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Hyperbolic 2–dimensional manifolds with
3–dimensional automorphism group

ALEXANDER V ISAEV

In this paper we determine all Kobayashi-hyperbolic 2–dimensional complex mani-
folds for which the group of holomorphic automorphisms has dimension 3. This work
concludes a recent series of papers by the author on the classification of hyperbolic
n–dimensional manifolds, with automorphism group of dimension at least n2 � 1 ,
where n� 2 .

32Q45, 32M05

Introduction

If M is a connected n–dimensional Kobayashi-hyperbolic complex manifold, then
the group Aut.M / of holomorphic automorphisms of M is a (real) Lie group in
the compact-open topology, of dimension d.M / not exceeding n2 C 2n, with the
maximal value occurring only for manifolds holomorphically equivalent to the unit
ball Bn �Cn (Kobayashi [16], Kaup [14]). We are interested in describing hyperbolic
manifolds with lower (but still sufficiently high) values of d.M /. The classification
problem for hyperbolic manifolds with high-dimensional automorphism group is a
complex-geometric analogue of that for Riemannian manifolds with high-dimensional
isometry group, which inspired many results in the 1950s–70s (see Kobayashi [17]
for details). The principal underlying property that made the classification in the
Riemannian case possible is that the group of isometries acts properly on the manifold –
see Myers–Steenrod [18] and van Dantzig–van der Waerden [5] (a topological group G

is said to act properly on a manifold S if the map G �S ! S �S , .g;p/ 7! .gp;p/

is proper). In the case of hyperbolic manifolds, the action of the group Aut.M / is
proper as well (see [16; 14]), and, as in the Riemannian case, this property is critical
for our arguments, despite the fact that our techniques are almost entirely different
from those utilized for isometry groups.

In Isaev–Krantz[11] and Isaev [10] we completely classified manifolds with n2 �

d.M / < n2C2n (partial classifications for d.M /D n2 were also obtained in Gifford–
Isaev–Krantz [7] and Kim–Verdiani [15]). Note that for d.M / D n2 the manifold
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M may not be homogeneous, which makes this case substantially more difficult
than the case d.M / > n2 , where homogeneity always takes place [14]. A further
decrease in d.M / almost immediately leads to unclassifiable situations. Indeed, no
reasonable classification exists for nD 2, d.M /D 2, in which case d.M /D n2� 2

(observe, for example, that the automorphism group of a generic Reinhardt domain in
C2 is 2–dimensional). While it is possible that there is some classification for n� 3,
d.M / D n2 � 2, as well as for particular pairs n, d.M / with d.M / < n2 � 2 (see
eg [7] for a study of Reinhardt domains from the point of view of the automorphism
group dimension), the case d.M /D n2� 1 is probably the only remaining candidate
to investigate for the existence of an explicit classification for every n � 2. It turns
out that all hyperbolic manifolds with n� 2, d.M /D n2� 1 indeed can be explicitly
described. The case n � 3 was considered in Isaev [8]. The remaining case n D 2,
d.M /D 3 is the subject of the present paper.

For brevity we call connected 2–dimensional hyperbolic manifolds with 3–dimensional
automorphism group (2,3)–manifolds. For a (2,3)–manifold M , we work with the
group G.M / WD Aut.M /0 , the connected identity component of Aut.M /. Since the
G.M /–action on M is proper, for every p 2M its isotropy subgroup Ip WD ff 2

G.M / W f .p/D pg is compact in G.M / and the orbit O.p/ WD ff .p/ W f 2G.M /g

is a connected closed submanifold in M . [8, Proposition 2.1] gives (see Proposition
1.1 below) that for every p 2M the orbit O.p/ has (real) codimension 1 or 2 in M ,
and in the latter case O.p/ is either a complex curve or a totally real submanifold.

We start by observing that the case when no codimension 1 orbits are present in the
manifold can be dealt with as in [8] and leads to direct products ��S , where � is the
unit disk in C and S is any hyperbolic Riemann surface with d.S/D 0 (see Remark
1.2). Thus, from Section 2 onwards we assume that a codimension 1 orbit is present in
the manifold. Clearly, every codimension 1 orbit is either strongly pseudoconvex or
Levi-flat.

In Section 2 we give a large number of examples of (2,3)–manifolds. It will be
shown in later sections that in fact these examples form a complete classification of
(2,3)–manifolds with codimension 1 orbits.

In Section 3 we deal with the case when every orbit is strongly pseudoconvex and
classify all (2,3)–manifolds with this property in Theorem 3.1. An important ingredient
in the proof of Theorem 3.1 is E Cartan’s classification of 3–dimensional homogeneous
strongly pseudoconvex CR-manifolds [4; 3], together with the explicit determination of
all covers of the non simply-connected hypersurfaces on Cartan’s list (Isaev [9]). The
explicit realizations of the covers are important for our arguments throughout the paper,
especially for those in the proof of Theorem 5.1 in Section 5. Another ingredient in
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the proof of Theorem 3.1 is an orbit gluing procedure that allows us to join strongly
pseudoconvex orbits together to form (2,3)–manifolds.

Studying situations when Levi-flat and codimension 2 orbits can occur is perhaps the
most interesting part of the paper. In Section 4 we deal with Levi-flat orbits. Every
such orbit is foliated by complex manifolds equivalent to � (see Proposition 1.1). We
describe Levi-flat orbits together with all possible actions of G.M / in Proposition 4.1
and use this description to classify in Theorem 4.3 all (2,3)–manifolds for which every
orbit has codimension 1 and at least one orbit is Levi-flat. The proof of Theorem 4.3
uses the orbit gluing procedure introduced in the proof of Theorem 3.1.

Finally, in Section 5 we allow codimension 2 orbits to be present in the manifold.
Every complex curve orbit is equivalent to � (see Proposition 1.1), whereas no a priori
description of totally real orbits is available. The properness of the G.M /–action
implies that there are at most two codimension 2 orbits in M (see Alekseevsky–
Alekseevsky [2]), and in the proof of Theorem 5.1 we investigate how one or two such
orbits can be added to the previously obtained manifolds. This is done by studying
complex curves invariant under the actions of the isotropy subgroups of points lying in
codimension 2 orbits.

In fact, the arguments of the present paper yield not only a classification of (2,3)–
manifolds as stated, but a classification of all connected 2–dimensional complex mani-
folds that admit a proper effective action of a 3–dimensional Lie group by holomorphic
transformations. Some manifolds of this kind are not hyperbolic and were excluded
during the course of proof (for instance, any 2–dimensional Hopf manifold admits an
effective action of SU2 , but is clearly not hyperbolic). In addition, we ruled out those
hyperbolic manifolds for which the automorphism group has dimension higher than
3 and has a closed 3–dimensional subgroup. Adding the excluded manifolds to our
classification is straightforward and leads to a complete list of 2–dimensional complex
manifolds with a proper effective action of a 3–dimensional Lie group by holomorphic
transformations. We leave details to the reader.

Before proceeding, we would like to thank Stefan Nemirovski for many useful discus-
sions and especially for showing us an elegant realization of a series of manifolds that
appear in our classification. We also would like to thank the anonymous referee for a
very thorough reading of the paper.

1 Initial classification of orbits

In this section we list some initial facts about G.M /–orbits that follow from the results
of [8]. For p 2M let Lp WD fdpf W f 2 Ipg be the linear isotropy subgroup of p ,
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where dpf is the differential of a map f at p . The group Lp is a compact subgroup
of GL.Tp.M /;C/ isomorphic to Ip by means of the isotropy representation

Ip!Lp; f 7! dpf;

where Tp.M / is the tangent space to M at p . [8, Proposition 2.1] implies the following
proposition.

Proposition 1.1 Let M be a (2,3)–manifold. Fix p 2M and let Vp WD Tp.O.p//.
Then the following holds:

(i) the orbit O.p/ is either a closed real hypersurface, or a closed complex curve,
or a closed totally real 2–dimensional submanifold of M ;

(ii) if O.p/ is a real Levi-flat hypersurface, it is foliated by complex curves holomor-
phically equivalent to �, and there exist coordinates in Tp.M / such that with
respect to the orthogonal decomposition Tp.M /D .Vp \ iVp/

?˚ .Vp \ iVp/

we have Lp � f˙idg �L0p , where L0p is a finite subgroup of U1 ;

(iii) if O.p/ is a complex curve, it is holomorphically equivalent to �; furthermore,
there exist coordinates .z; w/ in Tp.M / in which Vp D fzD 0g and the identity
component L0

p of Lp is given by either the matrices

(1–1)

 
a

k1
k2 0

0 a

!
;

for some k1; k2 2 Z, .k1; k2/D 1, k2 ¤ 0, or the matrices

(1–2)
�

a 0

0 1

�
;

where jaj D 1;

(iv) if O.p/ is totally real, then Tp.M /D Vp˚ iVp , and there are coordinates in Vp

such that every transformation from L0
p has the form: v1C iv2 7!Av1C iAv2 ,

v1; v2 2 Vp , where A 2 SO2.R/.

Remark 1.2 Observe that if O.p/ is either a complex curve with L0
p given by (1–1)

for k1 ¤ 0 or by (1–2), or a totally real submanifold of M , then there exists a
neighborhood U of p such that for every q 2 U nO.p/ the values at q of the vector
fields on M arising from the action of G.M /, span a codimension 1 subspace of
Tq.M /. Hence in this situation there is a codimension 1 orbit in M . Therefore, if no
codimension 1 orbits are present in M , then every orbit is a complex curve with L0

p

given by (1–1) for k1 D 0. In this case, arguing as in the proof of [8, Proposition 4.1]
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we obtain that M is holomorphically equivalent to a direct product ��S , where S

is a hyperbolic Riemann surface with d.S/D 0.

From now on we assume that a codimension 1 orbit is present in M .

2 Examples of (2,3)–manifolds

In this section we give a large number of examples of (2,3)–manifolds. It will be shown
in the forthcoming sections that these examples (upon excluding equivalent manifolds)
give a complete classification of (2,3)–manifolds with codimension 1 orbits.

(1) In this example strongly pseudoconvex and Levi-flat orbits occur.

(a) Fix b 2R, b¤ 0; 1, and choose 0� s < t �1 with either s > 0 or t <1.
Define

(2–1) Rb;s;t WD

n
.z; w/ 2C2

W s .Re z/b < Rew < t .Re z/b ; Re z > 0
o
:

The group G.Rb;s;t /D Aut.Rb;s;t / consists of all maps

z 7! �zC iˇ;

w 7! �bwC i
;
(2–2)

where �> 0 and ˇ; 
 2R. The G.Rb;s;t /–orbits are the following pairwise
CR–equivalent strongly pseudoconvex hypersurfaces:

ORb
˛ WD

n
.z; w/ 2C2

W Rew D ˛ .Re z/b ; Re z > 0
o
;

s < ˛ < t , and we set

(2–3) �b WDO
Rb

1
:

For every b 2R we denote the group of maps of the form (2–2) by Gb .
(b) If in the definition of Rb;s;t we let �1 � s < 0 < t � 1, where at

least one of s; t is finite, we again obtain a hyperbolic domain whose
automorphism group coincides with Gb , unless b D 1=2 and t D �s

(observe that R1=2;s;�s is equivalent to the unit ball). In such domains, in
addition to the strongly pseudoconvex orbits O

Rb
˛ for suitable values of ˛

(which are allowed to be negative), there is the following unique Levi-flat
orbit:

(2–4) O1 WD

n
.z; w/ 2C2

W Re z > 0; Rew D 0
o
:
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(c) For b > 0, b ¤ 1, �1< s < 0< t <1 define

yRb;s;t WD

Rb;s;1[

n
.z; w/ 2C2

W Rew > t .�Re z/b ; Re z < 0
o
[ yO1;

where

(2–5) yO1 WD

n
.z; w/ 2C2

W Re z D 0; Rew > 0
o
:

The group G. yRb;s;t /D Aut. yRb;s;t / coincides with Gb , and, in addition to
strongly pseudoconvex orbits CR–equivalent to �b , the Levi-flat hypersur-
faces O1 and yO1 are also Gb –orbits in yRb;s;t .

(2) In this example strongly pseudoconvex orbits and a single Levi-flat orbit arise.

(a) For 0� s < t �1 with either s > 0 or t <1 define

Us;t WD

n
.z; w/ 2C2

W Rew � ln .sRew/ < Re z <

Rew � ln .tRew/ ; Rew > 0
o
:

(2–6)

The group G.Us;t /D Aut.Us;t / consists of all maps

z 7! �zC .� ln�/wC iˇ;

w 7! �wC i
;
(2–7)

where � > 0 and ˇ; 
 2R. The G.Us;t /–orbits are the following pairwise
CR–equivalent strongly pseudoconvex hypersurfaces:

OU
˛ WD

n
.z; w/ 2C2

W Re z D Rew � ln .˛Rew/ ; Rew > 0
o
;

s < ˛ < t , and we set

(2–8) � WDOU
1 :

We denote the group of all maps of the form (2–7) by G.
(b) For �1< t < 0< s <1 define

yUs;t D

Us;1[

n
.z; w/ 2C2

W Re z > Rew � ln .tRew/ ; Rew < 0
o
[O1:

The group G. yUs;t / D Aut. yUs;t / coincides with G, and, in addition to
strongly pseudoconvex orbits CR–equivalent to � , the Levi-flat hypersurface
O1 is also a G–orbit in yUs;t .
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(3) In this example strongly pseudoconvex orbits and a totally real orbit occur.

(a) For 0� s < t <1 define

(2–9) Ss;t WD

n
.z; w/ 2C2

W s < .Re z/2C .Rew/2 < t
o
:

The group G.Ss;t / consists of all maps of the form

(2–10)
�

z

w

�
7!A

�
z

w

�
C i

�
ˇ




�
;

where A 2 SO2.R/ and ˇ; 
 2R. The G.Ss;t /–orbits are the following
pairwise CR–equivalent strongly pseudoconvex hypersurfaces:

OS˛ WD
n
.z; w/ 2C2

W .Re z/2C .Rew/2 D ˛
o
;

s < ˛ < t , and we set

(2–11) � WDOS1 :

We denote the group of all maps of the form (2–10) by R� .
(b) For 0< t <1 set

(2–12) St WD

n
.z; w/ 2C2

W .Re z/2C .Rew/2 < t
o
:

The group G.St / coincides with R� , and, apart from strongly pseudocon-
vex orbits CR–equivalent to �, its action on St has the totally real orbit

(2–13) O2 WD

n
.z; w/ 2C2

W Re z D 0; Rew D 0
o
:

(4) In this example we explicitly describe all covers of the domains Ss;t and hy-
persurface � introduced in (3) (for more details see Isaev [9]). Only strongly
pseudoconvex orbits occur here.
Let ˆ.1/� W C2!C2 be the following map:

z 7! exp .Re z/ cos .Im z/C iRew;

w 7! exp .Re z/ sin .Im z/C i Imw:

It is easy to see that ˆ.1/� is an infinitely-sheeted covering map onto C2nfRe zD

0; Rew D 0g. Introduce on the domain of ˆ.1/� the complex structure defined
by the condition that the map ˆ.1/� is holomorphic (the pull-back complex
structure under ˆ.1/� ), and denote the resulting manifold by M

.1/
� . Next, for
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an integer n� 2, consider the map ˆ.n/� from C2 n fRe z D 0; Rew D 0g onto
itself defined as follows:

z 7! Re
�
.Re zC iRew/n

�
C i Im z;

w 7! Im
�
.Re zC iRew/n

�
C i Imw:

(2–14)

Denote by M
.n/
� the domain of ˆ.n/� with the pull-back complex structure under

ˆ
.n/
� .

For 0� s < t <1, n� 2 define

S
.n/
s;t WD

n
.z; w/ 2M .n/

� W s1=n < .Re z/2C .Rew/2 < t1=n
o
;

S
.1/
s;t WD

n
.z; w/ 2M .1/

� W .ln s/=2< Re z < .ln t/=2
o
:

(2–15)

The domains S.n/s;t and S.1/s;t are respectively an n– and infinite-sheeted cover

of the domain Ss;t . The group G
�
S
.n/
s;t

�
for n� 2 consists of all maps

z 7! cos �Re zC sin �RewC

i
�

cos.n / � Im zC sin.n / � ImwCˇ
�
;

w 7! � sin �Re zC cos �RewC

i
�
� sin.n / � Im zC cos.n / � ImwC 


�
;

(2–16)

where  ; ˇ; 
 2 R. The G
�
S
.n/
s;t

�
–orbits are the following pairwise CR–

equivalent strongly pseudoconvex hypersurfaces:

OS
.n/

˛ WD

n
.z; w/ 2M .n/

� W .Re z/2C .Rew/2 D ˛
o
;

s1=n < ˛ < t1=n; and we set

(2–17) �.n/ WDOS
.n/

1

(this hypersurface is an n–sheeted cover of �).
The group G

�
S
.1/
s;t

�
consists of all maps

z 7! zC iˇ;

w 7! eiˇwC a;
(2–18)
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where ˇ 2 R, a 2 C . The G
�
S
.1/
s;t

�
–orbits are the following pairwise CR–

equivalent strongly pseudoconvex hypersurfaces:

OS
.1/

˛ WD

n
.z; w/ 2M .1/

� W Re z D ˛
o
;

.ln s/=2< ˛ < .ln t/=2, and we set

(2–19) �.1/ WDOS
.1/

0

(this hypersurface is an infinitely-sheeted cover of �).

(5) As in the preceding example, only strongly pseudoconvex orbits occur here.
Fix b > 0 and for 0< t <1, e�2�bt < s < t consider the tube domain

(2–20) Vb;s;t WD

n
.z; w/ 2C2

W seb� < r < teb�
o
;

where .r; �/ denote the polar coordinates in the .Re z;Rew/–plane with �

varying from �1 to1 (thus, the boundary of Vb;t;s\R2 consists of two spirals
accumulating to the origin and infinity). The group G.Vb;s;t / D Aut.Vb;s;t /

consists of all maps of the form

(2–21)
�

z

w

�
7! eb 

�
cos sin 
� sin cos 

��
z

w

�
C i

�
ˇ




�
;

where  ; ˇ; 
 2R. The G.Vb;s;t /–orbits are the following pairwise CR–equi-
valent strongly pseudoconvex hypersurfaces:

OVb
˛ WD

n
.z; w/ 2C2

W r D ˛eb�
o
;

s < ˛ < t , and we set

(2–22) �b WDO
Vb

1
:

(6) In this example strongly pseudoconvex orbits and a totally real orbit arise.

