(s) := (Ha(s) + €ld) & (H{ + eld)
on the Hilbert space
H:=L*Y.TY®gaeL*Y.9oL*Y . TV ®g) & L*(Y'. 9)
with the constant dense domain dom D(s) = W,, where
Wo =W, 2(Y.T*Y ® g) & W, > (Y.g9) & W, 2 (Y. T*Y' @ g) & W, (Y. 9).

As in Remark 4.5, this choice of domain makes D(s) closed, symmetric, and injective.
Moreover, the Gelfand—Robbin quotient and its symplectic structure

V :=dom D(s)*/dom D(s) = W/ W,

are independent of s. Now, by Appendix B, self-adjoint extensions of D(s) are in
one-to-one correspondence with Lagrangian subspaces of V. The operators in the first
row of (38) all correspond to the Lagrangian subspace

! /:0
Ay = o 1,2 *Ol|3y,*0l |3Y s / Vv
= (et ewt 2| T S g LMy
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where W2 : = Wh2(YV, T*Y @ g® g) x WH2(Y', T*Y' @ g® g) C W. The operators
in the second row of (38) all correspond to the “diagonal”

¢lay = ¢'lay,
Ari={(a,0.a @) e W2 | algy =d|py. /WOCV.

xalgy = xa'|gy
Fori=1,2and s e R let D(s),: dom D(s) A, — H denote the restriction of D(s)*
to the preimage of A; under the projection W — W/ Wy. Then D(s)4, is self-adjoint.
Moreover, we have D(s+1)= Q= ! D(s)Q, where Q: H — H is given by conjugation
with the gauge transformation v and satisfies § — Q& € Wy for all £ € W since v =1
near dY . This implies that

Ao := (ker D(0)* & Wy)/ Wy = (ker D(1)* & Wy)/ Wy.

Then, by the choice of ¢, the Lagrangian subspaces A{ and A, are transverse to Ay.
Moreover, they are compact perturbations of A(J)- by Lemma B.10, since the graph norm
on dom D(s)p; is equivalent to the W12 _norm; see (35). The second identity in (38)
follows from Remark B.14, which asserts that the spectral flow of {D(s) A }se[o,1] 18
independent of the Lagrangian subspace A C V that is transverse to Ay and a compact
perturbation of A(J)-. This proves (38) and thus (ii).

We prove (iii) and (iv). That two isomorphic pairs (vg, Ag) and (vy, A1) = u*(vg, Ag)
have the same degree follows from (ii) and the fact that conjugation by u identifies
kernel and cokernel of the operator D,,, o, with kernel and cokernel of D, A, . For
every (v, A) € A(S! xY, L) denote by Or(Dy,a) the two element set of orientations of
det(Dy,a). Then the remaining assertions in (iii) and (iv) can be rephrased as follows.

Claim Let {(v),A))}o<)<1 be a smooth path in A(S'xY, L) and u: R — G(Y) be
a morphism from (vg, Ag) to (v{,Ay). Then the isomorphism

u*: Or(Dy,.a,) — Or(Dy, a,)
agrees with the isomorphism induced by the path A +— (v), Ay).
When u = 11, the claim asserts that the automorphism of det(D,,,a,) induced by a
loop in A(S! x Y, £) is orientation preserving and hence the determinant bundle over

A(S! x Y, L) is orientable. Throughout we write A = ®; (s) ds + 4 (s) We prove
the claim in five steps.

Step 1 It suffices to assume that vy = 1l for every A.
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Since G(Y) is connected, there exists a smooth homotopy [0, 1] x [0,1] = G(Y) :
(t,A) > vy from vg =) to v){ = 1. By Lemma 4.8 below with X = [0, 1], there
exists a smooth map [0, 1] x [0, 1] xR — G(Y) : (z, A, s) > u; (s) such that

vl = ul(s) toaul(s + 1), uf(s) = 1.

Define AT = (ui)* Ay, ut = (wh) tuul.

Then (v§)* A5 (s) = A7 (s + 1), AT =(u")*Af, and v] = u’(s)_lvgu’(s + 1). Hence
(vi,A}) € A(S' x Y, L) for all 7 and A, and u¥ is a morphism from (vg.Ag) to
(vi, A7) for every . By continuity, the claim holds for T = 0 if and only if it holds
for t = 1. Since v){ = 1l for every A, this proves Step 1.

Step 2 It suffices to assume that vy = 1l and u|g1x = 1.

By Step 1 we can assume v = 1. The restriction of the map u: S' xY — G to the
boundary has degree zero (see eg [22, Section 5,Lemma 1]). Hence there exists a
smooth path [0, 1] — G(P) : t = u? such that u® = u and u!| g1,y = 1. Composing
the paths {A; }o<r<1 and {(UM)*AO}OSXﬁ we obtain a homotopy of homotopies
> {AJ}o<a<1 with Ag = A, and AT = (u®)*Af. Hence Step 2 follows as in Step 1
by continuity.

Step 3 Using (L2) we see that it suffices to assume that vy = 1, u|g1x = 1, and
there exists a smooth map [0, 1]x S1 — G,(2) : (A, s) = wy (s) satisfying Ay (s)|x =
wy, (5) " dw; (s) and wy (s + 1) = w; (5), wo(s) = wi(s), we(0) = 1.

By Step 2 we can assume v = Il and u|g1,5y = 1. Then 4, (s + 1) = A, (s) and
Ag(s) = Aq(s) forall s and A. Since £/G,(X) is connected and simply connected, the
loops [0,1] = L : A+ A3 (0)|g and S! — £ : 5+ Ay(s)|x are homotopic to loops
in the based gauge equivalence class of the zero connection in £. This implies that
there is a smooth homotopy [0, 1]* x S* — L : (.4, s) = B (s) of homotopies of
loops, satisfying

Bi(s+1) = By (s), B(s) = B (s),

starting at Bg (s) = Ay (s)|x and ending at a homotopy of loops satisfying
B1(0). BL(s) e {w_ldw |we gz(z)} .

The composition of the map [0, 1]> — £ : (A, s) — B, (s) with the projection £ —
L/G,(X) maps the boundary to a point. Since 7,(L/G;(¥)) = 0 the homotopy t —
BT can be extended to the interval 0 <t <2 so that B}% (s) = wy (s)"'dwy (s). This
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determines the map [0, 1] xR — G,(Z) : (A, s) — wy (s) uniquely, hence w satisfies
the requirements of Step 3. Since the restriction map A(Y, £) — £ is a homotopy
equivalence, there exists a smooth homotopy [0, 2] x [0, 1] — A(Py, £) : (z,A) = A7
with AT =u*Af from Ag =A, to A)ZL satisfying Ai(s)|g = B)%(s). Step 3 follows
since, by continuity, the claim holds for T = 0 if and only if it holds for t = 2.

Step 4 It suffices to assume that vy = v is independent of A and there exists a
neighbourhood N C Y of dY such that v|y = 1, 4, (s)|y =0, &, (s)|y =0, and

u(s)|y = 1.

By Step 3 we can assume vy = I, u|g1x = I, and Ay (s)|s = wy (s) " dwy (s) for a
smooth map w: [0, 1]xS! — G,(X). By a further homotopy argument we may assume
that w is transversally constant near the edges of the square, d; w) (s) =0 for A >~ 0
and A ~ 1, and dsw;) (s) =0 for s >~ 0 and s >~ 1. Since every gauge transformation on
¥ extends to a gauge transformation on Y and the same holds for families parametrized
by contractible domains, there is a smooth map [0, 1]*> = G(Y) : (A, 5) — u; (s) such
that
up(9)|z = war(s)™"

This map can be chosen such that dy 1, (s) =0 for A>~0 and A >~ 1, and dsuy (s) =0 for
s >~ 0 and s ~ 1. Moreover, we can achieve A—independence of vi =13 (0) " Tuy (1).
To see this, note that v |z = 1l and there is a § > 0 such that 9y v; =0 for A & (8, 1-9).
Let 8: [0,1] — [0, 1] be a smooth monotone cutoff function such that S(A) = A for
Aels,1=6], B=0for A ~0,and § =1 for A >~ 1. Now we can replace u; (s)
by ”K(S)(vl/‘}(s)ﬁ(k))_l' The resulting map (A, s) — uy (s) satisfies u) (1) = uy (0)v’
with v’ independent of A, as claimed. Hence it extends to [0, 1] x R such that v/ =
u ()" Yu; (s + 1) forall A and s. Define

Al i=ufAy € A(Py, L), u' = ug tuuy.

Then v'|x = 1I, 4} |5 =0, u'|s = 1, and u’*(v’,Ag) = (v', A]). Moreover u, is a
morphism from (1, Ay) to (v', A}) for every A. This gives a commuting diagram
det(Dy.a,) — det(Dya,)
g uy
det(Dy,p;) — det(Dy a1).
There is a second diagram where the horizontal arrows are induced by the paths A —
(I,Ay) and A — (V/, A&) = uy (1, Ay). That this second diagram commutes as well

follows from a homotopy argument; namely the space of smooth maps [0, 1]> = G(Y) :
(s,A) = uy (s) is connected and the diagram obviously commutes when u) (s) = 1.
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This shows that the claim holds for (u, 1I, Ay) if and only if it holds for (u’,v’, A%).
Hence Step 4 follows from a further homotopy argument (to achieve the relevant
boundary conditions and vanishing of @ in a neighbourhood of 9Y").

Step 5 We prove the claim.

By Step 4, we may assume that vy = v and there exists a neighbourhood N C Y of
dY such that vy =1, Ap(s)|xy =0, Dy (s)|xy =0, and u(s)|y = 1. We shall argue
as in the proof of (ii), namely choose a handle body Y’ with Y’ = ¥ and transfer the
problem to the closed 3—manifold Y=Y Us Y.

Since the map on orientations induced by the path A — A} is invariant under homotopy
we may assume that the path is the straight line

Ay = (1= A+ Au*A,

where A € A(P,) vanishes near the boundary and u € G(P,) is equal to the identity
near the boundary. Since v € G(Y') is the identity near the boundary we can extend it to a
gauge transformation v € Q(f") via U]y, :=v":= 1. Then u € G(P,) extends to a gauge
transformation u € G(Py) via u(s)|y’ := 1l and A extends to a connection Ae A(Pyp)
via &| sixy’ :=A’=0. As in the proof of (ii) we have three Fredholm operators
Dy.a on Slxy, Dy ar On S1 x Y’ (both with boundary conditions *a|sy = 0 and
a|gy € ToL), and Dﬁ, zonS Ixy (without boundary conditions). We must prove
that the isomorphism
u*: Or(Dv,A) - Or(Dv,u*A)

agrees with the isomorphism determined by the homotopy. Since both the gauge
transformation and the homotopy act trivially on det(D,s 4/) this means that the
isomorphism

(39) u* ®1d: Or(Dy p X Dy a7) = Or(Dy y+a X Dy A7)

agrees with the homotopy isomorphism. As in the proof of (ii) we choose a family
of Lagrangian subspaces connecting A; to A, to obtain two continuous families of
isomorphisms (see Lemma B.16; we use the fact that the Lagrangian subspaces can be
chosen as compact perturbations of A(J)-). For A the gauge transformation induces
the isomorphism (39) and for A, the isomorphism

(40) i*: Or(Dy 5) = Or(Dy e 5)

and similarly for the homotopy induced isomorphisms. For Aj both isomorphisms
agree by the standard theory for self-duality operators on closed 4—manifolds (see
Donaldson [9]). Hence they agree for A . This proves the claim and the theorem. O
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Lemma 4.8 Let X be a manifold and [0, 1] x X — G(Y) : (r, x) = v} be a smooth
map. Then there is a smooth map

0,I]x X xR = G(Y):(r,x,5) > u-(s)
such that

(41) vE =ul(s) odul(s + 1), ul(0)=1.

Proof Choose a cutoff function 8: [0, 1] — [0, 1] such that 8(s) = 0 for s ~ 0 and
B(s) =1 for s >~ 1. Define

u-(s):= (vg)_lvg(s)r, 0<s<I.

Then uZ(s) = 1l for s ~ 0 and uZ(s) = (v2)~1vZ for s ~ 1. Hence u® extends
uniquely to a smooth map from R to G(Y) that satisfies (41); the extension to (1, c0)
is given by u% (s +1) := ()" 1u% (s)v% and the extension to (—oo, 0) by u%(s—1) :=
v2uZ(s)(vZ)~!, in both cases for s > 0. Moreover, the resulting map [0, 1]x X xR —
G(Y) is smooth in all variables. a

5 Exponential decay

Let Y be a compact oriented 3—manifold with boundary 0Y = X and let £ C A(X) be a
gauge invariant, monotone Lagrangian submanifold satisfying (L1)—-(L2). (Actually this
section only requires the compactness of £/G,(X) from (L2).) We fix a perturbation
Xp: AY) — Q2(Y, g) as in Section 2. The purpose of this section is to establish
the exponential decay for finite energy solutions in the following two Theorems. The
unperturbed Yang—Mills energy of a connection A € A(R xY) is % [ |Fal?. In the
presence of a holonomy perturbation the gauge invariant energy of A = A + ®ds is

1 1
Ef(A)ZE/R Y\FA+Xf(A)}2=§/R Y(\asA—qu>\2+|FA+Xf(A)yz).

An anti-self-dual connection in temporal gauge satisfies dg A + *(F 4+ Xy (A)) =0
and ® = 0 and the energy simplifies to Ef(A) = [,y |05 A|%.

Theorem 5.1 Suppose that every critical point of the perturbed Chern—Simons func-
tional CS.+hy is nondegenerate. Then there is a constant § > 0 such that the following
holds. If A: [0, 00) — A(Y) is a smooth solution of

(42) 0sA+*(Fq+ Xr(A4) =0, A(s)|ay € L,
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satisfying
o0
/ / |05 A|? dvoly ds < oo, p =2,
o Jr

then there is a connection Ao € A(Y, L) such that Fq  + Xr(Aso) = 0 and A(s)
converges to A as s — oo. Moreover, there are constants Cy, C1, C,, ... such that

A= Aoollck (s—1,5+1]x¥) = Cre™®

for every s > 1 and every integer k > 0.

Remark 5.2 Let X be a compact Riemannian manifold with boundary. We shall need
gauge invariant Sobolev norms on the spaces QK(X , ) depending on a connection
A € A(X). For p > 1 and an integer kK > 0 we define

k , 1/p
. p
lellwir,n = (Z [ |9k )
_AJX
j=0
for o € Q(Y, g), where Vga denotes the j—th covariant derivative of « twisted by
A. For p = co we define
o = |l := max_sup |V.al.
| ||Wks°°,A I ||ck,A 0% i<k XP| A }
These norms are gauge invariant in the sense that
o]

Whourh lecllw.r,a

for every gauge transformation # € G(X). In particular, for X = 0 the L?—norms are
gauge invariant and do not depend on the connection A.

Theorem 5.3 Suppose that every critical point of the perturbed Chern—Simons func-
tional is nondegenerate. Then, for every p > 1, there are positive constants ¢, &,
Co, C1, ... such that the following holds forevery T > 1. If A: [-T,T]— A(Y) isa
smooth solution of (42) satistying

T
(43) / / |05 A|* dvoly ds <&,
-TJY

then, for every s € [0, T — 1] and every integer k > 0,

(44) 95 Allex (—s,51x¥),4 = Crre T 103 All L2 (1.1 —TYU[T— 1. T xT) -
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where A € A([—T, T]xY) is the connection associated to the path A. Moreover, there
is a connection Ag € A(Y, L) with F4, + Xy(Ao) = 0 such that

(45) |4 —Aollcoq—s.s1x¥) T 14— Aollw 1.0 (—s.51x¥), 40
—8(T—
< Coe T 05 All L2 (11 - T[T —1.TDxY)

forevery s € [0, T —1].

The proofs of these results will be given below. Theorem 5.1 guarantees the existence of
a limit for each finite energy solution of (42), however, the constants in the exponential
decay estimate depend on the solution. With the help of Theorem 5.3 one can show
that these constants can be chosen independent of the solution of (42) and depend only
on the limit A, . This will be important for the gluing analysis.

Corollary 5.4 Let A be a nondegenerate critical point of the perturbed Chern—
Simons functional CS. + hy . Then there are positive constant §, €, Cp, Cy, ... such
that the following holds. If A: [0, 00) — A(Y') is a smooth solution of (42) satistying

o0
/ / |8sA|2 dvoly ds < &, lim A(s) = Aoo,
0 Y §—>00
then 14 = Aoollor .00 x¥) =< Cke > 18541 L2 ((0.00)x7)

for every s > 1 and every integer k > 0.

Proof Let$, ¢, C,é be the constants of Theorem 5.3. Then

(SS|

105 All ek 15,00y x¥).4 = Cre™ " 195 All L2 (j0,00)x¥)

for k =0,1,2,... and s > 1. For k = 0 the desired estimate follows by integrating
from s to 0o because the C®—norm is independent of the reference connection A. Now
argue by induction. If the result has been established for any k then there is a constant
¢, depending on Cp, such that

ol it 1 s,00)x¥) = €k lllcit1(s,00)x¥),A
for every a: [1,00) — Q!(Y, g). Applying this to & = d;4 we obtain
195 Aller+1(ts.00x¥) < kCrire > 195 All L2 (10.00)x 1)

and the required Ck+1_estimate follows again by integrating from s to co. This proves
the corollary. O
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The proof of Theorem 5.1 and Theorem 5.3 is based on the following three lemmas
concerning solutions on a long cylinder with little energy. We show that such solutions
are uniformly close to a critical point and establish uniform estimates for the Hessian
and the linearized operator.

Lemma 5.5 For every k > 0, p > 0, and p > 1 there is an ¢ > 0 such that the
following holds. If A: [—p, p] = A(Y) is a solution of (42) that satisfies

P
/ / |05 4| dvoly ds < ¢
—pJY

then there is a connection A, € A(Y, L) with Fq_ + Xr(Aoo) = 0 such that

(46) [ A4(0) = Acollwr.r(y), 4., + I14(0) = Acoll Loo(yy + (195 A(0) || Loo(yy < K-

Proof Assume by contradiction that this is wrong. Then there exist constants « > 0,
p>0,and p > 1 and a sequence A,: [—p, p] > A(Y) of solutions of (42) such that

(47) im [ / |05 Ay |* dvoly ds =0
v—oo J_, Jy

but (46) fails. Let A, € A([—p, p] x Y) denote the connection in temporal gauge
associated to the path A4, . Then Fu, + Xr(A,) converges to zero in the L?—norm,
by (47) and (42). Now it follows from the energy quantization of Wehrheim [36,
Theorems 1.2, 2.1] (for general Lagrangians see Mrowka and Wehrheim [23], and
for the perturbed version see Theorem D.4) that A, satisfies an L°°—bound on the
curvature. Hence, by [35, Theorem B] and Theorem D.4, there is a subsequence (still
denoted by A,) and a sequence of gauge transformations u, € G([—p/2, p/2] x Y)
such that u} A, converges t0 Aoo = Aoo(s) + Poo(s) ds € A([—p/2, p/2]xY) in the
C®°—topology. By (42) and (47) the limit connection satisfies

05 Aoo(s) _dAoo(s)(DOO(S) =0, Fy i+ Xf(Aoo(S)) =0, Ax@)|zel

for every s € [—p/2, p/2]. After modifying the gauge transformations #, we may as-
sume in addition that ® o, (s) =0 and Ao (s) = Ao is independent of s. It then follows
that u},1d5u, converges to zero in the C>®°—topology. So after a further modification we
can assume that the u, (s) = u,, is independent of s, and so the convergent connections
uj A, are in temporal gauge, given by the paths [—p/2, p/2] = A(Y) : s > u} Ay (s).
Hence
. -1 .
,,ll?;o”Av(O) — ()" Ao WLP(Y)uy ' * Ao~ ,,ll?go” Uy Ay — As)(0) | wir 4. =0
. -1 EET _
Jim [l 4,(0) = ()" Aoo | oo vy = M |5 Ay = Aco) (0] ooy = 0.

vll)ngo ||asAv(0)”L°°(Y) = Vll)n;o H BS(M:AU)(O) }‘Loo(y) = ”asAoo”LOO(Y) =0.
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This contradicts the assumption that (46) fails, and thus proves the lemma. a

Lemma 5.6 Suppose that every critical point of the perturbed Chern—Simons func-
tional CS; + hy is nondegenerate. Then, for every p > 0, there are positive constants
¢o and e with the following significance. If A: [—p, p] = A(Y) is a solution of (42)

such that )
/ / |05 4] dvoly ds <&,
—pJY

then for every a € jS(o)(Y, 9)
leell Loy + el Laayy = co((|dacoyer +d X7 (A(0))e ”LZ(Y) + | oy ”LZ(Y))-

Proof Assume by contradiction that this is wrong. Then there is a constant p > 0,
a sequence Ay: [—p, p] > A(Y) of solutions of (42) with (47), and a sequence o, €
QLV(O)(Y, g) such that

o + ||o
48) lowllLsry + llewll L4y oo

|da, @@ +dXr(4,(0))ay HLZ(Y) + HdZU(O)O‘v “LZ(Y) vTee

Arguing as in the proof of Lemma 5.5 we find a subsequence, still denoted by 4, , and
a sequence of gauge transformations u, € G(Y') such that u}; 4, (0) converges in the
C°—topology to a connection A, € A(Y, £) that satisfies Fq_ + Xr(Aoo) =0. By
assumption Ao is nondegenerate, so by Corollary 3.6 there is a constant C such that

(49) H (a,0) H W1.2(Y) =C ”HAOO (a, 0) ”LZ(Y)

for every (o,0) € domH,4_ . By Theorem E.2 this estimate is stable under C T
small perturbations of A.,, and by gauge invariance it continues to hold with A
replaced by A4,(0). Precisely, let &/ C A(Y, £) be a neighbourhood of A, and
{0 4}4cy be an operator family that satisfies the requirements of Theorem E.2. Then
u} A,(0) €U for large v add the isomorphisms Q, := Our 4, (0) X Id from dom H 4
to domH,x 4, (o) converge to Q4 x Id = Id in both L(W12) and L(L?); so the
sequence Q;lHu;; 4, (0) Qv has the constant domain domH 4, and it converges to
H4,, in the operator norm on £(W 12, L2). Hence, for large v, we can replace H4__
by Q;lHut 4, 0) Qv in (49) to obtain estimates with a uniform constant C. Since
0, converges to the identity in the relevant operator norms we obtain the following
estimate with uniform constants C; but varying domain:

lellLoery + llell e ayy < Cr | (. 0) ”W1~2(Y) < Co| Mz 4,0 (@, 0) HLZ(Y)
for every (o, 0) € domH,» 4, (o). Here we used the Sobolev embedding Wh2(Y) —
L%(Y) and the trace theorem W 1-2(Y) — L*(3Y). Since T+ 4L = u~ " (T4L)u we
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can apply the last estimate to (1} 'ayu,, 0) € domH,x 4, (o). Since the norms on the
left and right hand side are all gauge invariant the resulting inequality contradicts (48).
This proves the lemma. |

Lemma 5.7 Suppose that every critical point of the perturbed Chern—Simons func-
tional CSy + hy is nondegenerate. Then, for every p > p’ > 0, there are positive
constants cg, ¢1, ... and & with the following significance. If A: [—p, p] > A(Y) is a

solution of (42) such that
p 2
/ / |05 4]~ dvoly ds < e,
—pJY

then, for every smooth path [—p, p] = Q1 (Y, g) xQO(Y, g) : s > (ae(s), ¢(s)) satisfying
a(s) € QL(S)(Y, ¢) and every integer k > 0, we have

” (a. ¢) Hck([—p/,pf]xY),A

= Ck(HDA(“’ O wrrzappxrya (@9 HLZ([—p,p]xY))-

Proof If this is wrong, then there exist constants kK >0, p > p’ > 0 and a sequence
Ay [—p, p] = A(Y) of solutions of (42) with (47), for which the constant in the
estimate blows up. As in the proof of Lemma 5.5 we find a subsequence of the
connections on [—p, p]x Y, still denoted by A, and gauge transformations u, € G(Y)
such that u}A, converges in the C*°—topology on [—p/2,p/2] x Y to a constant
connection As, = Ao € A(Y, £). Now by Theorem 3.11 and the Sobolev embedding
theorem, and with the norms of Remark 5.2, there is a constant C such that for every
(o, @) satisfying a(s) € Qiloo Y, 9),

(50) ||(e, 0)]

Ck([—p',0'1xY), Ao
<C (}

Dago (e, 9) “ Wh+2.2([—p,p]xY¥ ), Aoy T ” (a, ﬁa)HLz([—p,p]xY),Aoo)-

The same argument as in the proof of Lemma 5.6 (with the sequence of operators
Oy (s) := Qux 4, (s) ¥ Id) shows that this estimate continues to hold with A replaced
by ujA,. Note that DulfAvu;l(av,(pv)uv = u;l(DAU (av,gov))uv. So since the
norms are gauge invariant, the above estimate also holds with A, replaced by A,
which contradicts the choice of A4, and thus proves the lemma. O

Proof of Theorem 5.1 The proof has three steps.
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Step 1 There is a uniform constant § > 0 (independent of the solution A) and a
constant C (which depends on A ) such that

|95 A4(s) HLZ(Y) < Ce™% fors > 0.

1 1
Define g(s):=—/ ‘8SA‘2 = —/ ‘FA+Xf(A)|2.
2 )y 2 )y
Then g'(s) = / ((d4054 +dX(A)dsA) A%(Fa+ Xr(A))),
Y
and hence

g”(s)=/Y\dAasAerXf(A)asAf—fy(([asA/\asA]erAagA)AasA)
—/Y<(d2Xf(A)(asA,asA)+de(A)a§A)AasA)
:/Y\dAasA+de(A)8sA{2—/Y(BfA/\(dAasA-l—de(A)asA))

—/ (([BSA/\BSA]—|—d2Xf(A)(85A,8SA))/\83A)—/ (8241054)
Y by
> 2| dgds A+ dX7(A)35 A2y,

—a H aSAHLOO(Y) H aSAHiZ(Y) —C ” asf‘leS(aY)

= (452 — 2 3sAHLoo(Y)) (HasAHiZ(Y) +| asA“i3(3Y))

z 282H8SA”§,2(Y)

for uniform constants ¢; and § > 0 and s sufficiently large. Here we used (42).
In the first inequality the term fE(aﬁAAasA) is controlled by ”asAH;ﬁ(BY); see
Wehrheim [36, Lemma 2.3; 23] for general Lagrangian submanifolds. The first in-
equality also uses the estimate on d*X ' (A) from Proposition D.1 (v). For the second
inequality note that every solution of (42) satisfies ds A(s) € T4(5)L and

*0sAlgy = —(Fq + X¢(A))|ay =0,

(51) .
%054 = *d4(Fq + X7(4)) = 0.

These identities use (10) and the Bianchi identity as well as the facts that the perturbation
vanishes near dY and that the Lagrangian submanifold £ is contained in the flat
connections on dY . Now we can apply Lemma 5.6 to the paths [—1,1] - A(Y) :0 —~
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A(s + o) (whose derivative is L2—small due to the finite Z?—energy of the path) and
to the 1-forms o = d; A(s) € Qii( s)(Y, g), for sufficiently large s > 0 to obtain

05 A L2y + 1954 s ayy = 2837 [daded + Xy ()0 A| 12y,

Here we have chosen (26%)~! = (coc)? with the constant ¢¢ from Lemma 5.6 and a
further Sobolev constant ¢, so § > 0 is independent of the solution A. The last inequality
in the estimate of g” is due to [|d5A(s)||Loo(y) < 28%¢; ! for s sufficiently large. This
follows from Lemma 5.5 applied to the paths [—1,1] — A(Y) : 0 +— A(s + 7). So we
have g”(s) > 46%g(s) for s sufficiently large. This implies the assertion of Step 1,
ie g(s) < C2e72%5 by a standard argument (see eg the proof of [29, Lemma 2.11]).

Step 2 Let § > 0 be the constant of Step 1 and A € A(]0, 00) x Y') be the connection
associated to the path A. For every integer k > 0 there is a constant Cy, such that for
every s > 1

-6
” 3SA‘ Ck(s—1.5+1]x7).A = Cke g

Fix k > 0 and consider the connections A, € A([—2,2] x Y) given by the paths
Ao (s) := A(o + 5). Due to the finite L?—energy of A on [0, c0) for some p > 2
these paths on [—2, 2] satisfy [|05 Ao || L2(j—2,21x¥) = 0 as 0 — 00. So by Lemma 5.7
there is a constant ¢ such that for all sufficiently large o
| (e go)Hck([—l,l]xY),AU

=k (HDAo (. ) H Wk+2.2([=2,2]xY), Ay T ” (o, (p)HLZ([—2,2]xY))

for every smooth ¢: [—2,2] = Q°(Y, g) and a: [-2,2] — Q1 (Y, g) satisfying a(s) €
QLU(S)(Y ,9). Now apply the estimate to the pair

a(s) :=0dsA(0 +5), p(s) :=0.
Differentiate (42) and recall (51) to see that (o, ¢) € ker Dy and hence

_1 _
195 Allok (o—1.0 4 11x¥).4 = Ck 105 AllL2((o—2.0 421x¥) < kC(28) 2e?Pe ™0,

The last inequality follows from Step 1 and proves Step 2.

Step 3 Let § > 0 be the constant of Step 1. Then there is a connection Ao € A(Y, L)
such that F4, + Xy(Axo) = 0 and a sequence of constants Co, Cy, Cs, ... such that

(52) HA —Aeo Hck([s—l,s+1]><Y) < Cre™

for every integer k > 0 and every s > 1.
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By Step 2 we have [|05A4(5) || poo(y) = Coe™ % for every s > 0. Hence the integral
o0
Ao 1= A(0)+/ dsA(s) ds = lim A(s)
0 §—>00

converges in L (Y, T*Y ®g) and defines a C®—connection on Y . This directly implies
Asols € L. Moreover, (52) holds with & = 0. We prove by induction on k that A
is a Ck connection that satisfies (52). For k = 0 this is what we have just proved. Fix
an integer & > 1 and suppose that A is a Ck=1 connection that satisfies (52) with k
replaced by k — 1. Then A is bounded in C¥~! and so there is a constant C such that

(53) ”a”CZ([s—l,s+1]><Y) =C ”a”c’@([s—l,s+1]xY),A

forevery £ <k, s>1,and every o € Q1 ([s — 1,5 + 1] x Y, T*Y ® g). So it follows
from Step 2 that

185 All gk (y—1,5+11x) < CCre ™.
Hence for s; > 59 >0

$1 ccC
195 All ok (yy ds < —Ee™5%,
)

460~ Al = [
S 5
This shows that A is a CK connection with

CcC
Ske—&v'

The exponential decay of Bf(A(s) —Ax) = afA(s) in Ck=4(Y) for £ = 1,... .k
follows from Step 2 and (53), so this implies (52). Moreover,

[ A(s) = Acoller vy =

Fa, +Xp(Adso) = Sl_i)ngo(FA(s) + Xr(A(s))) = — lim_#d;4(s) = 0.

This proves Step 3 and the lemma. |
Proof of Theorem 5.3 Let § > 0 be the constant of Step 1 in the proof of Theorem
5.1. We prove that there are constants C and & > 0 such that the following holds for

every T > 1. If A: [-T,T] — A(Y) is a solution of (42) that satisfies (43), then it
also satisfies

(54) 105 A() L2y = Ce 3T —lsh 195 All L2 (=T, 1=T1U[T=1,T])xT)

for |s| < T —1/2. Let ¢ > 0 be the constant of Lemma 5.6 with p = % and assume
that (43) holds with this constant ¢. Define f: [-T,T]— R by

S5) = 10,42 2 -
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Then the same argument as in Step 1 in the proof of Theorem 5.1 shows that there is a
constants ¢,, independent of A, such that for |s| <7 —1/4

17(5) 22 (487 = 2 1054 | ooy ) (/) + 1054 sy ) -

Shrinking ¢ if necessary we may assume that [|ds A(s) || poo(yy < 282 /c, by Lemma
5.5 with p = 1/4, and hence

f"(s)>48%f(s)  for|s|<T —1/4.

Now (54) follows from Lemma 5.8 below with p = 1/4, § replaced by 2§, and T
replaced by 7' —1/4.

Integration of (54) yields

—8(T—l|o)) IEX

105 All L2 (j5—3/2.0+3/21x1) < C"e All L2(((=T,1=TU[T—=1,T])xY)

for every o € [T +2, T —2] with C” = Ce3%/2§=1/2 Now, shrinking ¢ if necessary,
we can apply Lemma 5.7 with p = 3/2 and p’ =1 to the paths shifted by o. Since
(054,0) € ker Dy (as in Step 2 of the proof of Theorem 5.1) we obtain constants Cj,
and C; for every k > 0 such that

105 Allek (o—1,0+11x¥),a = Cr 105 All 20 —3/2.043/21x¥)
—8(T—
< Cre T3 ANl L2 (1 —T1orT — 1.7 <) -

for every o € [-T + 2, T — 2]. Taking the supremum over ¢ € [—s + 1,5 — 1] then
proves the assertion (44) on dsA.

To prove (45) it remains to estimate the derivatives tangent to Y. We fix any two
constants ¥ > 0 and p > 1 and then, by Lemma 5.5, find a connection 4q € A(Y, £)
such that Fy, + Xr(Ao) =0 and

[A4(0) — Aollw1.0(v), 4, + 14(0) — Aol Loo(ry = k.

After a gauge transformation on Ay we can assume that A(0) lies in the local slice
S4(0) of A(0), that is d:flo (A(0)—Ap) =0 and *(A(0)—Ag)|yy = 0. Since all critical
points are nondegenerate, Corollary 3.6 provides a universal constant ¢y depending on
g > max{3, p} such that for all « € Q! (Y, g) with *a|yy =0,

el Looqry + llallwir(y), 44

Lq(aY)) '

= o (Jdae + 43 okl gy, + [050] oy + | T, cCelor)
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When applying this to & = A(0) — Aoy we can use the estimate

1 2
|10 @la1) ], gy, = €1 1AO) = Aoy [y

with a uniform constant ¢; since A(0)|3y and Ag|yy both lie in the submanifold
L c A%4(%). More precisely, we abbreviate Ay = Aoy, then we can use the
exponential map in Lemma E.3 to write

1
AOlsy = OB = Ap+ B + [ (DO.4(tB)— D04, ) dr

for some B € T4, L, using the identities ®4(0) = A and DO, = Id. The map O is
smooth and gauge invariant, and £/G(X) is compact, so by the choice of k > 0 we
obtain arbitrarily small bounds on || 8||z4(x) and a uniform linear bound || D® Al (zB)—
DO 4 (0)] = c’||BllLa(x)- This implies the uniform estimate

[ (A ay = 45) = B]l Laczy = €181 Fa(my = 1 1(AO0) = A0)|ay 74 ay)-
We also use the identity dq,0 = Fy(0) — Fyq, — %[a A ] to obtain
[ A(0)—=AollLoo vy + 1 4(0) — Aollw1.r(v), 44
< co (1l Fago) + X7 (AO) lLaqr) + I3l Aallzacr)
+ 11X (Ao + @) = X/ (Ao) — dX (Ao)allLar) + 1 llay [Fu oy )
< colldsA(0) || La(yy + c2k]|A(0) — Agll Loo(v)-

Here ¢, is another uniform constant and we have used Proposition D.1 (v) for the
perturbation term. If we choose k = (2¢;) ! and the corresponding & > 0 from Lemma
5.5, then this proves

[ 4(0) — AollLooyy + 14(0) — Aol 1.r vy, 40 = 2¢0l10s A(0) || La(y)-

Now (45) follows by integrating over the estimate (44) for d5A4. O

Lemma 5.8 Forevery § > 0 and every p > 0 there exists a constant C such that the
following holds. If T > p and f: [T, T] — R is a C*>—function satisfying

(55) ' Z8 (). f(9)=0
forall s € [T, T], then

(56) f(s5) < Ce 8 T=BDE (1)
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forall |s| < T — p, where

p—T

T
Eox(f) ::/_T f(s) ds + T_pf(s) ds.