(a) For 1� s < t <1 define

Es;t WD

n
.� W z W w/ 2CP2

W sj�2
C z2

Cw2
j< j�j2Cjzj2Cjwj2 <

t j�2
C z2

Cw2
j

o
:

(2–23)

The group G.Es;t /D Aut.Es;t / is given by

(2–24)

0@ �

z

w

1A 7!A

0@ �

z

w

1A ;
Geometry & Topology, Volume 12 (2008)
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where A 2 SO3.R/. The orbits of the action of the group G.Es;t / on
Es;t are the following pairwise CR–non-equivalent strongly pseudoconvex
hypersurfaces:

(2–25) �˛ WD
n
.� W z W w/ 2CP2

W j�j2Cjzj2Cjwj2 D ˛j�2
C z2

Cw2
j

o
;

s < ˛ < t . We denote the group of all maps of the form (2–24) by R� .
(b) For 1< t <1 define

(2–26) Et WD

n
.� W z W w/ 2CP2

W j�j2Cjzj2Cjwj2 < t j�2
C z2

Cw2
j

o
:

The group G.Et / coincides with R� , and its action on Et has, apart from
strongly pseudoconvex orbits, the following totally real orbit:

(2–27) O3 WDRP2
�CP2:

(7) Here we explicitly describe all covers of the domains Es;t and hypersurfaces
�˛ introduced in (6) (for more details see [9]). As we will see below, to one of
the covers of E1;t a totally real orbit can be attached.

(a) Let QC be the variety in C3 given by

(2–28) z2
1 C z2

2 C z2
3 D 1:

Consider the map ˆ�W C2 n f0g !QC defined by the formulas

z1 D�i.z2
Cw2/C i

zw�wz

jzj2Cjwj2
;

z2 D z2
�w2

�
zwCwz

jzj2Cjwj2
;

z3 D 2zwC
jzj2� jwj2

jzj2Cjwj2
:

This map was introduced by Rossi [19]. It is straightforward to verify that
ˆ� is a 2–to–1 covering map onto QC nR3 . We now equip the domain of
ˆ� with the pull-back complex structure under ˆ� and denote the resulting
complex manifold by M

.4/
� .

For 1� s < t <1 define

E
.2/
s;t WD

n
.z1; z2; z3/ 2C3

W s < jz1j
2
Cjz2j

2
Cjz3j

2 < t
o
\QC;

E
.4/
s;t WD

n
.z; w/ 2M .4/

� W
p
.s� 1/=2< jzj2Cjwj2 <

p
.t � 1/=2

o
:

(2–29)
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These domains are respectively a 2– and 4–sheeted cover of the domain
Es;t , where E

.2/
s;t covers Es;t by means of the map ‰�W .z1; z2; z3/ 7!

.z1 W z2 W z3/ and E
.4/
s;t covers Es;t by means of the composition ‰� ıˆ� .

The group G
�
E
.2/
s;t

�
consists of all maps

(2–30)

0@ z1

z2

z3

1A 7!A

0@ z1

z2

z3

1A ;
where A 2 SO3.R/. The G

�
E
.2/
s;t

�
–orbits are the following pairwise

CR–non-equivalent strongly pseudoconvex hypersurfaces:

(2–31) �.2/˛ WD
n
.z1; z2; z3/ 2C3

W jz1j
2
Cjz2j

2
Cjz3j

2
D ˛

o
\QC;

s <˛ < t (note that �.2/˛ is a 2–sheeted cover of �˛ ). We denote the group
of all maps of the form (2–30) by R.2/� . This group is clearly isomorphic
to R� .

The group G
�
E
.4/
s;t

�
consists of all maps

(2–32)
�

z

w

�
7!A

�
z

w

�
;

where A 2 SU2 . The G
�
E
.4/
s;t

�
–orbits are the following pairwise CR–non-

equivalent strongly pseudoconvex hypersurfaces:

(2–33) �.4/˛ WD
n
.z; w/ 2M .4/

� W jzj2Cjwj2 D
p
.˛� 1/=2

o
;

s < ˛ < t (note that �.4/˛ is a 4-sheeted cover of �˛ ).
(b) For 1< t <1 define

(2–34) E
.2/
t WD

n
.z1; z2; z3/ 2C3

W jz1j
2
Cjz2j

2
Cjz3j

2 < t
o
\QC:

The group G
�
E
.2/
t

�
coincides with R.2/� , and, apart from strongly pseu-

doconvex orbits, its action on E
.2/
t has the totally real orbit

(2–35) O4 WD

n
.x1;x2;x3/ 2R3

W x2
1 Cx2

2 Cx2
3 D 1

o
DQC\R3:

(8) In this example strongly pseudoconvex orbits and a totally real orbit arise.
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(a) For �1� s < t � 1 define

�s;t WD

n
.z; w/ 2C2

W sjz2
Cw2

� 1j< jzj2Cjwj2� 1<

t jz2
Cw2

� 1j
o
:

(2–36)

The group G.�s;t / consists of all maps

(2–37)
�

z

w

�
7!

�
a11 a12

a21 a22

��
z

w

�
C

�
b1

b2

�
c1zC c2wC d

;

where

(2–38) Q WD

0@ a11 a12 b1

a21 a22 b2

c1 c2 d

1A 2 SO2;1.R/
0:

The orbits of G.�s;t / on �s;t are the following pairwise CR–non-equivalent
strongly pseudoconvex hypersurfaces:

�˛ WD
n
.z; w/ 2C2

W jzj2Cjwj2� 1D ˛jz2
Cw2

� 1j
o
nn

.x;u/ 2R2
W x2
Cu2

D 1
o
;

(2–39)

s < ˛ < t . We denote the group of all maps of the form (2–37) by R� .
(b) For �1< t � 1 define

(2–40) �t WD

n
.z; w/ 2C2

W jzj2Cjwj2� 1< t jz2
Cw2

� 1j
o
:

The group G.�t / for t < 1 coincides with R� , and its action on �t , apart
from strongly pseudoconvex orbits, has the totally real orbit

(2–41) O5 WD

n
.x;u/ 2R2

W x2
Cu2 < 1

o
�C2:

We note that �1 is holomorphically equivalent to �2 (see (11)(c) below);
hence it has a 6–dimensional automorphism group and therefore will be
excluded from our considerations.

(9) In this example strongly pseudoconvex orbits and a complex curve orbit occur.

(a) For 1� s < t �1 define

Ds;t WD

n
.z; w/ 2C2

W sj1C z2
�w2

j< 1Cjzj2� jwj2 <

t j1C z2
�w2

j; Im .z.1Cw// > 0
o
;

(2–42)
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where Ds;1 is assumed not to include the complex curve

(2–43) O WD
n
.z; w/ 2C2

W 1C z2
�w2

D 0; Im.z.1Cw// > 0
o
:

For every matrix Q 2 SO2;1.R/
0 as in (2–38) consider the map

(2–44)
�

z

w

�
7!

�
a22 b2

c2 d

��
z

w

�
C

�
a21

c1

�
a12zC b1wC a11

:

The group G.Ds;t /D Aut.Ds;t / consists of all such maps. The orbits of
G.Ds;t / on Ds;t are the following pairwise CR–non-equivalent strongly
pseudoconvex hypersurfaces:

�˛ WD
n
.z; w/ 2C2

W 1Cjzj2� jwj2 D ˛j1C z2
�w2

j;

Im.z.1Cw// > 0
o
;

(2–45)

s <˛ < t . We denote the group of all maps of the form (2–44) by R� (note
that R� is isomorphic to R� ).

(b) For 1� s <1 define

Ds WD

n
.z; w/ 2C2

W 1Cjzj2� jwj2 > sj1C z2
�w2

j;

Im .z.1Cw// > 0
o
:

(2–46)

The group G.Ds/ D Aut.Ds/ coincides with R� . Apart from strongly
pseudoconvex orbits, its action on Ds has the complex curve orbit O .

(10) In this example we explicitly describe all covers of the domains �s;t , Ds;t and
the hypersurfaces �˛ , �˛ introduced in (8) and (9) (for more details see [9]).
Only strongly pseudoconvex orbits occur here.
Denote by .z0 W z1 W z2 W z3/ homogeneous coordinates in CP3 ; we think of the
hypersurface fz0 D 0g as the infinity. Let Q� be the variety in CP3 given by

(2–47) z2
1 C z2

2 � z2
3 D z2

0 :

Next, let .� W z W w/ be homogeneous coordinates in CP2 (where we think of
the hypersurface f� D 0g as the infinity), and let

(2–48) † WD
n
.� W z W w/ 2CP2

W jwj< jzj
o
:
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For every integer n� 2 consider the map ˆ.n/ from † to Q� defined as follows:

z0 D �
n;

z1 D�i.zn
C zn�2w2/� i

zwCwz

jzj2� jwj2
�n;

z2 D zn
� zn�2w2

C
zw�wz

jzj2� jwj2
�n;

z3 D�2izn�1w� i
jzj2Cjwj2

jzj2� jwj2
�n:

(2–49)

The above maps were introduced in [9] and are analogous to the map ˆ� defined
in (7). Further, set

A.n/� WD
n
.z; w/ 2C2

W 0< jzjn� jzjn�2
jwj2 < 1

o
;

A.n/� WD
n
.z; w/ 2C2

W jzjn� jzjn�2
jwj2 > 1

o(2–50)

(both domains lie in the finite part of CP2 given by �D1). Clearly, A.n/� ; A.n/� �
† for all n� 2. Let ˆ.n/� and ˆ.n/� be the restrictions of ˆ.n/ to A.n/� and A.n/� ,
respectively. It is straightforward to observe that ˆ.n/� and ˆ.n/� are n–to–1
covering maps onto

A� WD
n
.z1; z2; z3/ 2C3

W �1< jz1j
2
Cjz2j

2
� jz3j

2 < 1;

Im z3 < 0
o
\Q�

(2–51)

and A� WD
n
.z1; z2; z3/ 2C3

W jz1j
2
Cjz2j

2
� jz3j

2 > 1;

Im.z2.z1C z3// > 0
o
\Q�;

(2–52)

respectively (both domains lie in the finite part of CP3 given by z0 D 1). We
now introduce on A.n/� , A.n/� the pull-back complex structures under the maps
ˆ
.n/
� , ˆ.n/� , respectively, and denote the resulting complex manifolds by M

.n/
� ,

M
.n/
� .

Further, let ƒW C ��!†\f� D 1g be the following covering map:

z 7! ez;

w 7! ezw;
(2–53)
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where z 2C , w 2�. Define

U� WD
n
.z; w/ 2C2

W jwj< 1; exp.2Re z/.1� jwj2/ < 1
o
;

U� WD
n
.z; w/ 2C2

W jwj< 1; exp.2Re z/.1� jwj2/ > 1
o
:

Denote by ƒ� , ƒ� the restrictions of ƒ to U� , U� , respectively. Clearly, U�

covers M
.2/
� by means of ƒ� , and U� covers M

.2/
� by means of ƒ� . We now

introduce on U� , U� the pull-back complex structures under the maps ƒ� , ƒ� ,
respectively, and denote the resulting complex manifolds by M

.1/
� , M

.1/
� .

For �1� s < t � 1, n� 2 we now define

�
.n/
s;t WD

n
.z; w/ 2M .n/

� W
p
.sC 1/=2< jzjn� jzjn�2

jwj2 <p
.t C 1/=2

o
;

�
.1/
s;t WD

n
.z; w/ 2M .1/

� W
p
.sC 1/=2<

exp .2Re z/ .1� jwj2/ <
p
.t C 1/=2

o
:

(2–54)

The domain �.n/s;t , n� 2, is an n–sheeted cover of the domain �s;t introduced

in (8) and the domain �.1/s;t is its infinitely-sheeted cover. The domain �.n/s;t

covers �s;t by means of the composition ‰� ıˆ
.n/
� , where ‰� is the following

1–to–1 map from A� to C2 : .z1; z2; z3/ 7! .z1=z3; z2=z3/; the domain �.1/s;t

covers �s;t by means of the composition ‰� ıˆ
.2/
� ıƒ� .

The group G
�
�
.n/
s;t

�
consists of all maps of the form

z 7! z
n

q
.aC bw=z/2;

w 7! z
bC aw=z

aC bw=z

n

q
.aC bw=z/2;

(2–55)

where jaj2 � jbj2 D 1. The G
�
�
.n/
s;t

�
–orbits are the following pairwise CR–

non-equivalent strongly pseudoconvex hypersurfaces:

�.n/˛ WD
n
.z; w/ 2M .n/

� W jzjn� jzjn�2
jwj2 D

p
.˛C 1/=2

o
;(2–56)

s < ˛ < t , (note that �.n/˛ is an n–sheeted cover of �˛ ). We denote the group of
all maps of the form (2–55) by R.n/ .
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The group G
�
�
.1/
s;t

�
consists of all maps of the form

z 7! zC ln.aC bw/;

w 7!
bC aw

aC bw
;

(2–57)

where jaj2� jbj2 D 1. The G
�
�
.1/
s;t

�
–orbits are the following pairwise CR–

non-equivalent strongly pseudoconvex hypersurfaces:

(2–58) �.1/˛ WD

n
.z; w/ 2M .1/

� W exp .2Re z/ .1� jwj2/D
p
.˛C 1/=2

o
;

s < ˛ < t (note that �.1/˛ is an infinitely-sheeted cover of �˛ ). We denote the
group of all maps of the form (2–57) by R.1/ .
Next, for 1� s < t �1, n� 2 we define

D
.2/
s;t WD

n
.z1; z2; z3/ 2C3

W s < jz1j
2
Cjz2j

2
� jz3j

2 < t;

Im.z2.z1C z3// > 0
o
\Q�;

D
.2n/
s;t WD

n
.z; w/ 2M .n/

� W
p
.sC 1/=2< jzjn� jzjn�2

jwj2 <p
.t C 1/=2

o
;

D
.1/
s;t WD

n
.z; w/ 2M .1/

� W
p
.sC 1/=2<

exp .2Re z/ .1� jwj2/ <
p
.t C 1/=2

o
:

(2–59)

The domain D
.2n/
s;t , n� 1, is a 2n–sheeted cover of the domain Ds;t introduced

in (9) and the domain D
.1/
s;t is its infinitely-sheeted cover. The domain D

.2/
s;t

covers Ds;t by means of the map ‰� , which is the following 2–to–1 map from
A� to C2W .z1; z2; z3/ 7! .z2=z1; z3=z1/; the domain D

.2n/
s;t for n � 2 covers

Ds;t by means of the composition ‰� ıˆ
.n/
� ; the domain D

.1/
s;t covers Ds;t by

means of the composition ‰� ıˆ
.2/
� ıƒ� .

To obtain an n–sheeted cover of Ds;t for odd n � 3, the domain D
.4n/
s;t must

be factored by the action of the cyclic group of four elements generated by the
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following automorphism of M
.2n/
� :

z 7! iz2z n

s
1� jwj2=jzj2C z�2nw=zp
jzj4n.1� jwj2=jzj2/2� 1

;

w 7! i
1C z2n�1w.1� jwj2=jzj2/

w=zC z2n.1� jwj2=jzj2/
�

z2z n

s
1� jwj2=jzj2C z�2nw=zp
jzj4n.1� jwj2=jzj2/2� 1

:

(2–60)

Let ….n/ denote the corresponding factorization map and M
0.n/
� WD….n/

�
M
.2n/
�

�
.

Then D
.n/
s;t WD…

.n/
�
D
.4n/
s;t

�
is an n–sheeted cover of Ds;t .

The group G
�
D
.2/
s;t

�
consists of all maps of the form (2–30) with A2SO2;1.R/

0 .

We denote this group by R.1/ (observe that R.1/ is isomorphic to R� – see

(2–44)). The G
�
D
.2/
s;t

�
–orbits are the following pairwise CR–non-equivalent

strongly pseudoconvex hypersurfaces:

(2–61) �.2/˛ WD
n
.z1; z2; z3/ 2A� W jz1j

2
Cjz2j

2
� jz3j

2
D
p
.˛C 1/=2;

o
s < ˛ < t (note that �.2/˛ is a 2-sheeted cover of �˛ ). For n � 2 the group
G
�
D
.2n/
s;t

�
coincides with R.n/ (see (2–55)), where we think of elements of

R.n/ as maps defined on D
.2n/
s;t rather than on �.n/s;t . The G

�
D
.2n/
s;t

�
–orbits are

the following pairwise CR–non-equivalent strongly pseudoconvex hypersurfaces:

(2–62) �.2n/
˛ WD

n
.z; w/ 2M .n/

� W jzjn� jzjn�2
jwj2 D

p
.˛C 1/=2

o
s < ˛ < t , n� 2 (note that �.2n/

˛ is a 2n–sheeted cover of �˛ ).
Next, the group G

�
D
.n/
s;t

�
for odd n � 3 consists of all lifts from the domain

D1;1 to D
.n/
1;1
D M

0.n/
� of all elements of R� (see (2–44)). This group is

isomorphic to R.n/ . Note, however, that the isotropy subgroup of every point
under the action of this group on D

.n/
s;t consists of two points, whereas the action

of R.n/ on D
.2n/
s;t is free (observe also that the isotropy subgroup of every point

under the action of R� consists of two points and that the action of R.1/ on
D
.2/
s;t is free). This difference will be important in the proof of Theorem 3.1 (see

step (II) of the orbit gluing procedure there).
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The G
�
D
.n/
s;t

�
–orbits are the following pairwise CR–non-equivalent strongly

pseudoconvex hypersurfaces:

(2–63) �.n/˛ WD…n

�
�.4n/
˛

�
;

s < ˛ < t (note that �.n/˛ is an n–sheeted cover of �˛ ).
Finally, the group G

�
D
.1/
s;t

�
coincides with R.1/ (see (2–57)), where we think

of the elements of R.1/ as maps defined on D
.1/
s;t rather than on �.1/s;t . The

G
�
D
.1/
s;t

�
–orbits are the following pairwise CR–non-equivalent hypersurfaces:

(2–64) �.1/˛ WD

n
.z; w/ 2M .1/

� W exp .2Re z/ .1� jwj2/D
p
.˛C 1/=2

o
;

s < ˛ < t (here �.1/˛ is an infinitely-sheeted cover of �˛ ).

(11) Here we show how a Levi-flat and complex curve orbit can be attached to some
of the domains introduced in (8) and (10).

(a) It is straightforward to show from the explicit from of ˆ.n/ , for n� 2 (see
(2–49)), that the complex structure of M

.n/
� extends to a complex structure

on

zA.n/� WD
n
.� W z W w/ 2CP2

W jzjn� jzjn�2
jwj2 > j�jn

o
:

The set at infinity in zA.n/� is

(2–65) O.2n/
WD

n
.0 W z W w/ 2CP2

W jwj< jzj
o
;

and we have zA.n/� D A.n/� [O.2n/ (see (2–50)). Let zM .n/
� denote zA.n/�

with the extended complex structure. In the complex structure of zM .n/
� the

set O.2n/ is a complex curve whose complex structure is identical to that
induced from CP2 . The action of the group R.n/ (see (2–55)) extends to
an action by holomorphic transformations on zM .n/

� , and O.2n/ is an orbit
of this action. The map ˆ.n/ has ramification locus on O.2n/ and maps it
in a 1–to–1 fashion onto the complex curve

O.2/ WD
n
.0 W z1 W z2 W z3/ 2CP3

W z2
1 C z2

2 � z2
3 D 0;

Im.z2.z1C z3// > 0
o
:

(2–66)
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Note that O.2/ is an R.1/–orbit (clearly, R.1/ acts on all of Q� – see
(10)).
For 1� s <1 and all n� 1 define

(2–67) D.2n/
s WDD

.2n/
s;1 [O.2n/:

The group G
�
D
.2n/
s

�
(with the exception of the case nD1, sD1) coincides

with R.n/ for all n; its orbits in D
.2n/
s are the strongly pseudoconvex

hypersurfaces �.2n/
˛ for ˛ > s (see (2–62)) and the complex curve O.2n/ .

The map ‰� is a branched covering map on D
.2/
s , has ramification locus

on O.2/ , maps it in a 1–to–1 fashion onto the complex curve O �C2 (see
(2–43)), and takes D

.2/
s onto Ds . Similarly, for n� 2, the map ‰� ıˆ

.n/
�

is a branched covering map on D
.2n/
s , has ramification locus on O.2n/ and

takes D
.2n/
s onto Ds .

We note that D
.2/
1
DA�[O.2/ (see (2–52)) is holomorphically equivalent to

�2 (see (11)(c) below), hence it will be excluded from our considerations.
(b) Fix an odd n 2N , n� 3, and let �.n/ be the cyclic group of four elements

generated by the obvious extension of automorphism (2–60) to zM .2n/
� D

D
.4n/
1

. The group �.n/ acts freely properly discontinuously on M
.2n/
� �

zM
.2n/
� and fixes every point in O.4n/ . It is straightforward to show that

the orbifold obtained by factoring zM .2n/
� by the action of �.n/ can in fact

be given the structure of a complex manifold (we denote it by zM
0.n/
� ) that

extends the structure of M
0.n/
� (see (10)). The extension of the map ….n/

(see (10)) is holomorphic on all of zM .2n/
� , has ramification locus on O.4n/

and maps O.4n/ onto a complex curve O.n/ � zM
0.n/
� in a 1–to–1 fashion

(note that zM
0.n/
� DM

0.n/
� [O.n/ ). The covering map from M

0.n/
� onto

D1;1 (see (2–42)) extends to a branched covering map from zM
0.n/
� onto

D1 (see (2–46)) with ramification locus O.n/ , and takes O.n/ onto O (see
(2–43)) in a 1–to–1 fashion.
For 1� s <1 define

(2–68) D.n/
s WD…

.n/
�
D.4n/

s

�
:

The group G
�
D
.n/
s

�
is isomorphic to R.n/ and consists of the extensions

from D
.n/
s;1 DD

.n/
s nO.n/ to D

.n/
s of all elements of the group G

�
D
.n/
s;1

�
.
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The G
�
D
.n/
s

�
–orbits are the strongly pseudoconvex hypersurfaces �.n/˛

with ˛ > s (see (2–63)) and the complex curve O.n/ .
(c) Define

(2–69) M .1/
WD‰�1

� .�1/[D
.2/
1
[O.1/

0
;

where

O.1/
0
WD

n
.z1; z2; z3/ 2C3

nR3
W jiz1C z2j D jiz3� 1j;

jiz1� z2j D jiz3C 1j; Im z3 < 0
o
\Q�

(2–70)

(see (10) for the definition of ‰� and (2–47) for the definition of Q� ).
Clearly, M .1/ is invariant under the action of the group R.1/ (defined in
(10)) on Q� . We will now describe the orbits of the R.1/–action on M .1/ .
The hypersurfaces �.2/˛ for ˛ > 1 (see (2–61)) and

�.1/˛ WD
n
.z1; z2; z3/ 2C3

W jz1j
2
Cjz2j

2
� jz3j

2
D ˛

o
\Q�

for �1<˛<1 are strongly pseudoconvex orbits (note that �.1/˛ is equivalent
to �˛ (see (2–39)) by means of the map ‰� ); the hypersurface O.1/

0
is the

unique Levi-flat orbit; the surfaces

(2–71) O6 WD

n
.z1; z2; z3/ 2 iR3

W Im z3 < 0
o
\Q�

and O.2/ are codimension 2 totally real and complex curve orbits, respec-
tively (observe that ‰�1

� .�1/DA�[O6 (see (2–51)) with O6D‰
�1
� .O5/

(see (2–41))).
The manifold M .1/ can be mapped onto ��CP1 �CP1 �CP1 by the
inverse to a variant of the Segre map. � Let Œ.Z0 WZ1/ ; .W0 WW1/� denote
two pairs of homogeneous coordinates in CP1 �CP1 , where the infinity
in CP1 is given by the vanishing of the coordinate that carries index 0.
Consider the following map S from CP1 �CP1 to CP3 :

z0 D i .Z0W0�Z1W1/ ;

z1 DZ0W1CZ1W0;

z2 D i .Z0W1�Z1W0/ ;

z3 DZ0W0CZ1W1:

�We are grateful to Stefan Nemirovski for showing us this realization of M .1/ .
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It is straightforward to see that this map takes ��CP1 biholomorphically
onto M .1/ . Under the inverse map S�1 the action of R.1/ on M .1/ is
transformed into the following action of SU1;1=f˙idg ' R.1/ on � �
CP1 : the element gf˙idg 2 SU1;1=f˙idg acts on the vector .Z0 WZ1/

by applying the matrix g to the vector and on the vector .W0 WW1/ by
applying the matrix g to it. The map S�1 takes the orbit O.1/

0
into the

SU1;1=f˙idg–orbit �� @�, the orbit O6 intonh
.1 WZ/ ;

�
1 WZ

�i
; jZj< 1

o
;

and the orbit O.2/ into

fŒ.1 WZ/ ; .1 W 1=Z/� ; 0< jZj< 1g[ fŒ.1 W 0/ ; .0 W 1/�g :

The domain ‰�1
� .�1/ is mapped by S�1 onto ��� and D

.2/
1

onto

��
�
f.1 WW /; jW j> 1g[ f.0 W 1/g

�
(hence each of �1 , D

.2/
1

is equivalent to �2 ). For more general examples
of this kind arising from actions of non-compact forms of complex reductive
groups see Akhiezer–Gindikin [1], Fels–Huckleberry [6].
It is clear from the above description of M .1/ that in order to obtain a
hyperbolic R.1/–invariant submanifold of M .1/ containing the Levi-flat
orbit O.1/

0
, one must remove from M .1/ an R.1/–invariant neighborhood

of either O6 or O.2/ . Namely, each of the domains

D.1/s WD‰
�1
� .�s;1/[D

.2/
1
[O.1/

0
; �1< s < 1;

yD
.1/
t WD‰

�1
� .�1/[D

.2/
1;t
[O.1/

0
; 1< t <1;

D
.1/
s;t WD‰

�1
� .�s;1/[D

.2/
1;t
[O.1/

0
; �1� s < 1< t �1;

where s D�1 and t D1 do not hold simultaneously,

(2–72)

is a (2,3)–manifold of this kind (see (2–36), (2–40), (2–59)). Observe here
that

‰�1
� .�s;1/D

n
.z1; z2; z3/ 2C3

W s < jz1j
2
Cjz2j

2
� jz3j

2 < 1;

Im z3 < 0
o
\Q�:

Each of the groups G
�
D
.1/
s

�
D Aut

�
D
.1/
s

�
, G

�
yD
.1/
t

�
D Aut

�
yD
.1/
t

�
,

G
�
D
.1/
s;t

�
D Aut

�
D
.1/
s;t

�
coincides with R.1/ .
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(d) We now consider covers of

(2–73) D
.1/
�1;1

WD‰�1
� .��1;1/[D

.2/
1;1
[O.1/

0
:

For n � 2 the domain † nO.2n/ (see (2–48)) is an n–sheeted cover of
D
.1/
�1;1

with covering map ˆ.n/ . We equip † nO.2n/ with the pull-back
complex structure under ˆ.n/ . This complex structure extends the structure
of each of M

.n/
� , M

.n/
� (see (10)) and can be extended to a complex

structure on all of †. Let M .n/ be the domain † with this extended
complex structure. The map ˆ.n/ takes M .n/ onto

‰�1
� .��1;1/[D

.2/
1
[O.1/

0
;

has ramification locus on O.2n/ and maps it in a 1–to–1 fashion onto O.2/ .
Clearly, the group R.n/ acts on M .n/ . We will now describe the orbits of
this action. The hypersurfaces �.n/˛ for �1< ˛ < 1 (see (2–56)) and �.2n/

˛

for ˛ > 1 (see (2–62)) are strongly pseudoconvex orbits; the hypersurface

(2–74) O.n/
0
WD

n
.z; w/ 2M .n/

W jzjn� jzjn�2
jwj2 D 1

o
is the unique Levi-flat orbit (CR–equivalent to �� @� for every n and
covering O.1/

0
by means of the n–to–1 map ˆ.n/ ); the complex curve

O.2n/ is the unique codimension 2 orbit.

We now introduce the following domains in M .n/ :

D.n/s WD

(
.� W z W w/ 2M .n/

W jzjn� jzjn�2
jwj2 >

p
.sC 1/=2j�jn

)
D�

.n/
s;1
[D

.2n/
1
[O.n/

0
; �1< s < 1;

D
.n/
s;t WD

(
.� W z W w/ 2M .n/

W
p
.sC 1/=2j�jn < jzjn� jzjn�2

jwj2 <

p
.t C 1/=2j�jn

)
D�

.n/
s;1
[D

.2n/
1;t
[O.n/

0
; �1� s < 1< t �1;

where s D�1 and t D1 do not hold simultaneously

(see (2–54), (2–59)). Each of these domains is a (2,3)–manifold. Each of the
groups G

�
D
.n/
s

�
DAut

�
D
.n/
s

�
, G

�
D
.n/
s;t

�
DAut

�
D
.n/
s;t

�
coincides with R.n/ .
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Next, C�� is an infinitely-sheeted cover of D.1/
�1;1

with covering map ƒ (see
(2–53)). We equip the domain C�� with the pull-back complex structure under
ƒ and denote the resulting manifold by M .1/ . Clearly, the complex structure
of M .1/ extends the structure of each of M

.1/
� , M

.1/
� (see (10)). The group

R.1/ (see (2–57)) acts on M .1/ , and the orbits of this action are the strongly
pseudoconvex hypersurfaces �.1/˛ for �1 < ˛ < 1 (see (2–58)) and �.1/˛ for
˛ > 1 (see (2–64)), as well as the Levi-flat hypersurface

(2–75) O.1/
0
WD

n
.z; w/ 2M .1/

W exp.2Re z/.1� jwj2/D 1
o

(note that O.1/
0

is CR–equivalent to O1 – see (2–4)).
We now introduce the following domains in M .1/ :

D.1/s WD

(
.z; w/ 2M .1/

W exp .2Re z/ .1� jwj2/ >
p
.sC 1/=2

)
D�

.1/
s;1
[D

.1/
1;1
[O.1/

0
; �1< s < 1;

D
.1/
s;t WD

(
.z; w/ 2M .1/

W
p
.sC 1/=2< exp .2Re z/ .1� jwj2/ <

p
.t C 1/=2

)
D�

.1/
s;1
[D

.1/
1;t
[O.1/

0
; �1� s < 1< t �1;

where s D�1 and t D1 do not hold simultaneously

(see (2–54), (2–59)). Each of these domains is a (2,3)–manifold. The groups
G
�
D
.1/
s

�
D Aut

�
D
.1/
s

�
, G

�
D
.1/
s;t

�
D Aut

�
D
.1/
s;t

�
all coincide with R.1/ .

3 Strongly pseudoconvex orbits

In this section we give a complete classification of (2,3)–manifolds M for which every
G.M /–orbit is a strongly pseudoconvex real hypersurface in M . In the formulation
below we use the notation introduced in the previous section.

Theorem 3.1 Let M be a (2,3)–manifold. Assume that the G.M /–orbit of every
point in M is a strongly pseudoconvex real hypersurface. Then M is holomorphically
equivalent to one of the following pairwise non-equivalent manifolds:
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(i) Rb;s;t , b 2R, jbj � 1, b ¤ 1, with either s D 0, t D 1, or s D 1, 1< t �1;
(ii) Us;t , with either s D 0, t D 1, or s D 1, 1< t �1;

(iii) Ss;t , with either s D 0, t D 1, or s D 1, 1< t <1;

(iv) S.1/s;t , with either s D 0, t D 1, or s D 1, 1< t <1;

(v) S.n/s;t , n� 2, with either s D 0, t D 1, or s D 1, 1< t <1;
(vi) Vb;s;1 , b > 0, with e�2�b < s < 1;

(vii) Es;t , with 1� s < t <1;

(viii) E
.4/
s;t , with 1� s < t <1;

(ix) E
.2/
s;t , with 1� s < t <1;

(x) �s;t , with �1� s < t � 1;

(xi) �
.1/
s;t , with �1� s < t � 1;

(xii) �
.n/
s;t , n� 2, with �1� s < t � 1;

(xiii) Ds;t , with 1� s < t �1;

(xiv) D
.1/
s;t , with 1� s < t �1;

(xv) D
.n/
s;t , n� 2, with 1� s < t �1.

Proof In [4; 3], E Cartan classified all homogeneous 3–dimensional strongly pseudo-
convex CR-manifolds. Since the G.M /–orbit of every point in M is such a manifold,
every G.M /–orbit is CR–equivalent to a manifold on Cartan’s list. We reproduce Car-
tan’s classification below together with the corresponding groups of CR–automorphisms.
Note that all possible covers of the hypersurfaces �, �˛ , �˛ and �˛ appear below as
explicitly realized in [9].

(a) S3 ;
(b) Lm WD S3=Zm , m 2N , m� 2;
(c) � WD

˚
.z; w/ 2C2 W Rew D jzj2

	
;

(d) "b WD

n
.z; w/ 2C2 W Re z D jwjb; w ¤ 0

o
, b > 0;

(e) ! WD
˚
.z; w/ 2C2 W Re z D exp .Rew/

	
;

(f) ı WD
˚
.z; w/ 2C2 W jwj D exp

�
jzj2

�	
;

(g) �b , b 2R, jbj � 1, b ¤ 1 (see (2–3));
(h) � (see (2–8));
(j) � (see (2–11));

(j 0 ) �.1/ (see (2–19));
(j 00 ) �.n/ , n� 2 (see (2–17));
(k) �b , b > 0 (see (2–22));
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(l) �˛ , ˛ > 1 (see (2–25));
(l 0 ) �

.4/
˛ , ˛ > 1 (see (2–33));

(l 00 ) �
.2/
˛ , ˛ > 1 (see (2–31));

(m) �˛ , �1< ˛ < 1, (see (2–39));
(m 0 ) �

.1/
˛ , �1< ˛ < 1, (see (2–58));

(m 00 ) �
.n/
˛ , �1< ˛ < 1, n� 2 (see (2–56));

(n) �˛ , ˛ > 1, (see (2–45));
(n 0 ) �

.1/
˛ , ˛ > 1, (see (2–64));

(n 00 ) �
.n/
˛ , ˛ > 1, n� 2 (see (2–61), (2–62), (2–63)).

The above hypersurfaces are pairwise CR–non-equivalent. The corresponding groups
of CR–automorphisms are as follows:

(a) AutCR.S
3/: maps of the form (2–37), where the matrix Q defined in (2–38)

belongs to SU2;1 ;

(b) AutCR.Lm/; m� 2: ��
z

w

��
7!