Proof We claim that there is a constant Cy = Cy(§, p) > 0 such that every C>—function
f:[=T,T]— R with T > p that satisfies (55) also satisfies

(57) F/(s) =8/ (s) = —Coe T E,(f)

for all 0 <s < T. To see this note that, for every s € [T, T'|, we have

SeB (116 = 37) = ¢ (1(5) 5 1) 2 0.

Hence f'(s) =81 (s) > ea(r_s)(f'(r)—éf(r))

for all —T <r < s < T. Integrating this over the interval t <r <t + p/2 for
—T <t=<—p/2 —-T <t=<p/2—T and s >0 gives

—8s

t+p/2
71(5) =8/ () = / (1) 81 (r)) dr

—8s /2
) e (i(e“f(r)) —25e5’f(r)) dr
t dl"

ol
2 48¢%/2
> —;e‘”f(t) - Te‘”E,,(f).

Integration over the interval —T < ¢ < p/2 — T yields (57) with Cy := 12p~2¢%.
By (57), we have

S = (6 =5 0)) 2 ~Coe HTIE()
for 0 <s < T and hence
e f(0)— e f(s5) = —Cre T Ep(f)
for 0 <s <t <T,where C; :=Cy/6. For s <T —p <t <T this implies
F() <6 f(0) + C1 D EL(f) <857 (% £(1) + CLE ().

Integrating this inequality over the interval T —p <t < T gives (56) for 0 <s <T —p
with C :=Cy + ,o_leap . To prove the estimate for —7T 4+ p < s <0 replace f by the
function s — f(—s). O
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We close this section with a useful exponential estimate for the solutions of the linearized
equation.

Theorem 5.9 Let A: [0, 00) — A(Y, L) be a finite energy solution of (42) that con-
verges to a nondegenerate critical point AT € A(Y,L) of CSy +h . Then there exists
a constant § > 0 with the following significance. If a: [0, o0) — Q' (Y, g) is a smooth
solution of the equation

dser(s) = *(d gy +dXp(A(s))ex(s)). e (s) =0

satisfying the boundary conditions c(s)|x € T4()L and *a(s)|z = 0, and

/0 s lee($) 172y, ds < oo,
then there are constants Cj, such that, for every s > 1 and every integer k > 0,
”a”Ck([s—l,s+1]><Y) = Cke_(ss-
Proof We prove first that
(58) lee ()17 25y < Ce™.
Since the limit connection is nondegenerate, Corollary 3.6 provides an estimate
le)llp12ry < ¢ |daye + dXp (AsDS) | 2p,)
for s sufficiently large. This implies that the function
g(5) = ey,
satisfies

g"(s) = 135172 + ((da + dX ()35, ) + ( ([05 4, &] + d* X (354, @), )

2
>2 HdAO‘ + de(A)a”L2(Y) + /E;Y< dsat gy Aalgy ) — Cl[0s Al oo ||a||22(y)
> 272 lall3 120, — CllasAlloo lelay 132y — ClI3s Alloo llel? 2

(59) =8g(s)

for some § > 0 and all s > s59. Here we used Proposition D.1 (v) to estimate
||d2Xf(8sA, o) z2(yy and Theorem E.1 to write a(s)[ay = Pa(s)|,y B(s) for tangent
vectors B(s) € T4, L at the limit connection Ao := limg—o0 A(s)|yy . This gives the
estimate

|| toselaynatar) = [ (05 Paony)BAalor ) = CllasAlloollay oy
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The final inequality in (59) follows from the exponential decay of ds A (see Theorem
5.1) with any § < 2¢~! and sufficiently large sqo. This shows that the function A(s) :=
e735(g'(s) + 8g(s)) is monotonically increasing for s > so. We claim that A(s) < 0
for all s > so. Suppose otherwise that there is an s; > 5o such that ¢y := h(sy) > 0.
Then /(s) > ¢; for all s > 51, hence

d
d_(e5sg(s)) — €25sh(S) > eZSscl’ s> s,
S

and hence, by integration,
1

€1
e&sg(s) > _6285 _ (28

z €28s1 _e(gslg(sl)> )

But this means that the function s — e % g(s) is not integrable, in contradiction to our
assumption. Thus we have proved that 4(s) < 0 and hence g’(s) < —3g(s) for every
s > so. Hence either g vanishes identically for all sufficiently large s or g > 0 for all
s > 59 and (log g)’ < —6. This proves (58).

To obtain bounds on the derivatives of & we use Theorem 3.11 (ii) with Dy replaced
by the adjoint —D}{ = Vs, — Hy4. Since A(s) converges in the C* topology for
s — 0o we obtain |[o| pr+12qs—1 s+1]x¥) = Crl@llL2(s—2,5+2]x¥) With a uniform
constant Cj, for each integer k and all s > 2. The result then follows from the Sobolev
embeddings WKk+3:2([—1,1]x ¥Y) < C¥([—1,1]x Y). O

6 Moduli spaces and Fredholm theory

In this section we set up the Fredholm theory for the boundary value problem (16). For
the purpose of this paper we could restrict the discussion to the case of a tube R x Y
as base manifold. In view of a future definition of product structures however, we take
some time to introduce a more general class of base manifolds and develop the basic
Fredholm theory for these. For the index computations we then restrict to the case
of a tube. We begin by introducing the basic setup followed by a discussion of the
relevant moduli spaces. The main part of this section then discusses the properties of
the linearized operators.

Instanton data

Definition 6.1 A 4-manifold with boundary space-time splitting and tubular ends is
a triple (X, 7,t) consisting of

e an oriented smooth 4-manifold X with boundary,
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atuple T = (tq,..., T;») of orientation preserving embeddings
Tt S x X; — 0X, i=1,...m,

where each ¥; is a compact oriented 2—manifold and each S; is either R or
S!'~R/Z,

atuple ¢ = (¢, ...,ty) of orientation preserving embeddings
tj: (0,00) xY; — X, j=1,...,n,

where Y; is a compact oriented 3—manifold with boundary,

satisfying the following conditions.

®

(i)

(ii1)

The images of the embeddings 7y, ..., T, have disjoint closures and
m
X = U 7i (Si X Xp).
i=1
For j =1,...,n the image U; :=(j((0,00) x Y;) of ¢; is an open subset of

X, the closures of the sets U; are pairwise disjoint, and the set X \ U7 1 Ujis
compact.

Forevery j € {1,...,n} thereis asubset /; C{l,...,m} and amap ¢;: I; —
{#£1} such that
;=] | =i (.2 =1 +1).2)
iel;
for s > 0,7 €/, and z € ¥;. The orientation of X; coincides with the boundary
orientation of Y iff ¢;(i) = —1.

Definition 6.2 Let (X, 7,t) be a 4—manifold with boundary space-time splitting and
tubular ends. A Riemannian metric g on X is called compatible with the boundary
space-time splitting and the tubular ends if

®

(i)

on each tubular end the metric is of split form
g = ds? + g,
where g; is a metric on Y; independent of s € (0, 00),

each t; can be extended to an embedding 7;: S; X [0, &;) X £; — X for some
g; > 0 such that
g = ds? + dr? + Zists

where g; 5 is a smooth family of metrics on %;.
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A quadruple (X, 7,t, g) with these properties is called a Riemannian 4—manifold with
boundary space-time splitting and tubular ends.

Remark 6.3 (i) On the tubular ends condition (ii) in Definition 6.2 follows from (i).
Indeed, on U; the extension 7; for i € I; is obtained by composing ¢; with the
embedding [0, &) x X; — Y; associated to geodesic normal coordinates.

(i) Let (X, t,t, g) be a Riemannian 4-manifold with boundary space-time splitting
and tubular ends. Then X can be exhausted by compact deformation retracts. Hence
the triple (X, 7, g) is a Riemannian 4-manifold with a boundary space-time splitting
in the sense of [35, Definition 1.2].

Example 6.4 Let Y be a compact oriented 3—manifold with nonempty boundary
0Y = 3. Then X := R x Y satisfies the requirements of Definition 6.1 with the
obvious inclusion T: R x ¥ — dX, Y; :=7Y, Y, := Y (which has the reversed
orientation), t;(s, y) ;== (s + 1, »), t2(s, y) := (—s — 1, y). For any metric gy on Y
the metric ds? 4+ gy on R x Y satisfies the conditions of Definition 6.2. If g are two
metrics on Y then, by [35, Example 1.4], there is a metric g on R x Y that satisfies
the conditions of Definition 6.2 and has the form g = ds? + g4 for +s5 > 1.

The following result will be needed in the proof of independence of the Floer homology
from the choice of a metric.

Lemma 6.5 Let (X, t,t) be a 4—manifold with boundary space-time splitting and
tubular ends and, for j = 1,...,n, let g; be a metric on Y;. Then there is a metric g
on X, compatible with the boundary space-time splitting and the tubular ends, such
that (i) in Definition 6.2 holds with the given metrics g; .

Moreover, the space of such metrics g is contractible if we restrict the consideration to
those metrics with ¢; > ¢ in (ii) for any fixed € > 0.

Proof The construction of a metric with given ends works as in [35, Example 1.4].
Denote by Met(X, t,t) the set of metrics on X that satisfy (i) in Definition 6.2 and
rl.*g = ds? + gis for i =1,...,m and some families of metrics (g;s)ses; on Z;.
Then Met(X, 7,t) is convex and hence contractible. Fix ¢ > 0 and let Met. (X, 7,t) C
Met(X, 7,t) denote the subset of all metrics that are compatible with the boundary
space-time splitting and the tubular ends as in Definition 6.2 with ¢; > ¢ in (i1). To
prove that Met. (X, 7, ) is contractible it suffices to construct a continuous left inverse
of the inclusion Met. (X, t,t) — Met(X, 7,1).
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Every metric g € Met(X, 7,t) determines embeddings

Tgi: Six[0,0) xE; - X
defined by Tg,i($,1,2) 1= €XPy; (s, Vi (5, 2)),

where v;: S; X X; — ‘(l-*TX denotes the inward unit normal. The constant § > 0 for
which the 7, ; are embeddings can be chosen uniform on a C!-neighbourhood of
the metric. Taking a locally finite refinement of the cover of Met(X, 7,t) by these
neighbourhoods and using a partition of unity one can construct a function

§: Met(X, 7,1) — (0, €],

continuous with respect to the C°°—topology, such that the maps T, ; are embeddings
for 0 <6 <6(g).

For g € Met(X,t,t) and i = 1,...,m let us define the metrics hg; on the strips
Si x[0.8(g)) x i by
hgi:= ds? 4+ dr? + Zi,s.ts
where the metric g; s, on X; is the pullback of the metric on X under the embedding
2> Tg i (5,1, z). We fix a smooth cutoff function A: [0, 1] — [0, 1] such that A(z) =0 for
t near 0 and A(¢) =1 for ¢ near 1. Then for § > 0 we define As: S;x[0,8)xX; —[0, 1]
by
As(s,t,z) == A(t/6).

Now we can define the map Met(X, (¢, t) — Met.(X,t,7): g+ g by
g:= (?g,i)*()\(g_(g)?;,ig + (1 —)»g(g))hg,i)

on the image of Tg; for i =1,...,m and by g := g on the complement. This map is
the identity on Met. (X, 7,t) since &; > ¢ > §(g). So we have constructed the required
left inverse of the inclusion Met, (X, 7, 1) < Met(X, 1,1). |

Definition 6.6 Let (X, 7,t) be a 4—manifold with boundary space-time splitting and
tubular ends. Instanton data on X are given by a triple (g, £, /) with the following
properties.

e g is a Riemannian metric on X compatible with the boundary space-time
splitting and the tubular ends.

e L=(Ly,...,Ly) is an m—tuple of gauge invariant, monotone Lagrangian
submanifolds £; C A(X;), satisfying (L1)—(L2).
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e Xp: A(X)— Q2(X,g) is a holonomy perturbation as in the introduction such
that, on every tubular end and for every A € A(X), the 2—form t;‘ Xr(A) €
Q2((0,00) x Y}, g) is induced by the path s > Xr;(A4j(s)), where L;‘A =:
Aj(s)+ ®@j(s)ds. Here Xp,: A(Yj) — Q2(Y}, g) is as in (9). The perturbation
f involves a choice of thickened loops, ie embeddings y;: S x Q — int(X),
where Q C R? is a contractible open set.

The moduli space

Let (X, 7,t) be a 4—manifold with boundary space-time splitting and tubular ends and
let (g, L, /) be instanton data on X . The perturbed anti-self-duality equation with
Lagrangian boundary conditions has the form

(60) FA-i-Xf(A)-i-*(FA-i-Xf(A)):O, ‘L';:SAGEI' Vs € ;.

Here the embedding t; : ¥; — X is defined by t; 4(z) := 7;(s, z). The energy of a
solution is

Ef(A) :=%/X}FA+Xf(A)|2.

By Theorem 5.1 every finite energy solution of (60) that is in temporal gauge on the
tubular ends converges to critical points A; of the perturbed Chern—Simons functionals,
ie

(61) Sl_l)nolo ”L;(A —4; ”C"([s—l,s+l]><Yj) =0

for every j € {1,...,n} and every integer kK > 0. This equation is understood as
follows. We denote by A(X, £) the set of smooth connections A € A(X) that satisfy
the Lagrangian boundary conditions rl.”:sA e L; foralli e{l,...,m} and s € S;. On
a tubular end, any such connection decomposes as

A = Bj + @; ds

with ®;: (0, 00) - Q°(Y;, g) and B;: (0, 00) - A(Yj, £). Here A(Y;, L) denotes the
set of smooth connections B € A(Y;) that satisfy the Lagrangian boundary conditions
Blx, € L; for all i € I;. The temporal gauge condition means that ®; = 0. For
Jj =1,...,n the connection 4; € A(Y;, L) in (61) is a critical point of the perturbed
Chern—Simons functional for Y;, ie

FAj +ij(Aj) =0.

The space of solutions of (60) and (61) that are in temporal gauge on the tubular ends
will be denoted by
M(Ay, ..., An: Xr) CAX, L).

Geometry € Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 813

Letus denote by G4, CG(Y;) the isotropy subgroup of 4. So the group G(A1, ..., Apn)
of all gauge transformations u € G(X) that satisfy uoj =uj € G4, for j =1,....n,
acts on the space M(A1,..., An; Xr). The quotient will be denoted by

(62) M(Ar, . Ay Xp) o= M(Ay, . A X)) /G(AL -, Ap).

In the case of the tube X =R x Y, this moduli space can easily be identified with the one
that is mentioned in the introduction. Similarly, the moduli space M (A4, ..., A,: Xy)
for gauge equivalent limits A4} € [4;] can be identified with M (4, ..., An: Xf).

The linearized operator

Fix critical points 4; € A(Y;,L), j = 1,...,n, of the perturbed Chern—Simons
functionals and let A € A(X, £) be a connection satisfying (61). Denote by Q}%(X ,0)
the space of smooth 1—forms that satisfy the boundary conditions

(63) xagx =0, T € Tox aLi

fori e{l,...,m} and s € S;. Then A determines a differential operator
Da: Q4 (X, g) — QT (X, 9) xQ°(X, g),

(64) Daa:= ((daa +dXp(A)a)t, —d}a),

where 0™ := 1(» + *w) denotes the self-dual part of a 2—form » € Q2(X, g). This
is a generalization of the linearized operator on R X Y in (31). The formal adjoint
operator

Di: QYT (X, 9) x Q%X 9) > Q1(X, )
is given by D (w,9) =diw+dXr(A)*w —dag.

Here Qi""(X ,g) denotes the space of self-dual 2—forms w on X that satisfy the
boundary condition

(65) t,-":sa) =0, 1(3/05) 7 w|syxx € TT;TSAE"

forie{l,...,m}and s € S;.

To obtain a Fredholm operator we must impose decay conditions on ¢ at the tubular ends
and extend the operator to suitable Sobolev completions. For any integer k£ > 1 and any
p > 1 denote by Wg’p(X, T*X ® g) the space of 1-forms on X of class Wk-r with
values in g that satisfy the boundary conditions (63)* and by Wlif P(X,APTT*X ®g)

4 Note that the subscript A in Wg’p indicates boundary conditions for the 1—forms in this space. This

is not to be confused with the norms || - ||j;-x.p 5 in Remark 5.2, where the subscript indicates that the
covariant derivatives are twisted by A.
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the space of self-dual 2—forms on X of class Wk-P with values in g that satisfy the
boundary conditions (65). The following theorem summarizes the Fredholm properties
of Dy and D} . The regularity results (ii) and (iii) are steps towards the proof of (i).

Theorem 6.7 Suppose the limit connections A; are nondegenerate and irreducible,
ie Hjj = 0 and Hfij 5= 0 for j = 1,...,n. Then the following holds for every
connection A € A(X, L) that satisfies (61).

(i) The operators
Da: WEP (X, T*X ® g) > WKL (X, A>T X @ g) x WE12 (X, g),
Di : WEP (X, APHT* X @ g) x WP (X, g) > WKLP(X, T* X ® g)
are Fredholm for every integer k > 1 and every p > 1. Their Fredholm indices
8¢(A) :=index Dy = —index D

are independent of k and p and depend only on the homotopy class of A subject
to (61).

() IfaeLlP(X, T*X ®g), w € Wk LP(X A2FTT*X ® g), ¢ € WKk—1:P(X g)
satisty the equation

(66) [ (Pi@ha) = [ ((00) +(60)
X X
for every compactly supported smooth (o', ¢’) € 8212%’+(X ,9) x Q°(X, g), then

= ng’p(X, T*X ®g) and Daa = (w,9).

(i) Ifwe LP(X,A>TT*X ®g), g € LP(X,g), « € WKk=L.P(X T*X ® g) satisty
the equation

67 /((w,w),DAa’)zf (a.a')
X X
for every compactly supported smooth 1—form o’ € Q}%(X ,g), then we have

Proof Assertions (ii) and (iii) follow from Theorem 3.11 and Remark 3.10. (To obtain
global wk.p —regularity one sums up estimates on compact domains — with and without
boundary — exhausting X .) To prove (i) we combine Theorems 3.11 and 3.13 with a
cutoff function argument to obtain the estimate

(68) lellerxy < c(IDaclipr-1.00x) + lallwr-1.0k))
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for a sufficiently large compact subset K C X . (See Donaldson [10, p 50] or Robbin
and Salamon [26] for the case X =R x Y, k =0, and p = 2). This estimate shows
that Dy has a finite dimensional kernel and a closed image. (See for example [21,
Lemma A.1.1].) By (iii) the cokernel of Dy agrees with the kernel of D} . Since D}
satisfies a similar estimate as (68), it follows that the cokernel is finite dimensional
as well. Hence Dy and D} are Fredholm operators. By (ii) and (iii), their Fredholm
indices add up to zero and are independent of £ and p. That they depend only on the
homotopy class of A follows from the stability properties of the Fredholm index. O

In the case dX = @ the space of connections satisfying (61) is convex and so the
index of Dy depends only on the limit connections 4. The change of the index under
gauge transformations on Y; depends on the degrees of the gauge transformations. By
contrast, in the case 0X # @ and 0Y; # & the space of gauge transformations on Y;
is connected, but the Lagrangian submanifolds £; have nontrivial fundamental groups.
So the index of D4 also depends on the homotopy classes of the paths in £; that are
given by Alsy .

Weighted theory

In order to deal with reducible critical points we set up a refined Fredholm theory on
weighted Sobolev spaces. Fix small nonzero real numbers §y, ..., 8, and choose a
smooth function w: X — (0, c0) such that on all tubular ends

w(t(s, ) = % fors > 1,

w is independent of y € Y; for s €[0, 1], and w =1 on the complement. We introduce
the weighted spaces

WEP(X,T* X @)1= {o: X > T*X ®@g|wa e WP(X, T X ® 9)},

and similarly for W/°7 (X, g) and W{"? (X, A>*T*X ® g). The function w does
not appear in the notation because the spaces only depend on the choice of the ;. The
weighted inner product on Lg (X. T*X ®g) is

(@, B)rzi= [ w?lansp)

and similarly for L§ (X, g). The adjoint operator of d4 with respect to these two inner
products is given by

dpd = w2dw? WO (XL T X @) — Wy (X, g).

It has the form (o, @) = d%a — V3¢ —28;¢ on the tubular ends. We will be using the
following generalized Hodge decomposition.
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Lemma 6.8 Let k be a positive integer and p > 1 and suppose A € A(X, L) satisfies
(61). Then the operator

k+1, k—1,
dilda: WP (X g) > W TP (X, g)

with domain Wjif:gl’p(X, g) = {é € W8k+l’p(X, 9) } xdpaélaxy = O} is bijective and
there is a Hodge decomposition

k. k1,
WP (X, T* X ®g) =kerd}® @da W, § 7 (X. ),

Proof This Hodge decomposition is standard (see eg [10, Section 4.3]) except for the
boundary conditions. The two subspaces do not intersect since

(dago)z = (6030l s = [ wi(gsa) = 0

for all @ € Wlif,’f (X, T*X ® g). Assuming the operator dj*%"sdA is bijective we obtain

the Hodge decomposition of § € W}f ’f (X, T*X ® g) by solving the Neumann problem

di’dak =di’B,  xdaklox =0
for £ € W8k+1’p (X, g). Since da& satisfies the Lagrangian boundary condition we
have @ := f —da€ € WOP (X, T*X ® g).

To prove that the operator dj&"sdA is bijective we work with the weight function
w=¢e": X - (0,00) given by V(s) = s on the tubular ends. Since w has normal
derivative zero the function & := w& € WAT1:-P(X, g) satisfies the boundary condition
xda&’|gx = 0 whenever & does. On the tubular ends we have

wdidaw™ = df dg; — ViV +6;.
This operator is bijective on Wlf tLp (R x Y}, g) since it is Fredholm, symmetric, and
positive definite. So, as in the proof of Theorem 6.7, one can use a cutoff function
argument to show that dl*g‘sdA is a Fredholm operator. Partial integration then shows
that its kernel and cokernel are equal to the kernel of d . To prove that the kernel is
zero let & € W;;gl’p (X, g) with dyé = 0 and assume w.l.o.g. that A is in temporal

gauge on the tubular ends. Then on each tubular end we have d4&; = 0, hence §; =0
by the decay condition, and hence & = 0. This proves the lemma. a

Every connection A € A(X, £) that satisfies (61) determines a differential operator
Das Wil (X. T X ®g) > WP (X A>T X @ g) x WP (X.g)
given by Dy s = ((dao +dXp(A)a) T, —dj&"sa).

Different choices of w with the same §; give rise to compact perturbations of Dg 5.
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Theorem 6.9 For j = 1,...,n let A; € A(Yj,L) and A € A(X,L) such that
Fyq; + Xf;(Aj) =0 and A € A(X, L) satisfies (61). Then the following holds.

(i) The operator Dy s is Fredholm for every integer k > 1, every p > 1, and every
n—tuple of sufficiently small nonzero real numbers 81, ..., 8.

(ii) The Fredholm index of Dy s is independent of k and p ; it depends only on the
signs of the §; and on the homotopy class of A subject to (61).

(iii) If the limit connections A; are all nondegenerate and irreducible, then we have
index Dy s = index Dy .

(iv) If the limit connections A; are all nondegenerate and A satisfies (60) then the
cokernel of Dy s is independent of the weight function (up to natural isomorphisms)
as long as the |§;| are sufficiently small.

Proof The operator wDy s w™! differs from Dy by a zeroth order perturbation which
makes the operators on the tubular ends invertible. Hence assertions (i—iii) follow by
adapting the proof of Theorem 6.7 to the present case. To prove (iv) we observe that
the restriction of the second component d:fg‘S of Dy s to the image of dy is surjective
and, when A satisfies (60), the image of dy is contained in the kernel of the first
component (dy +dXy (A))Tt of Dy 5. Hence every element in the cokernel of Dy s
has the form (7, 0). Moreover, (1, 0) belongs to the kernel of the adjoint operator D} g
(with respect to the L2—inner product determined by w) if and only if n = w™2¢,
where

69)  wlte WS (X APTT* X ®g),  (da +dXf(A)* ¢ =0.

The subscript in Wlif ~L:P indicates the dual boundary condition. It follows from linear
exponential decay in Theorem 5.9 that every solution ¢ of (69) decays exponentially.
Hence the space of solutions of (69) is independent of the choice of the weight function
w as long as the |5 j } are sufficiently small. This proves the theorem. O

Remark 6.10 (i) The linearized operator is gauge equivariant in the sense that
Du*A,(g(u_lozu) =yl (Dp so)u forall o € Wg’f(X, T*X ® g) and all gauge trans-
formations u € G(X) that satisfy uot; =uj € G(¥j).

(i1) In contrast to Theorem 6.9 (iv), the kernel of D, s is not independent of the sign
of the §; unless the A4; are also irreducible.

(iii)) Onatube X =R xY we will use weight functions of the form

(70) w(s, y) = exp(V(s))
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with V € C*°(R) such that V(s) = £Js for £5>1 (ie §; =68, =:8 > 0). Then Dy 5
can — as in Section 3 — be identified with the operator

(71) Dps: W RXY.T*Y ® g) x WP (R x Y. g)
k—1, k—1,
— WP R Y. TY ®@g) x Wy P (R x Y. g)

. 00
given by DA,S =V + HA(S) + (

02)\‘), )\.::asv.

The formal L3 -adjoint operator of Dy s has the form

21 0
DX,S(“"P) = —Vs—i—HA(s)—( 0 0).

(iv) The operator (71) is conjugate to the operator

— A0
(72) wDpsw™ =V +Hay— o) Iai= (o —k)’

on the unweighted Sobolev spaces. By Theorem 6.9 (iv) and its proof, this operator is
surjective if and only if the operator Vs +H 4(5) — Is is surjective, provided § € R\ {0}

is sufficiently small and A € /\7l(A_, AT X r) is a Floer connecting trajectory with
nondegenerate ends.

The nonlinear setup

In the remainder of this section we fix the constants §; = --- =§, = § > 0. Then
the operators Dy s have the following significance for the study of the moduli space
M(Ay, ..., An: Xr). Let Ae/\7l(A1, ..., An: Xr) and suppose that Dy s is surjective.
If the A; are all nondegenerate and irreducible and §=0, then M(A4y,..., Ay: Xy)
is a smooth manifold near [A] whose tangent space is the kernel of Dy = Dy 5. In
general, the kernel of Dy s is the tangent space of the quotient

Mo(Ar, ..., Ans Xp) i= M(A1, . ... Aws X7)/Go(X),

where Go(X) denotes the group of gauge transformations u € G(X) that satisfy
uot; =1 for every j. Hence the dimension of M(Ay,..., An; Xf) is equal to

n
e : 0
(73) §7(A) :=index Dy 5— Y _ dim HY .
ji=1
(This agrees with the notation in Theorem 6.7.) To prove these assertions one can set
up the nonlinear theory as follows. Fix an integer k¥ > 1 and a real number p > 2.
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Associated to a tuple 4; € A(Y;,L), j =1,...,n, of critical points of the perturbed
Chern—Simons functionals is a Banach manifold

(74)  ARP(X LAy, Ag) = {A = Ag+a

ae WEP(X, T*X ® g)
fl.":sA eL;ViVsesS;

where Ag € A(X, E) is a reference connection satisfying L*AO = Aj forall j. The
tangent space of .Aé’p(X L;Aq,...,Ay) is

TAAPP (X, Li Ay, ..., Ap) = {a e WFP (X, T X ®g) | tya € Ter aLi}.

Banach submanifold charts for Alg’p(X,,C; Ay...Ay) CAo+ WBk’p(X, T*X ®g)
can be constructed with the help of the Banach submanifold coordinates for £; C
A%P(Z;) in [33, Lemma 4.3] (see Appendix E). The gauge group

(75) Gt (x) = {u: X -G ( w~'du e WP (X, g), lim uoy; = 11}
§—>00

acts freely on .Akp (X,L;Aq,...,Ay). Its Lie algebra is the Banach space
Wk+1’p(X 9) and the quotient .AS’p(X L;Aq,... n)/g"“”’(X) is a Banach
manifold. There is a gauge equivariant smooth map

ARSP(X, LAy, Ag) = WEP(XAPFTT* X @) A > (Fa + Xy (A)*

and the moduli space Mo(Ay,...,Ay: Xr) can be identified with the quotient of

the zero set of this map by the action of g"“"’ (X). The operator Dy s arises from

linearizing this setup in a local slice of the gauge group action and hence, if this operator
is surjective, it follows from the implicit function theorem that Mqo(A41, ..., An; Xr)
is a smooth manifold near A, whose tangent space can be identified with the kernel of
Dy 5. The isotropy group G4, X ---x Gy, still acts on Mo(Ay,..., Ap; Xy) and the
quotient by this action is the moduli space M(A1,..., Ay: Xr). If all limit connections
Aj are irreducible then the action is free, so the moduli space is smooth.

The spectral flow

We now specialize to the case X := R x Y and establish index identities for the
linearized operator. The main results are Theorem 6.11 and Corollary 6.14 below. They
will be proven by identifying the index with a spectral flow.

We fix a gauge invariant, monotone Lagrangian submanifold £ C . A(3Y) satisfying (L1)-
(L2) such that the zero connection is contained in £ and is nondegenerate. Choose a
perturbation /1¢: A(Y) — R as in the introduction with a conjugation invariant function
/2D xGN — R. Then the zero connection is a (nondegenerate) critical point of the
perturbed Chern—Simons functional. For 4 € Crit(CS; +/hy) and a path B: [0, 1] — L
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from B(0) = A|x to B(1) =0 we define an integer us(A4, B) as follows. Choose a
smooth path A: [0, 1] — A(Y, £) such that 4(0) = A, A(1) =0, and A(s)|x = B(s).
Define

0
wur(A, B) := fspec ({HA(S) + Is}se[O,l]) ’ Le = (f) —8) '

where [tspec denotes the upward spectral flow (see eg Robbin and Salamon [26] and
Appendix A) and ¢ > 0 is sufficiently small. This integer is independent of the
choice of the path 4 and the constant ¢ used to define it. (The space of paths A
with fixed endpoints and boundary values is in fact convex. Moreover, the kernel
ker Hy = H/ll’ 5 HY splits at the endpoints A = A(0), A(1) by Proposition 3.1.)

The significance of the following theorem is that the index resp. local dimension of the

moduli space M (A, A™) is determined modulo 8 by the limit connections A=, A™.

Theorem 6.11 (i) Let A€ A(Y, L) be critical points of CS, +hy and A€ AR x Y)
be the connection associated to a smooth path A: R — A(Y, £) with limits

(76) lim H A—A* ‘

s—+o0

Cl([s—1,s4+1]xY) -
Choose paths B¥: [0,1] — £ from B*(0) = A*|y to B¥(1) = 0 such that B~ is
homotopic to the catenation of the path R — L : s — A(s)|x with BY. Then
index D5 = pspec({Has) = 129)} ser)
and moreover
8r(A) :=index Dy s —dim H] —dim Hy,

(77)
=pup(A~, B7)—pup(A*, BY)—dim H] —dim H,

+ﬁf‘
(i) If A € A(Y, L) is a critical point of CS; + hy and B: [0, 1] — L is a path from
B(0) = A|x, to B(1) =0, then for every loop u: [0, 1] = G(X) with u(0) =u(l) =1

pr(A, B) — (A, u*B) = 8degu.
Proof Multiplication by w defines an isomorphism Wsk’p — Wk 5o Dy s has

the same index as the operator wDy s w~! on Wxg’p RxY, T*(RxY)® g). Hence,
by (72) and Theorem A.4, the index of the operator Dy s is given by

index(Da ) = fhspec ({Ha(s) = 1) fser)
= Mspec({HA(s) + Ié}seR) —dim H/i"‘,f + dim Hj_i_.
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Here A :=0d,V: R — R satisfies A(s) = —6 for s < —1 and A(s) =6 for s > 1. The
second equation follows from a homotopy argument. Namely, the path H 4(5) — I(5)
is homotopic to the catenation of the path H 4(5) + 15 with H 4+ — I} (5). Now the
catenation of the path H 4(5) + I with the path in the definition of 1 (AT, BT) yields
a path homotopic to the one in the definition of us(A4~, B7). (By assumption the
paths are homotopic over the boundary dY , and this homotopy can be extended to the
interior.) Hence

1r (A7 B7) = pspec({Hacs) + Lefyeg) + 1 (AT BT).
For § > 0 sufficiently small we can choose ¢ = § and obtain

pp(A™, B7) = py(AT, BY) = index(Da 5) —dim Hg, +dim Hj, .

This proves (i).

To prove (ii) choose a path A(s): [0, 1] = A(Y, £) with A(0) = A, A(1) =0, and
B(s) = A(s)|x. By homotopy invariance we may assume that A(s) = 0 for s >
1/2. Now let u: [0, 1] = G(X) be a loop with #(0) = u(1) = 1 and choose a path
A" [0,1] — A(Y, L) such that A’(0) = A, A’(1) = 0 and A'(s)|x = u(s)*B(s).
Assume w.l.o.g. that u(s) = 1 and A’(s) = A(s) for s <1/2. Then the spectral flow of
the path H 4(5)+ I on the interval 0 <5 <1/2 isequal to j1r (A, B). On the other hand,
by Theorem A.5 and a homotopy from H 4+ I to 'H 4, the spectral flow on the interval
1/2 <s <1 is equal to index(Dj ») for a connection A = #~!dit € A(S!' x Y, L) on
the bundle Pj in the notation of Section 4. Here i € G(S! x Y) is homotopic to # on
[1/2,1] x Y and identically 1 on the complement. Hence

pir (A, B) — s (A, u* B) = —ugpec({Har(s) + 18}1/25s51)
= —index(Dy,a) = 8deg(ll, A) = 8deg(u).

Here the third identity follows from Theorem 4.3 (ii) and the last from Remark 4.2 (iii).
This proves the theorem. |

For every critical point 4 € A(Y, £) of the perturbed Chern—Simons functional we
define the real number 77(4) by

ny(A) = jur (4, B) %(CS(A, B)+hy(4)),

where B: [0, 1] — L is a path from B(0) = A|x to B(1) =0, and CS(4, B) denotes
the value of the Chern—Simons functional for the connection given by A and B.