�
U

�
z

w

��
;

where U 2U2 , and Œ.z; w/� 2Lm denotes the equivalence class of .z; w/ 2 S3

under the action of Zm embedded in U2 as a subgroup of scalar matrices;

(c) AutCR.�/:

z 7! �ei zC a;

w 7! �2wC 2�ei azCjaj2C i
;
(3–1)

where � > 0,  ; 
 2R, a 2C ;

(d) AutCR."b/ W

z 7!
�zC iˇ

i�zC �
;

w 7!
ei 

.i�zC �/2=b
w;

(3–2)

where �; ˇ; �; �;  2R, ��C�ˇ D 1;

(e) AutCR.!/:

z 7!
�zC iˇ

i�zC �
;

w 7! w� 2 ln.i�zC �/C i
;

(3–3)
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where �; ˇ; �; �; 
 2R, ��C�ˇ D 1;

(f) AutCR.ı/:

z 7! ei zC a;

w 7! ei� exp
�
2ei azCjaj2

�
w;

(3–4)

where  ; � 2R, a 2C ;

(g) AutCR.�b/: the group Gb (see (2–2));

(h) AutCR.�/: the group G (see (2–7));

(j) AutCR.�/: generated by R� (see (2–10)) and the map

z 7! z;

w 7! �wI
(3–5)

(j 0 ) AutCR

�
�.1/

�
: generated by maps (2–18) and the map

z 7! z;

w 7! wI

(j 00 ) AutCR

�
�.n/

�
; n� 2: generated by maps (2–16) and map (3–5);

(k) AutCR.�b/: see (2–21);

(l) AutCR.�˛/ W the group R� (see (2–24));

(l 0 ) AutCR

�
�
.4/
˛

�
: generated by maps (2–32) and the map

z 7! i
z.jzj2Cjwj2/�wp

1C .jzj2Cjwj2/2
;

w 7! i
w.jzj2Cjwj2/C zp

1C .jzj2Cjwj2/2
I

(l 00 ) AutCR

�
�
.2/
˛

�
: generated by R.2/� (see (2–30)) and the map

z1 7! �z1;

z2 7! �z2;

z3 7! �z3I

(3–6)

(m) AutCR.�˛/: generated by R� (see (2–37)) and map (3–5);
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(m 0 ) AutCR

�
�
.1/
˛

�
: generated by R.1/ (see (2–57)) and the map

z 7! zC ln

 
�

1C e2zw.1� jwj2/p
1� exp .4Re z/ .1� jwj2/2

!
;

w 7! �
wC e2z.1� jwj2/

1C e2zw.1� jwj2/
I

(m 00 ) AutCR

�
�
.n/
˛

�
n� 2: generated by R.n/ (see (2–55)) and the map

z 7!z

n

vuuut�
1C zn�1w.1� jwj2=jzj2/

�2

1� jzj2n.1� jwj2=jzj2/2
;

w 7!�
w=zC zn.1� jwj2=jzj2/

1C zn�1w.1� jwj2=jzj2/
�

z

n

vuuut�
1C zn�1w.1� jwj2=jzj2/

�2

1� jzj2n.1� jwj2=jzj2/2
I

(n) AutCR.�˛/ W the group R� (see (2–44));

(n 0 ) AutCR

�
�
.1/
˛

�
W generated by R.1/ (see (2–57)) and the map

z 7! 2zC zC ln

 
i

1� jwj2C e�2zwp
exp .4Re z/ .1� jwj2/2� 1

!
;

w 7!
1C e2zw.1� jwj2/

wC e2z.1� jwj2/
I

(n 00 ) AutCR

�
�
.2/
˛

�
: generated by R.1/ (see (10)) and map (3–6);

(n 00 ) AutCR

�
�
.2n/
˛

�
, n� 2: generated by R.n/ (see (2–55)) and the map

z 7! z2z

n

vuuut�
1� jwj2=jzj2C z�nw=z

�2

jzj2n.1� jwj2=jzj2/2� 1
;

w 7!
1C zn�1w.1� jwj2=jzj2/

w=zC zn.1� jwj2=jzj2/
�
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z2z

n

vuuut�
1� jwj2=jzj2C z�nw=z

�2

jzj2n.1� jwj2=jzj2/2� 1
I

(n 00 ) AutCR

�
�
.n/
˛

�
; n� 3 is odd: this group is isomorphic to R.n/ and consists

of all lifts from the domain D1;1 (see (2–42)) to M
0.n/
� (see (10)) of maps

from R� (see (2–44)).

We will now show that the presence of an orbit of a particular kind in M determines
the group G.M / as a Lie group. Fix p 2M and suppose that O.p/ is CR–equivalent
to m, where m is one of the hypersurfaces listed above in (a)–(n 00 ). In this case we say
that m is the model, for O.p/. Since G.M / acts properly and effectively on O.p/,
the CR–equivalence induces an isomorphism between G.M / and a closed connected
3–dimensional subgroup Rm of the Lie group AutCR.m/, that acts transitively on
m (note that the Lie group topology of AutCR.m/ coincides with the compact-open
topology – see eg Schoen [20]). The subgroup Rm a priori depends on the choice of
CR–equivalence between O.p/ and m, but, as we will see below, this dependence is
insignificant.

We will now list all possible groups Rm for each model in (a)–(n 00 ). In the following
lemma P denotes the right half-plane fz 2C W Re z > 0g.

Lemma 3.2 We have

(A) Rm D AutCR.m/
0 , if m is one of (g)–(n 00 );

(B) RS3 is conjugate in AutCR.S
3/ to SU2 ;

(C) RLm
D SU2=.SU2\Zm/, m� 2;

(D) R� is the Heisenberg group, that is, it consists of all elements of AutCR.�/ with
�D 1,  D 0 in formula (3–1);

(E) R"b
either is the subgroup of AutCR."b/ corresponding to a subgroup of Aut.P/,

conjugate in Aut.P/ to the subgroup T given by

(3–7) z 7! �zC iˇ;

where � > 0, ˇ 2 R, or, for b 2 Q, is the subgroup Vb given by  D 0 in
formula (3–2);

(F) R! either is the subgroup of AutCR.!/ corresponding to a subgroup of Aut.P/
conjugate in Aut.P/ to the subgroup T specified in (E), or is the subgroup V1
given by 
 D 0 in formula (3–3);

(G) Rı coincides with the subgroup of AutCR.ı/ given by  D 0 in formula (3–4).
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Proof Case (A) is clear since in (g)–(n 00 ) we have dim AutCR.m/ D d.M / D 3.
Further, in case (B) the orbit O.p/ is compact and, since Ip is compact as well, it
follows that G.M / is compact. Thus RS3 is compact, and hence it is conjugate to a
subgroup of U2 , which is a maximal compact subgroup in AutCR.S

3/. Since RS3 is
3–dimensional, it is in fact conjugate to SU2 , as required. In case (C) the group RLm

is of codimension 1 in AutCR .Lm/D U2=Zm , hence RLm
D SU2=.SU2\Zm/.

Further, (D) and (G) follow since R� and Rı act transitively on � and ı , respectively.
In cases (E) and (F) note that every codimension 1 subgroup of Aut.P/ is conjugate
in Aut.P/ to the subgroup T defined in (3–7). The only codimension 1 subgroups of
AutCR."b/ and AutCR.!/ that do not arise from codimension 1 subgroups of Aut.P/
are Vb and V1 , respectively. Observe, however, that Vb is not closed in AutCR."b/

unless b 2Q.

The lemma is proved.

Lemma 3.2 implies, in particular, that if for some point p 2M the model for O.p/

is S3 , then M admits an effective action of SU2 . Therefore, M is holomorphically
equivalent to one of the manifolds listed in Isaev–Kruzhilin [13]. However, none of the
(2,3)–manifolds on the list has a spherical orbit. Hence we have ruled out case (a).

We now observe – directly from the explicit forms of the CR–automorphism groups
of the models listed above – that for each m every element of AutCR.m/ extends
to a holomorphic automorphism of a certain complex manifold Mm containing m,
such that every Rm–orbit O in Mm is strongly pseudoconvex and exactly one of the
following holds: (a) O is CR–equivalent to m (cases (b)–(k)); (b) O belongs to the
same family to which m belongs and the Rm–orbits are pairwise CR–non-equivalent
(cases (l)–(n 00 )). The manifolds Mm are as follows:

(b) MLm
DC2 n f0g=Zm , m� 2;

(c) M� DC2 ;
(d) M"b

D
˚
.z; w/ 2C2 W Re z > 0; w ¤ 0

	
;

(e) M! D
˚
.z; w/ 2C2 W Re z > 0

	
;

(f) Mı D
˚
.z; w/ 2C2 W w ¤ 0

	
;

(g) M�b
D
˚
.z; w/ 2C2 W Re z > 0; Rew > 0

	
;

(h) M� D
˚
.z; w/ 2C2 W Rew > 0

	
;

(j) M� DC2 n
˚
.z; w/ 2C2 W Re z D 0; Rew D 0

	
;

(j 0 ) M�.1/ DM
.1/
� (see (4));

(j 00 ) M�.n/ DM
.n/
� , n� 2 (see (4));

(k) M�b
DC2 n

˚
.z; w/ 2C2 W Re z D 0; Rew D 0

	
;
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(l) M�˛ D

[
˛>1

�˛ DCP2
nRP2 ;

(l 0 ) M
�
.4/
˛
D

[
˛>1

�.4/˛ DM .4/
� (see (7));

(l 00 ) M
�
.2/
˛
D

[
˛>1

�.2/˛ DQC nR3 (see (2–28));

(m) M�˛ D

[
�1<˛<1

�˛ D��1;1 (see (2–36));

(m 0 ) M
�
.1/
˛
D

[
�1<˛<1

�.1/˛ DM .1/
� D�

.1/
�1;1

(see (2–54));

(m 00 ) M
�
.n/
˛
D

[
�1<˛<1

�.n/˛ DM .n/
� D�

.n/
�1;1

, n� 2 (see (2–54));

(n) M�˛ D

[
˛>1

�˛ DD1;1 (see (2–42));

(n 0 ) M
�
.1/
˛
D

[
˛>1

�.1/˛ DM .1/
� DD

.1/
1;1

(see (2–59));

(n 00 ) M
�
.2/
˛
D

[
˛>1

�.2/˛ DA� (see (2–52));

(n 00 ) M
�
.2n/
˛
D

[
˛>1

�.2n/
˛ DM .n/

� DD
.2n/
1;1

, n� 2 (see (2–59));

(n 00 ) M
�
.n/
˛
D

[
˛>1

�.n/˛ DM
0.n/
� DD

.n/
1;1

, n� 3 is odd (see (10)).

In each of cases (b)–(k) every two Rm–orbits are CR–equivalent (and equivalent to m)
by means of an automorphism of Mm of one of the simple forms specified below:

(b) Œ.z; w/� 7! Œ.az; aw/�; a> 0;

(c) z 7! z; w 7! wC a; a 2R;

(d) z 7! az; w 7! w; a> 0;

(e) as in (d);

(f) z 7! z; w 7! aw; a> 0;

(g)(3–8) as in (f);

(h) z 7! az; w 7! aw; a> 0;

(j) as in (h);

(j 0 ) z 7! zC a; w 7! eaw; a 2R;

(j 00 ) z 7! aRe zC ianIm z; w 7! aRewC ianImw; a> 0;
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(k) as in (h).

We will now show how strongly pseudoconvex orbits can be glued together to form
(2,3)–manifolds. The procedure comprises the following steps.

(I) Start with a real hypersurface orbit O.p/ with model m and consider a real-
analytic CR–isomorphism f W O.p/!m. Clearly, f satisfies

(3–9) f .gq/D '.g/f .q/;

for all g 2 G.M / and q 2 O.p/, where 'W G.M / ! Rm is a Lie group
isomorphism.

(II) Observe that f can be extended to a biholomorphic map from a G.M /–invariant
connected neighborhood of O.p/ in M onto an Rm–invariant neighborhood of
m in the corresponding manifold Mm . If G.M / is compact (in which case m is
one of Lm with m� 2, �˛ , �.2/˛ , �.4/˛ with ˛ > 1), then every neighborhood
of O.p/ contains a G.M /–invariant neighborhood. In this case, we extend f
biholomorphically to some neighborhood of O.p/ (this can be done due to the
real-analyticity of f ) and choose a G.M /–invariant neighborhood in it.
We now assume that G.M / is non-compact. In this case it will be more conve-
nient for us to extend the inverse map F WD f �1 . First of all, extend F to some
neighborhood U of m in Mm to a biholomorphic map onto a neighborhood
W of O.p/ in M . It can be seen from the explicit form of the Rm–action
on Mm that U can be chosen to satisfy the following condition that we call
Condition (�): for every two points s1; s2 2 U and every element h 2Rm such
that hs1D s2 there exists a curve 
 �U joining s1 with a point in m for which
h
 � U (clearly, h
 is a curve joining s2 with a point in m).
To extend F to a Rm–invariant neighborhood of m, fix s 2 U and s0 2O.s/,
where O.y/ denotes the Rm–orbit of a point y 2 Mm . Choose h0 2 Rm
such that s0 D h0s and define F.s0/ WD '

�1.h0/F.s/. We will now show that
F is well-defined. Suppose that for some s1; s2 2 U and h1; h2 2 Rm we
have s0 D h1s1 D h2s2 . To show that '�1.h1/F.s1/D '

�1.h2/F.s2/ we set
h WD h�1

2
h1 and, according to Condition (�), find a curve 
 � U that joins s1

with a point in m and such that h
 � U .
Clearly, for all q 2m we have

(3–10) F.hq/D '�1.h/F.q/:

Consider the open set h�1U \ U and let Uh be its connected component
containing m. For q 2 Uh identity (3–10) holds. It now follows from the
existence of a curve 
 as above that s1 2 Uh . Thus, (3–10) holds for q D s1 ,
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and we have shown that F is well-defined at s0 . The same argument gives that
for s0 2 U our definition agrees with the original value F.s0/. Thus, we have
extended F to U 0 WD [s2UO.s/. The extended map is locally biholomorphic,
satisfies (3–10), and maps U 0 onto a G.M /–invariant neighborhood W 0 of
O.p/ in M . We will now show that the extended map is 1–to–1 on an Rm–
invariant neighborhood of m contained in U 0 .
Suppose that for some s0; s

0
0
2 U 0 , s0 ¤ s0

0
, we have F.s0/ D F.s

0
0
/. For U

sufficiently small, this can only occur if s0 and s0
0

lie in the same Rm–orbit,
and therefore there exist a point s 2 U and elements h; h0 2 Rm such that
s0D hs , s0

0
D h0s . Then h

0�1h… Js and '�1.h
0�1h/2 IF.s/ , where Js denotes

the isotropy subgroup of s under the Rm–action. At the same time, we have
'�1.Js/� IF.s/ . Thus, IF.s/ contains more points than Js . Observe also that
if m0 is the model for O .F.s//, then Rm0 is isomorphic to Rm .
Assume first that O.s/ is non-spherical. It follows from the explicit forms of
the models and the corresponding groups (see Lemma 3.2) that if for two locally
CR–equivalent non-spherical models m1 , m2 the groups Rm1

and Rm2
are

isomorphic and the isotropy subgroup of a point in m1 contains more points than
that of a point in m2 , then m1D �

.n/
˛ and m2D �

.2n/
˛ for some ˛ and odd n� 1

(here we set �.1/˛ WD �˛ ). Hence O.s/D �.2n/
˛ , and the model for O.F.s// is

�
.n/
˛ for some ˛ and odd n� 1; consequently, mD �.2n/

ˇ
for some ˇ . If there

is a neighborhood of p not containing a point q such that the model for O.q/

is some �.n/
 , then F is biholomorphic on an Rm–invariant open subset of U 0 .
Suppose now that in every neighborhood of p (that we assume to be contained
in W ) there is a point q such that O.f .q// D �.2n/


 and the model for O.q/

is �.n/
 for some 
 . Note that Iq consists of two elements and Jf .q/ is trivial.
Choose a sequence of such points fqj g �W converging to p . Let gj be the
non-trivial element of Iqj . Since the action of G.M / on M is proper and Ip

is trivial, the sequence fgj g converges to the identity in G.M /. At the same
time, the sequence ff .qj /g converges to f .p/ and therefore '.gj /f .qj / lies
in U for large j . For large j we have F.'.gj /f .qj //D qj . Since '.gj / is a
non-trivial element in Rm , the point '.gj /f .qj / does not coincide with f .qj /.
Thus, we have found two distinct points in U (namely, f .qj / and '.gj /f .qj /

for large j ) mapped by F into the same point in W , which contradicts the fact
that F is 1–to–1 on U .
Assume now that O.s/ is spherical. It follows from the explicit forms of the
models and the corresponding groups (see Lemma 3.2) that if for two spherical
models m1 , m2 the groups Rm1

and Rm2
are isomorphic and the isotropy

subgroup of a point in m1 contains more points than that of a point in m2 ,
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then m1 D "n=k1
, Rm1

D Vn=k1
, and m2 D "n=k2

, Rm2
D Vn=k2

, where
n; k1; k2 2N , .n; k1/D 1, .n; k2/D 1, k1 > k2 . Hence mD "n=k2

, O.s/ is
equivalent to "n=k2

by means of a map of the form (d) on list (3–8), and the model
for O.F.s// is "n=k1

for some n; k1; k2 as above. If there is a neighborhood
of p not containing a point q such that the model for O.q/ is some "n=k , with
k 2N , .n; k/D 1, k > k2 , then F is biholomorphic on an Rm–invariant open
subset of U 0 . Suppose now that in every neighborhood of p (that we assume
to be contained in W ) there is a point q such that the model for O.q/ is "n=k ,
with k 2N , .n; k/D 1, k > k2 . Choose a sequence of such points fqj g �W

converging to p . Since the action of G.M / on M is proper, the isotropy
subgroups Iqj converge to Ip . Every subgroup Iqj contains more points than
Jf .qj / , and therefore for a subsequence fjkg of the sequence of indices fj g
there is a sequence of elements fgjk

g with gjk
2 Iqjk

, '.gjk
/…Jf .qjk /

and such
that fgjk

g converges to an element of Ip . Arguing now as in the non-spherical
case, we obtain a contradiction with the fact that F is 1–to–1 on U .
Hence we have shown that f can be extended to a biholomorphic map satisfying
(3–9) between a G.M /–invariant neighborhood of O.p/ in M and a Rm–
invariant neighborhood of m in Mm .

(III) Consider a maximal G.M /–invariant domain D�M from which there exists a
biholomorphic map f onto an Rm–invariant domain in Mm satisfying (3–9) for
all g 2G.M / and q 2D . The existence of such a domain is guaranteed by the
previous step. Assume that D¤M and consider x 2 @D . Let m1 be the model
for O.x/ and let f1W O.x/!m1 be a real-analytic CR–isomorphism satisfying
(3–9) for all g 2G.M /, q 2O.x/ and some isomorphism '1W G.M /!Rm1

in place of ' . As in (II), extend f1 to a biholomorphic map from a connected
G.M /–invariant neighborhood V of O.x/ onto an Rm1

–invariant neighborhood
of m1 in Mm1

. The extended map satisfies (3–9) for all g 2 G.M /, q 2 V

and '1 in place of ' . Consider s 2 V \D . The maps f and f1 take O.s/

onto an Rm–orbit m0 in Mm and an Rm1
–orbit m0

1
in Mm1

, respectively. Then
F WD f1 ı f

�1 establishes a CR–isomorphism between m0 and m0
1

. Therefore,
m1 lies in Mm , that is, we have Mm DMm1

. Moreover, F is either an element
of AutCR.m

0/ (if m0 Dm0
1

), or is a composition of an element of AutCR.m
0/

and a non-trivial map from list (3–8) that takes m0 onto m0
1

(if m0 ¤m0
1

); the
latter is only possible in cases (b)–(k). It now follows from the explicit forms of
CR–automorphisms of the models and the maps on list (3–8) that F extends to
a holomorphic automorphism of Mm .