Corollary 6.12 (i) The spectral flow (A, B) = uy(A, B) descends to a circle valued
function py: Ry — 2 /87Z.
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(ii) The function ny: Crit(CS. + hy) — R is well defined and descends to a real
valued function on Ry .

Proof Lemma 2.4 (iii), the homotopy invariance of the spectral flow, and Theorem
6.11 (ii) imply that pur(A, B) € Z/8Z is independent of the choice of B. Given a
gauge transformation u € G(Y) we can connect it to the identity by a smooth path
u:[0,1]— G(Y) from u(0) = u to (1) = 1. Let A: [0, 1] — A(Y, £) be the path in
the definition of ir(A, B), then pr(u* A, (if|yy)* B) is defined as the spectral flow
along the path s — #(s)* A(s) and hence, by the gauge equivariance of the Hessian,

(A, B) = pypu™ A, (itlyy)" B).

This proves (i). That 1 is well defined (ie independent of the choice of B) follows
from Lemma 2.4 and Theorem 6.11 (ii). To see that 7y is gauge invariant it remains to
check that

CS(A, B) = CS(u* A, (iilyy)* B).

This follows from the same argument as Lemma 2.4 (iv). Namely, CS(A, B) is the
Chern-Simons functional on ¥ =Y U ([0, 1]x X) of a connection A givenby A4 and B.
The connection given by u* A and (i|yy)* B is i* A, where the gauge transformation
ie g(f’) is given by u and u|yy . It satisfies #|yy = 1l and has degree zero since
a homotopy to 1 is given by combining #(c) on Y with s > u(s + (1 —$)0)|sy
on [0, 1] x ¥. Hence the equality of the Chern—Simons functionals follows from the
analogue of (5) for manifolds with boundary and gauge transformations that are trivial
on the boundary. a

Remark 6.13 The function (f, 4) = 1y (A) is continuous on the space of nondegen-
erate pairs ( f, A). To see this note that the dimension of HIS cannot jump, by Remark
3.8, and hence one can locally work with the same constant ¢ > 0 for the definition of
s in a neighbourhood of a pair (f, A4).

We can now state further index identities. The monotonicity formula in (i) below — a
linear relationship between index and energy — will be central for excluding bubbling
effects.

Corollary 6.14 (i) Let A € A(R x Y) be the connection associated to a smooth

solution A: R — A(Y, L) of (14). Suppose that it satisfies (76) with the critical points
A% € A(Y, L) of CS; + hy. Then

2 _ . .
3r(A) = ;Ef(A) + (A7) = (A1) —dim Hy— —dim Hjﬁ’f.
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(i) If A,A": R — A(Y, L) are paths connecting A~ to B, respectively B to AT,
then the index of their catenation is given by

S (A#A") = 87 (A) + 87 (A) +dim Hp +dim Hp /.

(iii) If A: R — A(Y, L) is a self-connecting path with limits A~ = AT =: Ay and
s > A(s)|y is homotopic to s +— u(s)*Ag|ly for u: R — G(X) with u(+oo) =1,
then

87 (A) = 8deg(u) —dim Hy —dim Hy .

Proof Assertions (ii) and (iii) follow immediately from Theorem 6.11. Assertion (i)
follows from the definition of 7y, Theorem 6.11, and the following energy identity.
For a path 4: R — A(Y, £) satisfying

0sA = —x(Fq+ Xr(4))

choose paths B*: [0,1] — £ from B*(0) = A*|y to B¥(1) = 0 such that B~ is
homotopic to the catenation of A(s)|y with BT . Then

—Ef(A):/];{/Y(BSA/\(FA—i—Xf(A))) ds

sz(%a%fy((AAdA)+%<AA[AAA]>)

1 3
=CS(A*T,BY) +hp(A1)—CS(A™, B7) —hs(A7).

Here the second equation follows from (9) and the fact that

Z/Y(FA/\EJSA)=/Y%<(A/\dA)+%(A/\[A/\A])>—|—/(W(A/\BSA).

The last identity follows from the C!—convergence of A for s — 4o00. Since B~ is
homotopic (with fixed endpoints) to the catenation of A|x, with B, we have

/R/E(A/\EJSA)dS=/01/E(B_/\8SB_)ds _/()I/E(B+/\333+)ds.

(See the proof of Lemma 2.4 above for the invariance of this integral under homotopy.)
This proves the corollary. |

Remark 6.15 Our notation for the indices is motivated by the following finite dimen-
sional model. Let M be a Riemannian n—manifold, G be a compact Lie group that
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acts on M by isometries, and f: M — R be a G-invariant Morse—Bott function.
Associated to every critical point x € M is a chain complex
Ly V2f(x) LY
0—g—TM — TyM —>g—0,
where L is the infinitesimal action of g and V? f(x) is the Hessian of f (see (12)).
We denote
ker V2
vo(x) :=dimker L, vi(x):= dimer,—f(x), p(x) :=inds(x),
im L
that is w(x) is the number of negative eigenvalues of the Hessian and vg(x) is the
dimension of the isotropy subgroup. Now the kernel of the Hessian has dimen-
sion vy (x) + dim G —vgy(x), the unstable manifold W#(x) of the orbit Gx has di-
mension p(x)+ dim G —vgy(x), the stable manifold W*(x) of Gx has dimension
n— u(x) —vq(x), and, in the transverse case, the moduli space

MG, xT) =Wix)NWi(xT)/G
of connecting trajectories has dimension (compare with (77))

S(x 7 xT) i=dim M, xT) = u(x7) —pu(xT) —vo(x7) — vy (xT).

7 Compactness

Let Y be a compact oriented Riemannian 3—manifold with boundary dY = X and £ C
A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)—(L2). Fix a collection of embeddings y;: S! xD —int(Y), i =1,...,m, as in
Section 2. We use the notation

_ 8SA—qu)+*(FA+Xf(A))=0,
MA, AT X)) ={Ac A"RxY) | A(s)|s €L VseR,
Ef(A) < 00, limg_y 100 A(s) = AT

for the space of Floer connecting trajectories associated to a perturbation f € C*°(D x
G™)S and two critical points AT € A(Y, L) of CSz + h . Here A*(R x Y') denotes
the space of connections & = ®ds + 4 on R x Y that are in temporal gauge outside
of [-1,1]x Y, ie ®(s) =0 for |s| > 1. The corresponding gauge group G(A~, A™)
consists of all gauge transformations u: R — G(Y) that satisfy u(s) = u™ € G 4+ for
45 > 1 and the quotient space will be denoted by

M(A™, AT Xp) i= M(A™, AT X7)/G(A™, A7),
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The goal of this section is to establish compactness theorems for these moduli spaces.
The proofs will be heavily based on the basic compactness results in [35; 36]. We start
with a summary of the compactness for uniformly bounded curvature.

Proposition 7.1 Let /¥ € C®°(D x G™)C be a sequence that converges to f > &
C°(D x G™)S in the Ck+! —topology for some k > 1. Let I' C R be a sequence
of open intervals such that I’ C IV for all v and denote I :=J, I". Let E” =
®Vds + AV € A(IY x Y) be a sequence of solutions of the Floer equation

(78) ds A" —dgv ®¥ + x(Fqv + Xpv(4")) =0, AV(s)|x € L,
such that the curvature | Fgv| is locally uniformly bounded. Then the following holds.

(i) There exists a subsequence, still denoted by EV, and a sequence of gauge trans-
formations u” € G(I” x Y)) such that (u”)*E" converges in the C¥ topology on every
compact subset of I x Y .

(ii) There exists a subsequence, still denoted by EV, and a sequence of gauge transfor-
mations u” € G(IY x Y) such that (u”)*E" is in temporal gauge and converges in the
ck—1 topology on every compact subset of [ x Y .

(iii) In both cases, the limit E°° € A(I xY') of the subsequence can be chosen smooth
and it satisfies (78) with fV replaced by f*°.

Proof In a neighbourhood of the boundary / x dY, where the perturbations vanish,
compactness for anti-self-dual connections with Lagrangian boundary conditions was
established in [35, Theorem B]. The interior compactness follows from standard
techniques (eg Donaldson and Kronheimer [11] and Wehrheim [34]) and Remark D.2.
The crucial point in the bootstrapping argument is that a W*>? —bound on (1*)* 2"
implies a WX:? _bound on Xpv((u¥)*EY) and hence on F(‘ZU)*EU. (The constant
in the Wk-P _estimate of Proposition D.1 (iii) depends continuously on f € ck+1)
Combining these two compactness results via a general patching procedure as in [11,
Lemma 4.4.5] or [34, Proposition 7.6] we deduce that, for a suitable subsequence and
*ZY is bounded in WKt1-P(K) for every compact
subset K C I xY and a fixed p > 4, and hence has a C¥ convergent subsequence. A

choice of u", the sequence (u")

diagonal argument then proves (i).

To prove (ii) we write BV = W¥)*eY =: @V ds + A” where u” is as in (i). Then 2"
is bounded in WX+1-2 on every compact subset of I x Y. Define v¥: I' xY — G as
the unique solution of the differential equation

350" + ®¥v¥ =0, vV (0) = 1.
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Then v” is bounded in WA+1.2 on every compact subset of I x Y. (To check this
use the identity d;(v~'dv) = —v~!®v.) Hence (v")*ﬁ” = (u"v")*EV is in temporal
gauge and is bounded in Wk:P on every compact subset of / x Y. The compact
embeddings WX-?(K) <> Ck~1(K) together with a diagonal argument then prove (ii).

The regularity of the limit E°° can be achieved by a further gauge transformation.
That E° solves (78) follows from the fact that these equations are gauge invariant
and preserved under weak W7 convergence. |

The following is the most general compactness result for bounded energy.

Theorem 7.2 Let f € C®°(ID x G™)C be a perturbation such that every critical point
of CS + hy is nondegenerate. Let ¥ € C*°(D x G™)C be a sequence that converges
to [ in the C*T!_topology and let ¥ = ®’ds + A € M(AY, A% ; Xpv) be a
sequence of Floer connecting trajectories with bounded energy

supEfv(E”)=sup[ }asAv—dAudb"‘2<oo.
v v JRxY

Fix p > 1 and suppose that A', converges to AT € Crit(CS, + hy) in the C* topol-
ogy. Then there is a subsequence, still denoted by E", critical points By, ..., By €
C}\r/it(CSg +hy) with By = A~, By = A7, and Floer connecting trajectories E; €
M(B;_1.Bj; Xy) fori =1,...,{, such that E” converges to the broken trajectory
(E1,..., 8y) in the following sense.

Foreveryi €{l1,...,L} there is a sequence s; € R and a sequence of gauge transfor-
. v Vyk vV v

mations u; € G(R xY') such that the sequence s — ((u})*E")(s + ;) converges to

E; in the WP —_norm on every compact subset of R x Y \ Z;. Here Z; CR x Y is the

bubbling locus consisting of finitely many interior points and finitely many boundary

slices; it is nonempty whenever E; has zero energy.

The broken trajectory (E1, ..., Ey) has energy and index

4
D _Er(@) < lim Epo(E"),
i=1
7 4 £—1
L] . 0 . L]

> 8B+ ) dimHp < lim 870 (EY).

i=1 i=1
If sup,, || Fgv| L < oo then there is no bubbling (ie Z; = & for all i), equality
holds in (79), and (u”)*E" converges in the ck topology on every compact set. If
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sup,, || F'gv| Lo = oo then there is bubbling (ie Z; # & for some i ) and

L
~ : L] 2
D _Ep(8i) < lim Epo(8") —d4n’,
i=1
l {—1
> 88N+ dimHp < lim 67 (E") -8,

i=1 i=1

(80)

Remark 7.3 The assumption that A", converges in the ck topology always holds for
a subsequence in a suitable gauge, by Proposition 3.7.

Proof of Theorem 7.2 Replacing the uniform bound on the curvature in Proposition
7.1 by an energy bound on EY allows for bubbling. For the (unperturbed) anti-
self-duality equation with Lagrangian boundary conditions this was dealt with in
[36, Theorems 1.2,1.5], [23], and [37, Section 3]; for the perturbed equation in the
interior the (well known) result is Theorem D.4. Combining these one essentially
obtains the same basic compactness theorem as for anti-self-dual connections (see [10,
Proposition 2.1]). A minor difference is that — due to the holonomy perturbations — we
obtain convergence in the W !»Z —norm for any p > 1 rather than in the C>°—topology;
so [10, Proposition 2.1 (1)] is replaced by W - —convergence. The crucial difference
is in the knowledge about the bubbling phenomenon. First, the finite set {x{,...,x;} C
R x Y of bubbling points is replaced by a more general bubbling locus Z C R x Y
consisting of finitely many interior points and finitely many boundary slices {s} x dY .
On the complement of Z , one has local L? -bounds on the curvature. Second, we do not
have a geometric description of the bubbles (after rescaling) or the precise quantum 472
for the energy concentration. There is however a universal constant 72 > 0 that is a lower
bound for the energy concentration at each component of the bubbling locus Z; so [10,
Proposition 2.1 (2)] is replaced by [, |F4 + Xf(A)|2 < limsupy o0 [y | Fa,, +
Xy, (Aqr) |2 — £k, where £ is the number of points and boundary slices in Z .

The second source of noncompactness, the splitting of trajectories, is the same as
for the usual Floer theories. With the exponential decay results of Section 5 and the
modified basic compactness above, one can adapt the discussion in [10, Chapter 5.1]
to prove the convergence to a broken trajectory. In particular, exponential decay holds
for sufficiently C?>—close perturbations with uniform constants (see Theorem 8.3 for
the nondegeneracy and Proposition D.1 (v) for the constants). More precisely we argue
as follows.

Throughout we denote the perturbed Yang—Mills energy of EY on I x Y by

Efu(av;l):// |0,4” —d g ®" .
1JY
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Passing to a subsequence we may assume that bubbling occurs only for finitely many
sequences t¥, j =1,...,m, with

hj = 8h—r>l}) vlggo Epv BY; [l‘}) —38,t) +8]) > h.
In particular, the limits exist. The sequences are chosen such that ¢ JP 1 t}’ > 0 and
that these differences converge either to a positive number or to infinity. We may also
assume that the curvature of E" is uniformly bounded on the complement of the sets
[IJV -4, t}’ + 8] x Y for every 6 > 0 and that the following limits exist:

— T 3 V. v _
€0 '_(;lg%vlggoEf”(“ ; (—o0, 1] —4]),

gji=lim lim Ep(BY:[t) +6.20, —68]).  j=1l...m—1,

§—0 V—>00

em:=lim lim Er (E":[1, +6,00)).

§—>0 V—00

Then lim Ef(EY) =¢o+h1+e1++hm+em.

vV—=>00
Next we choose a constant € > 0 smaller than the constant in Theorem 5.3 and smaller
than %. Following [10, 5.1] we choose the sl?’ € R inductively such that

&
Epp (i (—oos) =3 Ep(E%lssiu) = Er(E0+ Y .
JjeJ;

where E; is the limit of the sequence EV(s; + ) modulo gauge and bubbling and
Ji C{1,...,m} denotes the set of all j such that the sequence t}’ — s} is bounded.
This choice guarantees that 57, —s; — oo for all 7, that {1,...,m} is the disjoint
union of the J;, and that J; # @ whenever E; has zero energy. By Theorem 5.3
(applied to a temporal gauge of the E” on intervals [s; + T s, ;] with energy less
than ¢) the positive end of E; is gauge equivalent (and hence w.l.o.g. equal to) the
negative end of E;, 1, the negative end of E; is A~ , and the positive end of Ey is

AT . The total energy of the broken trajectory is

m

l m
(81) ZEf(a,-):Zgj:vlln;OEfv(a“)—Zhj.
Jj=0

i=1 j=1

If the curvature is bounded then m = 0 and all bubbling loci Z; are empty. In this
case the energy identity is (81) and the index identity follows from the monotonicity
formula in Corollary 6.14 (i). If the curvature blows up then m > 1, hence Z; # @ for
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some i, and we obtain the strict inequality
L L 12 )
Y Sp(EN+) dimHy Z(;Ef(ai) + 1y (Bi—1) — nf<Bi))
i=1 i=1 i=1

. 2 -
< lim (;Efv(bv) + v (AL) —npv (A:L))

V—>00

_ v . 0
_,,lggo(sf”(“ ) +dim H .

Here the first step follows from Corollary 6.14 (i), the second step uses (81) and the
continuity of the function (f, A) = 17(A) (see Remark 6.13), and the last step uses
Corollary 6.14 (i) and dim Hj, = dim HS_ for v sufficiently large (sce Remark 3.8).
Each side of our inequality has the form § r(E) +dim H 9_ for a suitable path E
running from A~ to A™. For the left hand side, by Corollary 6.14 (ii), E can be
chosen as the catenation of the E; and for the right hand side as a small deformation
of BV for v sufficiently large. Since the inequality is strict it follows from Theorem
6.11 (i) and Corollary 6.12 that the defect is at least 8. Using monotonicity again we
obtain an energy gap of at least 472. This proves the theorem. O

A first consequence of the compactness and index identities is that we can exclude
bubbling in certain moduli spaces by transversality.

Corollary 7.4 Suppose that the sequence of solutions in Theorem 7.2 has index
§pv(BY) <.

Suppose that either bubbling occurs or one of the limit trajectories E; is a self-
connecting trajectory of [B;_1] = [B;] = [0]. Then one of the limit trajectories E; must
have negative index dy(Ej) < 0 and at least one of its endpoints Bj_y or Bj is not
gauge equivalent to the trivial connection.

Proof Every nontrivial self-connecting trajectory &; of [0] has index 67(Z;) > 5 by
Corollary 6.14 with Ef(E;) = 4% deg(u) > 0. It also adds dim H[%] = 3 to the sum
of indices. So to achieve a sum < 7, one of the other indices must be negative. A trivial
self-connecting trajectory of [0] has index —3 but also adds another dim H[%] =3to
the sum of indices. Hence there must be a trajectory with negative index and at least
one nontrivial end. The same holds in the bubbling case by (80). a

We will refine the compactness theorem in two special cases. First we consider the

case of no breaking and no bubbling in which we obtain actual compactness of moduli
spaces.
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Theorem 7.5 Fix aconstant p> 1. Let f, /¥ be asin Theorem 7.2 and A* € A(Y, L)
such that F+ + Xpv (A%) =0 forall v. Then there is a § > 0 such that the following
holds. If 2 € M(A~, AT; X¢) and, for each v, BV is a solution of (78) that is gauge
equivalent to an element of M(A_, AT X ‘#v) such that EV converges to E in the ck
topology on compact sets and

Ef(8) = lim Ef(8"),

then there exists a sequence of gauge transformations u” € G(RxY') such that (u”)*E"
converges to E in Wék’p RxY).

Proof Note that, by contradiction, it suffices to prove the convergence statement for a
subsequence. For that purpose we choose v’ € G(R x Y) such that

o

V= (W)*EY e M(A7, AT Xp).

In particular, Y = ®¥ds+ A is in temporal gauge outside of [—1,1]x Y. Fix a
constant ¢ > 0 smaller than the constant in Corollary 5.4 and note that the exponential
Ck estimate in Corollary 5.4 holds with uniform constants §g := 6 > 0 and Cy := Cy,
in a sufficiently small C*¥*1 neighborhood of /. We write & = ®ds 4+ A and choose

To > 0 such that
To )
/ / |83A—dACI)| > Ef(E)—S.
~To JY

Since E” = ®" ds + A" converges in the CK norm on compact sets we have

To _ U To 5
/ /‘BSA“—dZUCD"| =/ /|asA"—dAucI>“} > Epv(BY)—¢
~To VY —To VY

and thus E(EY; (—oo, Ty]) + E(EY; [Ty, 00)) < ¢ for sufficiently large v > vy. Hence
it follows from Corollary 5.4 that

|4 -4 Coe206=T0) E(8Y: [Ty, 00)),

- ”C"([s,oo)xY) =

|4¥ -4 < Coe 07T E(BY; (—00, —To))

- HC" ((—00,—s]xY)

for s > Ty + 1 and v > vy. The same estimate holds with A" replaced by A. Now fix
a constant 0 < § < §p. Then there exists a constant C (depending on Cy, &, dg, &,
and p) such that

|E" -] WEP (R\[-T.T)xY) = CeComdT=T0)

for T >Ty+ 1 and v > vy.
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Next, fix a sequence p, — 0 and choose 7, — 0o so that 7, > Ty + 1 and

Co—60=8)Tu=To) _ Pn
2

For fixed n € N note that both E¥ and ¥ = (v”)*EV converge to E in the CK norm
on [Ty, T, +1]xY and on [-T;, — 1, —Ty] x Y. Using the identity

(82) @)l = BV — (v") T EVY

we thus inductively obtain bounds on v¥ in C¥T1((£[T}, T, + 1]) x Y). Then, by a
compact Sobolev embedding, we find a subsequence limy_, o, v, (£) = oo such that

v¥n (e)l(i[TanH])xy — v,ﬂf converges in the ¢k norm. Again using (82) we see that
this convergence is in fact in the C¥*1 norm. On these domains we moreover have

[CralcRge

— : Vykmy  om
=,_m lenrE-s

ck ck

< Jtim (|0*)E - 8|

ot @) @ =20 ) = 0

First, this implies that v,:lIE € G(Y) is independent of s € +[T}, T,, + 1]. Secondly, by
unique continuation (Proposition 8.6), it implies (v,:f)* E = B and hence the limits
vf,t eg 4+ must lie in the stabilizer of the limit connections. Now we can define the
gauge transformations uf, €eG(RxY) by uf; = v"”(z)(vff)_l for £s > T, + 1, by
uf; =1 for |s| < T}, and, for s € £[T}, T, + 1], by an interpolation which satisfies
d(ut, D k1 ([T, T +1])xy) — 0 as £ — oo. With this choice we have

Pn

H (Mfl)* gn®_g H WP (R\[=Ty—1,T,+1])xY) = B

from the exponential decay, as before for (v)*EY, and

Pn

byxqvp(l) _ o -
[ChrMo “lwir (- tu-1,1, 41051 = 5

for all sufficiently large £ > L,, from the convergence of EY and uf; on com-

pact subsets. Now we can pick £, > L, so large that v, := v,({,) — oo and
| (u¥n)* 8V — B ”%k,p(RXY) < pn — 0. This proves the theorem. |
Corollary 7.6 Let hy be a regular perturbation in the sense of Definition 8.2, and let
AT, A~ € A(Y, L) be nondegenerate and irreducible critical points of CSy + hy. Then
MU(A™, AT, Xr)/R is compact and hence is a finite set.

Proof Assume by contradiction that there is a sequence of distinct points [E"] €

MY (A=, AT X r)/R. These solutions have index 1 and hence fixed energy by Corol-
lary 6.14 (i). By Theorem 7.2 we can pick a subsequence and representatives =*
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that converge to a broken trajectory (E1,..., &¢) modulo bubbling. By transversality
we do not have solutions of negative index, so Corollary 7.4 implies that there is no
bubbling, and the index identity in Theorem 7.2 implies that £ = 1. Now Theorem 7.5
implies that V¢ converges to E; in the Wsl’p —norm. Since M!(47,AT; X 7)/R
is a O—manifold this implies that EY* is gauge equivalent to a time-shift of E; in
contradiction to the assumption. |

Finally we refine the compactness theorem in the case when bubbling is excluded but
breaking can take place. The precise convergence statement here will be important for
the gluing theory.

Theorem 7.7 Fix a constant p > 1. Let f, fV, EY, S;’, u}’, and E; be as in the
conclusion of Theorem 7.2 and suppose that no bubbling occurs, ie the curvature of
EY is uniformly bounded, ((u})*E")(s; +-) converges to &; in the ck topology on

compact sets, and

L
(83) > Ef(E)) = lim Ep(8").

i=1
Then the following holds.
(i) IfDg, s is surjective for i = 1,...,{ then so is Dgv 5 for v sufficiently large.

(ii) If the set of critical points of CS. + hyv is independent of v then, after replacing
the broken trajectory (E1, ..., E¢) by a gauge equivalent one, and for a subsequence,
there exists a sequence of gauge transformations u” € G(R x Y') such that

vll)m [@”)*EY —&i(-— S)”WIP(I“xY) 0, fori=1,...,4,
(- ,%s +isi’ i=1,
I = s+ gl st Hasih i=2.. 00,
[%s 1—F%sz,oo) i=4.

Proof Fix a constant € > 0 smaller than the constant of Theorem 5.3 and recall that
the sequences s; in Theorem 7.2 are chosen such that

(84) Efv(EY; (—00,s7]) =¢/2, Epv(EY:[s7. 571D = Ef(E))

for v sufficiently large and i = 1,...,£—1. Since s;’
T>0

Y
11 —8; — 0o we have for any

Epv(BY[s7, s + T+ Epv(EY 57y = T.5; 1) < Epv (B [s7,5741))
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for large v. With v — oo this gives Ef(E;;[0,T]) + Ef(E;+1:[-T.0]) < Ef(E;)
and, by taking the limit 7" — oo, Ef(E;y1;(—00,0]) < Ef(E;:(—00,0]). Hence
Ef(8i;(—00,0]) <&/2 forall i. Choose 71,..., ¢ such that

Ef(E,';[—ri,‘[i]) = Ef(Ei)—8/4.

Then Ef(E;;[0,7;]) > Ef(E;)—3¢/4 and hence Epv (EV:[s}.s] +1i]) > Ef(Ej)—e
for v sufficiently large. Moreover, Efv(E";[s), 00)) converges to Ef(Ey) —¢/2,
by (83) and (84). In summary we have for i =0, ..., ¢ and v sufficiently large

(=00, 571, i=0
(85) Ep (B J)) <e, = s sl =10 =1

[s) +tg,00), i=4{
Now choose gauge transformations v} on J” x Y such that (v})*E" is in temporal
gauge on JY x Y. Thus each connection (v})*E" is represented by a smooth path
A7 Ji — A(Y, L). Then it follows from Theorem 5.3 that there are critical points
B} € Crit(CSz + hyv) and positive constants Co and ¢ such that, for i =0,...,¢,
T > 1; 4+ 1, and v sufficiently large, we have

(86) H Zy - Blv ” < Coe—(go(r—r,-)\/g.

O (mxy) T | 4Y - B} HWl’I’(J,-"(r)XY),B}’

Here we abbreviate 7y := 0 and

(=00, 57 — 1], i
Ji(@) = [sf +T.57,—1] i
[sy + T, 00), i

0,
IL...,0—1,
L.

Moreover we use the fact that the constants in Theorem 5.3 can be chosen uniform for
all Y. Since the estimate is gauge invariant we may modify the gauge transformations
v; so that the sequence B converges in the Ck —norm to the critical point B; in the
assertion of Theorem 7.2 for every i (see Proposition 3.7). Then (86) continues to hold
if we drop the subscript B} in the WP _norm and replace Cy with a possibly larger
constant, still denoted by Cj.

Under the assumption of (ii) we may choose v} so that B} = B; is independent of v.
Now we can argue as in the proof of Theorem 7.5. Combining (86) with B/ = B; and
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the exponential decay of E; and E;4; we obtain the estimates

H(v(‘)))*Ev — E](. _SIIJ)HWI*I’((—OO,S‘I)—‘L’]XY) S Cle_so‘t’

oy ey -2 < e,

_SIP)HWl’l’([s”—i—r 3gv  +1lgVxy) =
P THaSip1TaS

(87) bk v —80(r—17)
” (v;) 8" = Eit1(: _Si—i—l)HW“’([%s;}+%szy+1’szy+1—r]xY) =Cie ’
V\kKm V= oV —8o(t—1¢)
[w)*E" =Bl =) Wi () +ro0)xy) = C1€
for v sufficiently large, some constant Cy,and i = 1,...,£— 1. Fix a constant p > 0

and choose t so large that
Cle_‘s‘)(f_f") <p/4 fori=1,...,4.

Then, on the interval [s) —7 — 1,57 —7] C J” | (7) the connections (v}_,)*E" and
(u})*EY are both WP close to Ei(-—s;) Thus ((vl‘.’_l)_lu}’)(- + ;) is bounded
in W2P([—t —1,—1] x Y) and thus, for a subsequence, converges to a gauge trans-
formation g;” € G>P([-t —1,—7t] x Y). For the limit we obtain (g7)*Ei=E; on
(=00, —1] as in Theorem 7.5, and we deduce that g;~ € G, . Similarly, we can pick the
subsequence such that ((v;’)_lu}’)(-+s}’) — gl.Jr €Gp,,, in W2P([r,7+1]xY) with
(g;r *E; = E; on [1,00). With this we can now construct a sequence u” € G(R xY)
that satisfies
o u”(s) =vg(s)g] fors € (—o0,s) —t—1],
o u”(s) =uj(s) for s € [s]{ —7,5] + 7],
o u’(s) = v‘l’(s)gl?L forsels}+t+1,5] —7t—1],
o u'(s)= ul‘.’(s)(gl._)_lg;r_l(gl.__l)_1 ...(gz_)_lgrr for s € [s; — 7,57 + 7] and
i=2,...,4,
e u'(s)= vl‘f(s)gl?L(gi_)_lg;r_1 ...(gz_)_lgfr forselsy +t+ 1,5 —7t—1]
andi =2,....,4¢,
o (@)W s = () g () () Mg as v — oo in
W2P([—t—1,t+1]xY,G) fori =1,....,4,
* diStW2>P([s}’+r,sV —17)) ((Ul}))_luv’ glﬂ_(gi_)_lgitl(gi__l)_l- . -(gz_)_lgii_) —0

.l+l
asv—oofori=0,...,¢

At the same time we replace the broken trajectory (Z1,..., E¢) with E| 1= &4

— —\— — — —_\— * = . .
and B, := ((g7)'g (g )" ... (g5) 'g;) i for i =2,..., L. Note that this
again defines a broken trajectory (E/l, ey E’Z) between the critical points

PR —\—1 ——1 *

Jim 8= ((g7)7'g;L, - (82)7'¢]) Bt

= L * _ — * . —_
= (&) 7"e 0y (@) e)) (€)' g) Biwr = lim 8.

Geometry € Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 835

Here we used the fact that g;_ ;. gl.+ € Gp
implies

. \Y u)* 8
i+1- The convergence of ;’* Y then

V¥V =/ Y
” (u ) = “i( §; )”Wl"p([sly—r,sl-”+t]xY) =< /0/3
for large v and i = 1,..., £, and from the exponential decay (87) we obtain
Nk V. Y
H(u )" E gi(—s; )HW19P([s;’+r,%s}’+1+isl‘-’]xY) =p/3,
VNV e Y
| ) 8" - Ei( si)HWl»l’([%s}’_l—i-%s}’,s}’—r]xY) =p/3.
for large v, large 7, and i = 1,...,£. Here we denote 57 := —o0 and s, 1= 00,
and we use the fact that (gl.Jr *8;=8; on[l,00) and (g;)*E; = E; on (—o0, —1].
Thus, for every p > 0, we have a subsequence (v;),en and a sequence of gauge
transformations u';)” such that

” (u;n)* Elm _ E;’('_S;)n)HWl,p(I,.V"XY) = 1Y

holds for all sufficiently large n > N,. Assertion (ii) then follows by taking a diagonal
subsequence.

To prove (i) we can assume by contradiction that, after passing to a subsequence,
none of the Dgyv 5 is surjective. Then we use the C%—estimate of (86) and the same
patching construction as for (ii) to find a further subsequence and a sequence of gauge
transformations u” € G(R x Y) such that

. % = —~/ —
(88) vll)n;o H(u“') =Y _ ai('_sl!))HCO(Ii"xY) =0
for i = 1,...,¢. (The C°—estimate holds on increasingly large domains because

B} — B; converges in CO'(RxY) —butnotin WhP(RxY).) By Theorem 6.9 (iv) the
surjectivity of the linearized operators Dgv s is independent of a timeshift in the weight
function, or equivalently in the connection. Hence, applying an overall timeshift to each
element of the sequence E", we may assume w.l.o.g. that s} = 0 and for each i > 2 we
have s} — oo. By assumption, the linearized operator wDg, s wl =V, + Hy, — 1)
is surjective on the unweighted Sobolev spaces, see Remark 6.10 (iv), and so are the
operators Vy + H 4, — Is. (Recall that A = 05V = w~19sw denotes the derivative
of the weight function.) Equivalently, the adjoint operators —V; + H4, — I resp.
—Vs +H4; — I are injective. Hence there is a constant ¢ such that

IElLr <c|-Vsg+Ha b~ LE| L, €L S| =Veb +Ha 6~ IsE|

for every £ € WIHP(R x Y, T*Y ® g ® g). This estimate is stable under C®—small
perturbations of E; and under the action of the gauge group. Hence, enlarging the
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constant ¢ if necessary, we obtain
suppé C I xY = 1€l Lr < c||—Vsb + Hav€ — LiE||

for all £ and i and for v sufficiently large. For i > 1 this follows directly from (88)
with s = 0. For i > 2 we use the fact that A(s) =6 for all s € I}, so we can estimate

| =Vo€ + M~ 1nE[ . by
[ =¥ + Moty oy = D68 | 1o = [ @) EY = Ei = 5D | oy IE 7
and identify the first term of this with

| (=% + M, = I9EC 45D 1o = ¢ E N Lo

Now for each v we can choose a partition of unity 4}: R — [0, 1] with supph} C I}
and ) ; H dshy

HLOO — 0. Then we obtain

)2 )2
lElLr <D |RVEN Ly < ¢ Y |hY (% + Hav — 1) — OshE] L
i=1 i=1
)2
< Le|=Vok + Havk = L] L + D |05k | oo NEN Lo -
i=1
This shows that the operator —V; + H4v — I, is injective on the unweighted Sobolev
spaces for v sufficiently large, and hence its adjoint V; +H 4v — I, is surjective. Since
the latter operator is conjugate to Dgv s this is a contradiction to the assumption, and
the theorem is proved. O

8 Transversality

Let (Y, g) be a compact oriented Riemannian 3—manifold with metric g and boundary
0Y = ¥, and let £ C A(X) be a gauge invariant, monotone, irreducible Lagrangian
submanifold satisfying (L1)—(L3). Then R x Y naturally is a Riemannian 4-manifold
with boundary space-time splitting and tubular ends in the sense of Definition 6.2. In
order to complete the instanton data we must also choose a perturbation. A detailed
construction of holonomy perturbations is given in Appendix D. In this section we
concentrate on achieving transversality by the choice of perturbation.

Fix an embedding B: [—1,1] x D — int(Y) and denote by [, the set of finite se-
quences y = (y1, ..., ¥m) of embeddings y;: S! xD — int(Y) that agree with f in
a neighbourhood of {0} xID. Every y € [, gives rise to a map

p=(p1,-spm): DX AY)—>G"
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where p;(z, A) is the holonomy of the connection A around the loop y;(-,z). Let
Fm :=C5° (D x G™)C denote the space of conjugation invariant real valued compactly
supported smooth functions on D x G”. Each pair (y, f) € [';, x F, determines a
smooth function /s: A(Y) — R via

hy(A) ::/Df(z,,o(z,A))dzz.

The differential diy(A4): T4 A(Y) — R has the form
d/’lf(A)Ol = / (Xf(A)/\(x )
Y

Here X;: A(Y) — Q2(Y, g) is a smooth function satisfying (10). We emphasize that
the tuple (1, ..., 1) is a critical point of every conjugation invariant function G — R
and hence the trivial connection A = 0 is always a critical point of the perturbed
Chern—Simons functional CS. + Ay it is nondegenerate by assumption (L3).

Definition 8.1 Fix a perturbation (y, f) € I'y, X Fy, and two nondegenerate critical
points AT € Crit(CS.+h ). Afinite energy solution A: R — A(Y, £) of the boundary
value problem (14) with limits limg_, 4 o A(s) = AT is called regular if the operator
Dy s defined in (71) is surjective for every sufficiently small constant § > 0. (This
condition is independent of k£ and p.)

Definition 8.2 A pair (y, f) € [, X Fyy, is called regular (for (Y, g) and L) if it
satisfies the following.

(i) Every nontrivial critical point of the perturbed Chern—Simons functional CS. + /1
is irreducible and nondegenerate, ie if 4 € A(Y, £) is not gauge equivalent to the trivial

connection and satisfies F4 + Xr(A) = 0 then Hg =0 and H/11 = 0.

(ii)) Let A: R— A(Y, £) be a finite energy solution of the boundary value problem (14)
with §7(A) < 7 and suppose that at most one of the limits AT is gauge equivalent to
the trivial connection. Then the operator Dy s defined in (71) is surjective for every
integer kK > 1, every p > 1, and every sufficiently small constant é > 0.

For every y € I', the set of regular elements [ € 73, will be denoted by Freg(y).
If f € Free(y) and ([A7],[AT]) # (0, 0) then it follows from the discussion in Section 6

that the moduli space M(A4™,A"; X, r), introduced in (62) and the beginning of
Section 7, is a smooth manifold of local dimension

dimpa; M(A™, A% Xp) = §7(A).
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For every integer k > 1 we introduce the following seminorm on the space of perturba-
tions

_l’_

1%l := sup

AcA(Y,L)

( [ X () e
(L + (4l ek

Xy (Aot s )

aeT AY,C) llellek—1 (14 ||A||ck—1)k_1

We will apply this notation to the difference X — X/ associated to two pairs (y, f) €
Ty X Fy and (y', f7) € Ty X Fpy . This difference can be written as X — s+ associated
to the union y Uy' := (V1,....¥m:V{+---»VYm’) € Dmyny, Where [ and f' are
extended to elements of F;, 4, in the obvious way. Then Proposition D.1 implies that
“|va _Xf()l”k — 0 for || fv — follek+1 — 0.

Theorem 8.3 (i) Forevery y € Iy, the set of all f € F, that satisty condition (i) in
Definition 8.2 is open in F, with respect to the C*>—topology.

(i) Let (yo. fo) € I'my X Fm, be such that every nontrivial critical point of CS. + hy,
is irreducible. Then, for every ¢ > 0 and every k € N, there exists an n € N and a pair
(v. /) € T X Fy that satisfies condition (i) in Definition 8.2 and || Xy — Xg |||, <.

The zero perturbation satisfies the assumptions of Theorem 8.3 (ii) by (L3). Transversal-
ity for the critical points near the unperturbed equation was established by Taubes [30].
The extension to large perturbations requires another proof, similar to that of the
following transversality result for trajectories.

Theorem 8.4 (i) The set Fr,(y) is open in F,, with respect to the C 2 _topology
for every m € N and every y € T'y,.

(ii) Assume that (Yo, fo) € I'm, X Fm, satisfies condition (i) in Definition 8.2. Then,
for every ¢ > 0 and k € N, there exists an n € N and another pair (y, f) € I'y x Fy
that is regular, ie [ € Freo(y), and satisfies

Crit(CS. + hyy) = Crit(CS. + hy),
AeCrit(CSc +hg) = hp(A) = hg(A),
1Xr = Xp, [ <&
Note that we do not construct a Banach space of perturbations in which regular ones

are of Baire second category. The main reason for this is that the loops in the interior
of Y do not form a Banach space.

Remark 8.5 Fix a point yg € int(Y'). For every based, embedded loop y: [0, 1] —
int(Y) with y(0) = y(1) = yo denote by p,: A(Y) — G the holonomy map. For
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later reference we state two facts that follow from the equivalence between connection
1-forms and parallel transport. (Note that it suffices to use embedded loops in the
interior.)

(i) Two connections A, B € A(Y) are gauge equivalent if and only if there isa gg € G
such that

py(B) = g5 ' py(4)go
for every based embedded loop y .

(i) Let A€ A(Y) and a € Q'(Y,g). Then a € imd if and only if thereis a &y € g
such that
dpy (A)a = Py (A)go — 50/01/ (4)

for every based embedded loop y .

Proof of Theorem 8.3 Assertion (i) follows from the fact that the conditions Hg =0
and H/}, r= 0 are open with respect to C2—variations of f and 4. The conditions
are moreover gauge invariant, and the set of nontrivial critical points of CS. + /iy is
compact in A(Y, £)/G(Y) for every perturbation /. (This follows from Uhlenbeck
compactness [32; 34] since F4 = —Xr(A) is L°°—bounded.) The proof of (ii) has
three steps.

Step 1 Let (yo, fo) € Tmy X Fm, be given. Then there is a y € Ty, with y; = yo; for
i =1,...,mq satisfying the following condition. Define o: A(Y) — G by

G(A) = 10(03 A) = (/01(0’ A)’ RN /Om(Ov A))

Then, for every critical point A € Crit(CS. + hy,) and every nonzero 1—form n €
QU (Y, g) satisfying

89)  dyn+dXyz(A)n=0, d%n =0, nlay € T4L, *1|gy =0,
the vector [do (A)n] € T(G™/G) is nonzero.

The trivial connection is nondegenerate by assumption (L3), so for 1 # 0 we must have
[4] # [0], and so by assumption A is irreducible. The condition [do (A4)n] # 0 is open
with respect to variations of (A4, ), and it is invariant under gauge transformations
(A,1) — (u*A,u"'nu). Moreover, the set of gauge equivalence classes of pairs
(A,n) € Crit(CS. + hyy) x Q1(Y, g) that satisfy ||n]z2 =1, [4] # [0], and (89) is
compact. (For 1 this follows from elliptic estimates for the operator d4 @ d’ with
boundary condition x1|gy = 0; see eg [34, Theorem D].) Hence it suffices to construct
y for a single such pair (4, n). We shall use Remark 8.5 (ii) to construct y. In each
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step it suffices to find the loops 8 — y;(8, 0) (with base point yo := (0, 0)). Since the
condition is open with respect to smooth variations of y, these loops can be deformed
and extended to the required embeddings of D x S! into the interior of Y .

Since A is irreducible we can choose the 100ps ¥j,;,4+1 and yy,,+2 such that the
matrices g1 := Pmo+1(0, 4) and g3 := p;y+2(0, A) do not commute. Then o (A)
lies in the free part of G™. The tangent space of the G—orbit through o (A4) is

Vo 1= {v = (0i(A)E —£0i(A));— | E €8} CTo(a)G™.
We prove that y can be chosen such that do(A4)n € V.

Since n L im dg, it follows from Remark 8.5 (ii) that for every & € g there is a based
loop y such that

(90) dpy (A)n # py (A)§ —Epy (4).
Since the map & — (g1& —£g1, 226 —&g,) is injective there is a constant C such that
for |£] > C condition (90) holds for one of the loops ¥p,+1(0,+) or ¥u+2(0,-). The
compact set {|{§| < C} can be covered by finitely many open sets U;, on each of which
condition (90) holds with the same 1oop ¥, 42+ j. Thus we have proved that for every
& € g there exists an i such that (90) holds with y = y;. This implies that do(A4)n is
not contained in V and hence does not vanish in the tangent space of the quotient
G"/G.
Step2 Lety €Ty, beasinStep | and fix p > 3. For k € N and ¢ > 0 denote

Fas = €MD GO IS = follewsr <},

let AVP(Y, L) and G*>P(Y) denote the W' — and W 2P —closure of A(Y, L) and
G(Y) respectively and denote

M (FEe) = {(A, ) € AVP(Y, L) x FE# | Fg + Xp(A) =0, [A] # (0]}
Then for every k € N there is an ¢ > 0 such that the moduli space
ME(F) = ME(F) /G2 (Y)

is a separable Ck Banach manifold.

We denote WTIJZ(Y, T*Y ®g) := {a e WLP(Y, T*Y ® g) ‘ a|gy € TAE} and .7-",’,‘1 =
CkH1(D x G™)C = Tff,];’s, and consider the operator

On WP L(Y.T*Y ® g) x WP(Y,9) x Ff — LP(Y.T*Y ® g) x L7 (Y. g)
given by (¢, /) (xdgo + *dXp(A)a —dqp + *X 7 (4), —da).
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This operator is H 4 X (*X.(A), 0) and hence it is the linearized operator of M* (Fk2)
together with the local slice condition for the G2*? (Y )—action. (The nonlinear operator
is a C* map since the map *Xp: AVP(Y) — LP (Y, T*Y ® g) is ck for f eCck+l)
We must prove that this operator is surjective for every pair (4, f) € M* (.7-' ®) when
¢ is sufficiently small. We first prove this for f = fy. Suppose, by contradiction that
there is a nontrivial critical point 4 € Crit(CS. + hy,) such that the operator (91) is
not onto. Then with ¢g=! =1 — p~! there is a nonzero element

(n.§) e LYAY. TY ® g) x LI(Y. g)
orthogonal to the image of (91). Any such element satisfies

dq& =0, *dgn + xd Xz, (A)n =0, djln =0

©2) ah = [ (Xp(ann) =

for every f € ]—",11‘1,8. This implies £ = 0 because A was assumed to be irreducible.
Since 1 # 0 it follows from Step 1 that do(4)n # 0 and hence the map R — G /G :
r +— [p(0, A + rn)] is an embedding into the free part of the quotient near r = 0. This
implies that there exists a map f € .7-",’; such that

f(z,p(z, A+rn) =rB(r)B(z]),

where B: R — [0, 1] is a smooth cutoff function that is supported in a sufficiently small
neighbourhood of 0 and is equal to 1 near 0. Hence

dh 7(A)n =

/ e A+rn))dzz—/ B(ld= > 0

in contradiction to (92). This proves that the operator (91) is onto whenever f = fq
and [A] # [0]. That this continues to hold for || /' — fo||ox+1 sufficiently small follows
from compactness and the fact that the trivial connection is nondegenerate.

Step 3 We prove (ii).

By Step 2, the projection M*(FX¥) — FK¢ is a C¥ Fredholm map of Fredholm
index zero. (Its linearization ker(H 4 + (% X.(4),0) = T ]—',lﬁ,’e has the same index as the
self-adjoint operator H 4.) Hence it follows from the Sard—Smale theorem that the set
of regular values of this projection is dense in .7-",’f1’8. For such a regular value f € .7-",15,’8
we have im (% X.(A4),0) C imH4, so by the surjectivity in Step 2, the operator H 4
itself is surjective and hence injective. This shows that H ! A= = 0 for all critical points
A € Crit(CS; + hy). For || f — folle2 sufficiently small we also have H§ = 0 by (i),
and hence f is “regular” in the sense that Definition 8.2 (i) is satisfied. So we have
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seen that fo € F,, can be approximated by a sequence of “regular” C k+1 perturbations

fre ]-',11‘1 and due to (i) also by a sequence of “regular” smooth perturbations. This
proves the theorem. |

Proof of Theorem 8.4 To prove (i) we suppose by contradiction that thereisa y € I',
and a sequence [ € Fy, \ Freg(y) converging to some f € Freo(y) in the C? topology.
By Theorem 8.3 we may assume that each (" satisfies condition (i) in Definition 8.2.
Thus there is a sequence AY € /\7(/1"_, AY; Xpv) such that §¢v (AY) <7, at most one
of the limits A", is gauge equivalent to the trivial connection, and the operator Dyv s
is not surjective. The sequence A" has bounded energy by Corollary 6.14 and hence
a subsequence converges to a broken Floer trajectory (Ay,...,Ay) by Theorem 7.2.
Since f € Freg(y), all moduli spaces with negative index and at least one nontrivial
limit connection are empty, and the assertion of Corollary 7.4 is wrong. So neither
bubbling nor self-connecting trajectories of [0] can occur in the limit. Hence Dy 5
is surjective for every j and, by gluing (see Theorem 7.7 (1)), the operator Dyyv 5 is
surjective for v sufficiently large. This contradiction proves (i).

We prove (ii). By assumption CS + /iy, has only finitely many critical points in the
configuration space A(Y, £)/G(Y). By Corollary 6.14 the energy of a Floer connecting
trajectory is £ = %nz(nfo (A1) — nf (A7) —dim H!_ +dim HI;JF + j), where j is
the Fredholm index of the linearized operator. There are finitely many such numbers
E >0 with j <7. We order them as

0<Ey<E{<---<Ey.
Claim Let j €{0,...,£—1} and (y, f) € 'y, X F, such that

Ae M4, 4% Xp), (A7][47]) # (0,0), :
93) Ef(A) < Ej. 6p(A) <7 } = Dy isonto
(94) Crit(CSc + hy) = Crit(CSc + hy,)
(95) A€CritCSc+hp) = hp(A) =hy,(A),

Fix an integer k € N and a constant ¢ > 0. Then there is a perturbation (y’, f') €
[y x Fo satisfying (93) to (95) with j replaced by j + 1 and

(96) I1Xp — X[, <e.

A connection A e M(A™, A1, X r) with energy E¢(A) <0 must be gauge equivalent
to the constant path A~ = A" ¢[0]. By assumption these critical points of CS, + A fo
are nondegenerate. So by Theorem 3.13 the hypotheses of the claim are satisfied for
j =0and (y, f) = (yo, fo). Therefore assertion (ii) of the theorem follows from the
claim by induction on j. We prove the claim in four steps.
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Step 1 The quotient of the set

0s A+ *x(Fyq+ Xf(A)) =0,
limg— 100 A(s) € [Ai],
Ef(A) < Ejy1, 8p(A) =7,
Dy s not onto

K:= g A: R — A(Y, L)
([4~1,[4T]D#(0,0)

by the gauge group G(Y') is compact.

This is proven by the same discussion as in (i). The argument uses in addition the fact
that the energy of each limit trajectory A; is strictly less than the energy of the A"
if bubbling or breaking of trajectories occurs. (So the relevant moduli spaces will be
transverse or empty by assumption.)

Step 2 Thereis a y’ € Ty with y/ = y; fori =1,...,m satisfying the following
conditions. For z € D and A € A(Y) let p;(z, A) be the holonomy of A around the
loop 6 + y/(0, z) and define o: A(Y) — G™ by

o(A) := (p1(0, 4),.... p, (0. A)).

Then, for every A € K, there is an 5o € R such that the following holds.

(a) The tuple o(A(so)) is not contained in o (Crit(CS. + hy)) and belongs to the

free part of G™ for the action of G by simultaneous conjugation. Moreover,
o (A(s)) £ o(A(sg)) forevery s € R\ {so}.

(b) For every nonzero section (1, 0) € ker D}  the vectors do(A(s9))dsA(so) and
do (A(sg))n(so) are linearly independent in T(G™ /G).

For every so € R and every Y’ the set of all A € K that satisfy conditions (a) and (b)
is open. Moreover, (a) and (b) are preserved under gauge transformations and under
adding further loops to y’. So it suffices to establish (a) and (b) for a single element
of K. (Then K is covered by finitely many gauge orbits of small open sets around
such elements, and the final ¥’ results from taking the union over all loops that are
required by these different elements.) Hence from now on we fix an element A € K.
Since either A™ or A~ is irreducible, there is an so € R such that A(sg) is irreducible.
Since the path s > (d4(5)&, 0) is a solution of (105) for every & € QL(Y, g), it follows
from Proposition 8.6 (ii) below that

97) ds A(s0) € imdy(sy):
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otherwise we would have d5A4(s) = d4(5)& for all s € R and, by partial integration,
ldaéllr2ry = — [y (d4é A (F4+ Xf(A))) = 0 which would imply d;4 = 0 and
hence Ef(A) = 0. By Proposition 8.6 (i) below, we have that

(98) A(so) ¢ | J (AU Crit(CS, + hp):
SF#So

otherwise 4: R — A(Y, £) would be constant or periodic modulo gauge, in contradic-
%

tion to 0 < E¢(A) < oo. Moreover, for (1, 0) € ker D} 4, we have
(99) n(so) L RIsA(s0) +imdys,)-

To see this, fix an element £ € Q°(Y, g). Then a(s) := d;A4(s) + dg(s)§ and n(s)
satisfy the differential equations

dsa + *(dga +dXr(A)a) =0, dsn + 205V —*(dgn+dXr(A)n) =0,

and the Lagrangian boundary condition 7(s)|ay,a(s)|sy € T4(5)L. Hence

%exp(ﬂf) /Y(n,a) =exp(2V) (L(asn+2asvn, *o ) + /;,(n, *0s0 )) =0.

The last identity uses the fact that the operator o +— *(dgqa + dXr(A)a) with the
Lagrangian boundary condition is self-adjoint for every s. Since the inner product
e?V fY( n, o ) converges to zero for s — +o00, this proves (99).

As in the proof of Theorem 8.3 we shall use Remark 8.5 to construct ' and it suffices
in each step to find the loop 6 — y/(6,0). Since A(so) is irreducible and using (97)
we can argue exactly as in the proof of Step 1 in Theorem 8.3, with (4, n) replaced by
(A(sg), s A(s9)), to prove that ¥’ can be chosen such that o (A(sg)) belongs to the
free part of G and

(100) do (A(s0))ds A(s0) £ Vo.

where Vo C Ty A(SO))G’”/ is the tangent space of the G-orbit through o (A(sg)),
namely

Vo := {v = (01(A(50))0 — €007 (A(s0))—y | 80 € 5}-

This implies that [do(A(sg))ds A(sp)] # O in the tangent space of the quotient G" /G.
It follows that the curve [sq—§, s + 8] — G™ /G : s > [0(A(s))] is injective for § > 0
sufficiently small. The set

C:={[A(5)]| s —s0| = 8} UCHt(CSL + ) /G(Y) C AY)/G(Y)

is compact and, by (98), does not contain [A(sg)]. Now (i) holds if and only if
o(B) « a(A(sg)) for every [B] € C. Since this condition is open in B, and C is
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compact, it suffices to prove this for a fixed element [B] € C. Given [B] € C it follows
from Remark 8.5 (i) that for every g € G there is a based loop y such that

py(B) # g~ py(A(s0))g.

For every fixed loop y this condition is open in g. Since G is compact there exist
finitely many loops y/ such that the tuple (,oyi/ (B)); is not simultaneously conjugate
to (,oyl_/(A(so))),-. For this choice of the loops y/ we have that 0(B) # o(A(sg)) as
claimed.

To prove (b) it suffices to consider a fixed nonzero element (1, 0) € ker DX s because
this kernel is finite dimensional. Since 7(s¢) # 0 (by unique continuation as in
Proposition 8.6 (ii)) it follows from (99) that

n(so) —Ads A(so) & imdy(s,) VA eR.
By (100) we have § := infy,ey;, |[do(A(s)dsA(so) —v| > 0 and
(101) do (A(s0)) (1(s0) —AdsA(s0)) & Vo

for |A| > 61 ||do(A(so)n(so)|| =: c. We wish prove that (101) continues to hold for
all A € [—c, ¢] with a suitable choice of y’. For each fixed A the proof is the same as
that of Step 1 in the proof of Theorem 8.3. Since condition (101) is open in A this
proves Step 2.

Step3 Let C := {(z,p'(z, A)) e D x G™
k € N (possibly larger than the constant in the claim) denote

k’ / . 4 —
FiE = e DX G| (f = Nlpyc) =01 = Fllows <€’}
and for a fixed p > 4 let

/ A e M(A™, A% Xpr)
MA™ A% FEEY = LA, ) e AyP x FRF | Ep(A) < Ejgy
§p(A) <7

Here we abbreviate A b= .Al PR xY,L;47,AT) (see Equation (74)). Let
G p(R x Y') be the WZ’P—closure of {u: R - G(Y) ‘ u(s) =1 V|s| > 1}. Then for
every k € N there is an & > 0 such that the following holds.

Every perturbation [’ € ]—",I;’,e/ satisfies conditions (94), (95), (96), and for every pair of
critical points ([A~],[A™]) # (0, 0) the universal moduli space

M(A™, A%, Fhey .= M, a*, 755 /G2 P R x 1)

is a separable Ck —Banach manifold.
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Conditions (94), (95), and (96) are satisfied for every f’ € ]—",ﬁ’,s/ for &’ > 0 sufficiently
small. The assertion about the universal moduli space holds whenever the linearized
operator

(102) (@9, /)= Da s(@.¢) + (X 7(4),0)

is surjective for every pair (A, ') € M(A_, AT, .7::1’/8/). Here Dy s is the operator
(71) with k = 1. We first prove that this holds for /"= f. If A is not gauge equivalent
(by G(A™, A™)) to a connection in K, then the operator Dy s is surjective by Remark
6.10 (i), and hence so is (102). Let A € K (after a gauge transformation in G(A™, A™T))
and ¢~ ! :=1— p~!, and suppose, by contradiction, that there is a nonzero pair

(n.9) € LYR x Y. T*Y ® g) x LR x Y. g)

orthogonal to the image of (102). Then we have ¢ = 0 (by the proof of Theorem 6.9),
ne Wy (RxY, T*Y ®g) (by Theorem 3.11), D% (1.0) =0, and

(o .e]

(103) / exp(2V(s))dhf(A(s))17(s) ds=0
—OoQ

for every f € Tff,]fl’,s/. By Step 2 there is 5o € R such that a(A(s)) # o (A(sg))

for s # 5o and the tangent vectors do (A(sg))dsA(sg), do(A(sg))n(sg) are linearly

independent. Hence the map

(r.8) = p(z, A(s) +rn(s))

is an embedding in a neighbourhood of (0, s¢) € R? for every sufficiently small z € D.
It follows that there exists a smooth G—invariant map f: D x G" >R vanishing in a
neighbourhood of C and satisfying

~

Sz, p(z, A(s) +rn(s))) = rB(r)B(s —s0) B(Iz])

for a suitable cutoff function 8: R — [0, 1] that is supported in a neighbourhood of 0
and is equal to 1 near 0. This implies

£z, plz, A(s) + rn(s)))d>z
r=0

0
ah a6 = [ -

— (s —s0) /D Bz = 0

for every s € R. Hence the integral on the right hand side of (103) does not vanish,
contradiction. Thus we have proved that the operator (102) is onto whenever [/ = f'.
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We must prove that (102) is onto when || /" — f'[|cx+1 is sufficiently small. Otherwise
there are sequences .7-",];’,8/ > fY— fand AY € M(A_, AT X, #v) such that the oper-
ator (102), with (A, f”) replaced by (A", /), is not onto. If A converges (modulo
gauge) to A € K then (102) is surjective for the pair (A, f) and hence for (4", fV)
when v is sufficiently large. Otherwise it follows from the compactness and gluing
theorems as in the proof of (i) that Dpv s is surjective for v sufficiently large. This
contradiction finishes the proof of Step 3.

Step 4 We prove the claim.

By Step 3 the projection M(A~, AT, .7-",1:1’,8/) — .7-",’:,’,8/ is a Fredholm map of index at
most 7 for every pair AT € Crit(CS. + h ) with ([A7].[A]) # (0,0). (The index
at (A, f) is the same as that of the linearized operator Dy s.) Hence it follows from
the Sard—Smale theorem that, for &k > 8, the set of regular values is of the second
category in the sense of Baire. Any such regular value f € .7:,/;’,8/ satisfies (93). To
prove the claim, pick a regular value of the projection and approximate it by a smooth
perturbation f’. In the last step we use the fact that the set of all perturbations that
satisfy the requirements of the claim is open in the ck+1 —topology. (The proof is
analogous to the proof of (i).) This proves the theorem. O

The main difference between our proof of Theorem 8.4 and the argument in Donaldson’s
book [10, p 144] for the closed case is that we do not have a gluing theorem converse
to bubbling on the boundary and hence cannot work on a compact part of the moduli
space in the presence of bubbling on the boundary. To circumvent this difficulty we
have restricted the discussion to the monotone case and to Floer connecting trajectories
of index less than or equal to seven. We also made use of a unique continuation result
for perturbed anti-self-dual connections with Lagrangian boundary conditions, which
is established next.

Unique continuation

Proposition 8.6 Let (y, f) € I'y, X Fiy and fix an open interval I C R.
(i) Let A, B: I — A(Y) be two solutions of the Floer equation

(104) d0sA+*Fq+xXp(A)=0, A(s)|y € L.

If A(sg) = B(sg) for some sy € I then A(s) = B(s) forall s € I.

(i) Let A: I — A(Y,L) and £ = (a, ¢): I — Q1 (Y, g) x Q°(Y, g) be smooth maps
satistying the (augmented) linearized Floer equation

(105) 8_93;- +HAE =0, Ot(S)|E S TA(S),C, *(X(S)|E =0.
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If £(s¢g) = 0 for some sg € I then £(s) =0 forall s € I.

The proof will use the following local continuation result in the interior. This was
proven by Taubes [31] in a slightly different formulation; we include the proof for the
sake of completeness.

Lemma 8.7 Let U be a (not necessarily compact) 3—manifold without boundary and
I C R be an open interval.

(i) Let A, B: I — A(U) be two solutions of the unperturbed Floer equation (104)
with f = 0. If A(sg) = B(sg) for some sog € I then A(s) = B(s) forall s e I.

(i) Let A: I — A(U) and £ = (a0, ¢): I — QU(U,g) x Q°(U, g) be smooth maps
satistying the unperturbed linearized Floer equation (105) with f = 0. If £(sg) =0
for some sg € I then £(s) =0 forall s e I.

Proof To prove (i) assume by contradiction that A(s’, y;) # B(s’, y1) for some
(s',y1) € I xU. Let D,(y1) C U be a geodesic ball of radius » > 0 around y; and
denote

J:={s €| A®)Ip, 1) = B, 200} C 1
This set contains sy by assumption and it is a closed subset of I because 4 — B is

continuous. We claim that J C [ is open and hence J = I in contradiction to the
assumption.

To prove that J is open we fix an element s; € J. Then A — B vanishes to infinite order
(ie with all derivatives) at x; := (s1, y1). For the derivatives in the direction of I this
follows from the Floer equation. Let D, (x;) C I x U denote the geodesic ball centred
at x1. We fix gauge transformations u 4, upg € G(Dy(x1)) with ug(x;) =up(xy) =1
such that u’ A and u B are in radial gauge on D, (x1). Then these can be pulled back
to connections in temporal gauge A’, B': (—oo,logr) — A(S?) by geodesic polar
coordinates (—o0,logr) x $3 D, (x1)\ {x1}. The fact that u* A —u’ B vanishes to
infinite order at x; translates into superexponential convergence A’(s) — B’(s) — 0
as s — —oo. In particular, for every K > 0, we have

: —Ks 4/ _n! —
(106) im em P ANs) = BUs) [ L2(s3) = 0.

The pullback metric on (—oo,logr) x S has the form e2(ds? + g5), where g is a
smooth family of metrics on S3 that converges exponentially to the standard metric
on S3 as s — —oo. Since the anti-self-duality equation is conformally invariant, the
connections A’ and B’ also satisfy (104) with respect to the metric ds? + g5 on
(—00,logr) x S3. We now denote o := B’ — A": (—oo,logr) — Q1(S?, g) and use
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the technique of Agmon—Nirenberg in Appendix C to prove that « = 0. The Floer
equations (ie the anti-self-duality of A’ and B’ w.r.t. the conformally rescaled metric)
imply that « satisfies

8sa+*dA,+%aa =0.

We shall use the operator F := —xd 44 1q (corresponding to A(s), appropriately
shifted, in the notation of Appendix C) which is self-adjoint with respect to the time
dependent inner product

(0.8)si= [ {ensB) = (00 Q)

Here *; is the Hodge operator for the metric g5 on S3, and the subscript E indicates
the use of the standard metric on S3. The operator Q(s): Q1(S3,g) — Q1(S3.9)
is defined as in [11, p 151], as a self-adjoint operator such that Q(s)? = % g*,. This
square root exists since * gk is positive definite. These operators satisfy (Q1) in
Appendix C by the exponential convergence of g5 as s — —oo. Moreover,

d
——(a, *d g+ Loa)s + 2{0s0, ¥d g/ Lga)s = — | {an[0s(A" + %a) Aal)
ds 2 2 S3

=

/ 1 2
954’ + EasaHLm(S3) leel)?.
Hence the function x (s) := a (s, —s), with s, € (—o0, log r), satisfies the assumptions
of Theorem C.2 with ¢; = ¢, =0 and ¢3(s) = ||0;4" + %asaum(ss). The constant
¢ in Theorem C.2 is finite because

52
/ ||8SA/ + %asa”Loo(SS) <00,

—00

by the exponential decay of A" and B’ (see Theorem 5.1). We thus obtain
le®)lls = ™27 Ja(s)

for all s € (—o0, s5]. This estimate contradicts the superexponential convergence
in (106) unless a(s;) = 0. Since s, is any element of the interval (—oo,logr)
we have shown that « = 0 and hence u;‘lA = uEB on the geodesic ball D, (x;)
around x; = (s1, y1). This ball contains the set [s; — 5,51 + 5] X D,/>(y1). From
the construction of the gauge transformations with A = B on {s1} x D,/»(y1) we
know that u4|s—s, = up|s=s,. Now there is a unique gauge transformation v on
[s1—%.51+ 51X Dyja(y1) with v|g=g, = u ' |s=5, =ug'ls=s, thatputs u 4 =u%B
back into temporal gauge. By the uniqueness of the temporal gauge with u4v|s=5, =
upv|s=s, = 1 this implies

A= (uqv)*A=(upv)*B=B  on [s1—7.51+ 5] Dy2(y1)
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and hence [s; — 5,51 + 5] C J. This proves that J is open as claimed.

The proof of (ii) is analogous to (i). In conformal polar coordinates near x; we
choose the radial gauge u% A4 as before. The pullback &': (—o0,logr) — QL(S3,g) x
QO(S3, g) then satisfies the linearized Floer equation with respect to A4’. Now the
Agmon-Nirenberg technique for x = & (with the Hessian H 4/(5) as self-adjoint
operator) shows that £ = 0 and hence £ = 0 on D, (x). The relevant estimate is

d
P (& Hat'), +2(0:& Hat'),

d
:_a(/:gz(a//\dA/O[/)—z/:gg)(O[//\*dAN[/)) +2(8s(a/,§0/)»HA’(a/’(/)/))s

_ / (/A5 A ]} +2 / (/A (054", ') +2 f (o A5 #)dare')
S3 S

S3 3
<26,(5) [Ha |, €], +es(s) €] 2.

where ¢, (s) = 25_1(:Q(s) and
c3(s) =2 H 8sA/ HLOO(S3) + 85_1CQ(S) ”FA,”}J/"E’(SQ

with § and ¢g as in (Q1) in Appendix C. We have used the identity ds* = * gds 02,
which implies ||ds * ||s <2867 3¢p, and

/|2 + Jdwe|? = e’ ~dug'|2 +2 st/ NEa- o)

. . . 1/2
which implies [ldag/ll, < [ Har&'lly +2 | Farl1}/2 g 18] 0

Proof of Proposition 8.6 The proof of (i) is similar to that of Lemma 8.7 except
for the presence of boundary terms. To control these we first use Lemma 8.7 (i) on
U := N\ dY for a neighbourhood N C Y of 9Y on which Xy = 0. It implies that 4
and B agree on [ x U and hence by continuity on / x N . In particular, the 1-form
a(s) := B(s) — A(s) € Q1(Y, g) vanishes near 3Y and hence belongs to the space
52114 (s)(Y, g) for every s. To establish unique continuation in the interior we assume,
by contradiction, that a(sy) # 0 for some s; < s9. We will apply Theorem C.1 to
x(s) = a(s; —s) and the symmetric operator

F(s) 1= #dq(s) + *d X (A(5)): Ry (Y, 0) > Q) (Yo 0)
for s € I. We have a(sg) = 0 and
dsa +Fa = -1 k[ Aa]—*(Xp(4+a)— Xp(4) —dXr(A)a),
ds{a,Fa) —2(0sa, Far) = [ (aA[0s4 Aar]) +fY(a,d2Xf(A)(83A,oc)).
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Hence it follows from Proposition D.1 (v) that

|5 (s) + F$)ar(s)ll 2vy < €1l z2r) -
0{ @(5). F (8)(s) ) — 2{ 85x(5). F (5)ax(s) ) < 3 e(5) 22y

for 51 < s < s¢ and suitable constants ¢; and c3. This shows that the path s — o(s)
and the operator family [ (s) satisfy the hypotheses of Theorem C.1 with ¢; = 0.
Hence a(s) = 0 for s; <5 < s and a(s1) = 0 follows by continuity, in contradiction
to the assumption. The argument for s1 > s¢ is similar and this proves (i). Assertion (ii)
follows from Lemma 8.7 (ii) and the analogous estimates for the solutions of (104).
This proves the proposition. a

9 Gluing

Let Y be a compact oriented Riemannian 3-manifold with boundary 0Y = X and £ C
A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)—~(L3). Fix a regular perturbation /s: A(Y) — R in the sense of Definition 8.2.

Let By, By, B, € A(Y, £) be nondegenerate and irreducible critical points of CSz+hy.
We denote by A(R x Y, L; By, B;) the space of smooth connections on R x Y with
boundary values in £ and C*°-limits By and B, as in (61); this is a special case of the
notation (74). Also recall the notation /\71(30, By; Xy) from Section 7 for the space of
solutions that are in temporal gauge over the ends, and M(By, By: X) for this space
modulo gauge equivalence. For 7" > 1 we define a pregluing map

M (B, Bi: Xy) x M(By. By; Xr) - AR XY, L; By, By)

(EB1,Bx) > E#rE,

(107)
as follows. The connections E; = A; + ®; ds are in temporal gauge outside the
compact set [—1, 1] x ¥ and have limits

lim Al(S) = B(), lim Al(S) = Bl = lim Az(S), lim Az(S) = Bz.
§—>—00 §—>00 §—>—00 §—>00
Define E1#17E, := A+ ®ds by

&+ T), s=0,
®s) = { Dy(s—T), 5> 0,
AZ—p-L—s), s<-L,
A(s):={ By, sel-L,
AL +o(-T +5)). s> T,

T
7))
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where ¢: (0,00) — R is a smooth function satisfying

227
=1 dsp > 0.

s, s
_1 —_
p— 29

p(s) = { 1

e
This connection is smooth because 4; and A, converge exponentially as s tends
to £oo. It satisfies the limit conditions and the Lagrangian boundary conditions
by construction. In fact, this is why we use rescaling in time rather than convex
interpolation in space. The map (E1, B;) — E#r E, is gauge equivariant in the
sense that

ui(s+7), s<0,

(uy E#r (u3E2) = u” (E1#1 By), u(s) {uz(s—T), s=>0

for each pair (11, ;) € G(Bgy, B1)xG(B1, B,). Recall from the beginning of Section 7
that each u; € G(By, By) satisfies dsu;(s) =0 for |s| > 1, u;(s) € Gp, for s > 1,
and u(s) € Gp, for s < —1; similarly for u,. Since B; is irreducible we have
ui(s) =uz(—s)y=1nfors>1.