(IV) Since O.x/ is strongly pseudoconvex and closed in M , for V sufficiently small
we have V D V1[V2[O.x/, where Vj are open connected non-intersecting
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sets. Furthermore, if V is sufficiently small, then each Vj is either a subset of
D or disjoint from it. Suppose first that there is only one j for which Vj �D .
In this case V \D is connected and V n .D[O.x//¤ ∅. Setting now

(3–11) zf WD

(
f on D;

F�1 ıf1 on V;

we obtain a biholomorphic extension of f to D[V . By construction, zf satisfies
(3–9) for g 2G.M / and q 2D[V . Since D[V is strictly larger than D , we
obtain a contradiction with the maximality of D . Thus, in this case D DM ,
and hence M is holomorphically equivalent to an Rm–invariant domain in Mm

(all such domains will explicitly appear below).
Suppose now that Vj �D for j D 1; 2. Applying formula (3–11) to suitable
f1 and F , we can extend f jV1

and f jV2
to biholomorphic maps yf1 , yf2 ,

respectively, from a neighborhood of O.x/ into Mm ; each of these maps satisfies
(3–9). Let ymj WD

yfj .O.x//, j D 1; 2. Then @f .D/ D ym1 [ ym2 , ym1 ¤ ym2 ,
and M nO.x/ is holomorphically equivalent to D . The map yF WD yf2 ı

yf �1
1

is a CR–isomorphism from ym1 onto ym2 (hence m is one of the hypersurfaces
occurring in cases (b)–(k)). By construction, the map yF is Rm–equivariant. In
each of cases (b)–(f) this implies that yF extends to a holomorphic automorphism
of Mm of a simple form (similar to the corresponding form on list (3–8)). Let �
denote the group of automorphisms of Mm generated by yF . It follows from the
explicit forms of yF and Mm in each of cases (b)–(f) that � acts freely properly
discontinuously on Mm and that Mm covers M , with � being the group of
deck transformations of the covering map. Observe, however, that for every m
the manifold Mm is not hyperbolic. Next, in cases (g)–(k) the Rm–equivariance
of yF implies that yF D id, which is impossible. These contradictions show that
exactly one of Vj , j D 1; 2, is a subset of D , and hence M is holomorphically
equivalent to an Rm–invariant domain in Mm .

All hyperbolic Rm–invariant domains in each of cases (b)–(n 00 ) are described as follows:

(b)

(3–12) Sm;s;t WD

n
.z; w/ 2C2

W s < jzj2Cjwj2 < t
o
=Zm; 0� s < t <1I

(c)
˚
.z; w/ 2C2 W sCjzj2 < Rew < t Cjzj2

	
; �1< s < t �1;

(d)

(3–13) Rb;s;t WD

n
.z; w/ 2C2

W sjwjb < Re z < t jwjb; w ¤ 0
o
;
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0� s < t �1, where s D 0 and t D1 do not hold simultaneously;
(e) Rs;t WD

˚
.z; w/ 2C2 W s exp .Rew/ < Re z < t exp .Rew/

	
,0 � s < t � 1,

where s D 0 and t D1 do not hold simultaneously;
(f)

˚
.z; w/ 2C2 W s exp

�
jzj2

�
< jwj< t exp

�
jzj2

�	
, 0< s < t �1;

(g) Rb;s;t , 0 � s < t �1, where s D 0 and t D1 do not hold simultaneously
(see (2–1));

(h) Us;t , 0� s < t �1, where sD 0 and t D1 do not hold simultaneously (see
(2–6));

(j) Ss;t , 0� s < t <1 (see (2–9));

(j 0 ) S.1/s;t , 0� s < t <1 (see (2–15));

(j 00 ) S.n/s;t , 0� s < t <1, n� 2 (see (2–15));
(k) Vb;s;t , 0< t <1, e�2�bt < s < t (see (2–20));
(l) Es;t , 1� s < t <1 (see (2–23));

(l 0 ) E
.4/
s;t , 1� s < t <1 (see (2–29));

(l 00 ) E
.2/
s;t , 1� s < t <1 (see (2–29));

(m) �s;t , �1� s < t � 1 (see (2–36));

(m 0 ) �
.1/
s;t , �1� s < t � 1 (see (2–54));

(m 00 ) �
.n/
s;t , �1� s < t � 1, n� 2 (see (2–54));

(n) Ds;t , 1� s < t �1 (see (2–42));

(n 0 ) D
.1/
s;t , 1� s < t �1 (see (2–59));

(n 00 ) D
.2/
s;t , 1� s < t �1 (see (2–59));

(n 00 ) D
.2n/
s;t , 1� s < t �1, n� 2 (see (2–59));

(n 00 ) D
.n/
s;t , 1� s < t �1, n� 3, n is odd (see (10)).

This concludes our orbit gluing procedure. Note that in each of cases (d) and (e) we
have two non-isomorphic possibilities for Rm . Each of the possibilities leads to the
same set of Rm–invariant domains.

We now observe that the automorphism groups of all Rm–invariant domains that appear
in cases (b)–(f) have dimension at least 4. Finally, excluding equivalent domains leads
to list (i)–(xv) as stated in the theorem.

The proof of the theorem is complete.
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4 Levi-flat orbits

In this section we give a classification of (2,3)–manifolds M for which every G.M /–
orbit has codimension 1 and at least one orbit is Levi-flat. We start by classifying all
possible Levi-flat orbits up to CR–diffeomorphisms together with group actions.

Observe, first of all, that the Levi-flat hypersurface O1 (see (2–4)) is an orbit of the
action of each of the groups Gb (see (2–2)) for b 2R (including b D 0) and G (see
(2–7)) on C2 . Recall next that the Levi-flat hypersurface O.n/

0
(see (2–70), (2–74)) is

an orbit of the action of R.n/ (see (10), (2–55)) on Q� for nD 1 (see (2–47)) and on
M .n/ for n 2N , n� 2 (see (11)(d)). Furthermore, the Levi-flat hypersurface O.1/

0

(see (2–75)) is an orbit of the action of R.1/ (see (2–57)) on M .1/ (see (11)(d)).
Note also that the Levi-flat hypersurface

(4–1) O01 WD
n
.z; w/ 2C2

W Re z > 0; jwj D 1
o

is an orbit of the action on C2 of the group G0
0

of all maps

z 7! �zC iˇ;

w 7! ei w;
(4–2)

where � > 0, ˇ; 2 R. The hypersurface O.1/
0

is CR–equivalent to O1 , and the

hypersurface O.n/
0

is CR–equivalent to O0
1

for every n 2N .

We will now prove the following proposition. Note that it applies to (2,3)–manifolds
possibly containing codimension 2 orbits.

Proposition 4.1 Let M be a (2,3)–manifold. Assume that for a point p 2M its orbit
O.p/ is Levi-flat. Then one of the following holds:

(i) O.p/ is equivalent to O1 by means of a real-analytic CR–map that transforms
G.M /jO.p/ into either the group GbjO1

for some b 2R or the group GjO1
;

(ii) O.p/ is equivalent to O0
1

by means of a real-analytic CR–map that transforms
G.M /jO.p/ into the group G0

0
jO0

1
;

(iii) O.p/ is equivalent to O.j/
0

for some j 2 f1; 2; : : : ;1g by means of a real-
analytic CR–map that transforms G.M /jO.p/ into the group R.j/jO.j /

0

.

Proof Recall that the hypersurface O.p/ is foliated by complex manifolds equivalent
to � (see (ii) of Proposition 1.1). For convenience, we realize � as the right half-plane
P WD fz 2C W Re z > 0g. Denote by g.M / the Lie algebra of vector fields on M
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arising from the action of G.M /. The algebra g.M / is isomorphic to the Lie algebra
of G.M /. We identify every vector field from g.M / with its restriction to O.p/. For
q 2O.p/ we consider the leaf Mq of the foliation passing through q and the subspace
lq � g.M / of all vector fields tangent to Mq at q . Since vector fields in lq remain
tangent to Mq at each point in Mq , the subspace lq is in fact a Lie subalgebra of
g.M /. It follows from the definition of lq that dim lq D 2.

Denote by Hq the (possibly non-closed) connected subgroup of G.M / with Lie algebra
lq . It is straightforward to verify that the group Hq acts on Mq by holomorphic
transformations. If some element g 2 Hq acts trivially on Mq , then g 2 Iq . If for
every non-identical element of Lq its projection to L0q is non-identical (see (ii) of
Proposition 1.1), then every non-identical element of Iq acts non-trivially on Mq and
thus g D id; if Lq contains a non-identical element with an identical projection to L0q
and g ¤ id, then g D gq , where gq denotes the element of Iq corresponding to the
non-trivial element in Z2 (see (ii) of Proposition 1.1). Thus, dim Hq D 2, and either
Hq or Hq=Z2 acts effectively on Mq (the former case occurs if gq …Hq , the latter
if gq 2Hq ). As we noted in the proof of Lemma 3.2, every 2–dimensional (a priori
not necessarily closed) subgroup of Aut.P/ is conjugate in Aut.P/ to the subgroup T
(see (3–7)). The Lie algebra of this subgroup is isomorphic to the 2–dimensional Lie
algebra h given by two generators X and Y satisfying ŒX;Y �DX . Therefore, lq is
isomorphic to h for every q 2O.p/.

It is straightforward to determine all 3–dimensional Lie algebras containing a subalgebra
isomorphic to h. Every such algebra has generators X;Y;Z that satisfy one of the
following sets of relations:

(4–3)
(R1) ŒX;Y �DX; ŒZ;X �D 0; ŒZ;Y �D bZ; b 2R;
(R2) ŒX;Y �DX; ŒZ;X �D 0; ŒZ;Y �DX CZ;

(R3) ŒX;Y �DX; ŒZ;X �D Y; ŒZ;Y �D�Z:

Suppose first that g.M / is given by relations (R1). In this case g.M / is isomorphic
to the Lie algebra of the simply-connected Lie group Gb (see (2–2)). Indeed, the
Lie algebra of Gb is isomorphic to the Lie algebra of vector fields on C2 with the
generators

X1 WD i@=@z;

Y1 WD z@=@zC bw @=@w;

Z1 WD i@=@w;

that clearly satisfy (R1).
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Assume first that b¤ 0. In this case the center of Gb is trivial, and hence Gb is the only
(up to isomorphism) connected Lie group whose Lie algebra is given by relations (R1).
Therefore, G.M / is isomorphic to Gb . Assume further that b ¤ 1. In this case, it is
straightforward to observe that every subalgebra of g.M / isomorphic to h is generated
either by X1 and Y1C �Z1 , or by Z1 and �X1CY1 for some � 2R. The connected
subgroup of Gb with Lie algebra generated by X1 and Y1C �Z1 is conjugate in Gb

to the closed subgroup H 1
b

given by 
 D 0 in (2–2); similarly, the connected subgroup
of Gb with Lie algebra generated by Z1 and �X1 C Y1 is conjugate to the closed
subgroup H 2

b
given by ˇ D 0 in (2–2). Moreover, the conjugating element can be

chosen to belong to the subgroup W1 of maps of the form

z 7! z

w 7! wC i
; 
 2R;
(4–4)

in the first case, and to the subgroup W2 of maps of the form

z 7! zC iˇ; ˇ 2R;

w 7! w;

in the second case. These subgroups are one-parameter subgroups of Gb arising from
Z1 and X1 , respectively.

Thus, upon identifying G.M / with Gb , the subgroup Hq for every q 2 O.p/ is
conjugate to either H 1

b
or H 2

b
by an element of either W1 or W2 , respectively. In

particular, Hq is isomorphic to T and hence does not have subgroups isomorphic to
Z2 . Therefore, Hq acts effectively on Mq . Since the subgroups Hq are conjugate to
each other, it follows that either Hq is conjugate to H 1

b
for every q , or Hq is conjugate

to H 2
b

for every q . Suppose first that the former holds. Then for every q 2 O.p/

every element of G.M / can be written as gh, where g 2W1 , h 2 Hq . Hence for
every q1; q2 2O.p/ there exists g 2W1 such that gMq1

DMq2
. Furthermore, since

the normalizer of H 1
b

in Gb coincides with H 1
b

, such an element g is unique. Let
q0 2O.p/ be a point for which Hq0

DH 1
b

, and let f W Mq0
! P be a holomorphic

equivalence that transforms Hq0
jMq0

into the group T . Let yX1 and yY1 be the vector

fields on O.p/ corresponding to X1;Y1 . Under the map f the vector fields yX1jMq0

and yY1jMq0
(which are tangent to Mq0

) transform into some vector fields X �
1

and Y �
1

on P such that ŒX �
1
;Y �

1
�DX �

1
. Clearly, X �

1
and Y �

1
generate the algebra of vector

fields on P arising from the action of T . It is straightforward to verify that one can
find an element of T that transforms Y �

1
into z @=@z D Y1jP and X �

1
into one of

˙i @=@zD˙X1jP , and therefore we can assume that f is chosen so that it transforms
yX1jMq0

and yY1jMq0
into ˙X1jP , Y1jP , respectively.
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For every q2O.p/ we now find the unique element g2W1 such that gMq0
DMq and

define F.q/ WD
�
f .g�1.q//; i


�
2C2 , with 
 corresponding to g as in formula (4–4).

Clearly, F is a real-analytic CR–isomorphism between O.p/ and O1 that transforms
yZ1 into i @=@wjO1

DZ1jO1
, where yZ1 is the vector field on O.p/ corresponding to

Z1 (recall that W1 D fexp.sZ1/; s 2Rg).

Denote by zX , zY the vector fields on O1 into which F transforms yX1 , yY1 , respectively.
Since F is real-analytic, it extends to a biholomorphic map from a neighborhood of
O.p/ in M onto a neighborhood of O1 in C2 . Clearly, yX1 , yY1 extend to holomorphic
vector fields on all of M and hence zX , zY extend to holomorphic vector fields defined
in a neighborhood of O1 . Since the restrictions of zX and zY to P � f0g � O1 are
˙ i@=@z and z @=@z , respectively, these vector fields have the forms

(4–5) zX D .˙i C �.z; w//@=@zC �.z; w/@=@w;

and

(4–6) zY D .zC�.z; w//@=@zC �.z; w/@=@w;

where �; �; �; � are functions holomorphic near O1 and such that

(4–7) �.z; 0/� �.z; 0/� �.z; 0/� �.z; 0/� 0:

Since Œ yZ1; yX1�D 0 and Œ yZ1; yY1�D b yZ1 on O.p/, on a neighborhood of O1 we obtain

(4–8) ŒZ1; zX �D 0; ŒZ1; zY �D bZ1:

Conditions (4–7) and (4–8) imply: �� 0, � � 0, �� 0 and � D bw . Thus, zX D˙X1 ,
zY D Y1 and hence F transforms G.M /jO.p/ into GbjO1

.

The case when Hq is conjugate to H 2
b

for every q 2O.p/ is treated similarly; arguing
as above we construct a real-analytic CR–isomorphism between O.p/ and yO1 (see
(2–5)) that transforms G.M /jO.p/ into Gbj yO1

. Further, interchanging the variables

turns yO1 into O1 and Gb into G1=b .

Suppose now that b D 1. In this case, in addition to the subalgebras arising for
b¤ 1, a subalgebra of g.M / isomorphic to h can also be generated by X1C�Z1 and
Y1C �Z1 for some �; � 2R, �¤ 0. The connected subgroup of G1 corresponding
to this subalgebra is conjugate in G1 to the closed subgroup H1;� of all maps of the
form (2–2) with b D 1, 
 D ˇ�. Moreover, the conjugating element can be chosen to
belong to the subgroup W1 (see (4–4)). Thus, upon identifying G.M / with G1 , the
subgroup Hq for every q 2O.p/ is conjugate to either H 1

1
or H 2

1
, or H1;� for some

�¤ 0 (all these subgroups are closed). In particular, Hq is isomorphic to T and hence
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acts effectively on Mq . Since the subgroups Hq are conjugate to each other, it follows
that either Hq is conjugate to H 1

1
for every q , or Hq is conjugate to H 2

1
for every q ,

or Hq is conjugate to H1;� for every q and a fixed �. The first two cases are treated
as for b ¤ 1. Suppose that Hq is conjugate to H1;� for every q 2 O.p/. It can be
shown, as before, that for every q1; q2 2O.p/ there exists a unique g 2W1 such that
gMq1

DMq2
. Fix q0 2O.p/ with the property Hq0

DH1;� , and let f W Mq0
! P ,

be a holomorphic equivalence that transforms Hq0
jMq0

into the group T and such

that yX1C � yZ1jMq0
and yY1jMq0

(which are tangent to Mq0
) are transformed into the

vector fields ˙X1jP and Y1jP , respectively. For every q 2 O.p/ we now find the
unique map g 2W1 such that gMq0

DMq and define F.q/ WD
�
f .g�1.q//; i


�
,

with 
 corresponding to g as in formula (4–4). Analogously to the case b ¤ 1 we
obtain: zX D˙X1� �Z1 , zY D Y1 . Hence F transforms G.M /jO.p/ into G1jO1

.

Suppose now that b D 0. In this case there are exactly two (up to isomorphism) con-
nected Lie groups with Lie algebra g.M /: G0 and G0

0
(see (4–2)). It is straightforward

to see that every subalgebra of g.M / isomorphic to h is generated by X1 and Y1C�Z1

for some � 2R. Clearly, the connected subgroup of G0 with Lie algebra generated by
X1 and Y1C �Z1 coincides with the closed normal subgroup H0;� given by �D et ,

 D � t , t 2 R (see (2–2)). It then follows that if G.M / is isomorphic to G0 , there
exists � 2 R, such that, identifying G.M / and G0 , we have Hq D H0;� for every
q 2O.p/. Further, let us realize the Lie algebra of G0

0
as the Lie algebra generated

by the following vector fields on C2 : X1 , Y1 , Z0
1
WD iw @=@w , which clearly satisfy

(R1) of (4–3). The connected subgroup of G0
0

with Lie algebra generated by X1 and
Y1C �Z0

1
coincides with the closed normal subgroup H 0

0;�
of G0

0
given by �D et ,

 D � t , t 2 R (see (4–2)). It then follows that if G.M / is isomorphic to G0
0

, there
exists � 2 R, such that, identifying G.M / and G0

0
, we have Hq D H 0

0;�
for every

q 2O.p/.

Thus, if b D 0, every subgroup Hq is normal, closed, isomorphic to T (hence acts
effectively on Mq ). In particular, all these subgroups coincide for q 2O.p/. Denote
by H the coinciding subgroups Hq . The group H acts properly on O.p/, and the
orbits of this action are the leaves Mq of the foliation on O.p/. Further, we have
G.M / D H �L, where L is either the subgroup W1 (see (4–4)), or the subgroup
W 01 given by � D 1, ˇ D 0 in formula (4–2), and hence is isomorphic to either R
or S1 . For every q 2 O.p/ let Sq WD

˚
g 2L W gMq DMq

	
. Since Mq is closed,

Sq is a closed subgroup of L. Clearly, for every g 2 Sq there is h 2 H such that
hg 2 Iq . The elements g and h lie in the projections of Iq to L and H , respectively.
Since H is isomorphic to T , it does not have non-trivial finite subgroups, hence the
projection of Iq to H is trivial, and therefore Sq D Iq . Since all isotropy subgroups
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are contained in the Abelian subgroup L and are conjugate to each other in G.M /,
they are in fact identical. The effectiveness of the action of G.M / on M now implies
that all isotropy subgroups are trivial and hence every Sq is trivial as well.

Thus, we have shown that for every q1; q2 2O.p/ there is a unique g 2L, such that
gMq1

DMq2
. Suppose first that L DW1 . Fix q0 2 O.p/, and let f W Mq0

! P
be a holomorphic equivalence that transforms H jMq0

into the group T and yX1jMq0
,

yY1C � yZ1jMq0
into ˙X1jP , Y1jP , respectively. For every q 2O.p/ find the unique

map g 2W1 such that gMq0
DMq and define F.q/ WD

�
f .g�1.q//; i


�
, with 


corresponding to g as in formula (4–4). It can now be shown as in the case b ¤ 0 that
F transforms G.M /jO.p/ into G0jO1

.

Suppose now that LDW 01 . Fix q0 2O.p/, and let f W Mq0
! P be a holomorphic

equivalence that transforms H jMq0
into the group T and yX1jMq0

, yY1C� yZ
0
1
jMq0

into

˙X1jP , Y1jP , respectively, where yZ0
1

denotes the vector field on O.p/ corresponding
to Z0

1
. For every q 2O.p/ find the unique map g 2W 01 such that gMq0

DMq and

define F.q/ WD
�
f .g�1.q//; ei 

�
, with ei corresponding to g as in formula (4–2).

Clearly, F is a real-analytic CR–isomorphism between O.p/ and O0
1

(see (4–1)) that
transforms yZ0

1
into iw @=@wjO0

1
DZ0

1
jO0

1
.

As before, denote by zX , zY the vector fields on O0
1

into which F transforms yX1 ,
yY1 , respectively. These vector fields extend to holomorphic vector fields defined in a
neighborhood of O0

1
. Since the restrictions of zX and zY C �Z0

1
to P � f1g �O0

1
are

˙X1jP and Y1jP , these vector fields have the forms that appear in the right-hand sides
of formulas (4–5), (4–6), respectively, where �; �; �; � are functions holomorphic near
O0

1
and such that

(4–9) �.z; 1/� �.z; 1/� �.z; 1/� �.z; 1/� 0:

Since Œ yZ0
1
; yX1�D Œ yZ

0
1
; yY1C � yZ

0
1
�D 0 on O.p/, on a neighborhood of O0

1
we obtain

(4–10) ŒZ01;
zX �D ŒZ01;

zY C �Z01�D 0:

Conditions (4–9), (4–10) imply: �� � ��� � � 0. Thus, zX D˙X1 , zY DY1��Z0
1

,
and hence F transforms G.M /jO.p/ into G0

0
jO0

1
.
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Suppose next that g.M / is given by relations (R2) (see (4–3)). In this case g.M / is
isomorphic to the Lie algebra of the simply-connected Lie group G (see (2–7)). Indeed,
the Lie algebra of G is isomorphic to the Lie algebra of holomorphic vector fields
on C2 with the following generators: X1 , Y2 WD .zCw/ @=@zCw @=@w , Z1 , which
clearly satisfy (R2). It is straightforward to observe that the center of G is trivial, and
hence G is the only (up to isomorphism) connected Lie group whose Lie algebra is
given by relations (R2). Therefore, G.M / is isomorphic to G. In this case every
subalgebra of g.M / isomorphic to h is generated by X1 and Y2 C �Z1 for some
� 2R. The connected subgroup of G with Lie algebra generated by X1 and Y2C�Z1

is conjugate in G to the closed subgroup Q given by 
 D 0 (see (2–7)). Moreover,
the conjugating element can be chosen to belong to W1 (see (4–4)).

Thus – upon identification of G.M / and G – the subgroup Hq for every q 2O.p/

is conjugate to Q by an element of W1 . Further, since the normalizer of Q in G
coincides with Q, we proceed as in the case of the group Gb for b¤ 0 and obtain that
there exists a real-analytic CR–isomorphism F between O.p/ and O1 that transforms
yZ1 into Z1jO1

and the corresponding vector fields yX1 , yY2 on a neighborhood of O.p/

in M into holomorphic vector fields zX , zY of the forms appearing in the right-hand
sides of formulas (4–5), (4–6), respectively, where �; �; �; � are functions holomorphic
near O1 and satisfying (4–7). Since Œ yZ1; yX1�D 0 and Œ yZ1; yY2�D yX1C

yZ1 on O.p/,
on a neighborhood of O1 we obtain

(4–11) ŒZ1; zX �D 0; ŒZ1; zY �D zX CZ1:

Conditions (4–7), (4–11) imply: �� 0, � � 0, ��˙w , � Dw , respectively. Thus,
we have either zX DX1 , zY D Y2 , or zX D�X1 , zY D .z�w/ @=@zCw @=@w . Hence
either F or S ıF transforms G.M /jO.p/ into GjO1

, where S is the map given by
formula (3–5).

Suppose finally that g.M / is given by relations (R3) (see (4–3)). In this case g.M / is
isomorphic to the algebra so2;1.R/. All connected Lie groups with such Lie algebra are
described as follows: any simply-connected group is isomorphic to the group V1 , and
any non simply-connected group is isomorphic to Vn with n 2N , where V1 and Vn

are the Lie groups defined in Lemma 3.2. Clearly, the set C WD
˚
.z; w/ 2C2 W Re z > 0

	
is Vj –invariant for j 2 f1; 2; : : : ;1g.
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Consider in Vj three one-parameter subgroups of transformations of C

for j D1:

z 7! z�
i

2
ˇ; w 7! w;

z 7! �z; w 7! wC ln0 �;

z 7!
z

i�zC 1
; w 7! w� 2 ln0.i�zC 1/;

for j D n 2N:

z 7! z�
i

2
ˇ; w 7! w;

z 7! �z; w 7! �1=nw;

z 7!
z

i�zC 1
; w 7!

1

.i�zC 1/2=n
w:

where � > 0, ˇ;� 2 R, t2=n D exp.2=n ln0 t/ for t 2 C n .�1; 0�, and ln0 is the
branch of the logarithm in C n .�1; 0� defined by the condition ln0 1 D 0. The
vector fields corresponding to these subgroups generate the Lie algebras of Vj for
j 2 f1; 2; : : : ;1g and are as follows:

for j D1:

X3 WD �
i

2
@=@z;

Y3 WD z @=@zC @=@w;

Z3 WD �iz2 @=@z� 2iz @=@w;

for j D n 2N:

X3 WD �
i

2
@=@z;

Y3 WD z @=@zC
w

n
@=@w;

Z3 WD �iz2 @=@z�
2izw

n
@=@w:

One can verify that these vector fields indeed satisfy relations (R3).

Next, it is straightforward to show that any subalgebra of g.M / isomorphic to h is
generated by either X3 C �Y3 � �

2=2 Z3 , Y3 � �Z3 , with � 2 R, or by Y3 , Z3 .
For every j 2 f1; 2; : : : ;1g the connected subgroups of Vj corresponding to the
subalgebras generated by X3C �Y3� �

2=2 Z3 , Y3� �Z3 , with � 2R, or by Y3 , Z3

are isomorphic to T (hence Hq acts effectively on Mq for every q ) and are all closed
and conjugate to each other in Vj by elements of the one-parameter subgroup of Vj

arising from X3� 1=2 Z3 . We denote this subgroup by Wj and describe it in more
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detail. Let first j D1. Transform C into f.z; w/ W jzj< 1g by means of the map

z 7!
z� 1

zC 1
;

w 7!w� 2 ln0 ..zC 1/=2/ :

Then W1 is the subgroup of V1 that transforms into the group of maps

z 7!eitz;

w 7!wC i t;
(4–12)

where t 2 R. Let now j D n. Transform C into f.z; w/ W jzj< 1g by means of the
map

z 7!
z� 1

zC 1
;

w 7!

�
2

zC 1

�2=n

w:

Then Wn is the subgroup of Vn that transforms into the group of maps

z 7!eitz;

w 7!eit=nw;
(4–13)

where 0� t < 2�n.

Observe that – upon identifying G.M / with Vj for a particular value of j – for every
q 2O.p/ every element of G.M / can be written in the form gh with g 2Wj , h2Hq ,
and Wj \Hq D fidg. Since no element in a sufficiently small neighborhood of the
identity in Wj lies in the normalizer of Hq in G.M /, for every q 2O.p/ there exists
a tubular neighborhood U of Mq in O.p/ with the following property: for every curve

 � U transversal to the leaves Mq0 for q0 2 U and every q1; q2 2 
 , q1 ¤ q2 , we
have Hq1

¤ Hq2
. Further, for every two points q1; q2 2 O.p/ there exists g 2Wj

such that gMq1
DMq2

. If for some q 2O.p/ there is a non-trivial g 2Wj such that
gMq DMq , then gHqg�1 DHq and hence g has the form

for j D1 :
z 7! z;

w 7! wC 2� ik0; k0 2 Z n f0g;
for j D n 2N:

z 7! z;

w 7! e2�ik0=nw; k0 2N; k0 � n� 1:
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It then follows that g lies in the centralizer of Hq0 for every q0 2O.p/. Let h 2Hq

be such that hg 2 Iq . Every element of Iq has finite order (see (ii) of Proposition 1.1),
which implies that each of h and g is of finite order. At the same time, if G.M /DV1 ,
then g is clearly of infinite order; hence gMq ¤Mq for every q 2 O.p/ and every
non-trivial g 2W1 . Assume now that G.M / D Vn for some n 2 N . Since every
non-trivial element of T has infinite order, we obtain hD id and thus g 2 Iq . This
argument can be applied to any point in Mq , and thus we obtain that g fixes every point
in Mq . Hence g D gq , where, as before, gq denotes the element of Iq corresponding
to the non-trivial element in Z2 (see (ii) of Proposition 1.1). Then if a point q1 …Mq

is sufficiently close to q , the point q2 WD gq1 is also close to q , and we can assume
that q1; q2 2 U . It follows from the explicit form of the action of the linear isotropy
subgroup Lp on Tp.M / that q1¤q2 and that q1 , q2 lie on a curve transversal to every
leaf in U ; hence Hq1

¤Hq2
. At the same time, we have Hq2

D gqHq1
g�1

q DHq1
.

This contradiction shows that gMq ¤Mq for every q 2O.p/ and every non-trivial
g 2Wn .

Suppose that G.M /DV1 . Fix q0 2 O.p/ for which Hq0
DH0 , where H0 is the

subgroup of G.M / with Lie algebra generated by X3 , Y3 , and let f W Mq0
! P

be a holomorphic equivalence that transforms Hq0
jMq0

into the group T and such

that yX3jMq0
and yY3jMq0

are transformed into the vector fields ˙X1jP and Y1jP ,

respectively, where yX3 , yY3 are the vector fields on O.p/ corresponding to X3 , Y3 .
For every q 2O.p/ we now find the unique map g 2W1 such that gMq0

DMq and

define F.q/ WD
�
f .g�1.q//; i t

�
2C2 , where t is the parameter value corresponding

to g (see (4–12)). Clearly, F is a real-analytic CR–isomorphism between O.p/

and O1 that transforms yX3 � 1=2 yZ3 into Z1jO1
, where yZ3 is the vector field on

O.p/ corresponding to Z3 (recall that W1 D fexp .s .X3� 1=2 Z3// ; s 2Rg), and
transforms yX3 , yY3 on a neighborhood of O.p/ into holomorphic vector fields zX , zY
of the forms appearing in the right-hand sides of formulas (4–5), (4–6), respectively,
where �; �; �; � are holomorphic in a neighborhood of O1 and satisfy (4–7). Since
Œ yX3� 1=2 yZ3; yX3�D�1=2 yY3 and Œ yX3� 1=2 yZ3; yY3�D yX3C 1=2 yZ3 on O.p/, on a
neighborhood of O1 we obtain

(4–14) ŒZ1; zX �D�
1

2
zY ; ŒZ1; zY �D 2 zX �Z1:

Conditions (4–7), (4–14) uniquely determine the functions �; �; �; � as follows:

�D˙
i

4

�
.zC 2/e˙w � .z� 2/e�w

�
� i; � D�

i

4

�
ewC e�w � 2

�
;

�D
1

2

�
.zC 2/e˙wC .z� 2/e�w

�
� z; � D�

1

2

�
ew � e�w

�
:
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Thus, we have shown that if M is a (2,3)–manifold such that G.M / is the universal
cover of SO2;1.R/

0 and O.p/ is a Levi-flat G.M /–orbit in M , then there exists a
CR–isomorphism from O.p/ onto O1 that transforms near O.p/ vector fields from
the Lie algebra g.M / into vector fields near O1 from the Lie algebra a.1/ generated
by Z1 and

i
�
.zC 2/ew � .z� 2/e�w

�
@=@z� i

�
ewC e�w

�
@=@w;�

.zC 2/ewC .z� 2/e�w
�
@=@z�

�
ew � e�w

�
@=@w:

The CR–isomorphism is either the map F constructed above or the map S ıF , where
S is given by (3–5).

Let N be any of the (2,3)–manifolds D.1/s , D.1/s;t introduced in (11)(d). The group
G.N / coincides with R.1/ (see (2–57)) and hence is isomorphic to the universal
cover of SO2;1.R/

0 . Furthermore, O.1/
0

(see (2–75)) is a Levi-flat G.N /–orbit in

N . Hence, as we have shown above, there exists a CR–isomorphism from O.1/
0

onto

O1 that transforms g.N / near O.1/
0

into a.1/ near O1 . Therefore, there exists a

CR–isomorphism from O.p/ onto O.1/
0

that transforms G.M /jO.p/ into R.1/jO.1/

0

.

Suppose that G.M /DVn for n 2N . Fix q0 2O.p/ for which Hq0
DH0 , where, as

before, H0 is the subgroup of G.M / with Lie algebra generated by X3 , Y3 , and let
f W Mq0

!P be a holomorphic equivalence that transforms Hq0
jMq0

into the group T
and such that yX3jMq0

and yY3jMq0
are transformed into the vector fields ˙X1jP and

Y1jP , respectively. For every q 2O.p/ we now find the unique map g 2Wn such that
gMq0

DMq and define F.q/ WD
�
f .g�1.q//; eit=n

�
2C2 , where t is the parameter

value corresponding to g (see (4–13)). Clearly, F is a real-analytic CR–isomorphism
between O.p/ and O0

1
that transforms yX3� 1=2 yZ3 into 1=n Z0

1
jO0

1
and transforms

yX3 , yY3 on a neighborhood of O.p/ into holomorphic vector fields zX , zY of the forms
appearing in the right-hand sides of formulas (4–5), (4–6), respectively, where �; �; �; �
are functions holomorphic near O0

1
and satisfying (4–9). Arguing as before, we obtain

(4–15)
�

1

n
Z01;
zX

�
D�

1

2
zY ;

�
1

n
Z01;
zY

�
D 2 zX �

1

n
Z01:

Conditions (4–9), (4–15) uniquely determine the functions �; �; �; � as follows:

�D˙
i

4

�
.zC 2/w˙n

� .z� 2/w�n
�
� i; � D�

i

4n

�
wnC1

Cw1�n
� 2w

�
;

�D
1

2

�
.zC 2/w˙n

C .z� 2/w�n
�
� z; � D�

1

2n

�
wnC1

�w1�n
�
:
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Thus, we have shown that if M is a (2,3)–manifold such that G.M / is an n–sheeted
cover of SO2;1.R/

0 and O.p/ is a Levi-flat G.M /–orbit in M , then there exists a
CR–isomorphism from O.p/ onto O0

1
that transforms near O.p/ vector fields from

the Lie algebra g.M / into vector fields near O0
1

from the Lie algebra a.n/ generated
by Z0

1
and

i
�
.zC 2/wn

� .z� 2/w�n
�
@=@z�

i

n

�
wnC1

Cw1�n
�
@=@w;�

.zC 2/wn
C .z� 2/w�n

�
@=@z�

1

n

�
wnC1

�w1�n
�
@=@w:

The CR–isomorphism is either the map F constructed above or the map S 0 ıF , where
S 0 is given by

z 7!z;

w 7!1=w:

Let N be any of the (2,3)–manifolds D.n/s , D.n/s;t , yD.1/t (here n D 1) introduced in
(11)(d). The group G.N / coincides with R.n/ (see (10), (2–55)) and hence is an
n–sheeted cover of SO2;1.R/

0 . Furthermore, O.n/
0

(see (2–70), (2–74)) is a Levi-flat
G.N /–orbit in N . Hence, as we have shown above, there exists a CR–isomorphism
from O.n/

0
onto O0

1
that transforms g.N / near O.n/

0
into a.n/ near O0

1
. Therefore,

there exists a CR–isomorphism from O.p/ onto O.n/
0

that transforms G.M /jO.p/

into R.n/jO.n/
0

.

The proof of the proposition is complete.