Theorem 9.1 Let By, By, B, € A(Y, L) be nondegenerate and irreducible critical
points of CSg + hy, and fix E; € M(Bo, By; X¢) and E; € M(By, By; Xy) with
dr(E1) =87(E2) = 1. Then, for every p > 2, there exist positive constants k , Ty and
a map

t: (To, 00) = M?*(By, B2; X1) /R, T 17(21, 2,)

with the following properties:

(i) t is a diffeomorphism onto its image.

(i1) The connections tr (&1, E,) converge without bubbling (as in Theorem 7.2) to
the broken trajectory (E1, ;) as T — oo.

(iii) If E is a solution of the Floer equation (15) and

|E —E #1782 [ y1s@uy) <«

for some T > Ty + 1, then its gauge and time-shift equivalence class [E] lies in
the image of 7.

Proof The preglued connection

]
]

l#T 2=ZET=AT-|—(DT(1S

is an approximate solution of the Floer equation and t7(E1, E,) will be constructed
as a nearby true solution. More precisely, we have

(108) |05 AT — day @7 + %(Far + X (AD) | Loy < Ce™8T
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for some constants C and § > 0 by exponential decay, Theorem 5.1. We will use the
inverse function theorem to find near the approximate solution E7 a true solution
E T € /\7(30, Bj:; Xr). For that purpose we use the Banach manifold structure of the
space ALP(RxY, L; By, B,); see (74). Its tangent space Tg,. AP (RxY, L; By, By)
is the space of all 1—forms £ = o + ¢ ds with « € WIP(R x ¥, T*Y ® g) and
@ € WHP(RxY, g) satisfying the boundary condition a(s) € T4, (s)£L- Using the expo-
nential map of Theorem E.4 and Corollary E.5 we obtain a continuously differentiable
map

Te, AYP(Rx Y, L Bo. By) DU — AVP (R x Y, L; Bo. By) : £ > E(E7:6)
defined on a neighbourhood U of zero by
EE7:8) 1= Eap(5(@(5) + (®1(5) + ¢(5)) ds.

We now look for a solution of the form ET = /TT + &)T ds = E(ET; &), where £ € U
satisfies 3

(109) dt £=0.  #Elrxpy =0.  &eimDj.

Note that &7 automatically satisfies the boundary conditions Ar (s)]ay € L and has
the limits limg—, oo A7(s) = By, limg—00 A7(s) = B,. So it remains to solve the
Floer equation

(110) dsAr —dg O +*(Fz + Xr(Ar)) =0

for & subject to (109). The precise setup for the inverse function theorem is as follows:
In order to keep track of the 7'—dependence we use the version [21, Proposition A.3.4.]
which provides explicit constants. We apply this version of the inverse function theorem
to the C!'—map

+
friXr—>Z,  fr€):=Fga g 95,6

Its domain is a neighbourhood of zero in the Banach space X7 consisting of £ €
TET.AI’I’(R x Y, L; By, B;) that satisfy the boundary condition *&|gxgy = 0. (Note
that the domain depends on 7. One could also work with a T —independent domain
by using simple reparametrizations in s € R to identify X7 =~ X, for a fixed Tj.
This gives rise to a continuous family of inverse function problems fT: X7, — Z for

3 Here * denotes the Hodge * operator on the four-manifold R x ¥ unlike in (110) below. The first
two conditions fix the gauge whereas the third condition fixes a complement of the kernel of the linearized
operator for combined anti-self-duality and gauge fixing.
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T €[Ty,00).) The first component, FIJEL(ET;E)’ is identified with the left hand side of
(110), so the target space of f7 is the Banach space

Z=LPRxY,T*Y ®g) x LP(RxY,g).

The differential d f7(0) at xo = 0 then is the linearized operator D := Dg, . To
check that the differential d f7 is uniformly continuous at 0 € X7 we calculate for all

SvCEXT

H (dfT(S) DT)guLl’(RxY) H*[(E(“T £)— “T) /\*é‘]HLP(RxY)
(111) <C Suﬂgﬂ E 47(5)(@(5)) = AT (8) +@()ds | 2p (1) 1S 1.0 @x¥)-

Here C is the constant from the Sobolev embedding W !-#(Y) < L?P(Y) and the
second factor converges to zero uniformly in 7" as ||£||1.» = |la + @ ds| 1., — 0.
Indeed, given & > 0 there is 67,5 > 0 such that || E 4, (5)(@) — A7 (s)|| L2 (v < € for
all @ € Tg,(5)A(Y, £) with ||| 20 (y) < d7,5. We can choose d7,5 =6 > 0 uniform
forall T > 1, s € R because the image of A7 in A(Y, £) is compact and independent
of T.

That the linearized operator is surjective for sufficiently large 7" with a uniform bound
for its right inverse Q7 := D}(D7D%)~! follows from the estimates

(112) Inllw1.r@®xyy < CIDTllLr ®RxY)
(113) IDFnllw 1o ®xyy < CIDTDFNILr RxY)-

These estimates hold for 7" sufficiently large, and the constant C is independent
of T. The inequality (112) implies that D7 is surjective and Qr: Y — X7 is
defined, and (113) gives a uniform bound for Q7. The proof of the estimates is as
in [10, Proposition 3.9], [29, Proposition 3.9] or Theorem 7.7. It rests on the fact
that the connections B 7 := E#7 B and E, r := Bi#r &, (which coincide with
&r for s < % and s > —% respectively) satisfy exponential estimates of the form
18i7—Ei(£T)|cx < Cre 8T, and hence their linearized operators are surjective
with uniform estimates. Here we use the fact that &1 and E, are regular in the sense
of Definition 8.1.

We have thus checked that the assumptions of [21, Proposition A.3.4.] are satisfied
with uniform constants for all 7 > Ty, where T > 1 is determined by comparing
(108) with [21, (A.3.5)]. Hence the inverse function theorem provides unique solutions
ET €im Q7 C X7 of fT(éT) 0. In other words, we can define 17 (81, E):= 81 =
E(HT £r), where Er € M(BO, Bj; Xr) is the unique solution of the form (109)
with E7 = E1#7 E,. This map is gauge equivariant and induces a map to the moduli
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space. Note moreover that £ will be continuous with respect to 7" in the W 1>? —norm
and hence E7 as well as t will depend continuously on 7" € [Ty, o0). In the following
we sketch the proof of properties (i)—(iii).

The convergence in (ii) follows from the fact that the infinitesimal connection &7
obtained in the inverse function theorem satisfies an estimate of the form || &7 | 1.0 <
C|l fr(0)|zr < C’e™3T for uniform constants C, C’.

The index of t7(E1, E,) is given by (77), ie

87(tr(E1, B2)) = s (Bo, Bo) — 1ty (B1, B1) + 1y (B1, B1) — 17 (B, By)
=38r(E1) +687(Er) =2.

Here B;: [0, 1]— L are paths from B; (0)=B; to B; (1) =0, where we pick any El and
ple the other paths such that Bo is homotopic to the catenation of E|gxx with Bl and
Bl is homotopic to the catenation of E,|rxy with B2 Then, by construction, BO is
homotopic to the catenation of (E {#7 8,)|rxx with Bz Moreover, 77 (81, E3)|Rx%
is homotopic to (E1#7E,)|rxx -

To see that t is a diffeomorphism note first that both domain and target are 1—
dimensional manifolds (by the regularity and additivity of the indices). Hence it
suffices to show that 7 is an injective immersion by following the argument in [10,
p 96]. In fact, since the domain of t is connected, it suffices to show that dt is nonzero
for all sufficiently large 7. We will show below that 7 is C! —close to the pregluing
T+ Er = E #7158, asamap [Ty, 00) > ALP(R x Y, L; By, B,), ie

(114) H%ET—%ETHWM(RW) Tj;o 0.

With this, the immersion condition %t # 0 € Ty (1) M(Bo, By; Xy)/R follows if we
can prove that the pregluing map is an immersion modulo gauge and time-shift with a
uniform estimate. Indeed, taking the infimum over all ¢ e C*°(R x Y, g), A € R we
have

}lfn{ |arEr —dg v —A- as‘:‘THWl-”(RxY)
> irxlf(igfu ds A1 —da, ¥ = 10541 | v (o107
+infl~ds 42—y~ - 9542|3101 payry) = A >0,
Here we restricted the W !> —norm to the half cylinders s < —7 —1 resp. s > T + 1,

where E7(s) = A1(s+T) resp. E7(s) = A»(s—T). We also dropped the ds—terms
and applied various shifts. The constant A > 0 is obviously independent of 7. It is
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positive since otherwise one could pick a minimizing sequence converging to limits
A, V1, Y2 such that (1 —1)d54; =dy4, ¥ and (1 4+ A)d53A, = —dg,V». However,
from unique continuation (Proposition 8.6 (ii)) we know that dsA4;(s) ¢imdy; (), so
d4, ¥; vanishes on both half cylinders, which leaves the contradiction 1 = A = —1.

It remains to establish (114). We write (. .) for %(. ..) and claim that
| &Er - Er|lps < |01 EBr.er) —1d| | E7 || + |02 E(ET. &r)ér| Tj;oo

due to the identities E (-, 0) =Id and 9, £ (E 1, 0) =Id, the boundedness of || 27 || Wi.p
(due to exponential decay), and the convergence &7 — 0 and ||€7 || wi.r — 0. To check
the latter recall the abstract setup for the inverse function theorem. Taking the 7 —
derivative of fr(&7) =0 we obtain

ldfrEr)ér |, = | frEn)|

= HdE(’“ Sr)alE(ET,ST)ET”Ln + 87 Asér]] L T—oc 0

This convergence uses the same estimates as before and the fact that d]:LT Er vanishes
except for near s = :I:%, where it is exponentially small. Now write &7 = Qrnr with
nt = Drér, then

Er ={r + OrDrér with {7 = Qrnr €imQr.

We have ||QTDT$T||W1 » — 0 since &7 — 0 and the operators Dy: WP — LP
and QT L? —domDr C WhP are umformly bounded. The first bound is due to
IDr = Dryll < 1E7 — E 1| co s similarly DT WP — LP and D§: W2P — WP
are bounded in terms of || uTllco resp. I uTllcl, and we have the identity Q7 =
DT(DTDT) 1 QT(DTDT + DTDT)(DTDT) . Here the uniform bound on
(DrD%)~!, thatis ||n]lyp2.» < C|Dr D41 Lr, follows from combining (113) with
the W 2P —version of (112).

Finally, we can prove that ||{7 | ;1.» — 0 because, starting from (113),

I llw1r = CIDrTllLe
< C(IdfrEr) —=Dr)erllee + | frEr)érlioe + I1dfrEr) QrDrér|eey).

Here the first term can be absorbed into the left hand side by (111) for sufficiently large
T > T, and the other terms converge to zero as 7 — 00, using a uniform bound on
dfr (&) from ||dfr(E7)—Drl| < || E(E 7.67)— E71||c0. This finishes the proof that
éT — 0, hence (114) holds and (i) is proven.

Assertion (iii) follows from the uniqueness statement in the inverse function theorem if
we can find u e G(Rx Y), 0 € R, and T’ > T such that u*E(-+0) = E(ET/,E)
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with £ satisfying (109) and W —small. For each (o, T”) close to (0, T') we can use
the local slice theorem to find u,, 7/ and &, 7/ satisfying

ugB(+0)=E@E7.6.,1),  dz_f1 =0,  *&1IRxoy =0.

One then finds (o, T’) satisfying &, 7/ € im D%, = (kerDz/)* by a further im-
plicit function theorem. Namely, there is a basis (11,77,12,7/) of kerDrs close
to (05 2 1#7/0, O#7/05E5). Then the map (o, T/) = ((EO’,T’? nl,T’)v (EO’,T’? 772,T’)) is
invertible and has a zero close to (0, 7). a

Remark 9.2 In Theorem 9.1 we can allow Bj to be reducible (but still nondegenerate).
Then we obtain a gluing map

v (To. 00) x (G, /{£1}) — M>T™H3 By By xp)/R

with the same properties as in Theorem 9.1. This map is constructed by starting from a
preglued connection E#¢ 1 E, that takes g € Gp, /{% 1} into account by

aG-e-%-s).  s=-T,
A(s):={ By =g" By, se[-%. 11,

AL +o-L+5). s> L.
The index identity again follows from (77) and the uniformly bounded right inverse can
be constructed using weighted spaces, as described in [10, 4.4.1].
This shows that the breaking of trajectories at the zero connection can be excluded in
low dimensional moduli spaces since the stabilizer Go C G(Y') adds 3 to the index of
the glued connection. However, this argument is not needed for the construction of
Floer homology. In the proof of Corollary 9.3 below, we use simpler index bounds to
exclude breaking at the zero connection.

Theorem 9.1 gives rise to maps

r: M'(Bo. B1)/R x M'(By, By)/R — M?(By. By)/R
defined by choosing one representative for each gauge and shift equivalence class in
each moduli space M!(A~, AT)/R with [AT],[47] € Rs \[0].

Corollary 9.3 Let A*, A~ € Crit(CSz + hys) \ [0]. Then, for Ty sufficiently large,
the sets 7(,,00)([E1].[E2]) C M?(A=, A1) /R, indexed by [B] € Ry \[0] and pairs
(B1].[E2]) e MY (4™, B)/Rx M (B, A1) /R, are pairwise disjoint. Moreover, their
complement
M~ atyrR O\ ) mr(M'(47. B)/Rx M'(B. A1)/R)
[0]#[BleRy T>To
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is compact.

Proof The sets 7(7,,00)([E1]. [E2]) are disjoint for Ty sufficiently large since they
converge to different broken trajectories for Ty — oo; see Theorem 9.1 (ii).

To prove compactness we assume by contradiction that there exists a sequence [E"] €
M?(A=, AT X r)/R in the complement of the image of 7 as above, and that has no
convergent subsequence. These solutions have index 2 and hence fixed energy by
Corollary 6.14 (i). By Theorem 7.2 we can pick a subsequence and representatives, still
denoted by E", that converge to a broken trajectory (21, ..., E;) modulo bubbling.
By transversality we do not have solutions of negative index, so Corollary 7.4 implies
that there is no bubbling, and the index identity in Theorem 7.2 implies £ < 2. In
the case £ = 1 we would obtain a convergent subsequence from Theorem 7.5, hence
the limit must be a broken trajectory with two index 1 solutions and an irreducible
intermediate critical point B. The time-shifts and gauge transformations in Theorem
7.2 can be chosen such that the limit (£, E,) consists of the fixed representatives
used in the definition of 77 . Now the assertion of Theorem 7.7 (ii) can be reformulated
as

[0"" 8¢+ 367 +59) = Bi#r Ea | 1wy = O

for TV := %(5‘2’ —s7) — 0o. Then, by Theorem 9.1 (iii), [E"] lies in the image of 7
for sufficiently large v, in contradiction to the assumption. a

10 Coherent orientations

Let Y be a compact oriented Riemannian 3—manifold with boundary Y = ¥ and £ C
A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)—(L3). In this section it is essential that we restrict to the case of ¥ being connected
with nonempty boundary, so that the gauge group G(Y) is connected. The construction
of orientations for closed Y can be found in [10, 5.4]. Fix a perturbation A # such
that every critical point of CS. + iy is nondegenerate and every nontrivial critical
point is irreducible (see Definition 8.2). For every pair of irreducible critical points
A, AT € Crit(CS. + h ) we consider the space

A(A™, A7) = {A e AR XY, L) ‘ Al s+1xy —> 0ds+ A* exponent.},
’ s—>+o0
which consists of smooth connections A = ®ds + 4 on R x Y that are given by

paths ®: R — Q°(Y,g) and 4: R — A(Y, £) that converge exponentially with all
derivatives to 0 and A%, respectively, as s — +oo. If we allow the limits A% to vary
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within gauge orbits of critical points, we obtain the spaces
A(ATL4T) = | A A, @hH)*ah).
utegy)
We denote by

Or([A7].[AT]) = L Or(Da) — A(47].[47])
AcA[A~1I4])

the principal Z,-bundle whose fibre over A € A([A7],[AT]) is the set Or(Dy) of
orientations of the determinant line

det(Dy) := A™ (ker Dp) ® A" (cokerDy ).

Here D, is the linearized operator (31). Any homotopy [0, 1] — A(47].[4T]),
A A, induces an isomorphism

Or(Dy,) — Or(Dy,)

by path lifting. A gauge transformation u# € G(R x Y) which converges exponentially
to u® € G(Y) as s — 00 gives rise to a bundle isomorphism

u*: Or(A~, A1) = Or((u™)*A~, (ut)*4A™)

induced by the conjugate action of u on kernel and cokernel. The pregluing construction
in (107) for Ay € A(Bg, By) and A, € A(B;, B,) induces a natural isomorphism

or: Or(Da,) ® Or(Dy,) — Or(Da 4,4,)

for sufficiently large 7'. If both Dy, and Dp, are surjective, then Dy #,A, 18
surjective for T sufficiently large, by estimates as in the proof of Theorem 7.7, and
or is induced by the isomorphism ker(Dp,) x ker(Da,) — ker(Da,#,4,). The
general case is reduced to the surjective case by the method of stabilizations as in [9,
Section 3(a)].

We will also have to glue connections over S* to connections over R x Y. For
that purpose we denote by A(P,) the space of connections on the bundle P, that is
obtained by gluing two copies of C2 x B* with the transition function u € G(S3). Then
for every A € A(A~, A7) and E, € A(P,) we can construct a preglued connection
A#r By € A(A™,u* A™) by taking the connected sum (R xY)#yp,..S 4 and trivializing
the induced bundle over R x Y. Here we denote by D7 C R x Y the ball of radius
T~ centred at (0, y) for some y € int(Y), and after the trivialization we have

(A#7E4)|Rxv)\Dy = T*A
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for a gauge transformation % on (R xY)\ Dy with #|yp, = u. We fix these extensions
such that |(—eo,—1]xy = Il and #[[; oo)xy = 1, and hence ii|gxyy defines a path
u: R — G(X) with u(s) = 1 for |s| > 1. A partial integration on [—1, 1] x Y then
shows that the degree of this loop is deg(#r) = deg(u). So we have both A, A#rE, €
A(A~, A™), but the homotopy classes (of paths in £ with fixed endpoints) of A|yy and
(A#7 Ey)|gy differ by deg(u). The determinant line bundle over the contractible space
A(P,) is canonically oriented (compatible with gauge transformations, homotopies, and
gluing; see eg [11, Proposition 5.4.1]), and as before pregluing induces an isomorphism

ot :0r(Dy) ® Or(Dg,) — Or(Dpsr,)

for T sufficiently large. The various isomorphisms, induced by homotopies, gauge
transformations, and pregluing, all commute in the appropriate sense.

Definition 10.1 A system of coherent orientations is a collection of sections
A(ATL[AT]) = Or([ATL[AT]) s A > 04,

one for each pair [A7],[AT] € Crit(CS, + h £)/G(Y)\[0] of nontrivial gauge equiva-
lence classes of critical points, satisfying the following conditions.

(Homotopy) The sections o: A([A7],[AT]) — Or({[47],[AT]) are continuous. In
other words, if [0, 1] — A([A7],[AT]) : A — A, is a continuous path, then the induced
isomorphism Or(Dy,) — Or(Dy,) sends 0a, to 04, .

(Equivariance) Forevery A € A(A~, A1) and every u € G(R x Y) that converges
exponentially to u™ € G(Y) as s — +00 we have

Oy =UT0,A.

(Catenation) Let A € A(Bgy, By) and A’ € A(B1, By), then for T sufficiently large
we have

oasrAr =01 (04 ®0A7).
(Sum) Let A e A(A=, A1), ueG(S?),and B, € A(P,), then for T sufficiently
large we have

OA#r 8, =0T(0A ®0E,).
(Constant) 1f A= A~ = A™, then o, is the orientation induced by the canonical
isomorphism det(Dy) — R. (Under this assumption Dy is bijective.)

Remark 10.2 (i) The (Equivariance) axiom follows from the (Homotopy) axiom.

To see this note that, since Y is connected with nonempty boundary, the gauge groups
G(Y) and hence G(R x Y) are connected. (Here we do not fix the boundary values
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or limits of the gauge transformations.) The claim then follows from the following
observation.

(i1) For every continuous path [0, 1] > G(RxY) : A u; with ug = 1l the isomorphism
ui: det(Dy) — det(DuT A) coincides with the isomorphism induced by the homotopy
A u:A. To see this consider the continuous family of paths [0,1] - G(R x Y) :
A+ uqy for T €0, 1]. Then the assertion holds obviously for 7 = 0 (both maps are
the identity) and hence, by continuity, for all .

Theorem 10.3 Fix representatives By, ..., By, one for each nontrivial gauge equiva-
lence class in Crit(CSz +hy)/G(Y') \ [0], connections A; € A(B;, Bj41). and orienta-
tions 0; € Or(Dy,;) fori =1,..., N —1. Then there is a unique system of coherent

orientations 0p € Or(Dy) such that o, = o0; forall i.
The proof of this theorem will make use of the following lemma.

Lemma 10.4 Fix a pair AT € A(Y, £) of irreducible and nondegenerate critical points
of CSc+hy. Let [0, 1] — A([A7], [AT]): A+ A, be asmooth path and u € G(R xY)
such that Ay = u*A. Then the isomorphism

u*: Or(DAO) — Or(DA])

agrees with the one induced by the path A +— A . In particular, the orientation bundle
Or([A7],[A1])) = A([A7),[4T]) admits a trivialization.

Proof By continuity, it suffices to prove the identity under the assumption ds A (s) =0,
®, (s) =0, and dsu(s) = 0 for |s| > 1. Then there are paths [0, 1] - G(Y), A — vf
such that (v;))* 4, (s) = A~ for s < —1 and (vf)*Ak(s) = A" for s > 1. We can
replace AT by ((voi)_l)*AjE and thus assume in addition that vgt = 1. Now there is
a smooth map [0, 1] xR — G(Y) : (A, s) > u) (s) such that ug = 1, uy(s) = v, for
s <—1 and uy(s) = v)'f for s > 1. Define
AT i=uy Ay, ut = ualuu,

for every 7 €0, 1]. Then we have AT = (u%)*A§. By continuity, the assertion now
holds for = 1 if and only if it holds for T = 0, that is for the original pair ({Aj}, u).
For t =1 we have A)l\(s) =A% and u'(s) = 1l for 5> 1.
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Finally, we prove the lemma in the case A (s) = A% for +s > 1. For T > 2 we define
the catenation B}: = @; ds + B{ e AR/2TZ xY, L) and uT e G(R/2TZ xY) by

Toov._ | Ar(s), ~T/2<s=<T/2,
Bis):= { Ao(T —5), T/2<s<3T/2,

_ | Pals), ~T/2<s=<T/2,
20 = { (T —s), T/2<s<3T)/2,

T,.. Ju@s), =T/2<s=<T/2,
u(s):= { I, T/2<s<3T/2.

Then BAT (s)= AT and <I>)7: =0 for +s €[1, T—1]. Moreover we have ]B%lT = (uT)*IB%g.
For T sufficiently large the linear gluing theory gives rise to a continuous family of
isomorphisms

@] : Or(Dy,) — Or(Dgr).

where Dp T denotes the anti-self-duality operator on R/27TZ x Y introduced in Section
4. The gluing operators commute with the gauge transformations, ie

ol ou* = wl)* ol Or(Dy,) — Or(DBIT).
The isomorphisms induced by the homotopies A > Aj and A — IB%}; satisfy the same
relation. By Theorem 4.3 (iv) (with v = 1), the isomorphism (u* )*: Or(DBOT) —
OI'(DB’IT) agrees with the one induced by the path A — B{ . Hence the same holds for
u* and this proves the desired identity.

To see that Or([A~],[AT]) — A([47].[AT]) admits a trivialization we only need to
check that parallel transport around loops induces the identity isomorphism on the fibre.
This follows immediately from the identification of the homotopy induced isomorphism
with u*: Or(Dy,) = Or(Dy,) for u = 1. |

Proof of Theorem 10.3 By the (Homotopy) and (Constant) axioms, the orientation
bundle over the constant component of A([B;],[B;]) is canonically oriented. The
orientation on the other components of A([B;], [B;]) is determined by the (Sum) axiom
because any connection A € A([B;],[Bi]) is homotopic to B;#7 &, for the constant
solution B; = B;, a connection E, over S* associated to a nontrivial u € G(S 3), and
any T > 0. Indeed, since G(Y) is connected, A can be homotoped to a connection with
fixed limits in A(B;, B;). Moreover, there is a homotopy equivalence A(B;, B;) —
C*®(S!, £) which assigns to each connection A € A(B;, B;) abased loop in £ obtained
from the path A|jy: R — £ with endpoints B;|gy . Now, by (L2), the loop A[yy in
L is homotopic to #* B} |yy for some loop #: S! — G(X). Hence A is homotopic
to B;#7 &, for the associated u € G(S3). Similarly, the orientation bundle over
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A([B;],[Bi+1]) is oriented by 04, and the (Homotopy) and (Sum) axioms, because
any connection in A([B;].[Bi+1]) is homotopic to A;#7 &, for some u € G(S?).
Finally, the orientation bundles over general spaces A([B;], [Bj]) are oriented by the
(Catenation) axiom and the previously fixed orientations. This proves uniqueness.

To establish existence note that, by Lemma 10.4, we have a choice of two possible
orientations over every component of each A([47],[4T]). Each of the possible com-
binations of choices satisfies the (Homotopy) axiom by construction. To see that the
choices can be made such that the (Constant), (Catenation), and (Sum) axioms are
satisfied (and so the (Equivariance) axiom follows from Remark 10.2), one needs to
check that the isomorphisms in the (Catenation), (Sum), and (Homotopy) axioms all
commute. For example, let A, € A(B;, Bj) and A;\ € A(Bj, By) be smooth families
parametrized by A € [0, 1] and denote by

p- Or(DAQ) g Or(DAl )7 /0/: Or(DA:)) - Or(DA/I)7
pT: Or(Dagsrar) = Or(Da 4 ar)
the isomorphisms induced by the homotopies A — Aj , A;\, and A)L#A&. Let
03 : Or(Da,) ® Or(Dpr ) — Or(Dy 4, a7)

denote the catenation isomorphisms for 7" sufficiently large. A parametrized version
of the linear gluing construction then proves that

of o(p®p)=p" ooy .
A similar statement holds for the (Homotopy) and (Sum) isomorphisms. That two (Cate-
nation) isomorphisms commute is a kind of associativity rule modulo homotopy and
the proof involves a simultaneous gluing construction for three connecting trajectories;
similarly for the commutation rules of the (Sum) and (Catenation) isomorphisms. All
these arguments are exactly as in the standard theory and the details will be omitted. O

11 Floer homology

Let Y be a compact connected oriented 3—manifold with boundary dY = ¥ and £ C
A(X) be a gauge invariant, monotone, irreducible Lagrangian submanifold satisfying
(L1)—(L3). Fix a Riemannian metric g on Y, a regular perturbation (y, f) € I'y, X Finy
as in Theorem 8.4, and a system 0 = {04 }o of coherent orientations as in Theorem
10.3. Associated to these data we define a Floer homology group HF(Y, L; g, f,0) as
follows.
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Since the trivial connection is nondegenerate by (L.3), the set
Rp:={Ac A(Y)| Fq+ Xp(A) =0, Alyy € L}/G(Y)

of gauge equivalence classes of critical points of CS. + /¢ is finite, by Proposition
3.7. The nontrivial critical points determine a chain complex

CFY.L: f):= P Z(4)

[4]eR/\[0]

with a Z /87 —grading uys: Ry — Z/8Z defined by the spectral flow (see Corollary
6.12). We emphasize that the spectral flow is invariant under homotopies of the metric
and of the perturbation with fixed critical points. To define the boundary operator we
consider the space

0sA—dy q® + x(Fy —I-Xf(A)) =0
A(s)|lz e L VseR

~ A+ dds .
+. — — g=x
M(A 7A ’g7Xf) T EA(RXY) hms—):I:OOA(S)_A
Pljsj=13 =0
Ef(A) < oo

This space is invariant under the group G(A~, A") of gauge transformations u €
G(R x Y) that satisfy u(s) =u® € G 4+ for £5 > 1. The quotient spaces

M(A™, AT ¢, X7)/G(AT, A7)

are canonically isomorphic for different choices of representatives AT of critical points.
The index of the linearized operator at [A] is §7(A) = us(A47) —p f(A"') (modulo
8). For k € Z we denote the index k part of the Floer moduli space by

ME(A™ AT g Xp) = {[Ale M(A™. AT g. Xp)/G(A™. AT) | 87(A) = k).

For k < 7 this is a smooth k—dimensional manifold (see Section 6 and Definition
8.2). The energy of a solution in this space is Er(A) = %nz(k + nf(A+) A% )]
by Corollary 6.14 (i), and hence is independent of A. Furthermore, R acts on
MU=, At g, X r) by time-shift, and the action is proper and free unless A~ = AT
and k = 0. For k = 1 the quotient space MI(A_,A+;Xf)/R is a finite set, by
Corollary 7.6. Counting the elements with signs gives rise to a boundary operator on
CE(Y, L; f) via

(115) oA™):= Y > v(A) | (4™).

[4T]eR\[0] \[AleM! (A, 4T, X7)/R
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Here v(A) := 1 whenever the element d;A € ker Dy = det(Dy) is positively oriented
with respect to 04 and v(A) := —1 otherwise. The next two theorems are the main
results of this paper; their proofs take up the rest of this section.

Theorem 11.1 The operator d: CE(Y, L; f) — CF(Y, L, f) defined by (115) satisfies
dod=0.

The Floer homology group of the pair (Y, £) equipped with the regular data (g, f, 0)
is defined by

kerd: CF(Y, L; f) — CF(Y, L; f)
imd: CF(Y, L; f) — CF(Y, L; f)

The next theorem shows that it is independent of the choices of metric, perturbation,
and coherent orientations.

HF(Y, L; g, f,0) :=

Theorem 11.2 There is a collection of isomorphisms
®PY HE(Y, £; g%, £®,0%) — HE(Y, L; gP, 1P, oP),
one for any two regular triples (g%, 1%, 0%) and (gP, 12, 0P), such that
(116) P8 o pP* = Y, P =1d
for any three regular triples (g%, f*, 0%), (gB, fB,oP), and (g7, [V, 07).

Proof of Theorem 11.1 For A% € Ry \ [0] denote

n(A=,A") = > v(A).

[AleMl(4~,4T ;8. Xp)/R

Then the equation d o d = 0 is equivalent to the formula

(117) > nA".B)n(B.AY)=0
[BleR,\[0]

for all A* Ryr \[0]. The proof of (117) is exactly as in the standard case. One
studies the moduli space M?(4~, AT)/R. This is a 1-manifold, oriented by the
coherent orientations of Theorem 10.3. By Corollary 9.3 its ends are in one-to-one
correspondence with pairs of trajectories in M! (4™, B; Xr)/Rx MU(B, AT; Xr)/R
for any critical point [B] € R¢ \ [0], which are exactly what is counted on the left
hand side of (117). By the (Catenation) axiom in Section 10 the signs agree with the
orientation of the boundary of M?(4~, AT; X r)/R. Hence the sum must be zero and
this proves dod = 0. |
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Proof of Theorem 11.2 That the Floer homology groups are independent of the
choice of the system of coherent orientations is obvious; two such systems give rise
to isomorphic boundary operators via a sign change isomorphism (with &1 on the
diagonal). To prove the independence of metric and perturbation, we fix two Riemannian
metrics g% on Y and two sets of regular perturbation data (y*, f*). We will
construct a chain map from CF(Y, L; g™, f7) to CF(Y,L; g™, ) following the
familiar pattern. As in the closed case we choose a metric ¢ on R x Y such that
g = g* for +s sufficiently large. However, unlike the closed case this metric cannot
necessarily be chosen in split form since it is required to be compatible with the
boundary space-time splitting in the sense of Definition 6.2 (see Example 6.4 or [35,
Example 1.4]). Next we choose a holonomy perturbation X: ARXY)— Q*(RxY, g)
of the form X = BXy-+(1—B) X+ + Xy for some cutoff function g € C*°(R, [0, 1])
and a further holonomy perturbation Xy as in Definition 6.6. This uses thickened loops
vi S! x B3 < R xint(Y) in a compact part of R x Y, so that we have X = Xpx
for £s sufficiently large. This perturbation is still gauge equivariant but no longer
translation invariant. We use these interpolation data to set up the 4—dimensional
version of the perturbed anti-self-duality equation on R x Y as described in Section 6.
For critical points A% € R+ \[0] from the two Floer chain complexes we consider
the space of generalized Floer trajectories

Fg 4+ X(E) + #3(Fg + X(E)) =0
AB)|z e L VseR

~ - = E=A+dds | ..

M(A ’A+’g’X) = GA(RXY) hms—):l:OOA(S)zAi
Plyisj=13 =0
Ef(E)<OO

Here 3 denotes the Hodge operator on Rx Y with respect to the metric g. This space is
invariant under the gauge group G(A4~, A™) as before, and if the perturbation X is regu-
lar, then the quotient M (A=,4%: %2, X )/G(AT, A7) will be a smooth manifold whose
local dimension near [A] is given by the Fredholm index §(A) = pur— (A7) — i+ (A1)
(modulo 8). By transversality arguments similar to Section 8 we can find a perturbation
Xy (and thus X) such that the linearized operators of index less than or equal to 7
are indeed surjective. Thus we obtain smooth k—dimensional moduli spaces

MKEA™, AT 8, X) = {[Ale M(A™, AT, X)/G(A™, AT) |8(A) = k}

for k < 7. The 0—dimensional moduli spaces are compact by the same analysis as
in Section 7. Namely, the main component will converge to a new solution without
time-shift; energy cannot be lost by bubbling or by shift to 00 since the remaining
solution would have negative index. So — again using the orientations from Section 10
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— we can define a homomorphism
®: CR(Y.Lig™, [7) — CF(Y, Lig*, /),

which preserves the grading and is given by

®(A47):= > > v(A) | (AT).

[ATIER,+\[0] \AeMO(4—,4+;5,X)

This time the linearized operator is bijective, so det(Dy) is canonically isomorphic
to R, and the sign v(A) = =1 is obtained by comparing the coherent orientation oz
with the standard orientation of R.

As in the standard theory there are three identities to verify (eg [29, Section 3.2]). First,
we must prove that ® is a chain map, ie

(118) 0tod==dod™.

This is proved just like the formula dod =0 in Theorem 11.1. In this case the relevant 1-
manifold is the moduli space M (4™, AT; g, X ). A compactness and gluing theory
similar to Corollary 9.3 identifies the ends of this moduli space with the pairs of
trajectories in M (A_, B~ g7, Xp-) xM%B~,AT; g, f) for [B~]€ Ry-\[0] and
in M°(A~,Bt:5, X) x MI(B+,A+;g+,Xf+) for [BT] € Re+ \[0]. Summing
over these oriented ends of a 1-manifold then proves that ® satisfies (118) and hence
descends to a morphism on Floer homology.