Remark 4.2 It is in fact possible to write down a suitable CR–equivalence between
O.j/

0
for j 2 f1; 2; : : : ;1g and either O1 or O0

1
explicitly. For example, let us realize

O.1/
0

as �� @��CP1 �CP1 (see (11)(c)). Then the map given by

z D�2
ZW C 1

ZW � 1
;

w DW

takes �� @� onto O0
1

and transforms near �� @� the Lie algebra of vector fields
arising from the action of SU1;1=f˙idg ' SO2;1.R/

0 on CP1 �CP1 into a.1/ near
O0

1
(here we set Z0 DW0 D 1 on �� @� and denote Z WDZ1 , W WDW1 ).

We will now prove the following theorem that finalizes our classification of (2,3)–
manifolds in the case when every orbit is a real hypersurface. In the formulation below
we use the notation introduced in Section 2.

Geometry & Topology, Volume 12 (2008)



690 A V Isaev

Theorem 4.3 Let M be a (2,3)–manifold. Assume that the G.M /–orbit of every
point in M is of codimension 1 and that at least one orbit is Levi-flat. Then M is
holomorphically equivalent to one of the following pairwise non-equivalent manifolds:

(i) Rb;s;t , where b 2R, b¤ 0; 1, and either sD�1, t D 1 or sD�1, 0< t �1,
and in the latter case t ¤ 1, if b D 1=2;

(ii) yRb;�1;t , where b > 0, b ¤ 1, 0< t <1;

(iii) yU1;t , where �1< t < 0;

(iv) D.j/s;t , where j 2 f1; 2; : : : ;1g, �1 � s < 1 < t �1 and s D�1 and t D1

do not hold simultaneously.

Proof The proof is based on Proposition 4.1 and the orbit gluing procedure introduced
in the proof of Theorem 3.1.

Observe that the set L WD fp 2M W O.p/ is Levi-flatg is closed in M . Hence, if L
is also open, then every orbit in M is Levi-flat. Let p 2 L and suppose first that there
exists a CR–isomorphism f W O.p/!O1 that transforms G.M /jO.p/ into the group
G0jO1

. The group G0 acts on C D
˚
.z; w/ 2C2 W Re z > 0

	
; every orbit of this action

has the form
br WD f.z; w/ 2 C W Rew D rg ;

for r 2R, and hence is Levi-flat. Arguing as at step (II) of the orbit gluing procedure,
we extend f to a biholomorphic map between a G.M /–invariant neighborhood U

of O.p/ and a G0 –invariant neighborhood of O1 in C that satisfies (3–9) for all
g 2 G.M / and q 2 U , where 'W G.M /! G0 is an isomorphism. Since every G0 –
orbit in C is Levi-flat, the set L is open. The group G0 is not isomorphic to any of the
groups Gb for b 2 R� , G0

0
, G, R.j/ , and it follows that every orbit O.q/ in M is

CR–equivalent to O1 by means of a map that transforms G.M /jO.q/ into G0jO1
.

We will now further utilize the orbit gluing procedure from the proof of Theorem 3.1.
Our aim is to show that M is holomorphically equivalent to a G0 –invariant domain
in C . First of all, we need to prove that the map F arising at step (III) extends to a
holomorphic automorphism of C . This map establishes a CR–isomorphism between
br1

and br2
for some r1; r2 2R. Clearly, F has the form F D � ıg , where � is a real

translation in w , and g 2 AutCR.br1
/. Since F D f1 ı f

�1 and the maps f and f1

transform the group G.M /jO.s/ for some s 2M into the groups G0jbr1
and G0jbr2

,
respectively, the element g lies in the normalizer of G0jbr1

in AutCR.br1
/.

The general form of an element of AutCR.br1
/ is

(4–16) .z; r1C iv/ 7! .av.z/; r1C i�.v//;
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where v 2R, av 2Aut.P/ for every v , and � is a diffeomorphism of R. Considering
g in this form, we obtain that av for every v 2R lies in the normalizer of T in Aut.P/
(see (3–7)), and hence av 2 T for all v . Moreover, we obtain: av1

aa�1
v1
D av2

aa�1
v2

for all a 2 T and all v1; v2 2R. Therefore, a�1
v1

av2
lies in the center of T , which is

trivial. Hence we obtain that av1
D av2

for all v1; v2 . In addition, there exists d 2R�

such that ��1.v/C
 ���1.vCd
 /, for all 
 2R. Differentiating this identity with
respect to 
 at 0 gives

(4–17) ��1.v/D v=d C t0

for some t0 2R. Therefore, F extends to a holomorphic automorphism of C as the
following map:

z 7!�zC iˇ;

w 7!dwC � � idt0;
(4–18)

where � > 0, ˇ; � 2R.

Any G0 –invariant domain in C is given byn
.z; w/ 2C2

W Re z > 0; s < Rew < t
o
;

for some �1 � s < t � 1. At step (IV) we observe that, since O1 splits C , for
V sufficiently small we have V D V1 [ V2 [O.x/, where Vj are open connected
non-intersecting sets. If Vj �D for j D 1; 2, then for the domain D we have s>�1,
t <1, and the argument applied above to the map F shows that yF has the form (4–18).
Further, using the fact that yF is G0 –equivariant, we obtain that yF is a translation in
w and that C covers M , contradicting the hyperbolicity of M . It then follows that
M is equivalent to �2 which is impossible, since d.�2/D 6.

Next, if for p2L there exists a CR–isomorphism between O.p/ and O0
1

that transforms
G.M /jO.p/ into the group G0

0
jO0

1
, a similar argument gives that M is holomorphically

equivalent to the product of ��A, where A is either an annulus or a punctured disk.
This is impossible either since d.��A/D 4.

Let now p 2 L and suppose that there exists a CR–isomorphism f W O.p/!O1 that
transforms G.M /jO.p/ into the group G1jO1

. The group G1 acts on

D WDC2
n

n
.z; w/ 2C2

W Re z D Rew D 0
o
;

with codimension 1 orbits, and, as before, we can extend f to a biholomorphic map be-
tween a G.M /–invariant neighborhood U of O.p/ and a G1 –invariant neighborhood
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of O1 in D that satisfies (3–9) for all g 2G.M / and q 2 U , where 'W G.M /!G1

is an isomorphism. A G1 –orbit in D is either of the formn
.z; w/ 2C2

W Rew D rRe z; Re z > 0
o
;

or of the form n
.z; w/ 2C2

W Rew D rRe z; Re z < 0
o
;

for r 2R, or coincides with either yO1 (see (2–5)), or

(4–19) yO�1 WD
n
.z; w/ 2C2

W Re z D 0; Rew < 0
o
;

and hence is Levi-flat. Therefore every orbit in M is Levi-flat, and it follows as before
that every orbit O.q/ in M is CR–equivalent to O1 by means of a map that transforms
G.M /jO.q/ into G1jO1

.

In order to show that M is holomorphically equivalent to a G1 –invariant domain in
D , we need to deal with steps (III) and (IV) of the orbit gluing procedure. In this
case we have F D � ı g , where � is a map of the form (2–32) with A 2 GL2.R/,
and g 2 AutCR.o/ for some G1 –orbit o. As before, g lies in the normalizer of G1jo

in AutCR.o/. Let X be a map of the form (2–32) with A 2GL2.R/ that transforms
o into O1 and gX WD X ı g ıX�1 . Considering gX in the general form (4–16) with
r1 D 0 we see that for every � > 0, ˇ; 
 2 R, the composition a�vC
 ı a�;ˇ ı a�1

v ,
where a�;ˇ.z/ WD �zC iˇ , belongs to T and is independent of v . This implies that
av.z/ D �0z C i.C1vC C2/ for some �0 > 0, C1;C2 2 R. Also, for every � > 0,

 2 R there exist �1 > 0, 
1 2 R such that �

�
���1.v/C 


�
D �1vC 
1 . It then

follows, in particular, that either there exist c 2R� , d 2R such that ��1.v/C 
 �

��1 .ec
 vC d.1� ec
 //, or there exists d 2R� such that ��1.v/C
 ���1 .vC d
 /

for all 
 2R. Differentiating these identities with respect to 
 at 0, we see that the
first identity cannot hold and that ��1 , as before, has the form (4–17) for some t0 2R.
It then follows that gX extends to a holomorphic automorphism of D as the map

z 7!�0zCC1wC iC2;

w 7!dw� idt0;
(4–20)

and thus F extends to an automorphism of D as well.

Any hyperbolic G1 –invariant domain in D has the form S C iR2 , where S is an
angle of size less than � with vertex at the origin in the .Re z;Rew/–plane. If at step
(IV) we have Vj � D for j D 1; 2, then the argument applied above to the map F

shows that yF has the form (2–10) with A 2GL2.R/. Further, using the fact that yF is
G1 –equivariant, we obtain that yF D id, which is impossible. This shows that M is
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holomorphically equivalent to a hyperbolic G1 –invariant domain in D . By means of
a suitable linear transformation every such domain is equivalent to the tube domain
whose base is the first quadrant, and thus M is holomorphically equivalent to �2 ,
which is impossible.

Let p 2 L and suppose that there exists a CR–isomorphism f W O.p/ ! O1 that
transforms G.M /jO.p/ into the group GbjO1

for some b 2R� , b¤ 1. The group Gb

acts on D , and every Gb –orbit in D is either strongly pseudoconvex and has one of
the forms n

.z; w/ 2C2
W Rew D r .Re z/b ; Re z > 0

o
;n

.z; w/ 2C2
W Rew D r .�Re z/b ; Re z < 0

o
;

for r 2R� , or coincides with one of O1 , yO1 (see (2–5)), yO�
1

(see (4–19)), and

(4–21) O�1 WD
n
.z; w/ 2C2

W Re z < 0; Rew D 0
o
:

It then follows that every Levi-flat orbit in M has a G.M /–invariant neighborhood
in which every other orbit is strongly pseudoconvex. Among the groups Gc (with
c 2R� , c ¤ 1, c ¤ b ), G, R.j/ the only group isomorphic to Gb is G1=b . Thus, it
follows that every Levi-flat orbit O.q/ in M is CR–equivalent to O1 by means of
a map that transforms G.M /jO.q/ into either GbjO1

or G1=bjO1
. In the latter case

interchanging the variables we obtain a map that takes O.q/ into yO1 and transforms
G.M /jO.q/ into Gbj yO1

. Next, by Lemma 3.2, every strongly pseudoconvex orbit
O.q0/ is CR–equivalent to �b (see (2–3)) by means of a CR–map that transforms
G.M /jO.q0/ into Gbj�b

.

We now turn to step (III) of the orbit gluing procedure. For the point x 2 @D there
exists a real-analytic CR–isomorphism f1 between O.x/ and one of O1 , yO1 , �b that
transforms G.M /jO.x/ into one of GbjO1

, Gbj yO1
, Gbj�b , respectively. In each of

these three cases the corresponding point s can be chosen so that O.s/ is strongly
pseudoconvex. Then F is a CR–isomorphism between strongly pseudoconvex Gb –
orbits, and thus has the form F D � ıg , where � is a map of the form

z 7!˙ z;

w 7!dw
(4–22)

with d 2R� , and g 2Gb . Therefore, F extends to an automorphism of D .

Suppose that at step (IV) we have Vj �D for j D 1; 2. Assume first O.x/ is strongly
pseudoconvex. Then yF D � ıg , where � is a non-trivial map of the form (4–22), and
g 2Gb . Now using the fact that yF is Gb –equivariant, we obtain that yF D id, which
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is impossible. Suppose now that O.x/ is Levi-flat. Then yF D � ıg , where � is one of
the maps

(4–23)
z 7! �z;

w 7! w;

z 7! z;

w 7! �w;

z 7! ˙w;

w 7! z;

z 7! w;

w 7! ˙z;

and g 2 AutCR.o/, where o is a Levi-flat Gb –orbit. In this case, either g lies in the
normalizer of Gbjo in AutCR.o/, or gGbjog�1 D G1=bjo and gG1=bjog�1 D Gbjo .
Transforming o into O1 by a map X from list (4–23) and arguing as in the case of the
group G1 for the map F , we obtain that gX WD X ıg ıX�1 extends to a holomorphic
automorphism of D as a map of the form (4–20) with C1 D 0. It then follows that yF
has the form (2–10) with A 2 GL2.R/. Now, using the Gb –equivariance of yF we
again see that yF D id which is impossible. Hence M is holomorphically equivalent to
a Gb –invariant domain in D , and we obtain (i) and (ii) of the theorem.

Let p 2 L and suppose that there exists a CR–isomorphism f W O.p/ ! O1 that
transforms G.M /O.p/ into the group GjO1

. The group G acts on D , and every
G–orbit in D is either strongly pseudoconvex and has one of the formsn

.z; w/ 2C2
W Re z D Rew ln .rRew/ ; Rew > 0

o
;n

.z; w/ 2C2
W Re z D Rew ln .�rRew/ ; Rew < 0

o
;

for r > 0, or coincides with one of O1 , O�
1

(see (4–21)).

It then follows that every Levi-flat orbit in M has a G.M /–invariant neighborhood in
which every other orbit is strongly pseudoconvex, that every Levi-flat orbit in M is
CR–equivalent to O1 by means of a map that transforms G.M /jO.p/ into GjO1

and
that every strongly pseudoconvex orbit is CR–equivalent to � (see (2–8)) by means of
a map that transforms G.M /jO.p/ into Gj� .

At step (III), as in the case of the groups Gb above, we can choose s so that O.s/ is
strongly pseudoconvex. It then follows that F D � ıg , where � is a map of the form

z 7!dz;

w 7!dw
(4–24)

with d 2R� , and g 2G. Therefore, F extends to an automorphism of D .

Suppose that at step (IV) we have Vj �D for j D 1; 2. Assume first O.x/ is strongly
pseudoconvex. Then yF D � ıg , where � is a non-trivial map of the form (4–24), and
g 2 G. Now, using the fact that yF is G–equivariant, we obtain that yF D id, which
is impossible. Suppose now that O.x/ is Levi-flat. Then yF D � ıg , where � is map
(4–24) with d D�1, and g 2 AutCR.o/, where o is a Levi-flat G–orbit. The element
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g lies in the normalizer of G in AutCR.o/. Transforming o into O1 by a map X
of the form (4–24) with d D ˙1 and considering gX WD X ı g ıX�1 in the general
form (4–16) with r1 D 0, we obtain, as before, that ��1 has the form (4–17) for some
d 2R� , t0 2R, and that av.z/D �0zC iˇ.v/, where �0 > 0 and ˇ.v/ is a function
satisfying for every � > 0 and 
 2R the following condition:

@=@v
h
ˇ
�
���1.v/C 


�
��ˇ

�
��1.v/

�
C� ln�

�
�0�

�1.v/� v
�i
� 0:

Setting �D 1 in the above identity gives that gX extends to an automorphism of D
as a map of the form (4–20). Therefore, yF has the form (2–10) with A 2 GL2.R/,
and using the G–equivariance of yF we again see that yF D id which is impossible.
Hence M is holomorphically equivalent to a G–invariant domain in D , and we have
obtained (iii) of the theorem.

Let p 2 L and suppose that there exists a CR–isomorphism f W O.p/! O.j/
0

that
transforms G.M /jO.p/ into the group R.j/jO.j /

0

for some j 2 f1; 2; : : : ;1g. The

group R.j/ acts on D.j/ , where D.1/ WDD.1/
�1;1

(see (2–73)), D.j/ WDM .j/ nO.2j/

for 1 < j < 1, and D.1/ WD M .1/ (see (11)(a), (d)). Apart from O.j/
0

, every

R.j/–orbit in D.j/ is strongly pseudoconvex and is one of �.j/˛ , for �1< ˛ < 1, or
�
.2j/
˛ , for ˛ > 1. It then follows that Levi-flat orbits in M are isolated, and every such

orbit O.q/ is CR–equivalent to O.j/
0

by means of a CR–isomorphism that transforms
G.M /jO.q/ into the group R.j/jO.j /

0

.

At step (III) we again choose s so that O.s/ is strongly pseudoconvex which gives
that F extends to D.j/ as an element of R.j/ . At step (IV), suppose that Vj � D

for j D 1; 2. Observe that O.x/ cannot be strongly pseudoconvex since otherwise yF
would be a CR–isomorphism between two distinct strongly pseudoconvex R.j/–orbits
in D.j/ , while in fact R.j/–orbits are pairwise CR–non-equivalent. On the other
hand, O.x/ cannot be Levi-flat either, since otherwise yF would be a CR–isomorphism
between two distinct Levi-flat R.j/–orbits in D.j/ , while O

.j/
0

is the only Levi-flat
orbit in D.j/ . This implies that M is holomorphically equivalent to a R.j/–invariant
domain in D.j/ which leads to (iv) of the theorem.

The proof of the theorem is complete.

5 Codimension 2 orbits

In this section we finalize our classification by allowing codimension 2 orbits to be
present in the manifold. We will prove the following theorem (as before, we use the
notation introduced in Section 2).
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Theorem 5.1 Let M be a (2,3)–manifold. Assume that a G.M /–orbit of codimension
1 and a G.M /–orbit of codimension 2 are present in M . Then M is holomorphically
equivalent to one of the following manifolds:

(i) S1 ;

(ii) Et with 1< t <1;

(iii) E
.2/
t with 1< t <1;

(iv) �t with �1< t < 1;

(v) Ds with 1� s <1;

(vi) D
.2/
s with 1< s <1;

(vii) D
.n/
s with n� 3, 1� s <1;

(viii) D.n/s with n� 1, �1< s < 1;

(ix) yD.1/t with 1< t <1.

Proof Since a codimension 1 orbit is present in M , it follows that there are at most
two codimension 2 orbits (see Alekseevsky–Alekseevsky [2]). Let O be one such
orbit. Parts (iii) and (iv) of Proposition 1.1 yield that for every p 2 O the group I0

p

is isomorphic to U1 (in particular, G.M / has a subgroup isomorphic to U1 ), and
there exists an I0

p –invariant connected complex curve Cp in M that intersects O

transversally at p . If O is a complex curve, one such curve Cp corresponds – upon
local linearization of the Ip –action – to the L0

p –invariant subspace fwD 0g of Tp.M /,
where the coordinates .z; w/ in Tp.M / are chosen with respect to the decomposition
of Tp.M / specified in (iii) of Proposition 1.1, with fz D 0g corresponding to Vp D

Tp.O.p//; if, in addition, the isotropy linearization is given by (1–2), then the maximal
extension of this curve is the only maximally extended complex curve in M with
these properties. If O is a totally real orbit, Cp can be constructed from any of the
two L0

p –invariant subspaces fz D˙iwg of Tp.M /, where the coordinates .z; w/ in
Tp.M / are chosen so that Vp D fIm z D 0; Imw D 0g (see (iv) of Proposition 1.1);
locally near p there are no other such curves. Clearly, there exists a neighborhood U

of p such that U \
�
Cp n fpg

�
is equivalent to a punctured disk.