Second, we must prove that the induced map on homology is independent of the
choices. Given two such maps ®g, P: CF(Y,L;g~, f7) = CF(Y,L;gT, fT) as-
sociated to pairs (gg, X 0) and (g7, X 1) we must find a chain homotopy equivalence
H:CF(Y,L;g7,f7)—CF(Y,L; g™, 1) satisfying

(119) O, —Pyg=0ToH+Hod .

To construct H we choose a 1—parameter family {2, X ) fo<a<1 of interpolating pairs
of metric and perturbation. By Lemma 6.5 the metrics can be interpolated within
the space of metrics that are equal to g over the ends and are compatible with the
space-time splitting of the boundary. The perturbations X 3, can be chosen as convex
combinations. We then add further compactly supported holonomy perturbations for
0 < A <1 to achieve transversality of the parametrized moduli spaces

ME(A™ AT G X)) = {(L A [[Ale MR (A7, 4T 80, X))

Geometry € Topology, Volume 12 (2008)



868 Dietmar Salamon and Katrin Wehrheim

For k = —1 these are compact oriented 0—manifolds which we use to define H:

H(A7):= > > v(h,A) | (AT).

[AF]eR 0] N\, A)eM—1(4~, A+ 3{Z0. X0 })

The linearized operator has a 1-dimensional cokernel which projects isomorphically
to R and v(A,A) is the sign of this projection. To prove (119) one studies the
1-dimensional moduli space M%(4~, AT;{g), X 3 }) in the usual fashion with the
contributions of ®( corresponding to the boundary at A = 0, the contributions of
®; to the boundary at A = 1, and the contributions on the right in (119) to the
noncompact ends with 0 < A < 1. These ends have either the form of a pair in
M=NA™, BT (@, o) x MU (B, A% %, Xpe) /R with [BT] € Ry \ {[0]; or
in MY (A=, B™;g7, Xp-)/R x M™Y(B™, A%;{&, X, }) with [B™] € Rs- \ {[0]}.
Counting all the ends and boundary points with appropriate signs proves that H
satisfies (119).

Third, we must establish the composition rule in (116) for three sets of regular data
(g%, 1), (g8, 1), (g¥. f¥). We choose regular interpolating metrics and perturba-
tions to define ®A% and ®¥# on the chain level. The catenation (with gluing parameter
T) of these data gives rise to a regular interpolation from (g%, /%) to (g%, fY) for
T sufficiently large. The resulting morphism @;ﬂ will then, for large 7', agree with
®P o B on the chain level. This follows from a gluing theorem as in Section 9 and
compactness arguments as in Theorem 7.7 and Corollary 9.3. In particular, the breaking
of connecting trajectories in the limit 7" — oo at the zero connection is excluded since
the stabilizer Gy C G(Y') adds 3 to the index of the glued connection (compare with
Remark 9.2 or use index inequalities as in Corollary 7.4.). Again, the orientations are
compatible with the gluing by the (Catenation) axiom. The upshot is that, for suitable
choices of interpolating data, Equation (116) already holds on the chain level.

Once these three relations have been established one just needs to observe that ®*¢
is the identity on the chain level for the obvious product metric and perturbation on
R x Y. It follows that each ® induces an isomorphism on Floer homology. This proves
Theorem 11.2. |

Appendix A The spectral flow

In this appendix we adapt the results of Robbin and the first author [26] to families of
self-adjoint operators with varying domains. Similar results have appeared in various
forms (see Booss-Bavnbeck and Zhu [8], Kirk and Lesch [18] and Ballman, Briining
and Carron [6]).
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Let H be a separable real Hilbert space. Throughout we identify H with its dual space.
We consider a family of bounded linear operators

A(s): W(s) > H

indexed by s € R. Here W(s) is a Hilbert space equipped with a compact inclusion
W (s) C H with a dense image. We formulate conditions under which the unbounded
operator

D:=0;+ A

on L2(R, H) is Fredholm and its index is the spectral flow of the operator family
s — A(s). In contrast to [26] the domain of A(s) varies with s € R. Our axioms
give rise to an isomorphic family of operators with constant domain but which are
self-adjoint with respect to inner products which vary with s € R. More precisely, we
assume that the disjoint union | |,cg W(s) is a Hilbert space subbundle of R x H in
the following sense.

(W1) There is a dense subspace Wy C H with a compact inclusion and a family of
isomorphisms Q(s): H — H such that Q(s) Wy = W(s) for every s € R.

(W2) The map Q: R — L(H) is continuously differentiable in the weak operator
topology and there is a ¢y > 0 such that, for all s € R and & € Wy,

co NENm, <10 G)Ellws) = colléllwy

1Q)Ell e + 1195 Q()éll = collllar-

(W3) There exist Hilbert space isomorphisms QF € £(H) such that

li — 0% =0.
s;g:loollQ(S) O~ |l zcrry

Two trivializations Q1, 0,: R — L(H) satistying (W1)—(W3) with Wy, Wy,, re-
spectively, are called equivalent if there is a family of Hilbert space isomorphisms
®(s) € L(H) such that

O(s)Wo1 = Woa, 02(s)P(s) = Q1(s)

for every s, the map ®: R — L(H) is continuously differentiable in the weak op-
erator topology, the map ®: R — L(Wp1, Wyy) is continuous in the norm topol-

ogy, supger |05 P(s)|l 2(a) < oo, and there exist Hilbert space isomorphisms GE=
L(H)N LWy, Wy,) such that

li d(s) — dF =0.
Jm | ®(s) (1925
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Remark A.1 To verify (W1)-(W3) it suffices to construct local trivializations on a
finite cover R = | J Uy that satisfy these conditions (where condition (W3) is only
required near the ends) and that are equivalent over the intersections Uy N Ug.

We now impose the following conditions on the operator family 4. Again, it suffices
to verify these in the local trivializations of Remark A.1.

(A1) The operators A(s) are uniformly self-adjoint. This means that for each s €
R the operator A(s) when considered as an unbounded operator on H with
dom A(s) = W(s) is self-adjoint and that there is a constant c¢; such that

1613 = er (14)EN + 11 )

for every s € R and every & € W(s).

(A2) Themap B:= Q7 '4Q :R — L(W,, H) is continuously differentiable in the
weak operator topology and there exists a constant ¢, > 0 such that

1B |a + 105 B |a = 2l
for every s € R and every & € W.
(A3) There are invertible operators BT € £(W,, H) such that

i B(s)— Bt —0
im | B(s) | cowo, )

Given a differentiable curve &: R — H with £(s) € W(s) for all s € R we define
Dé: R — H by

(DE)(s) = 956 (s) + A(5)E ().
This map extends to a bounded linear operator

D: WhER, H)N L3R, W) — L*(R, H).
Here L*(R, W) :={Qno | no € L*(R, W)} is a Hilbert space with the norm

oo

2y = [ 116y 8
—00

By (W2) this norm is equivalent to the norm on L2(R, W) under the isomorphism
n+— O~ 'n. We will prove the following estimate, regularity, and index identity.

Lemma A.2 There exist constants ¢ and T such that

00 0o T
/ (05 )13 + ||s(s)||§V(s))dssc2(/oo IDE )17 ds+/T I I ds)

—00 — —

forevery £ € WH2(R, H)N L?>(R, W).
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Theorem A.3 Suppose that £, € L>(R, H) satisfy

f ({850() = A)p(5).£(5)) + {9(s). n(5) ) )ds = 0

—00

for every test function ¢: R — H such that Q7 '¢ € Cé (R, Wy). Then

e WL R, H)N LR, W), DE = 1.

Theorem A.4 The operator D is Fredholm and its index is equal to the upward spectral
flow of the operator family s — A(s).

As in the case of constant domain the spectral flow can be defined as the sum of the
crossing indices

(120) Hapec(A) 1= ) sign T(A.5).
N
In the present case the crossing form I'(A4, s): ker A(s) — R is defined by

I'(4,5)¢) = % (£(), A(s +0)E(D)),
t=0
where £(t) € W(s +1t) is chosen such £(0) = £ and the path ¢ — A(s +1)&(¢) € H is
differentiable (for example £(7) := Q(s + ) Q(s)~'&); the value of the crossing form
at £ is independent of the choice of the path ¢ — £(¢). We assume that the crossings are
all regular, ie I'(A4, s) is nondegenerate for every s € R with ker A(s) # {0}. Under
this assumption the sum in (120) is finite.

Two operator families A1(s): Wi(s) — H and A,(s): Wh(s) — H with the same
endpoints AT are called homotopic if they can be connected by an operator family
Ay (s): Wi (s) > H, 1 <A <2, with the following properties. There is a family of
Hilbert space isomorphisms Q; (s): H — H that is continuously differentiable in A
and s with respect to the weak operator topology and satisfies Qj (s) Wy = W, (s)
as well as conditions (W2)—(W3) uniformly in A. Moreover A, (s) satisfies (Al)-
(A3) with constants independent of A and the map [1,2] xR — L(Wy, H) : (A, ) >
0,.(s)" 1 4;.(s)0;.(s) is continuously differentiable in the weak operator topology.

The spectral flow has the following properties:

(Homotopy) The spectral flow is invariant under homotopy.

(Constant) 1If W(s) and A(s) are independent of s € R then ptspec(4) = 0.
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(Direct sum) The spectral flow of a direct sum of two operator families 4 and B is
the sum of their spectral flows, ie

Mspec(A ® B)= Mspec (A) + Mspec (B).

(Catenation) The spectral flow of the catenation of two operator families 4¢; from
Ag to A7 and A1, from A to A, is the sum of their spectral flows, ie

/Lspec(AOI#An) = MSpec(AOI)-i-MSpeC(AIZ)-
(Normalization) For W = H =R, A(s) = arctan(s) we have pgpec(4) = 1.
The spectral flow is uniquely determined by the homotopy, constant, direct sum, and

normalization axioms. The proof is the same as that of [26, Theorem 4.23] and will be
omitted.

Proof of Lemma A.2 The proof is analogous to that of [26, Lemma 3.9]. The only
difference is in the first step where we prove the estimate with 7" = co. For every
£ R — H suchthat n:= Q" £ ¢ Cé (R, Wy) we have

| 1melyas = [ (102613 + 146l + 20,6 46))as.

The last summand can be estimated by

2 [ " (0,5 48) ds

—0o0

= [~ (20,0 AQn) +{Qdn. 401) + (01 400.n) ) ds

—0o0

= [ (@@ 0Bn) ~ (Q1.(2:0)Bn) ~ (Qn. Qs BIm) ) ds

—00
5 00

536062/ Il 22 lInllw, ds
—00

=cléll2m, my €l L2, w)

with ¢ := 363 ¢, . Here we used partial integration and the identity AQ = QB . Now
use (A1) to obtain

IDEI2 i
= 106802 20m 1 + 1 NN 2y — 12211y — €N L2ty 122, )
z ”aSSHiZ(]R,H) + (261)_1 ”S”iz(R,W) - (1 + %Czcl) ”EHiZ(R,H)

This proves the estimate for 7' = oo. O
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Proof of Theorem A.3 We follow the line of argument in [26, Theorem 3.10].

Step 1 Define &y, no € L>(R, H) by

Eo(s) == Q()™&(s), no(s) 1= Q ()" n(s) + (95 Q()*)&(s).
Then & € W2(R, W(") and

(121) ds€o(s) = —B(s)"Eo(s) + no(s).

To see this we calculate for g € C5°(R, Wo)

/ (8500, &0 )1 ds = / (85(090) — (35 Q)po. £ 1y ds

—00 —00

— [ (140006 )~ Qon )i — (@ Qpo.£)1) s

—00
o0
= / ((‘Po, B*&—no )WO,WO*) ds.

—0o0
Here the self-adjoint operator A(s) extends to an operator in L(H, W(s)*) which we
also denote by A(s). We denote the dual of the trivialization Q(s) by Q(s)* € L(H),
which extends to an isomorphism W(s)* — W;". With this we can write B* =
0*A(Q*)~! for the dual operator family of B = Q~!AQ, which is continuously
differentiable in L(H, WO*) with a uniform estimate dual to that in (A2). So we have
B*£y —no € L*(R, W), and since the derivatives of test functions ¢o are dense in
L%(R, W,) this implies Step 1.

Step 2 Suppose that & and n are supported in an interval I such that for all s € I the
operator B(s): Wy — H is bijective and satisfies a uniform estimate

1BG) ™l ecamy < c.

Fix a smooth function p: R — [0, 0o) with support in (—1,1) and [ p =1 and denote
by ps(s) =81 p(§~1s) for § > 0 the standard mollifier. Then we find a constant C
such that pg % (071€) e WL2(R, H) N L*(R, Wy) forall § > 0 and

1D Qo5 * (O™ ') L2 1) < C-

Multiply Equation (121) by (B*)™! to obtain & = (B*)™!(no — d5&o) and note that
0~ 1¢ = (0*0)7'&;. Then convolution gives

ps*(Q71E) = psx (0 ((B*Q* Q) "o + (B*Q*0) o) — ps + (B*0* 0) &)
= ps * {o — ps * ((Q* OB)~'&)
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with §o = 05((Q* OB)™")& + (Q*OB) g € L*(R, Wp). This takes values in Wy
since

(122) B*0*0)' =074 (0" ' =B7(0*O)!

and its derivative are uniformly bounded in L(H, Wj).

So, after convolution, Q(,Og * (Q_IS)) lies in the domain of D and

07'DQ(ps +(Q7'8))
= ps* (0718 + 071 (3:0) (05 ¥ (07'9)) + B(ps + (07'8))
= B(B™' (05 % (Q7'8)) — 5 + (2" 0B)'&))
+ 071 @50) (05 * (Q718) + B(ps * So)

The second line is uniformly bounded in L2(R, H). For the first term we have

/ | B (95 % (Q7'9)) () = o5 % ((Q* 0B)"0) ()], ds

o0 s+6 o B(S)_l —B(t)_l .
= [ [ e T ewrem) an ], as
—oo |l Js—8 228
> * 1 -ct—s
sc [ [ ] il aas
—00 J =0
o0
=Clale [ leo®ly d.
—00
Here the constant C contains a uniform bound for d;B~! = —-B~1(3;B)B~ ' on I.

This proves Step 2.
Step3 £c WL2(R, H)NL*(R, W) and DE = 1.

Under the assumptions of Step 2 it follows from Lemma A.2 that pg * (Q7'£) is
uniformly bounded in W := L2(R, Wp) N W12(R, H) for all § > 0. So there is
a sequence 8, — 0 such that ps * (Q'£) converges weakly in W. The limit has
to coincide with the strong L?(R, H)-limit Q~'£. Thus we have £ € L?(R, W) N
WL2(R, H). Now it follows from (121) and (122) that
DE = (Q*) 8550 — (") 710 0*)(Q™) &0 + B(Q™) &

=n—(0") ' B*&+ B(Q") & = n.
This proves the theorem under the assumption that £ and 5 are supported in an interval
on which B is bijective. In general, one can cover the real axis by finitely many open
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intervals on which A1+ B(s): Wy — H has uniformly bounded inverses for some
A € R. Then one can use a partition of unity argument to deduce the regularity and
equation for £ on each interval. |

Sketch of proof of Theorem A.4 By Lemma A.2 the operator D has a finite dimen-
sional kernel and a closed image. By Theorem A.3 the cokernel of D is the kernel
of the operator D’ with A replaced by —A. Hence the cokernel of D is also finite
dimensional and thus D is Fredholm.

To prove the index identity one verifies as in [26, Theorem 4.1] that the Fredholm index
satisfies the (Homotopy), (Constant), (Direct sum) and (Normalization) axioms, which
characterize the spectral flow. For the homotopy and the direct sum property one can
extend the proofs in [26] without difficulty to nonconstant domains; the constant and
normalization properties are immediate since they only refer to constant domains. O

We conclude this appendix with a version of the index identity for twisted loops of
self-adjoint operators.

Theorem A.5 Let A(s): W(s) — H be an operator family that satisfies the condi-
tions (W1)-(W2), (A1)—-(A2) and

W(s+1)= 0 'Ww(), A+ 1) =0"14(05)0

for every s € R and a suitable Hilbert space isomorphism Q: H — H . Then A induces
a Fredholm operator D = d5 + A: W — 'H, where

Hi={te LL.(R,H)|E(s+1) =0 &),
Wi={& e LR W)N W (R, H) |E(s +1) = Q&)

loc

Its Fredholm index is equal to the upward spectral flow of the operator family A on a
fundamental domain [sq, so + 1].

Proof The Fredholm property follows from Lemma A.2 and Theorem A.3. The
proof of the index formula can be reduced to Theorem A.4 by using the homotopy
invariance of spectral flow and Fredholm index, stretching the fundamental domain,
and comparing kernel and cokernel with a corresponding operator over R via a gluing
argument. We omit the details. For a version of the relevant linear gluing theorem see
Donaldson [10, Propositions 3.8, (3.2)]. O
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Appendix B  Symmetric operators and Fredholm pairs

Associated to a closed densely defined symmetric operator on a Hilbert space is a
(possibly infinite dimensional) symplectic vector space, namely the quotient of the
domain of the dual operator by the domain of the original operator. This space can be
thought of as the space of boundary data and the symplectic form is obtained from
integration by parts. We call this space the Gelfand—Robbin quotient, because the
first author learned about this notion from Joel Robbin and Israel Gelfand in the early
nineties, who arrived at these ideas independently, but never wrote them up. Though a
precursor to this discussion can be found in Dunford and Schwarz [13, Chapter XII.4]
we are not aware of an earlier reference explicitly making the connection between
self-adjoint operators and symplectic geometry. Since then many researchers have
contributed to this field. In particular, the notion of a Fredholm pair of Lagrangian
subspaces (of what we call the Gelfand—Robbin quotient) plays a central role in the
work of Booss-Bavnbek and his coauthors [7; 8]; they introduced the Maslov index
for paths of such Fredholm pairs and related it to the spectral flow in a suitable setting
(see Remark B.15 below). The results proved in this appendix play a crucial role in
reducing our orientation and index theorems to the case of closed 3—manifolds. We
couldn’t find these results in the relevant papers, although most of the definitions and
some of the basic lemmas below are contained in the existing literature.

Let H be a Hilbert space and D: dom D — H be an injective, symmetric, but not
necessarily self-adjoint, operator with a dense domain and a closed image. Then the
domain of the adjoint operator D*: dom D* — H contains the domain of D and the
restriction of D* to the domain of D agrees with D. The Gelfand-Robbin quotient

V :=dom D*/dom D
carries a natural symplectic form
o(x].[y]) :==(D*x,y) —(x,D*y).

The Lagrangian subspaces A C V are in one-to-one correspondence to self-adjoint
extensions Dp of D with

dom Dy := {x e dom D* |[x] € A}.
Moreover, the kernel of D* determines a Lagrangian subspace
(123) Ao :={[x] €V |x edom D*, D*x =0}.

The operator D, is bijective if and only if V' = Ao @ A. (See Lemma B.3 below.)
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The domain of D* is a Hilbert space with the graph inner product

(x,y)p* = (X’y)H—i‘(D*x,D*y)H-

The domain of D is a closed subspace because D has a closed graph. Hence both
dom D and the quotient space V' = dom D*/dom D inherit a Hilbert space structure
from dom D*. One can now check (using the next remark) that (V, w) is a symplectic
Hilbert space in the sense that the symplectic form is bounded and the linear map
V—>V*:v> I,():=w(v,-) is an isomorphism. If A C V is a Lagrangian subspace,
ie the annihilator A~ C V* is given by A+ = I,(A), then A is closed and hence
inherits a Hilbert space structure from V.

Remark B.1 (i) The graph norm on dom D is equivalent to the norm

(x.y)p:=(Dx.Dy)p .
because D is injective and has a closed image.

(ii)) For convenience, we sometimes identify the Gelfand—Robbin quotient V =
dom D*/dom D with the orthogonal complement

V = (dom D)* = {x € dom D* | D*x € dom D*, D*D*x + x = 0}.
The orthogonal projection of dom D* onto V along dom D is given by
domD* >V :x+>x—(1+ D*D)"'(x + D*D*x),

where 1+ D* D is understood as an operator from dom D to (dom D)*. The graph
inner product on V' is compatible with the symplectic form and the associated complex
structure is x — Jx := D*x, that is w(x, Jy) = (x, y ) p=. This shows that (V, w)
is indeed a symplectic Hilbert space.

(iii) In the formulation of (ii) the subspace A and its orthogonal complement are
given by

Ao={xeV | edomDs.t. D*(x+&) =0} ={x €V |D*x €im D}

AF = D*Ao =V Nim D.

Definition B.2 A triple (V, A1, A,) consisting of a Hilbert space V' and two closed
subspaces A, Ay C V is called Fredholm if AN A5 is finite dimensional, A{ 4+ A,
is a closed subspace of V', and the cosum V /(A 4+ A,) is finite dimensional (see
Robbin, Ruan and Salamon [24]); equivalently the linear operator S: A1 X A, — V
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given by S(x1, x32) := x1 + X3 is Fredholm. The Fredholm index of a Fredholm triple
(V, A1, A») is defined by

index(V, A1, Ay) :=dim(A; N A,) —dim(V /(A1 + Ay)) = index(S).

Lemma B.3 Let A C V be a Lagrangian subspace. Then Dj: dom Dy — H is a
Fredholm operator if and only if (V, Ao, A) is a Fredholm triple.

Proof This follows from the definition and the fact that the homomorphisms

ker Do — AgNA : x — [x],

Vv H
— - [x] = [D*x]
Ao+ A im Dy
are bijective. For the second map this uses Lemma B.4 below. |

Lemma B.4 Let D: dom D — H be an injective symmetric operator with a closed
image and a dense domain. Then

Y :={§ e dom D | D¢ € dom D*}
is a Hilbert space with the inner product

(&,n)y :=(&n)g +(DE Dn)yg +(D*DE, D*Dn)y
and the operator D*D: Y — H is an isomorphism.

Moreover, if the inclusion dom D — H is a compact operator then the operator
D(D*D)~': H— H is compact.

Proof We prove that Y is complete. Let & € Y be a Cauchy sequence. Then &;,
Dé&;, D* D§; are Cauchy sequences in H. Define & := lim§&;, x := lim D§;, y :=
lim D* D§&;. Since D and D* have closed graphs we have £ € dom D, x € dom D*,
DE =x,and D*x = y. Hence £ € Y and &; convergesto £ in Y.

That D*D: Y — H is injective follows since D is injective and ( D*DE&, &)y =
| D& ||%I for £ € Y. Now consider the Gelfand triple
ZCHCZ*,

where Z :=dom D and (&,n)z = ( D&, Dn) g . We identify H with its dual space
and define the inclusion H — Z* as the dual operator of the inclusion Z — H. We can
think of D: Z — H as a bounded linear operator and of its adjoint as bounded linear
operator D*: H — Z*. Then dom D* ={x € H|D*x € H}. Since D: Z — H is
injective and has a closed image the dual operator D*: H — Z* is surjective. Now
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let y € H. Then y € Z* and hence there exists an element x € H with D*x = y.
Since D*x € H we have x € dom D*. Now it follows from the definitions that the
kernel of D* is the orthogonal complement of the image of D. Since the image of D
is closed this implies H = ker D* @ im D. Hence there is a vector xo € ker D* such
that x —x¢ € im D. Choose £ € dom D such that D& = x —x¢. Then D& € dom D*
and D* D& = D*x = y. This proves that D* D is surjective.

Now assume that the inclusion Z — H is compact. To prove that the operator

D(D*D)~': H — H is compact we observe that

(124) Ixlpe = sup oSN

ID(D*D)~ x|l
o#eedom D 1 D&l H

for every x € H C Z*. Here the last equation follows from the fact that the supremum
in the second term is attained at the vector & = (D* D)~ !x with x = D* D&;. Now
let x; be a bounded sequence in H . Since the inclusion H — Z* is compact, there
exists a subsequence x;, which converges in Z* and it follows from (124) that the
sequence D(D*D)_lxik converges in H . This proves the lemma. O

Remark B.5 (i) By Lemma B.4 the subspaces Ay and A(J)- of V in Remark B.1 can
also be written in the form

Ao = {x e dom D* | D*x + D(D*D) 'x = 0} = ker(D* + T,

A ={xeV|x=D(D*D) ' D*x} = Tker(D* 4+ T),
where T := D(D*D)™': H — H maps to im 7 = dom D* Nim D.

(ii)) The orthogonal projection of V' onto A(J)- extends to a bounded linear operator
IMy: H— H given by

[Mox = D(D*D + TD) ' (D*x + Tx).
Here D*D + T D: dom D — (dom D)* is an isomorphism because
(x,D*Dx 4+ TDx) = | Dx||*> + | TDx||* = §||x]|>.

In fact, I1y is a projection on all of H, its kernel is A, and its image is equal to the
image of D. In particular, IT| AL = 1.

(iii) In all our applications the inclusion dom D — H is a compact operator. Then,
by Lemma B.4, T: H — H is compact, and thus the inclusion A(J)- — H is compact.
Indeed, the inclusion is given by the composition x — T'D*x of a compact and a
bounded operator.
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The inclusions dom D* — H and Ay — H, however, are not compact unless V
is finite dimensional. Namely, if V' is infinite dimensional then so is the kernel of
D* (since Ag C V is Lagrangian) and the inclusion dom D* D ker D* — H is an
isometric embedding. Lemma B.10 below gives a condition under which the domain
of a self-adjoint extension of D has a compact embedding into H . This requires the
notion of a compact perturbation of a closed subspace of V.

Definition B.6 Let V' be a Hilbert space and A C V' be a closed subspace. A closed
subspace A’ C V is called a compact perturbation of A if the projection of A’ onto
some (and hence every) complement of A in V is a compact operator and vice versa.

Remark B.7 The notion of compact perturbation defines an equivalence relation on
the set of closed subspaces of V. To see this denote by IT: V — A and IT": V — A’
the orthogonal projections. If A’ is a compact perturbation of A and A” is a compact
perturbation of A’ then the operators 11 —IT: A’ — A+ and 1—IT": A” — (A’)* are
compact. Hence the operator (11— IT)|p» = (11— IT)(1— IT')| o~ + (1 — TI)IT’| o~ is
compact. Repeating this argument with A and A” interchanged we see that A” is a
compact perturbation of A.

Lemma B.8 Let V be a Hilbert space and A1, A, A’ CV be closed subspaces such

that A’ is a compact perturbation of A. If (V, A1, A) is a Fredholm triple then so is
(V. A1, A).

Proof Let IT: V — A and IT": V — A’ be the orthogonal projections. Then (1l —
M)A = TI(1—T1")|o: A — A and (1—TI'TT)|5: A’ — A’ are compact operators.
This implies that TT|p/: A’ — A and T1'|o: A — A’ are Fredholm operators with
opposite indices; see eg [17, Chapter II1.3].

Now suppose that (V, A1, A) is a Fredholm triple, ie the map S: A{ x A — V given
by S(v1,v) = vy + v is Fredholm. Then the operator

S":=So(IxI):A; xAN =V

is Fredholm. Define the map S’: Ay x A’ — V by S’(vy,v’) = vy +v/. Since
S’ (vy,v') = S8"(v1,v") = (1—TIIT")v’ the operator S” —S” is compact. Hence S’ is
a Fredholm operator and so (V, A1, A’) is a Fredholm triple. |

Lemma B.9 Let (V,w) be a symplectic Hilbert space. Let A, A’ C V' be Lagrangian
subspaces. Then the following are equivalent.

(i) A’ is a compact perturbation of A .

Geometry € Topology, Volume 12 (2008)



Instanton Floer homology with Lagrangian boundary conditions 881

(ii) The projection of A’ onto AL is a compact operator.

(iii) The operator A" — A* : v > w(v’,-) is compact.

Proof By definition, (i) implies (ii). The Lagrangian condition asserts that the orthogo-
nal complement A~ is isomorphic to A* via the isomorphism A+ — A*:v > w(v, ).
Under this isomorphism the orthogonal projection A’ — A~ corresponds to the operator
A — A* v +— w(V',-), hence (ii) and (iii) are equivalent. To see that (iii) implies
(i) note that the operators A’ — A* : v/ — w(v’,-) and A — (A)* : v~ —w(v, ) are
dual to each other. Using “(iii) < (ii)” we see that (iii) implies compactness of both
projections A’ — A+ and A — (A’)L. This proves the lemma. |

Lemma B.10 Let D: dom D — H be an injective symmetric operator with a closed
image and a dense domain and suppose that the inclusion dom D — H is a compact
operator. Let V = (dom D)* be the Gelfand—Robbin quotient, A C V be a Lagrangian
subspace, and Ay, A(J)- be as in Remark B.1. Then the following are equivalent.

(i) The inclusion dom Dy — H is compact.
(i) The inclusion A — H is compact.

(iii)) A is a compact perturbation of A(J)-.

Proof Let [1y: V — V denote the orthogonal projection onto A(J)-. Then I1g: V — H
is compact since the inclusion of the image I1o(V) = A(J)- into H is compact by Remark
B.5 (ii). By Lemma B.9, (iii) holds if and only if the operator (1 —ITg)[a: A — Ay
is compact. Moreover, the graph norm of D* on Ao = ker(D* + T') is equivalent to
the norm of H so, in fact, (iii) holds if and only if the operator (1 —ITg)|p: A > H
is compact. We deduce that (iii) is equivalent to (ii) because the inclusion A — H is
given by the sum 1|5 = (11— T1g)|a + ITg|a, where TTg|p: A — H is compact.

That (i) is equivalent to (ii) follows from the fact that the inclusion of dom D into H
is compact, by assumption, and dom Dy =dom D @ A. |

Lemma B.11 Let D: dom D — H be an injective symmetric operator with a closed
image and a dense domain and suppose that the inclusion dom D — H is a compact
operator. Let V = dom D*/dom D be the Gelfand—Robbin quotient and Ay = {[x] €
V| D*x =0} asin (123). Let P: H — H be a self-adjoint bounded linear operator
such that D + P: dom D — H is injective. Then the following are equivalent.

(i) The composition of P with the inclusion dom D* — H is a compact operator.

(ii) The operator Plyey(p*+ p): ker(D* + P) — H is compact.
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(iii) Ap:={[x]€V|D*x+ Px =0} is a compact perturbation of A.

Proof Abbreviate Dp := D + P. Then dom D} = dom D* and the graph norm
of D* is equivalent to the graph norm of D} . Moreover, on ker D7 and ker D*
both graph norms are equivalent to the norm of H. For [x] € A p, represented by
x € ker D7, and [xo] € Ao, represented by xg € ker D*, we have

o([x],[x0]) = (D*x,x0) — (x, D*x¢) = —( Px,x09) = (TPx — Px,xq).

where T := D(D*D)~!: H — dom D*. Using Lemma B.9 and the compactness
of the inclusion dom D — H, we see that A p is a compact perturbation of Ay if
and only if (P —TP)|yer D ker Dy, — ker D* is a compact operator. Since T is
compact, by Lemma B .4, this shows that (ii) is equivalent to (iii). That (i) implies (ii)
is obvious. To prove that (ii) implies (i) note that, by Remark B.5 with D replaced by
Dp, the inclusion of dom D* Nim Dp into H is compact. Since the decomposition
dom D* = (dom D* Niim Dp) @ ker D}, is orthogonal with respect to the graph norm
of D%, this shows that (ii) implies (i). |

Remark B.12 Let D, V, Ay be as in Lemma B.11, P: H — H be a bounded
self-adjoint operator, and denote Ap := {[x]€ V | D*x + Px = 0}.

(i) Let AL ? denote the orthogonal complement of A p with respect to the graph
inner product of D* 4+ P. Then it always is a compact perturbatlon of AJ- Namely,
by Remark B.5 with D replaced by D + P, the inclusion A P - H is compact.
Hence, by Lemma B.10 with D replaced by D + P and A := AJ‘ , the inclusion
{v edom D* |[v] € A} — H is compact. Using Lemma B.10 again we deduce that A
is a compact perturbation of A(J)-.

(i1)) The orthogonal complement AJP; with respect to the graph inner product of D*
is a compact perturbation of A(J)- if and only if the restriction of P to dom D* is a
compact operator. This follows from Lemma B.11 and the fact that A5 = D*Ap
and A(J)- = D*Ay in the notation of Remark B.1, where D* is a compatible complex
structure on V.

(ii1) It follows from (i) and (ii) that A#P is a compact perturbation of AJ- if and
only if the restriction of P to the domain of D* is a compact operator.

(iv) If A is a compact perturbation of Aol then (V, Ap, A) is a Fredholm triple. Since
(V,Ap, AJ"P) is a Fredholm triple, this follows from (i) and Lemma B.8.

Lemma B.13 Let D, V, Ay be as in Lemma B.11 and let P(s): H — H for s € R be
a continuously differentiable family of self-adjoint bounded linear operators. Assume
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that P(s) converges to P(+oc0) =: P* in the operator norm as s tends to 400, that
(D + P(s))|dom D 18 injective for every s € R U {00}, and that

ker(D*+ P7)@dom D _ ker(D* + P*) @ dom D
dom D B dom D
Then the spectral flow of the operator family s — (D + P(s)), is independent of the

Lagrangian subspace A C V' such that V.= Ay @ A and A is a compact perturbation
of AT.
0

=:AyCV.

Remark B.14 Let D,V, Ay be asin Lemma B.11, and let 0: H — H be a Hilbert
space isomorphism such that

x € dom D* - X — Ox € dom D.

Then Q induces the identity on V. Let P(s): H — H for s € R be a continuously
differentiable family of self-adjoint bounded linear operators such that

D+P(s+1)=0 "D+ P(s)Q.
Assume (D + P(s))|qom p 18 injective for every s € R and denote
AL ker(D* 4+ P(0)) @ dom D _ ker(D* + P(1)) @ dom D
o dom D dom D ’

Then the spectral flow of the operator family s — (D + P(s)), on the fundamental
domain [0, 1] is independent of the Lagrangian subspace A C V' such that V=A@ A
and A is a compact perturbation of A(J)-. The proof is the same as that of Lemma B.13.

Proof of Lemma B.13 The operators D + P(s): dom D — H satisfy the assump-
tions of this section and give rise to the constant Gelfand—Robbin quotient V =
dom D*/dom D since dom (D + P(s))* = dom D*. Hence any Lagrangian subspace
A CV givesrise to a family of self-adjoint operators A(s):=(D+ P(s))a: dom Dp —
H, which satisfies the conditions (A1)—(A3) of Appendix A whenever V = A6 HA.In
particular, the estimate in (A1) holds for s = o0, ie ||x| px < C H (D + Pi)AxHH
for x € dom D , because (V, A, A) is a Fredholm triple and (D + P¥), is injective.
The estimate for s € R follows from a uniform bound of the form || P(s) — P*|| < C
for the operator norm on H. The assumptions (W1)—(W3) are satisfied with the trivial
map Q = 1 and the constant domain Wy = dom D, . In particular, the domain embeds
compactly to H, by Lemma B.10, whenever A is a compact perturbation of A(J)-.
Hence the spectral flow is well defined under our assumptions (see Appendix A).

We prove that the set S of Lagrangian subspaces of V' that are transverse to Aj, and
are compact perturbations of A(J)- is connected. For that purpose let A; C V' denote
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the orthogonal complement of Aj, with respect to the graph inner product of D* +- Pt
and let [,,: A6 — A7 be the isomorphism given by v > @(v,-). Then a subspace
A CV = A @A} is a complement of Ay if and only if it is the graph of a linear
operator from A to Aj or, equivalently, A = A 4 := graph(/,; 1o A) for some linear
operator A: A; — A]. One can check that the subspace A4 is Lagrangian if and
only if A is self-adjoint and that it is a compact perturbation of AOl if and only if A
is compact. The last assertion uses the explicit formula x + I Ax — I Ax for
the projection A 4 — A6 along A; and the fact that A 4 is a compact perturbation of
A(J)' if and only if it is a compact perturbation of A, by Remark B.12 (i) and Remark
B.7. Thus we have identified S with the vector space of compact self-adjoint operators
A: Ay — A’l" and so S is contractible, as claimed.

Now the result follows from the homotopy invariance of the spectral flow. The homo-
topies of Lagrangian subspaces do not directly translate into homotopies in the sense of
Appendix A; see the proof of Lemma B.16 below. However, the homotopy invariance
of the spectral flow of the family s — (D + P(s)), follows from Remark B.15, where
the spectral flow is identified with a Maslov index, which in turn is invariant under
homotopies of A. a

Remark B.15 (i) Let [0,1] 3 s — (Ag(s), A1(s)) be a smooth path of pairs of
Lagrangian subspaces of V' such that (V, Ag(s), A1 (s)) is a Fredholm triple for every
s. For each s define the crossing form I'(Ag, A1, 5) : Ao(s) N A1(s) —> R by

d
P(Ao AL90) = | (@@,5(0) —w(©.v]()
t=0
for v € Ag(s) N Ai(s), where Ay, A| C V are Lagrangian subspaces such that
V =~Ao(s) DAy =A1(s) ® A} and vy(2) € Ay, vi(t) € A are chosen such that
v+ vy(t) € Ag(s +1) and v + v|(¢) € Ay(s + ). As in [25] the Maslov index is
defined as the sum of the signatures of the crossing forms

(Ao, Ay) =) signT(Ag, Ay,s)
N

provided that the crossing forms are all nondegenerate and A(s) is transverse to A (s)
for s = 0, 1. Under this assumption the sum is finite. The nondegeneracy condition
can be achieved by a small perturbation with fixed endpoints. The Maslov index is
invariant under homotopies of paths of Lagrangian Fredholm triples with transverse
endpoints.

(i) The spectral flow in Lemma B.13 can be identified with the Maslov index

(125) Mspee (D + P)p) = (Ap, A),
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where Ag(s) := Apy ={[x] € V| D*x + P(s)x =0} and A(s) := A for every s.
The Fredholm property of the triples (V, A p(s), A) follows from Remark B.12 (iv).

To prove (125), fix a real number s, choose Aj and vy () as in (i), let xo(¢) € dom D*
be the smooth path defined by (D* 4 P (s +))xo(¢) = 0 and [xo(¢)] = v+ vy (¢) €
Ao(s + 1), and denote x := x¢(0) so that [x] =v € Ag(s) N A. Then

ORI O)
= % ((D*x,xo(t))—(x,D*Xo(f) ))
t=0
— d ((D*+P(s+t))x,x0(t))
dr |-
d %
=4 t=0((D +P(s+t))x,x).

This shows that the crossing forms ' ((D* + P), ,s) and —I'(Ag, A, s) agree under
the isomorphism ker (D* + P(s))5 — Ao(s) N A : x — [x].

Lemma B.16 Let D,V, Ay, Q, P be as in Remark B.14. Denote by Y the set of
Lagrangian subspaces A C V that are compact perturbations of Aé. Forevery A e Y
there is a Fredholm operator

Dp:=05+ Dp+ P(s): WA > H
with  Hi=lee LR H)[EG+1) = 07'E@)].
Wh = {& € L2 (R,dom DA) N W2 (R, H) |E(s + 1) = 07 E(5)).
The determinants det(Dp) for A € Y form a line bundle over Y.
Proof D, is Fredholm since it is the operator of Theorem A.5 with A(s) = Dp + P(s)
and constant domain W(s) = dom Dy .

We do not know if for any two subspaces A, A’ € T there is a Hilbert space isomorphism
of Q: H — H that identifies dom D, with dom D,-, as would be required for a
homotopy of operator families in the sense of Appendix A. However, one can prove
directly that the kernel of Dp depends continuously on A (as a subspace of H) if
Dy is surjective. This proves the lemma since the transverse situation can always be
achieved by finite dimensional stabilization.

To prove the continuous dependence of ker Dy on A we will use the fact that every
element & e ker D is a smooth function from R to dom Dp (see [26, Theorem 3.13])
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and satisfies an estimate of the form &[]y, + (195§ (l,y, = ¢ €ll3;- Two Lagrangian
subspaces A, A’ € Y are close if there exists an isomorphism of V' close to the identity
that maps A to A’. This extends to an isomorphism of dom Dy = A & dom D and
dom Dp = A’ @dom D (which does not necessarily extend to an isomorphism of H).
This isomorphism of domains followed by the orthogonal projection onto the kernel
of Dy induces a map ker Dy — Wy, which is an isomorphism for A’ sufficiently
close to A. d

Appendix C Unique continuation

In this appendix we formulate a general unique continuation theorem based on the
Agmon—Nirenberg technique. The method was also used by Donaldson—Kronheimer
[11, pp150] and Taubes [31] to prove unique continuation results for anti-self-dual
instantons and by Kronheimer—Mrowka [20] and in [27] for the Seiberg—Witten equa-
tions.

Let H be a Hilbert space and A(s) be a family of (unbounded) symmetric operators
on H with domains dom (A(s)) C H. The operators A(s) are not required to be
self-adjoint although in the main applications they will be and, moreover, their domains
will be independent of s. However, in some interesting cases these operators are
symmetric with respect to time-dependent inner products. The following theorem is a
special case of a result by Agmon and Nirenberg [2].

Theorem C.1 (Agmon—-Nirenberg) Let H be a real Hilbert space and consider a
family of symmetric linear operators A(s): dom (A(s)) — H . Assume that x: [0, T) —
H for 0 < T =< oo is continuously differentiable in the weak topology such that
x(s) € dom (A(s)) and

(126) [1%Cs) + A()x ()| = c1(s) [x ()l

for every s € [0, T), where x(s) := dsx(s) € H denotes the time derivative of x. As-
sume turther that the function s — ( x(s), A(s)x(s) ) is also continuously differentiable
and satisfies

d .
(127) 75 (X Ax) = 2(X, Ax) < 202(s) [| x| [|x ]| + e3(5) By
Here ¢y, ¢3,¢3: [0, T) — R are continuous nonnegative functions satisfying
T T
aO::2/ cy < 00, b0:=/ (612+C§+C3)<OO, Co i=supc; < oo.
0 0

Then the following holds.
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(i) Ifx(0) =0 then x(s) =0 forall s €[0,T).
(ii) If x(0) # 0 then x(s) # 0 for all s € [0, T') and, moreover,
Ix()[ = e x O, ¢:=co+e®(bo+ [xO) 7' [40)x(0)]).

Proof The basic idea of the proof is to use the convexity of the function ¢ +—
log ||x(¢)]|*. Assume that x(0) % 0 and define

x(0). x(0) + A(0)x(0) )
Ix(@)]?

for 0 < s < T wherever x(s) # 0. Then we prove that ¢ is twice continuously
differentiable and satisfies the differential inequality

o(s) = log [lx(s)] - /0 ‘ do

(128) g+alg|l+b=0, a:=2c¢y, b::cf+c§+03.
Define f(s):= x(s) + A(s)x(s). Then the derivative of ¢ is given by
(x,x) (x.f) (x,4x)

2 |12 |12
Hence
L dAx,x)  2(Ax.x) (k. x)
[ x]] [l x]]

_ 2 Ax Ax — f) =2¢s | Ax| Ix] —e3 x[*  2{Ax,x)(Ax — fix)
- Ix11? )1

Here the second step follows from the inequality (127) and the definition of f'. The
terms on the right hand side can now be organized as follows

> 2 (”Axnz_(Ax,x)z) 2 <Ax—<Ax’x)x,f>

Jlx]I? Ix|I? Ix]I? ]I
| Ax||
x|l
2 Ax,x 2 2 Ax, x
BTN PRE S Y - RS N
x|l x|l [l x|l
e Al
[l
Now abbreviate
X Ax
f=o =T
[l x|l
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Then ¢ = —(&, ) and the previous inequality can be written in the form

¢22||77—(777§)§||2—2<77—(77,5)5’L>—202 Inll —c3

i
> 2 = (€ )EI2 =2 = (. £ )€ H—Zcz Il = cs
2
> ln— (0, £)81° - '|'|£|'|'2 265 Il —c;

> [ln—(n,6)€1* =i —2¢2 Inll = .

The last but one inequality uses the fact that af < «?/2+ B%/2 and the last inequality
uses || f|| < cq]|x]|. To obtain (128) it remains to prove that

In—(n, €)&l1* —2¢2 0]l = —2¢2 ] — 3.

Since ¢ = —(&, n) this is equivalent to

2e5 Inll < lIn—(m€)EN* +2¢2 [(, & )| + 3.

Now the norm squared of 7 can be expressed in the form

Il =w?+0%  u=ln—(n&)El,  v=Un§)l

Hence the desired inequality has the form
2o Vu2 +v2 <u? +2c0+ c%.

This follows from the inequalities vu? + v2 <u + v and 2¢cou < u? + ¢,%. Thus we
have proved (128).

Define a(s) := fos a(o)do. Then « is nonnegative and & = a. Hence at each point
s €0, T) with ¢(s) <0 we have

d 4. — .
5(6 O‘(p) =e “((p +a|(p|) > —p.
Integrating this inequality over maximal intervals where ¢ is negative we obtain

N
e @ (s) > min{0, ¢(0)} — / b(o)do,  for 0<s<T.
0

This implies ¢(s) > —e® (by + |¢(0)]), hence ¢(s) = ¢(0) —e%°(by + |@(0)])s, and
hence, again for 0 <s < T,

log [[x(s)[l = ¢ (s) —/0 X[ 1% 4 Ax]] = 9(0) — e (bo + [$(0)])s — cos.
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Now we can use log || x(0)|| = ¢(0) and |¢(0)| < ||x(0)[|~1[|4(0)x(0)|| to prove (ii):

x(s)] = ¢#(0)=e“0(bo+|9(0))s—cos > [|x(0)[le ™.

To prove (i) we assume by contradiction that x(sg) # 0 for some sg € (0, 7). Then
part (ii) applies to the path s — x(so —s) and the operator family s > —A(sg — ).
It implies || x(a)| = €750 x(so)| for all o € (0, s¢], so by continuity ||x(0)| >
e~ %0 ||x(s0)|| # 0 in contradiction to the assumption. m|

Time-dependent inner products

There are interesting applications to operator families A(s) on a Hilbert space which
are self-adjoint with respect to a time-dependent family of inner products which are all
compatible with the standard inner product on H. Any such family of inner products
can be expressed in the form

(129) (x.)s=(Q)x. Q(s)y)

for some invertible bounded linear operators Q(s): H — H . Without loss of generality
one can consider operators Q(s) which are self-adjoint. Assume throughout that these
operators satisfy the following conditions.

(Q1) The operator Q(s) is self-adjoint for every s and there exists a constant § > 0
such that for all x € H and s €[0,T)

Sllxl = lQ)x] =8 fxll.

Moreover, the map [0, T) — L(H) : s — Q(s) is continuously differentiable in
the weak operator topology and there exists a continuous function cg: [0, 7)) —
[0, c0) such that

. T
HQ(S)HL(H)ff,‘Q(S) Vs el0,T), Co ::/0 co < oo.

Theorem C.2 Let H be areal Hilbert space, Q(s) € L(H) a family of (bounded) self-
adjoint operators satistying (Q1), and A(s): dom (A(s)) — H afamily of (unbounded)
linear operators such that A(s) is symmetric with respect to the inner product (129).

Assume that x: [0, T) — H is continuously differentiable in the weak topology such
that x(s) € dom (A(s)) and

1% Cs) + A()x($) |5 = c1(s) [|x ()l
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for every s € [0, T'). Assume turther that the function s — ( x(s), A(s)x(s) )s is also
continuously differentiable and satisfies

d .
25 (X (6)- A)x(9) )s = 2{5(s). A($)x(5) )5

= 262(5) 14 x )y 1) s +e3(5) x93
forevery s € [0, T). Here ¢y, ¢y, c¢3: [0, T) — R are continuous nonnegative functions
satisfying

T
ag = 2/ (c2 —|—5_1CQ) < 00,
0

bo := /OT((CI + 5_1(:Q)2 + (e + S_ICQ)2 + 03) < 00,
co ;= sup(cy + 5_ICQ) < 00.
Then the following holds.
(i) Ifx(0)=0 then x(s) =0 forall s €[0,T).
(ii) If x(0) #£ 0 then x(s) # 0 for all s € [0, T') and, moreover,
lx()lls = e IxO)llg,  ¢:=co+e®(bo+ [x(0)g" 1 4(0)x(0)]o)-

Proof The result reduces to Theorem C.1. Define
A= QAQ_I, X := QOx, f:z Qx+Qf

with dom (g(s)) = Q(s)dom (A(s)) and f = X + Ax. Then the operator A(s) is
symmetric with respect to the inner product (129) if and only if A (s) is symmetric
with respect to the standard inner product. (Moreover, one can easily check that A(s)
is self-adjoint with respect to (129) if and only if A (s) is self-adjoint with respect to
the standard inner product. However, this is not needed for the proof.) It also easy to
see that
Y+dAx=f & X4+4x=71.

It remains to show that under the assumptions of Theorem C.2 the triple A, %, f
satisfies the requirements of Theorem C.1. First, note that

1711 =10x+ Qf | < colxl+1Iflly < co8™" lIxlly + e lxll

and hence X satisfies (126) with ¢; replaced by ¢; = ¢; +cg /8. Secondly, the function

s (X(5), A()X(s) ) = (x(s), A(5)X(5) )
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is continuously differentiable and a simple calculation shows that

d _ ~ L e d . .
g(x, X)—2(x, x):g(x,Ax)s—2(x,Ax)s—2(Qx,QAx).
Hence
d - ~ L e . ~_
g5 X AX) =25, AX) < 200 [|x]ls [ Al + c3 1§ + 20 0x [ 4|

<263 |X AR + €3 |1X)1? + 2¢08™" |IX] | 4]

This shows that X satisfies (127) with ¢, and c¢3 replaced by ¢; = ¢, +co/8 and
¢3 = ¢3. Hence X and A satisfy the requirements of Theorem C.1 and this proves
Theorem C.2. O

Appendix D Holonomy perturbations

In this appendix we review the properties of the holonomy perturbations used in this
paper. Throughout this appendix Y is a compact oriented 3—manifold, D C C is the
closed unit disc, and we identify the circle S with R/Z. The elements of S will
be denoted by 6 and those of D by z. Fix a finite sequence of orientation preserving
embeddings y;: S l'sD—>Y fori=1,...,N that coincide in a neighbourhood of
{0} x D. Define the holonomy maps

gi- RxDx A(Y) -G, pi: DxAY)—G
by pgi+ A(gyi)gi =0,  gi(0.z;A) =1, pi(z;4) = gi(1,z; A).

and abbreviate p 1= (p;....,pn): D x A(Y) — G". Fix a smooth conjugation
invariant function f: D x GN — R that vanishes near the boundary, and define the
perturbation s7: A(Y) — R by

hy(A):= [D f(z, p(z; A)) d?z.
This map is smooth and its derivative has the form

d
(130) dhy(A)e =

/f(z,p(z;A+sa))d22=/(Xf(A)/\a)
D Y

s=0

for o € Q!(Y, g). The map Xy: A(Y) — Q*(Y. g) is uniquely determined by (130);

it has the form
N

Xp(A) =) vis(Xpi(A)d*z),

i=1
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where Xy ;(A4) € Q°(S! x D, g) is given by
(131 X5i(A)(0.2) = —gi(8, 2 Vi (2, p(z: A))gi (0, 2 ).
Here the gradient V; f: D x GV — g is defined by

d
(Vif(z,g),é):a f(z.g1.....8i—1.8iexp(t€), gi41..... &N)
t=0

forzeD, g =(g1....,gn) € GV, and £ € g. It vanishes near the boundary of D
and, since f is conjugation invariant, it satisfies

(132) Vif(z,hgh™") =hV; f(z, g)h~!

for 1 €G. If follows from (132) that X ;(A): RxID — g descends to a function on Slx
D. If the center of G is discrete then Equation (132) implies that V; f(z, (1, ..., 1)) =0
and hence X7 (0) = 0 for every f € C5°(D x GM)S. Thus, for G = SU(2) the
trivial connection is always a critical point of the perturbed Chern—Simons functional
CS. + hy. The next proposition summarizes the properties of Xy. We denote the
space connections of class wk.p by

Akryy .= wkr(y, T'Y ® g).
Proposition D.1 Let f € Cg"“ (D xG™)S for some integer £ > 0. Then the following
holds (with uniform constants independent of f).

(i) For every integer £ > k > 1 and every p > 2 with kp >3, Xy extends to a ct-k
map from AXP(Y) to W5P(Y, A2TY ® g), mapping bounded sets to bounded sets.

(i) Forall Ac A(Y),ueG(Y),£EcQ%Y.g),and a € Q(Y,g) we have
da(Xr(A4)) =0, Xrw*A)=u"' X (Au,
dXy(A)daé =[Xf(A). 8], da(dXp(A)a) = [Xf(4) Aa].

(iii) Forevery k € {0,...,£} and every p € [1, 00| there is a constant ¢ such that
| Xr (D) e < IV Sllx (1 + > NAllyior 1Al -+ 1 Allcis )
Jjo+tis=k
$=0, ju=1

forevery A € A(Y). If k =0 then HXf(A)|

o =clVSlLr.
(iv) Forevery k €{0,...,£—1} and p €1, 00| there is a constant ¢ such that

[4Xp (e yicniry = IV Fllerss (L4 I Allge)* lelprncr)

forall Ae A(Y) and o € Q1 (Y, g).
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(v) Forall p,q.r €[1,00] with g=' 4+ r~! = p~! there is a constant ¢ such that
X (@p),, ., <1V e llzoe) I1BlLrery
| X7 (A + ) = Xp(A) =dXp (D] pyy IV fller el Lagry Nl e vy

forall Ae A(Y) and a, B € Q1 (Y, g).

(vi) Forevery p € [1, oo] there is a uniform constant ¢ such that

(133) IVaX ()| Lo <c(U+ IV S llet) (1 + 1 Fall o)
forevery A € A(Y).

Remark D.2 Consider a connection & = ®ds+ A € A(I xY) for a compact interval
I, givenby A: I — A(Y) and ®: I — Q°(Y, g). Proposition D.1 extends to the
perturbation X¢(E) := XroA4 € Q2(I x Y, g) — except for (ii), and in (i) we need
to assume kp > 4. In particular, for every k > 1 and p > 2, Xy maps bounded sets
in AX:P(I xY) to bounded sets in W5?(I x Y, A2TY ® g). In the case k = 1 and
kp < 4 this follows from Proposition D.1 (iii).

The proof requires some preparation. We begin by considering connections on the circle.
The canonical 1-form d6 € Q1(S!) allows us to identify the space A(S')=Q!(S!, g)
of G—connections on S! with the space Q°(S!, g) of Lie algebra valued functions.
The holonomy of a connection 4 = ndf € A(S!) with n: S — g is the solution
g: R — G of the differential equation

(134) dog +1ng =0, g(0)=1

The solutions give rise to a map hol: R x Q°(S!, g) — G which assigns to each pair
(0,17) e RxQO(S!,g) the value hol(8; ) := g(#) of the unique solution of (134) at
6. The gauge invariance of the holonomy takes the form

hol(0; u™ " dgu + u™'nu) = u(6) " 'hol(8; n)u(0)

for u: S — G. One can think of hol as a map from Q°(S!,g) to C*([0,1],G)
defined by hol(n)(6) :=hol(8; n). The holonomy then induces a map between Sobolev
completions, for every integer k£ > 0 and every p > 1,

(135) hol: Wk-2(S!, g) > wk*+1-2([0,1], G).
This map is continuously differentiable and its derivative at n € wk.p (S, g) is the

bounded linear operator dhol(n) : Wk-2(S1, g) - Wk+1.2([0, 1], hol(n)*TG) given

Geometry € Topology, Volume 12 (2008)



894 Dietmar Salamon and Katrin Wehrheim
by

6
(136) (hol(m)~*d hol(1)7) () = —/0 hol(z; ) ™' A(x)hol(r; ) dr

for 7 € W52 (S, g). The formula (136) shows, by induction, that the map (135) is
smooth. The next lemma is a parametrized version of this observation.

Lemma D.3 Let Q be a compact Riemannian manifold.

(i) For every integer k > 1 and every p > dim 2, composition with the holonomy
induces smooth maps

Hol: WkP2(S'xQ,g) — WkP([0,1]x Q,G),
Hol;: WhP(S1x Q. g) > WkP(Q,0),

given by Hol(n) := gy, with g,(0, x) := hol(6, n(-, x)) and Hol; (n)(x) := g, (1, x)
for x € Q and 6 € [0, 1]. These map W*-P _bounded sets to W*-P —bounded sets.

(ii) For every integer k > 1 there is a constant ¢ such that
IHOl() |7 + IHOly ()l < c(l + Y Inllwios Inlleir -+ Inlleis )
Jo+tis=k
$=0, ju=1

for every n € C*(S' x Q, g) and every p €1, x].

(iii) For every integer k > 0 and every p € [1, oo] there is a uniform constant ¢ such
that, for every n € Ck(S1 X €2, g), the derivatives

Hol(n)~'dHol(n): W52 (S' x Q,g) »> W52((0,1]x Q. g),
Hol; (7))~ 'dHol; (n): WEP(S'x Q. g) > WFP(Q, g)

are bounded linear operators with norms less than or equal to ¢ (1 + ||7’]||ck)k.

Proof Think of 7 as a map from Q to W/-?(S, g) and of Hol(1) as a map from
to W/tL.P([0,1],G). Then Hol(n) is the composition

QL wir(s! g) 2% withe (o, 1],G).

Since hol: W/-2(S!, g) — W/TLP([0,1],G) is smooth the composition induces a
smooth map

Hol: WhP(Q, W/-P(S!, g)) > WEP(Q, WP ([0, 1], G))
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for £p > dim Q and any j; hence it defines a smooth map from

k
Whr(stxQ.g) = () WhP(@ WEEP (s g)
£=0
k
to (| whr (@ wk=t12((0,11.G)) € Wh2([0.1]x Q. G)
{=1
for Kk > 1 and p > dim Q. This proves (i) for Hol. To prove (i) for Hol;, take £ = k
and note that evaluation at § = 1 gives a smooth map from W&-2(Q, W'-2([0, 1], G))
to Wk:p (€2, G). The boundedness of Hol and Hol; is a consequence of (ii) and (iii).

To prove (ii) we differentiate the function g(6, x) = hol(8, n(:, x)):

7]
g 99 =—g g, (g7'0xg)(0,x) = —/0 g(t,.x) " axn(t, x)g(t, x) dt.

Hence there are constants ¢y, ¢3, ¢3, ... such that
(137) lgllprr < ck(l + D> Anllwier Iglen - ||g||cis)
jottis=k
5§=0,ju=1

for every smooth function 1: S! x Q — g, every integer k > 1, and every p €[1, 00].
For p = oo assertion (ii) now follows by induction on k. Inserting the resulting
estimate into (137) proves (ii) for all p. For k = 0 assertion (iii) follows immediately
from (136) with ¢ = 1. To prove (iii) for k > 1 differentiate Equation (136) with
respect to 8 and x and use (ii). This proves the lemma. O

Proof of Proposition D.1 The map Xy;: Akr(y) - wkP(S! x D, g) can be ex-
pressed as composition of three maps. The first is the product of the N maps
AP (yy > whP(S'xD,g): A+ nj = A(dgy)),
the second is given by composition with the holonomy
WhP (S xD, g) > WEP([0,1]x D, G) : 1 > (g ),

where g; (0, z) :==hol(n; (-, 2))(0) and p; (0, z) :=hol(n; (-,z))(1), and the third map
has the form

wkP ([0, 1]xD,G*N) - WhP(S' x DD, g): (g1, p1.-... 2N, PN) = &,
with C:=giVif(pr,....pn)Eg; "
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(see Equation (131)). The first map is bounded linear (and hence smooth) for all k£ and
p because composition with a smooth embedding at the source and multiplication with
a smooth function define bounded linear maps between wk.p —spaces. The second map
is smooth and bounded for £ > 1 and p > 2 by Lemma D.3. The third map is bounded
and C¢~ because composition with a ck —map at the target defines a continuous map
from W5P to Wk-? for all kp > dim(R x D) (or kp > dim(R2 x D) in the case of
Remark D.2). This proves (i). Assertion (ii) follows by straight forward calculations
and (iii) follows from (131) and Lemma D.3 (ii).

To prove (iv) we abbreviate A4; := yl.*Ai, o = )/l.*a,-, and differentiate Equation (131)
to obtain

Hol(A;)~" (dX/;(A)) Hol(4;)
= [Hol(4;) " X7,;(4) Hol(4;), Hol(4;) "' dHol(4;)e; |
N
= 2 ViViS (Holy(Ag))e=1...) Holy (4) ™" dHol; (4))a;.
ji=1
The estimate now follows from Lemma D.3 and the uniform bounds in (iii).

To prove (v) we differentiate the last equation again and obtain the inequality

|d* Xy (A) (. B)|
< |dX(A)a||dHol(4)B] + |d Xy (4)B]||dHol(A)«|
+ | X7 (A)||dHol(A)e ||dHol(4) B| + | X/ (4)||d(Hol(A)~'dHol(4)a) |
+ V2 f||dHol; (A)e| |dHol; (4)B| + | V2 £||d(Hol; (4) ' dHol; (A)e) B
0
with  d(Hol(4) 'dHol(A)e)B = / [Hol(4)~'dHol(A)e, Hol(4)~'dHol(4)8].
0

A similar inequality holds for Hol; . The first estimate in (v) now follows from the LZ—
and L"-bounds in (iv) and Lemma D.3 and the L*°-bounds on X and V2 f. The
second estimate in (v) follows from the first and

1 T
Xr(A+a)— Xp(A)—dXp(A)a = / / 2 Xy (A +ta) (e, o) dt dr.
0 Jo
Assertion (vi) is a result of Froyshov [15]. The proof uses the formula

0:g(8.1) + A3,y (0.1))g(6.1)

7]
(138) =g(e,t)(/0 g(s,z)—lFA(aeﬂs,r),a,y(s,z))g(s,t)ds)
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for y: [0,1]> = Y and g: [0, 1]> — G with
dpg + A(dgy)g =0,  g(0.1)=1
Namely, inserting a ¢ —dependent parameter z = z(¢) into (131), abbreviating
g(0,1):=gi(0,z(1); A), vi(0.1) .=y (0,2(1)),
£(0.1) 1= Xp,i(0,2(1) = —g(0,)Vi [ (2 (1), p(z(1); A))g(6,0)7",
and differentiating £ covariantly with respect to y;* A we find that Vp£ = 0 and
Vi§ = 0,5 +[A(0:1vi). €]
=[(0:g g7 +40:)).E] =g (@ 1% /)=, p(z5 A))d;2) g
N
-1 . .1 .
j=1

Since the estimate (133) is gauge invariant and the y; all coincide near y;(0,z) =
yj(1,z) we can assume that A(d,y;(1,z(z))) =0 for all j and ¢. Then it follows
from (138) that

1
Pj(Z(l);A)_laz,Oj(Z(t);A)=/0 gi(s,0) "V Fq(3gyj(s,1), 0,y (s,1))gj (s, 1) ds.

So the first and third term on the right hand side of (139) can be estimated by the
curvature of A4, and the second term is uniformly bounded. This proves the proposition.
O

In the remainder of this section we give a proof of the basic compactness result for
solutions E € A(R x Y) of the perturbed anti-self-duality equation

(139) (Fz+ X)) =0
with bounded energy
— 1 - |2
Ef(E)=1% / |Fz + X7 (8)|".
RxY
A similar proof for somewhat different perturbations can be found in [19].

Theorem D.4 There exists a universal constant & > 0 such that the following holds
for every perturbation Xy, every real number E > 0, and every p > 1.

Let 2, € A(R x Y') be a sequence of solutions of (139) with bounded energy
sup Ef(Ey) < E.
1%
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Then there exists a subsequence (again denoted (E,) ) and a finite set of bubbling points
S ={x1,....xny} CRxint(Y) with

liminfl/ |Fz, + Xp(Ew)[>=h  V8>0,x;€5.
V—>00 B (Xj)
Moreover, there is a sequence of gauge transformations u, € G((R x int(Y)) \ S) and
a limit connection B € A(R x int(Y)) such that u},E, converges to Eo in the
WP _norm on every compact subset of Rxint(Y) \ S. The limit E o solves (139)
and has energy

Ef(Boo) < limsup Ef(E,)— Nh.

V—>00

Remark D.5 If S C (7T-,7T4) x Y in Theorem D.4, then the convergence can be
improved to the C®°—topology on every compact subset of (—oo, T_]x int(Y) and
[T+, 00) x int(Y) (in particular on R x int(Y") if S = &). This follows from the
standard bootstrapping techniques (eg [11], [34]) and Remark D.2. The crucial point
is that a WX-? —bound on u**E" implies a W*-? —bound on Xy (u’*E") and thus on
Fi+gv. The appropriate gauge transformations can be interpolated to the ones over
(T-, T4+) xint(Y).

Proof of Theorem D.4 Without loss of generality we prove the theorem for a fixed
constant p > 4. We follow the line of argument in [11, 4.4.4]. Let ey > 0 and
Cyy, be the (universal) constants in Uhlenbeck’s gauge fixing theorem [32] (see also
Wehrheim [34, Theorem B]). Then for each x € R x Y, each sufficiently small constant
d > 0 with Bg(x) C R x Y, and each connection E € A(R x Y) with energy

/ |Fg|* < ey
Bs(x)

on the geodesic ball Bg(x) there is a gauge transformation # € G(R x Y') such that

e HL“(Bl;(x)) +[uE ”WLZ(B,;(x)) = Cun | FellL2s0) -
Step 1 For every ¢ > 0 there is a finite set of bubbling points Sz C R x int(Y) and a
subsequence, still denoted by E,,, such that the following holds.

(a) If x e (Rxint(Y))\ S¢ then there is a § > 0 with sup,, st(x) !FEU ><e

228/2.

-
Sy

(b) If x € S; then infs- o liminf, o fB,s(x) ‘F

Let S; be the set of points x € R x int(Y) that satisfy the inequality in (b). Since
Xy (Ey) is uniformly bounded we have

inf lim inf |Fg, + X/ (E,)|> = inf liminf |Fg,|* =

&
§>0 v=>00 Jp (x) §>0 v—>00 Jp.(x) 2
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for every x € S, and hence the energy bound guarantees that S, contains at most
4F /e elements. If each point in (R xint(Y)) \ S¢ satisfies (a) we are done. Otherwise
there is a point x € (R x int(Y)) \ S, with

inf sup/ ‘FEU
§>0 v JBs(x)

In this case we can choose a subsequence (still denoted by &, ) such that

Lo
Bl/v(x)

for all v. After passing to this subsequence we obtain a new strictly larger set S;.
Continue by induction. The induction terminates when each point x € (R xint(Y))\ S,
satisfies (a). It must terminate because in each step the set S, contains at most 4E /¢
points.

> &.

€
22_
2

Step 2 We denote q := 4p/(p +4) € (2,4). If ¢ > 0 is sufficiently small and
S = S, is as in Step 1, then there exists a subsequence, still denoted by 2, and a
sequence of gauge transformations u, € G((R x Y)\ S) such that u}} 2, converges
to Exo € Allo’f (R xint(Y))\ S) in the W9 —norm on every compact subset of (R x
int(Y))\ S.

There are universal constants Cy > 1 and C; > 1 such that
(140)  |Velg2 = Co(|dTef 2+ |d*a|2) . lelzs < Gl Vel

for « € Q1(B;(0)) supported in the interior of the Euclidean unit ball. These in-
equalities are scale invariant, and for § > 0 sufficiently small the metric in geodesic
coordinates on Bg(x) is C!—close up to a conformal factor to the Euclidean metric on
B1(0). Hence the estimates (140) continue to hold with the same constants Cy and C;
for every compactly supported 1—form on a geodesic ball Bs(x) C R x Y, provided
that § > 0 is sufficiently small.

Now fix 0 < & < (4CoC;1Cyp)~" and choose a finite set S = S; C R x int(Y) and
a subsequence (still denoted by E,) as in Step 1. Since ¢ < gy, it follows from
Uhlenbeck’s gauge that, for every x € (R xint(Y)) \ S, there is a radius § > 0 and a
gauge transformation u, x € G(Bs(x)) such that

(141) H”t,xgv HW1~2(Bs(x)) = Cuyne, d*(u:,xav) =0.

By a global patching argument as in [11, Lemma 4.4.5] or [34, Proposition 7.6],
it suffices to construct gauge transformations, limit connections, and establish the
convergence on every compact deformation retract K C (R x int(Y)) \ S. We fix
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K and find a covering by finitely many of the Uhlenbeck gauge neighbourhoods
Bs; (x;). On each of these ”:,x,- E, satisfies (141). Now we fix a smooth cutoff
function /1: Bs; (x;) — [0, 1] that vanishes near the boundary. Then

L Bl
< CollhVdT (3, By) L2 + Clluy x, vl 2
< Col| 1V (uy 3, Xr (B0) ttway = 5[5, B A5 Bl ) [ 12+ C 054, B 12
= Co i} Bl o [V 005, B |+ € s, Bl + € 15, B2
+ Co(|u (Ve Xy (@) v |, + |45, Bo 12 [ X5 (B0 1)
< CoCiCype |h-u} By o + CCHue* + CCupe

+ CO() ulj,;',‘ (VEqu(Ev))uv,x,-

L+ Cune | X, (E ) )

Here all norms are in B, (x;) and C denotes a constant that only depends on / and the
radius §; . In the first step we have used (140) with o = 9; (& - u;‘j,xi Ey),i=1,...,4,
and (141). In the last step we have used (141) and the inequality

9030, Z0)] o = € 15, Bl

of (140). Since CoCCype < 1/4 and
”VEva(EV)HLZ(BSi(xi)) <C(1+|Fsg, “LZ(Ixy))

for an interval I C R with Bs, (x;) C I x Y we obtain a W22 _bound on ”:,x,- Ey
over a slightly smaller ball in Bs, (x;) where h = 1.

By Uhlenbeck’s patching procedure [32] (see also Wehrheim [34, Chapter 7]) the gauge
transformations u, x, can then be interpolated to find u, € G(K) such that u} &, is
bounded in W2:2(K). The compact Sobolev embedding W?2(K) < W 4 (K) for
g < 4 then provides a W14 —convergent subsequence u*E, — Eo € A9(K).

Step 3 We prove the theorem with i = ¢/4 where ¢ is as in Step 2. In particular,
we remove the singularities to find Eoo € A(R x int(Y)), a subsequence, and gauge
transformations i, € G((R xint(Y)) \ S) such that u} &, — E oo in the WP —norm
on every compact subset of (R xint(Y))\ S.

Step 2 gives uj By - EBxo € Al’q((R xint(Y)) \ S) with ¢ > 2. This implies L?—

loc
convergence of the curvature on every compact subset of (R x int(Y)) \ S, and hence
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with the exhausting sequence K5 := ([—61,67!1]x Y)\ Bs(SUR x 3Y)

Fz_|?> = lim Fz_|*> = lim lim Fz |> < E.
fo, VFenl = fim [ 1P = gim i [ (s, P <

Next we consider small annuli around the singularities and denote their union, for
k € N sufficiently large, by

A = By1-1(S) \ By—«(S).

Then [ Ar |Fg_|*> — 0 as k — oo since the above limit exists. For sufficiently large
k we can now patch Uhlenbeck gauges to obtain a gauge transformation uy € G(Ay)
such that [[uy Ecollp4(4,) < CIlFE llL2(4,) — O- The patching procedure does not
introduce k—dependent constants or a flat connection since the inequality is scale
invariant and each annulus can be covered by two balls whose intersection is connected
and simply connected (see [11, 4.4.10]).

We extend uy to (R x Y)\ S and denote

L-‘k = (uvkuk) Sy -
Here we pick a subsequence vy — oo such that

22(14,{) 2HF OOHLZ(Ak)

H iy Evy

for all k > k¢ sufficiently large, and

klgl;o;up Huve“W o

°°HL4(Ak) =0.

. -/ .
In particular, we .have €% lL4ca,) — O as kK — oo. Now consider the sequence of
extended connections

o

k1=hk-E;€ e AR xY),
where hg: RxY — [0, 1] is a cutoff function that vanishes on B,—« (S), varies smoothly

on Ay with |dhg| < 2K+, and equals to 1 on the complement of B51-«(S). The
curvature of the extended connections is

Fg, = hi- Fg; + 3(hf —hp)[E} A ER]+dhg AEL.
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Sofor § =27¢, and k > £ + 1 we have

f |Fz, |2
B;s(S)

<2 ool [ (W31Fa, P4 U — P12+ i |24 )
Bs(S)\B,1—k (S) A «

1
52/ P > + 1B, 1 a4,y + 275 VOUAR) 2N EL I 4 4,
B5(S)\B,—« (S) LA L4 ()

The right hand side converges to

2[ |Fg_|?
Bs(S)

as k — 00, so for sufficiently small § = 2~¢ we have locally small energy

sup/ |F§k|2 <eg
k JBs(x)

at every x € R x int(Y) for the subsequence (Ek)kzg. (For x ¢ S this is true by
Step 1.)

Now we can find an Uhlenbeck gauge vy € G(Bs(S)) such that

(142) FWREN =0,  [viEi|pracs,csy = Cune:

The W12_bound allows us to choose a W !-2—weakly convergent subsequence
vFEx — Boo € A2 (Bs(S)).

On the other hand, for every closed ball D C Bg(S)\ S and every sufficiently large
k (such that /;|p = 1) the same estimate as in Step 2 provides W?2:2—bounds on
v Eklp and thus W 14 _convergence VB > Boo € Allo’g(BS (S)\ S) on every
compact subset.

We can extend the gauge transformations v; € G(Bg(S)) by Uhlenbeck’s patching
procedure to a compact deformation retract S C K C R xint(Y") (which is covered
by Bs(S) and finitely many balls in (R x int(Y)) \ S on which we also have an
Uhlenbeck gauge and hence W 2:2—bounds), and to R xint(Y) by the general extension
procedure [34, Proposition 7.6]. This provides a subsequence and gauge transformations
v € G(R xint(Y)) such that the vy’ g & converge in the W19 —norm on every compact
subset of (R x int(Y)) \ S to a limit connection Eoo € Allo’g((]R xint(Y))\ S). In
particular, this means that

iy, By = Eco, iy, := iy, ugvg € G((R x int(Y)) \ S),
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because Ek = (uy, ug)*8y, on compact subsets of (R x int(Y))\ S. Moreover,
the limit connection extends to S such that v;Ex — Boo € AL2(Bs(S)) converges
W12 _weakly and L*-weakly.

Since E o is of class W12, the perturbation X f(éoo) € L°°(R x Y) is well defined,
and we claim that

(143) Xp(0pBr) = X (Boo), iy Xy (Bup)iin, > Xp(Eo)

in the L?-norm on every compact subset of R x Y. If S does not intersect the support
supp ){/ = Ufil R xim y; of the perturbation then §m|supp X; is the W, éc’q —limit
of vy E|supp X, = Uy, E;{ |supp X = ﬁ;‘jk E v lsupp X, and the claim follows directly from
Remark D.2 and the Sobolev embedding W14 < L? on compact subsets of R x Y.
If S does intersect the set supp Xy at some points (s;, y4; (0, 2;))j=1,... C S, then
we have

XriBr) = v Xr(he B vk = v X (E))ve = 1! X7 (8, )i,

only on the complement of a solid cylinder neighbourhood (denoted by Zj ) of the
loops (sj, ¥i; (S',zj)) C R x Y. More precisely, Zx C R x int(Y) is given by the
union of all loops (s, ¥;(S!,z)) that intersect the support of 1 — /. It thus is a union
of solid cylinders whose width is of order 2!=% . If we fix the cylinder neighbourhood
Zk, » then the previous argument still applies for k > k¢ to give L”—convergence
on the complement of Zj, . The remaining Zj, has volume of order 23=3ko and
the perturbations X f(u ) Xf(viEg), and Xr(Ey,) are all uniformly bounded by
Proposition D. 1 (iii) (with k£ = 0). So we see that ||Xf(vk k)— Xf(uoo)”Lp(Zk y and
||uvk Xr (B )iy, — Xf(uoo)”LP(Zk y also converge to zero as we let k > kg — oo.
This proves (143).

A first consequence is that the limit connection satisfies

(144) (Fao + Xr(Bo)) " =

because this is the local weak L2—limit of (F”Z g, + Xr(vf g k))+ and
I (Forg, + Xr(vg *-‘k)) ”LZ(RxY)

= H(Fhk +Xf(hk )) (uvkuk)_l(FE +Xf(Evk))J’_(uvkuk)”L2(RXY)
HFhk"’ - F"’

L2 T 1 X OBl = (v 0i) ™ Xp (Bo) (o )| 22,

which converges to zero by similar estimates as before. Another consequence is the
energy identity: We have

Fyeg, + Xr(0pEp) > Fa, + X7 (Eco)
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in the L?-norm on every compact subset of (R x int(Y))\ S. So, exhausting R x Y
with
Ks:=([-6"",87"xY)\ Bs(SUR x 3Y),

we have
Ef(Eco)
— lim l/ |Fa + X/(Boo)|® = lim lim 1] |Fz, + Xp(Ep)|*
550 2 [y, I B AL 50 ko0 2 Ji, ! =¥ fi=k
) ) 1 2 2
<1 1 — Fg Xr(B Fy z — Fgr
=y 5(f e+ 0@l + [z

+ /K | Xr(hiBY) — (uvkuk)_lXf(Evk)(uvkuk)\z)

o ) ,
= lim lim — Fz. + X/(E _/ Fz  + X/(E8
§—>0k—o00 2(/[‘_5—1’5_1]XY| Vk f( vk)| Bg(S)} Vi f( Vk)| )

<limsup Ef(E,) — Nh.

V—>00

Here % := ¢/4 with ¢ > 0 as in Step 2.
It follows from (142) and (144) that
FEeo=0,  |Eoo|papsy =Cune:  Fi_ € L®RxY).

This implies Eooc Al (Bs/2(S)) by a standard argument as in [11, Proposition 4.4.13],
using the estimate

[A0w1s = € (la™Af s + 1L s + 1A sl Allws)

for compactly supported A € A(Bg(S)). Hence we have Eoo € Allo’f (R xint(Y)).
Now the standard regularity theory for anti-self-dual connections (eg [34, Chapter 9])
together with Remark D.2, for control of the perturbation, provides another gauge

transformation that makes E oo smooth and does not affect the convergence.
It remains to strengthen the convergence

Evk — Eoo

;N
*

Vi

on (R xint(Y))\ S to the Wléc’p —topology. Again, it suffices to construct the required
subsequence and gauge transformations on a compact deformation retract K C (R x
int(Y)) \ S. We pick a compact submanifold

M C (Rxint(Y))\ S
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Instanton Floer homology with Lagrangian boundary conditions 905

such that K C int(M) and apply the local slice theorem (eg [34, Theorem 8.1]) to find
gauge transformations u,, € G(M) such that
*

0. tim o B

=
— =

d%oo(u:k By — Boo) OOHW“’UW) =0.

Since ﬁtk 1, | has the same W19 —limit, the gauge transformations 17;,(1 Uy, €G(M)
converge, for a further subsequence, in the weak W29 (M )—topology to an element
Uso Of the isotropy subgroup of E,. We can make sure that this limit is in fact 1, by

modifying u,, to u,,kugol in the local slice gauge. With this we have

: * ™
i -

=
=

0 HLP(M) =0, klifgoHd*(”tk B — é°<>)“LP(M) =0,

so we can use the elliptic estimate for d* @ d* on M . For that purpose fix a cutoff
function i: M — [0, 1] with &|g =1 and & = 0 near M . Then

¥ (hs3, Bue — E)

X = ~
< i, Bv — Eoo|

I
+ [ X7 (Boo) =y, Xy (Evun, ],

+ Hh[’éoo A\ éoo]+ _h[u:k Evk /\u:k Eulc]+ Hp

p

Here the constant Cj := ||V« is finite, so the first term converges to zero as
k — oo. The second term also converges to zero due to (143) and the C®—convergence
~—1

u,, ty, — 1. Finally, the third term can be bounded by the constant

(2l EosliLee + Csllh (w5, Ev = Eco)llp1.p) 1y, Evy — EocollLr

with a constant Cg from the Sobolev embedding W17 (M) < C%(M'). Now apply the
elliptic estimate for d* @d* to the compactly supported 1—form ny :=h(u :k v —8o0)

to obtain

Ik llprsn = € (U miclp.o) |1, o —Boo, + € Xp (Boo) =5 Xp (B |,

with a finite constant C. Since ||u§k o, — éoo”Lp(M) — 0 this can be rearranged to

prove that

~
=
(=]

”u:kavk - OOHWIJ’(K) = ||77k||W1s1’(M) — 0.

This finishes the proof of Step 3 and the theorem. O

Geometry € Topology, Volume 12 (2008)



906 Dietmar Salamon and Katrin Wehrheim

Appendix E The Lagrangian and its tangent bundle

For any compact manifold X', any integer &k > 0, and any p > 1 we denote the space
of W¥:? _connections by

Alr(xy = wkP(X, T*X ® g).
If (k+1)p >dim X then the gauge group
gk+1,p(X) = Wk+1’p(X, G)

acts smoothly on A%?(X). For p = oo we denote by AK%(X) the space of CK—
connections; similarly for G&-%°(X).

Let Y be a compact oriented Riemannian 3-manifold with boundary dY = ¥ and
L C A(X) be a gauge invariant Lagrangian submanifold (in the sense of (L1) of the
introduction) such that £/G.(X) is compact. For (k + 1)p > 2 the WX-? _closure
of £ is a Banach submanifold of AX-?(X), which we denote by £ (This follows
from the Sobolev embedding Wk:P($) < LI(T) with ¢ > 2 and the fact that the L9—
Banach submanifold coordinates in [33, Lemma 4.3] restrict to wk.p —coordinates.)
Again, we denote by £5% the Ck —completion. Denote

ARP (Y, L) = {4 e ARP(Y) | Algy € £},

This is a Banach submanifold of A%?(Y) for (k + 1)p > 3 since the restriction map
Ak:P(Y) < A%4(X) with g > 2 is smooth and transverse to £. Theorem E.4 will
provide a gauge equivariant exponential map for A7 (Y, £), from which we construct
an exponential map for A7 (R x Y, £; B_, By) in Corollary E.5.

Moreover, consider the vector bundle £ — A(Y, £) with fibre
Ea=Q4(Y.9)={aecQ(Y.9)| *alyy =0, alyy € T4L}.

In Theorem E.2 below we construct local trivializations of £. In a preliminary step we
construct local trivializations of the tangent bundle of £. Note that these trivializations
extend to the fibrewise L2—closure of the tangent bundle although it is not known
whether the L2—closure of £ is smooth.

Theorem E.1 For every Ay € L there exists a neighbourhood U C L of Ay (open in
the C°—topology) and a family of bijective linear operators

Ps QY. 9) - QY. 9).

parametrized by A € U, such that the following holds.
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Instanton Floer homology with Lagrangian boundary conditions 907

(i) Pg, =1.
(ii) Forevery A €U andevery o € Q!(X, g) we have

Pyja e TyL <~ a €Ty, L.

(iii) For every integer k > 0 and every p > 1 the operator P4 extends to a Banach
space isomorphism from wk.p (X, T*X ® g) to itself; this extended operator
depends smoothly on A € £k with respect to the operator norm on Py.

(iv) For every integer k > 0, every p > 1, every A € [0,1], and every A € U*>®
the operator A1l 4+ (1 — A) P4 extends to a Banach space isomorphism trom
Wk:P($, T*T ® g) to itself. Here U*:°° denotes the interior of the closure of
U in L.

Proof Choose a 3—dimensional subspace £ C Q°(X, g) such that the restriction of
dy,: QY= g9) > QY (=, g) to EL (the L2—orthogonal complement of E ) is injective.
Then there is a constant C such that [|§]|p1.2 < C|ldg,&| 2 forall § € EL. This
estimate continues to hold for each 4 € £ that is sufficiently close to 4¢ in the C®—norm.
Hence there is a C°—open neighbourhood U C £ of A such that dy: E+ — Q1(Z, g)
is injective for every A € U. Define

H/II,E = {oc € QI(Z,g)| xdqa € E, dja € E}
Then, for every A € U, there is a generalized Hodge decomposition
(145) QY (Z.9)=Hj p ®dy(E) @ *dyg(E").

The three summands in (145) are orthogonal to each other and the generalized Hodge
decomposition extends to each Sobolev completion AK-P (%) in the usual fashion. This
uses the fact that the operator

Agp:=d%ds:Q%2,9) D EL - Q%= 9)/E

extends to an isomorphism from Wkt2.p (o Wk-P (with p>1)forevery Ael.
(The operators A4 g are all injective and compact perturbations of the isomorphism
A4,,E-) The standard Hodge decomposition corresponds to the case £ = ker dgq.
The reason for our construction with £ independent of A4 is the need for a Hodge
decomposition which depends smoothly on A.

The Lagrangian submanifold £ gives rise to another L2—orthogonal decomposition,
QUZ, 9) =T4LD*T4L, see [33, Lemma 4.2]. Since d4(EL) C T4L and *d4(E~L)
is perpendicular to T4 L it follows from (145) that we have T4L = A4 b dy (EL),
where

Ag:i=Hy g NTyL
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is a Lagrangian subspace of H,}L g - Hence there is a refined Hodge decomposition
(146) QU 0) = Aq D *A D dy(EL) @ xdyg(EL).
For A € U we define a bijective linear operator Py: Q1(Z, g) — QI(Z, g) by
Py(ao + *Po +day§ + *dgyn) := Maao + *ILyBo + daé + *xdan
for g, Bo € Ay, and &, 1 € E+C Q%(=,g), where
My QY(Z,9) = Ay

denotes the L?—orthogonal projection. (Shrink I/, if necessary, so that the restriction
of IT4 to A4, is a vector space isomorphism for every 4 € U.) Note that Py, =1d
and Pya € T4L iff o € T4,L. We claim that each operator P4 extends to a Banach
space automorphism of T4 AX?(2) = WkP (S, T*S ® g) for all k and p, and this
automorphism depends smoothly on 4 € £k To prove this we write P4 as the
composition of three linear operators. The first is the Banach space isomorphism

WEP(S. T*S®g) = Ay x Aay x Wi T (2,0) x WETHP (S, g)

induced by the Hodge decomposition for 4,. Here Wllzf +lp (X, g) denotes the L%—
orthogonal complement of E in Wk+1L.r (5 g). The second operator is the restriction
of IT4 on the factors A 4, and is the identity on the factors W§+1’p (X, g). We think
of the target space of this second operator as the product

WEP (S, T S @ ) x WEP(Z, T S @ g) x We TP (Z.9) x WrTP(2, g).
The third operator maps this product to W52 (Z, T* ® g) via

(o, B.&.m) > a+*f +dgé + *dgn.

The first operator is independent of A and the third depends smoothly on A € £k,
By the Hodge decomposition for A it restricts to an isomorphism from A 4 X A 4 X
Wgﬂ’p(Z‘, g) X Wg-H’p(E, g) to Wk:P(Z, T*T ® g). It remains to prove that the
map

U - Hom(A 4, WEP (S, T*S ®g)) : 4 — T4

is smooth. To see this we write Il 4 as the composition of two projections
HA = HH/i.E o HTAﬁ|AAO'

Here Mgt WkP($, T*S ® g) > WKP (S, T*S ® g) denotes the L2—orthogonal
projection onto Hj g given by

Mg}, o=a—dgAg s (d%a) + #dg AL (+dga).
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It depends smoothly on 4 € £k N4 since the same holds for the operator
k+1, —
Agp: WETPP (S, 9) > WE-LP(3,9)/E
and its inverse. The operator
Mr,c: WEP(S. T*S®g) > WEP (2. T*S ® g)

denotes the L2—orthogonal projection onto T4 L%? . For (k + 1) p > 2 we know that
L£k-P ¢ A%-P(3) is a Banach submanifold, so Tt . depends smoothly on 4 € ck-r,
and this proves that IT4 depends smoothly on A4 € £5:°° In the case (k +1)p <2,
ie k =0, p <2, we have A%3(X) c A%P(Z). The L?- and the L3>-norm are
equivalent on the finite dimensional space A 4, C Q'(Z.g). Hence Il is the com-
position of the projection It : L*(Z, T*2®G) — L}*(Z, T*X ® G), restricted
to Ay, the inclusion L*(Z, T*S ® G) < LP(X,T*E ® §G), and the projection
Oa! . LP (2, T*2®G) — LP(X, T*X ® G). All of these depend smoothly on
A e L.

To prove (iv) shrink ¢/ such that ||[1— P4l z2) < 1/2 forall A € Y. Then AT +
(1 —A) P4 is invertible on L2 for every A €[0, 1] and every A4 € U%°°. Invertibility
on W5P for 4 € U** now follows from elliptic regularity for the Laplace operator.
This proves the theorem. |

Theorem E.2 Forevery Ay € A(Y, L) there is a neighbourhood U C A(Y, L) of Ay
(open in the C° —topology) and a family of bijective linear operators

04 Q'(Y,9) > Q'(Y.9),
parametrized by A € U, such that the following holds.
1) Q4 =1
(ii) Forevery A € and every o € Q(Y,g) we have
Qqa € Q) (Y, 9) = aeQy (Y.9).
Moreover, (0 4a)|sy = *a|yy and (Q4a)|gy = 0 iff a|yy = 0.

(iii) For every integer k > 0 and every p > 1 the operator Q 4 extends to a Banach
space isomorphism from Wkp(y, T*Y ® g) to itself; this extended operator
depends smoothly on A € A (Y, L) with respect to the operator norm on Q 4.

Proof Choose geodesic normal coordinates to identify a neighbourhood of dY with
the product (—¢, 0] x ¥ via an orientation preserving embedding

t: (&0l xX—>Y.
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For a connection 4 € A(Y, L) and a 1-form o € Q' (Y, g) we write the pullbacks
under ¢ in the form

(147) A= BU)+W() df,  Fa=:B(0)+y(@) dr.

Then B(0) = A|x € L. Choose a neighbourhood Uy C L of By := Ag|x (open in
the C®—topology) and an operator family Pg: Q!(Z,g) — Q!(Z, g), parametrized
by B € Uy, which satisfies the requirements of Theorem E.1. Then we have Pg, = 1.
Now

U:={AcAY.L)| Als € Up}

is a C%—open neighbourhood of Aq. For A € U we define the bijective linear operator
04: Q'(Y.9) > Q' (Y, 9) by

F(Qaa) == h()B(t) + (1= h(t) P4y B(1) + ¥ (1) dt

for *a of the form (147), and by Q4o := « outside of the image of (. Here
h: (—e,0] — [0, 1] is a smooth cutoff function that vanishes near 0 and equals to
1 near —e. The operator family {Q 4}4<1 satisfies conditions (i)—(iii). O

The construction of exponential maps will be based on the following.

Lemma E.3 Fix a constant p > 2. There is an open neighbourhood
U*? C LP(£, T*S ® g)
of zero and a smooth map
L9 xU%P — A%P(Z): (4, a) > O4(x)
satistying the following conditions:

(i) Forevery A € £%? the map ©4: U%P — A%P(X) is a diffeomorphism from
U%? onto an LP —open neighbourhood of A in A%?(X) such that ® 4(0) = A
and D® 4(0) = 1d. In particular, there is a uniform constant C such that

1©4(c) = O4()||Lr < Clla—a'| Lr
DO 4()B— DO 4(")BllLr < Clla—a'||r|BllLr

forall Ac L%, a cU®P, B LP(Z, T*E®g).

(ii) © is gauge equivariant in the sense that for u € G1-? (%)

Ou 4w lau) = u*O ().
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(iii) Forevery A € LOP
OA(TALO? NUOP) = L7 N O4UP).

(iv) For every integer k > 1 and every A € L£kP the restriction of ©4 to the
intersection UK-P :=1{%P N WH-P is a diffeomorphism onto its (open) image in
AK-P(2). It depends smoothly on A € L£%P and satisfies

1©.4(ct) = O (@) 1.0 < C(1 + || AllLoo) llor — @[l 1.,
IDO4()B — DO4()Blly1.r < C(1+ [[AllLoo)ller = llr1o | Bl

forall A e LVP, a,0’ € UVP, and B e Whr (2, T*S ® g) with a uniform
constant C .

(v) The restriction of ® to an open neighbourhood of the zero section in the subbun-
dle xTL%? C L£%P x %P is a diffeomorphism onto an open neighbourhood
WOP c A%P () of L%P. The composition of its inverse with the projection
onto L%

x: WOP — 0P

is gauge equivariant and maps Wk-? .= WP n Wk-P 1o £K-P for every k.

Proof Since £%?/G!"P(X) is compact it suffices to provide the construction for
smooth A € £. The smooth extension to £%2 is then provided by the equivariance
(ii). For every smooth connection 4 € £ we have an L?—orthogonal direct sum
decomposition from [33, Lemma 4.2],

(148) LP(Z, T*S Qg) = T4LY? & «T4L%?.

Moreover, T(L%? = L4 ®d WP (2, g), where Ly :=T4L%? ﬂh/ll cQl(Z,g)
is the intersection of T 4L with the harmonic (and thus smooth) 1—forms

h :=kerdy Nkerd c Q! (2, g).
We denote the L?—orthogonal projection in (148) by
4 LP (2, T*E ® g) — T4L%?.

It smoothly depends on A € £, is gauge equivariant .+ 4(u " 'au) = u ' (a)u,
and satisfies d*% o 4 = d* because imdy C T4L£%?. By standard Hodge theory, this
projection restricts to a bounded linear operator from the subspace wk.p (2, T*X®g)
to T4LKP = L4 @ dWkT1-P(3, g) for every integer k > 1. For each 4 € L the
map

L% - T,4L%P : B> (B —A)
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is smooth and its differential at B = A is the identity. Hence it restricts to a diffeomor-
phism from an L? —open neighbourhood of 4 onto an open set

VP T Lo,
We denote its inverse by
Vq: Vj’p — L‘O,p‘

It follows immediately from the definition that v is smooth and gauge equivariant in
the sense that

Ve a(u™ au) = u* (@)
forall Ae L, ueG(¥)and o € V *P Tts differential at 0 is the identity, D4(0) =1d,

hence on a small ball {||l¢|zr < 5} D VO "7 we can bound the Lp—operator norm
| Dy4(a)|| <2, and thus obtain a linear estimate for all o, o’ € V

1
1V.4(@) = Ya@)Lr < /O IDYa(te + (1 =) llee — 'l r < 2]l — ' Lo

Similarly, since D4 is continuously differentiable, we obtain for all «, @’ in (the
possibly smaller) VZ’p and all B € T,L%?

IDY4(@)B—DYa(@)BllLr < Clla—ellLrlIBllLr

with a uniform constant C. (In fact, C is also independent of A4 € £ since the estimates
are gauge invariant and £/G(X) is compact). In particular, we have

IVale) = AllLr <2|allLr.  [DYa(@)p—BllLr = CllalLrlBlLr

Moreover, ¥4 maps the intersection Vj’p = Vj’p NWk? 1o Wk’p—regular points
in £%? because Fy (@ =0 and

A5 Wal@) —A) = & (ma(Yal@) — A)) = dha € WIP(3,g).

In fact, we obtain an estimate for all 4 € £LVP, o, 0’ € le’p (denoting all uniform
constants by C)

[Va(a) = Ya@)lyr.o

= C([[d(Ya(@) = ya@h) |, + |d* (Ya(@) = yu@)) |, + [ ¥al@) - vu@)]|,)

< C(Ivale) — ya(@) Hp + 1Ya(@) — Allp) 1Va(@) — Ya(@)]| o
+C|d4@—a)|, + CllAllooIVa(e) = Ya(@)llp + Clle =o',

<CU+ [ Alloo)la =o' l1p + Clle =l + e I p) 14 () = Ya(@) | .-
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If we choose Vz’p sufficiently small, then the second term can be absorbed into the
left hand side, which proves

[Va(@ = Ya@) 1o < CA+ Al L) o= prp VALY 0,0 € VP,

Note that this estimate does not simply follow from smoothness of 14 since le’p
is not even bounded in the W !*? —norm. Similarly, we obtain uniform estimates for
the linearization D4 of ¥4 using the identities dy, ,(o)(DV¥4()B) =0 =dyp and
d%(Dya(e)f) = d4B,
I DY) — DYa(@)Bllwr.p
= C([d(DYa(@)p = Dya@)B)|, + |d*(Dya@)b = DYu@)p)],
+ | DY a(@)B— Dya(e)B Hp)
= C(1+ [|4llo) (D Ya(e) = DYu(@)Bllp + 1Va(@) = Ya(@) oo | DYa(e)Bllp
+Cllya(@) = Allp | DVa(@)B — Dya(e)B]
< C(+ [ Alloo)ller = llpllBllp + Cller =& 110 (1 + lle" 1)1 Bl
+ CllalliLr | Dya(@) B — Dya@)B| .o

For Vg’p sufficiently small, this can be rearranged to

IDY4(e)B — Dya@)Bllyr.r < C(1+ | AllLeo) ot =& lly1n | Bl
Now choose an open neighbourhood U%? C L?(%,T*X ® g) of 0 such that

TAUP) CVy?
for every A € L. Then the map 0 4: U%? — A%P(X) defined by

O4(@) := Ya(mg(@)) + o —my(x)

has the required properties. The estimates for ® 4 follow from the linearity of w4
and the linear estimates for 4. To check (v) note that the differential of ® |, 0.» at
(A4,0) is the isomorphism T4L%? x *T4L%? — LP(Z, T*S ®g), (n.8) — n+ B.
So the restriction of @ to *TL%? is a local diffeomorphism near the zero section. To
see that it is globally injective we assume by contradiction that ® 4, (a;) = ©p, (8;) for
some A;, B; € £L%? and some o;, B; € *Ty, L£%? with ||a;||L» + ||BillLr — 0. Since
® is equivariant and £%?/G1:P(X) is compact, we can assume w.l.o.g. 4; — Ao
and u; B; — Eoo in the C®—topology for some u; € G1*7(X). Then Oy, (@) > Ao
and u;"G)A,. (aj) = ®u;k B (ui_l,B,-ui) — Eoo, so we can find a convergent subsequence
Uj = Uoo € G(X). Consequently B; — ugol *Eoo = Ao has the same limit as A4;, in
contradiction to the local injectivity of ®|, 1 0.p. a
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Theorem E.4 Fix a constant p > 2 and a compact subset N C AVP (Y, L). Then
there is an open neighbourhood U C TA? (Y, L) of the zero section over N and a
smooth map

U— AP, L) (4,a) > E4q()

satistying the following conditions:
(i) Forevery Ae AVP(Y,L) themap Eq: UNT4AVP (Y, L) — AVP(Y, L) isa

diffeomorphism from a neighbourhood of 0 onto a neighbourhood of A such
that E 4(0) = A and dE 4(0) = 1d.

(ii) E is gauge equivariant in the sense that for u € G1P(Y)

Eypa(u au) = u* E4().

Proof Our construction will be based on the two maps from Lemma E.3,
0: LOP xU®? — A%P(%), 1 WP - 0P

We start by fixing a tubular neighbourhood t: (—1,0] x ¥ < Y of the boundary
0Y = {0} x X such that t*A| x5 € WP forall A€ N and ¢ € (—1,0]. This is
possible since t¥*N ¢ W2 ((—1,0] x £) c C°((—1, 0], A%? (X)) is compact.

On the complement of the image of T we define £ 4(«) := A + «. On the image of
T write T*A4 = B(t) + W(t) df and t*a = B(t) + ¥ (¢) dt, where B(t) € U%P can be
ensured by the choice of neighbourhood U > o of the zero section. With this we can
define t* E4(a) := B + (¥ + y) dt by

B(t) := B(0) + p(t)(On(B1y) (B(1) = w(B())) + (1— p(1))B(2),

where p: (—1,0] — [0, 1] is a smooth cutoff function satisfying p = 1 near 0 and
p = 0 near —1. The claimed properties of £ now simply follow from the properties
of ® and 7 in Lemma E.3. d

Corollary E.5 Let B_,By € A(Y,L) and E = A+ ®ds e AR XY, L; B_, B}).
Fix p > 2, then there is an open neighbourhood U C Tg AVP(R x Y, L; B_, By) of
zero such that

E:U—>AYPRXY,L:B_,By), E(x+¢ds):=E4(a)+ (®+¢)ds
defines a continuously differentiable homeomorphism onto a neighbourhood of E.
Proof Here we follow the construction of the exponential map of Theorem E.4

over the compact subset N := {A(s)|s € R} U{B_, B+} C A(Y,L). We fix the
tubular neighbourhood 7 : (—1,0] x ¥ < Y of the boundary such that t*A(s) =
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B(s,t) + W(s,t)dt with B(s,t) € W%P(X) for all (s,¢) € R x (—1,0]. For « +
pds e TgAVP(R <Y, L; B_, By) with |la +¢ ds | 1.pmxy) sufficiently small the
Sobolev embedding W17 (R x (—1,0]x £) = C%(R x (—1, 0], L?(X)) ensures that
T*a = B(s, 1) + ¥ (s,t)dt with B(s,t) e U%P for all (s,1) € R x (—1,0].

Thus we have E(a+¢ds)=A+a+(®+¢)ds on Rx (Y \im7) and t* E (¢ +¢ ds) =
B+ +y)dt+(P+¢)ds on R x (—1,0]x ¥ with

B(s,1) = B(s, 1) + p(t)(O(B(s.0)) (B(s, 1)) = w(B(s, 1)) + (1= p(¢)) B(s. 1).

That E is a bijection to a neighbourhood of E follows directly from Theorem E.4. For
a restriction to a compact subset of R x Y the smoothness of E follows directly from
the smoothness of the 3—dimensional exponential map. To see that the 4—dimensional
exponential map also is continuously differentiable with respect to the W 1#(R x Y)—
norm on the noncompact domain, it suffices to drop linear terms and the cutoff function p
and check that B+ O (p)(B)—n(B) defines a Cl—map WHP(Rx(—1,0], L?(%)) —
WP (R x(—1,0], LP(X)) and also induces a C' -map L? (R x (—1,0], WP (%)) —
LP?R x (=1,0], Wl-P(%)). This follows from the linear bounds for ® and 7 in
Lemma E.3, as follows. For all 8,8’ € WHP(R x (—=1,0] x Z, T*Y ® g) we have

1O (B, (B(5.1)) — On(B(s,ey) (B (s.1)) HLp()j) <C|BGs.1) = B'(s.DllLr (),

1O (B, (B(5.1)) — On(B(s,ey) (B (5. [))”Wl,p(z) <ClBGs.t) =B (5. Dllwrr(x)-
For the (s,t)—derivatives we use the smoothness of ® in the L?-norm to obtain
uniform continuity for the derivative by A in the L?—operator norm, ie | D1©(A4, @) —
D1O(A,d')|| = Clla —&'||Lr(x) for all sufficiently small o,a’ € L? (2, T*X®g).

Since ||B(s,?)|Lr(z) — 0 for s — oo this applies for all 7 € (—1,0] and |s| suffi-
ciently large, so that

|95 (On(B(s,) (B(5: 1)) = O(B(s,00) (B (5. 0)) | Lo 5y
< | DO (85 (B PsB(s.1) = 3B (5. ) | Lo )

+ (D1 (Bs.1)). Bs. 1)) — D1 ©O(B(s. 1)). B'(5.1))ds7 (Bls. )| Lo
= C(185B(s,0) = 3sB'(s. DllLr sy + I1B(s. 1) = B'(s. )l Loz 105 B(s, Dl Lr(z))-
(The same holds for d;(.. )2 Integrating these estimates over (s,7) € (—1,0] xR
proves W17 —continuity of E(a + ¢ ds). To check continuity of the differential we

use the analogous estimates for D®, in particular we use uniform continuity for the
second derivatives of ® (which again hold for ||B(s, )| L»(x) sufficiently small, ie |s|
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sufficiently large) to obtain

|95 (DO (B(s,0) (B(s.1)) = DOr(B(s,0) (B (5. 0))y (5.0 Lo (s
< [ (DO(5)(B) = DO(5)(B))3sv | Lo () + | D> O3 (BYDsB = 05B'. 1) | Lo sy
+ [(D1D20(x(B), B) — D1 D2O(w(B). b)) (57(B). ¥) | o 5y
=C(IB=PBllrldsyliLes) + 1958 = 0sB ey ¥ Lo (z)
+1B8=PBllLr) 105 BlLes)lly L (z))-
Integration then proves the continuity of DE in Whp (R x Y). (Strictly speaking, we

can only integrate the above estimate over the complement of a compact interval in R.
However, the same estimate holds on the compact part due to the smoothness of ®.)

H ds (D®n(B) (B)— D®n(B) (ﬂ/))y “Lp(Rx(—l,o]xE)
<ClIB—BllLe®x(-1,0x) 195V lLr R x(~1,01xE)

+ C|95B8 — 3sB'lLr Rx(=1,01x2) |V | Loo R x (= 1,0]x %)

+ ClIB — B'll Lo ®x(=1,01x5) 105 Bll Lo Rx (=1,01x5) 1V [ Loo (R x(=1,0]x %)
< ClB =B lwro@®x-1.0x5) (1+H 105 Bl Lr ®x(=1,0x ) 1V | 1.0 R x(~1,0x %) O
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