Since there is a codimension 1 orbit in M , the group G.M / is either isomorphic to
one of the groups listed in Lemma 3.2 (if a strongly pseudoconvex orbit is present in
M ) or to one of G1 , G0 , G0

0
(if all codimension 1 orbits are Levi-flat – see (2–2)

and (4–2)). Since G0 and G1 do not contain subgroups isomorphic to U1 , the group
G.M / in fact cannot be isomorphic to either of these groups. Let M 0 be the manifold
obtained from M by removing all codimension 2 orbits, and suppose that G.M / is
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isomorphic to G0
0

. The subgroup of G0
0

isomorphic to U1 is unique and consists of all
rotations in w , it is normal and maximal compact in G0

0
; we denote it by J . It follows

from the proof of Theorem 4.3 that M 0 is holomorphically equivalent to

Vs;t WD

n
.z; w/ 2C2

W Re z > 0; s < jwj< t
o
;

where 0� s < t �1, and either s > 0 or t <1, by means of a map f that satisfies
(3–9) for all g 2 G.M /, q 2 M 0 and an isomorphism 'W G.M / ! G0

0
. Clearly,

Ip D I WD '�1.J / for every p 2 O . In particular, Ip acts trivially on O for every
p 2O ; hence O is a complex curve with isotropy linearization given by (1–2), and
there are no totally real orbits in M . The group G0

0
acts on zC WD P �CP1 (we set

g.z;1/ WD .�zC iˇ;1/ for every g of the form (4–2)). This action has two complex
curve orbits

O7 WDP � f0g;
O8 WDP � f1g:

(5–1)

It is straightforward to observe that every connected J –invariant complex curve in Vs;t

extends to a curve of the form

Nz0
WD fz D z0g\Vs;t ;

for some z0 2 P , which is either an annulus (possibly with infinite outer radius) or a
punctured disk. Fix p0 2O , let Cp0

be the unique maximally extended I –invariant
complex curve in M that intersects O at p0 transversally, and let z0 2 P be such that
f .Cp0

nfp0g/DNz0
. Since for a sequence fpj g in Cp0

converging to p0 the sequence
ff .pj /g approaches either fz D z0; jwj D sg or fz D z0; jwj D tg and Cp0

n fp0g is
equivalent to a punctured disk near p0 , we have either s D 0 or t D1, respectively.

Assume first that s D 0. We extend f to a map from yM WDM 0[O onto the domain

Vt WD

n
.z; w/ 2C2

W Re z > 0; jwj< t
o
D V0;t [O7;

by setting f .p0/ WD q0 WD .z0; 0/ 2O7 , with z0 constructed as above. The extended
map is 1–to–1 and satisfies (3–9) for all g 2 G.M /, q 2 yM . To prove that f is
holomorphic on all of yM , it suffices to show that f is continuous on O . We will prove
that every sequence fpj g in yM converging to p0 has a subsequence along which the
values of f converge to q0 . Let first fpj g be a sequence in O . Clearly, there exists a
sequence fgj g in G.M / such that pj D gj p0 for all j . Since G.M / acts properly
on M , there exists a converging subsequence fgjk

g of fgj g, and we denote by g0 its
limit. It then follows that g0 2 I and, since f satisfies (3–9), we obtain that ff .pjk

/g

converges to q0 . Next, if fpj g is a sequence in M 0 , then there exists a sequence fgj g

in G.M / such that gj pj 2 Cp0
. Clearly, the sequence fgj pj g converges to p0 and
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hence ff .gj pj /g converges to q0 . Again, the properness of the G.M /–action on M

yields that there exists a converging subsequence fgjk
g of fgj g. Let g0 be its limit; as

before, we have g0 2 I . Property (3–9) now implies f .pjk
/D

�
'.gjk

/
��1

f .gjk
pjk

/,
and therefore ff .pjk

/g converges to q0 . Thus, f is holomorphic on yM . If O 0 was
another complex curve orbit, then, since t <1, arguing as above we could extend f
biholomorphically to a map from M 0[O 0 onto Vt that takes O 0 onto O7 . Then there
exist non-intersecting tubular neighborhoods U and U 0 of O and O 0 , respectively,
such that f .U nO/Df .U 0nO 0/, which contradicts the fact that f is biholomorphic on
M 0 . Hence, O is the only codimension 2 orbit, and M is holomorphically equivalent
to Vt . This is, however, impossible since d.Vt /D 6.

Assume now that t D1. Arguing as in the case s D 0 and mapping O onto O8 , we
can extend f to a biholomorphic map between M and the domain in zC given byn

.z; w/ 2C2
W Re z > 0; jwj> s

o
[O8 D Vs;1[O8;

which is holomorphically equivalent to V1 . This is again impossible, and we have
ruled out the case when G.M / is isomorphic to G0

0
.

It then follows that there is always a strongly pseudoconvex orbit in M and hence
G.M / is isomorphic to one of the groups listed in Lemma 3.2. Observe that the groups
that arise in subcases (g), (h), (j 0 ), (k), (m 0 ), (n 0 ) of case (A) as well as in cases (D)
and (F) do not have non-trivial compact subgroups; thus these situations do not in fact
occur. In addition, arguing as in the proof of Theorem 3.1, we rule out case (B).

We now assume that a complex curve orbit is present in M . Let O be such an orbit.
Then (iii) of Proposition 1.1 gives that O is equivalent to P . Furthermore, if for p 2O

the group I0
p acts on O non-trivially (see (1–1)), then there exists a finite normal

subgroup H � Ip such that G.M /=H is isomorphic to Aut.P/' SO2;1.R/
0 ; if I0

p

acts on O trivially (see (1–2)), then there is a 1–dimensional normal compact subgroup
H � Ip such that G.M /=H is isomorphic to the subgroup T �Aut.P/ (see (3–7)). In
particular, every maximal compact subgroup of G.M / is 1–dimensional and therefore
is isomorphic to U1 . It then follows that for every p 2O the group I0

p is a maximal
compact subgroup of G.M / and hence Ip is connected. Observe now that in subcases
(l), (l 0 ), (l 00 ) of case (A) as well as in case (C) the group G.M / is compact. In case
(G) the group G.M / is isomorphic to U1 �R2 ; thus no factor of G.M / by a finite
subgroup is isomorphic to SO2;1.R/

0 and the factor-group of G.M / by its maximal
compact subgroup is not isomorphic to T . Furthermore, in subcases (j), (j 00 ) the group
G.M / is isomorphic to U1 Ë R2 . This group has no 1–dimensional compact normal
subgroups and cannot be factored by a finite subgroup to obtain a group isomorphic
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to SO2;1.R/
0 . Therefore, if a complex curve orbit is present in M , we only need to

consider subcases (m), (m 00 ), (n), (n 00 ) of case (A), and case (E).

We start with case (E) and assume first that for some point p 2 M there exists a
CR–isomorphism between O.p/ and the hypersurface "b for some b > 0 (see (d) in
the proof of Theorem 3.1), that transforms G.M /jO.p/ into G"b

j"b
, where G"b

is the
group of all maps

z 7!�zC iˇ;

w 7!ei �1=bw;
(5–2)

with � > 0,  ; ˇ 2R.

We proceed as in the case of the group G0
0

considered above. In this case Levi-flat
orbits are not present in M , and it follows from the proof of Theorem 3.1 that M 0 is
holomorphically equivalent to Rb;s;t (see (3–13)) for some 0� s < t �1, with either
s > 0 or t <1, by means of a map f that satisfies (3–9) for all g 2G.M /, q 2M 0

and an isomorphism 'W G.M /! G"b
. The only 1–dimensional compact subgroup

of G"b
is the maximal compact normal subgroup J "b given by the conditions �D 1,

ˇ D 0 in (5–2). Clearly, Ip D I WD '�1.J "b / for all p 2O , which implies, as before,
that O is a complex curve with isotropy linearization given by (1–2), and there are
no totally real orbits. The group G"b

acts on zC , and, as before, this action has two
complex curve orbits O7 and O8 (see (5–1)).

Further, every connected J "b –invariant complex curve in Rb;s;t extends to a curve of
the form

fz D z0g\Rb;s;t D

(
.z; w/ 2C2

W z D z0;

.Re z0=t/1=b < jwj< .Re z0=s/
1=b

)
;

for some z0 2 P , which is either an annulus or a punctured disk. As before, we obtain
that either s D 0, or t D1.

If t D1, we extend f to a biholomorphic map from yM DM 0[O onto the domain

(5–3) Eb;s WD

n
.z; w/ 2C2

W Re z > sjwjb
o
DRb;s;1[O7:

Since s > 0, the orbit O is the only codimension 2 orbit, and hence M is holomorphi-
cally equivalent to Eb;s . Similarly, if s D 0, then M is holomorphically equivalent to
the domain

(5–4)
n
.z; w/ 2C2

W 0< Re z < t jwjb
o
[O8 DRb;0;t [O8;
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which is equivalent to the domain

Eb;t WD

n
.z; w/ 2C2

W Re z > 0; jwj< .t=Re z/1=b
o
:

This is, however, impossible since d.Eb;s/� 4 and d.Eb;t /D 4.

Assume now that in case (E) for some point p 2M there exists a CR–isomorphism
f between O.p/ and the hypersurface "b for some b 2 Q, b > 0, that transforms
G.M /jO.p/ into Vbj"b

(see Lemma 3.2 for the definition of Vb ). Let bD k1=k2 , for
k1; k2 2N , with .k1; k2/D 1.

As before, f extends to a biholomorphic map between M 0 and Rb;s;t , where 0 �

s < t �1, and either s > 0 or t <1. The map f satisfies (3–9) for all g 2G.M /,
q 2M 0 and an isomorphism 'W G.M /!Vb . The group Vb acts on zC , and, as before,
this action has two complex curve orbits O7 and O8 . Every 1–dimensional compact
subgroup of Vb is the isotropy subgroup of the points .z0; 0/ 2O7 and .z0;1/ 2O8

for a uniquely chosen z0 2 P . For z0 2 P denote by J
"b
z0

the corresponding maximal
compact subgroup of Vb .

For every z0 2 P there is a family FRz0
of connected closed complex curves in Rb;s;t

invariant under the J
"b
z0

–action, such that every J
"b
z0

–invariant connected complex
curve in Rb;s;t extends to a curve from FRz0

. We will now describe FR
1

(here z0 D 1);
for arbitrary z0 2 P we have FRz0

D g
�
FR

1

�
, where g 2 Vb is constructed from an

element zg 2 Aut.P/ such that z0 D zg.1/. The family FR
1

consists of the curvesn
.z; w/ 2C2

W .z2
� 1/k2 D �wk1

o
\Rb;s;t ;

where � 2C . Each of these curves is equivalent to either an annulus or a punctured
disk. The latter occurs only for � D 0 if either s D 0 or t D 1, and for � ¤ 0 if
t D1. If either s D 0 or t D1, the corresponding curves accumulate to either the
point .1;1/ 2O8 or the point .1; 0/ 2O7 , respectively.

Fix p0 2 O . Since '.Ip0
/ is a 1–dimensional compact subgroup of Vb , there is

a unique z0 2 P such that '.Ip0
/ D J

"b
z0

. Consider any connected Ip0
–invariant

complex curve Cp0
in M intersecting O transversally at p0 . Since f .Cp0

n fp0g/ is
J
"b
z0

–invariant, it extends to a complex curve C 2FRz0
. If a sequence fpj g in Cp0

nfp0g

accumulates to p0 , the sequence ff .pj /g accumulates to one of the two ends of C ,
and therefore we have either s D 0 or t D1.

Assume first that t D 1. In this case, arguing as earlier, we can extend f to a
biholomorphic map between yM and Eb;s by setting f .p0/ WD q0 WD .z0; 0/ 2 O7 ,
where p0 and z0 are related as specified above. As before, it is straightforward to
show that O is the only codimension 2 orbit in M , and hence it follows that M is
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holomorphically equivalent to Eb;s . Similarly, it can be proved that for s D 0 the
manifold M is holomorphically equivalent to Eb;t . As before, this is impossible and
thus in case (E) no orbit is a complex curve.

We now consider the remaining subcases of case (A). Suppose first that there is an orbit
in M whose model is either some �˛ , or some �˛ , or some �.2/˛ . It then follows from
the proofs of Theorem 3.1 and Theorem 4.3 that M 0 is holomorphically equivalent to
one of the following: �s;t with �1� s < t � 1 (see (2–36)); Ds;t with 1� s < t �1

(see (2–42)); D
.2/
s;t with 1� s < t �1 (see (2–59)); D.1/s;t with �1� s < 1< t �1,

where s D�1 and t D1 do not hold simultaneously (see (2–72)).

Suppose first that M 0 is equivalent to �s;t , and let f be an equivalence map. The group
R� (see (2–37)) acts on the domain �1 (see (2–40)) with the totally real codimension
2 orbit O5 (see (2–41)). Every 1–dimensional compact subgroup of R� is the isotropy
subgroup of a unique point in O5 . For q0 2O5 denote by J �q0

its isotropy subgroup
under the action of R� . There is a family F�q0

of connected closed complex curves in
�s;t invariant under the J �q0

–action, such that every connected J �q0
–invariant complex

curve in �s;t extends to a curve from F�q0
. As before, it is sufficient to describe this

family only for a particular choice of q0 . The family F�
.0;0/

consists of the connected
components of non-empty sets of the formn

.z; w/ 2C2
W z2
Cw2

D �
o
\�s;t ;n

.z; w/ 2C2
W z D iw

o
\�s;t ;n

.z; w/ 2C2
W z D�iw

o
\�s;t ;

(5–5)

where � 2C� . Each of the curves from F�
.0;0/

is equivalent to either an annulus or a
punctured disk. The latter is possible only for the last two curves and only for s D�1,
in which case they accumulate to .0; 0/ 2O5 .

Now, arguing as in the second part of case (E) above, we obtain that sD�1 and extend
f to a map from yM onto �t such that f .O/DO5 ��t . It can be shown, as before,
that f is holomorphic on yM . However, O is a complex curve in yM whereas O5 is
totally real in �t . Hence M 0 cannot be equivalent to �s;t .

Assume next that M 0 is equivalent to Ds;t by means of a map f . The group R�

(see (2–44)) acts on the domain D1 (see (2–46)) with the complex curve orbit O (see
(2–43)). We again argue as in the second part of case (E) above. Every 1–dimensional
compact subgroup of R� is the isotropy subgroup of a unique point in O . For q0 2O
denote by J

�
q0

its isotropy subgroup under the action of R� . There is a family FD
q0

of connected closed complex curves in Ds;t invariant under the J
�
q0

–action, such that
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every connected J
�
q0

–invariant complex curve in Ds;t extends to a curve from FD
q0

.
The family FD

.i;0/
consists of the setsn

.z; w/ 2C2
W 1C z2

C �w2
D 0

o
\Ds;t ;

fw D 0g\Ds;t ;

where � 2 C . Each of the curves from FD
.i;0/

is equivalent to an annulus for t <1

and to a punctured disk if t D1, in which case it accumulates to .i; 0/ 2O .

As before, we now obtain that t D1 and extend f to a biholomorphic map from
yM onto Ds such that f .O/ D O . It is straightforward to see that O is the only

codimension 2 orbit; hence M is holomorphically equivalent to Ds , and we have
obtained (v) of the theorem.

Suppose now that M 0 is equivalent to D.1/s;t , and let f be an equivalence map. The
group R.1/ (see (10)) acts on M .1/ (see (2–69)) with the complex curve orbit O.2/
(see (2–66)) and the totally real orbit O6 (see (2–71)). Every 1–dimensional compact
subgroup of R.1/ is the isotropy subgroup of a unique point in each of O.2/ , O6 . For
q1 2O.2/ and q2 2O6 that have the same isotropy subgroup under the R.1/–action,
denote this subgroup by JDq1;q2

. As before, there is a family FDq1;q2
of connected

complex closed curves in D.1/s;t invariant under the JDq1;q2
–action, such that every

connected JDq1;q2
–invariant complex curve in D.1/s;t extends to a curve from FDq1;q2

.
The family FD

.0W1WiW0/;.0;0;�i/
consists of the connected components of the setsn

.z1; z2; z3/ 2C3
W z2

1 C z2
2 C �z2

3 D 0
o
\D

.1/
s;t ;

fz3 D 0g\D
.1/
s;t ;n

.z1; z2; z3/ 2C3
W z1 D iz2

o
\D

.1/
s;t ;n

.z1; z2; z3/ 2C3
W z1 D�iz2

o
\D

.1/
s;t ;

(5–6)

where �2C� . Each of the sets from FD
.0W1WiW0/;.0;0;�i/

is equivalent to either an annulus
or a punctured disk. If s > �1, the latter can only occur for t D1, in which case the
corresponding curves accumulate to .0 W 1 W i W 0/2O.2/ ; if t <1, it occurs only for the
last two curves provided s D�1, and in this case they accumulate to .0; 0;�i/ 2O6 .

It now follows, as before, that either s D�1 or t D1. If s D�1 we can extend f
to a biholomorphic map between yM and yD.1/t (see (2–72)) that takes O onto O6 .
This is impossible since O is a complex curve in M and O6 is totally real in yD.1/t .
Hence t D1, and we can extend f to a biholomorphic map between yM and D.1/s
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(see (2–72)). It is straightforward to see that O is the only codimension 2 orbit in M ,
and thus M is holomorphically equivalent to D.1/s , which is a manifold listed in (viii)
of the theorem.

Next, the case when M 0 is equivalent to D
.2/
s;t is treated as the preceding one. Here

we parametrize maximal compact subgroups of R.1/ by points in O.2/ , and for the
point .0 W 1 W i W 0/ 2O.2/ the corresponding family of complex curves consists of sets
constructed as family (5–6), where the curves appearing on the left must be intersected
with D

.2/
s;t rather than D.1/s;t (note, however, that the second last intersection is empty).

As above, we obtain that t D1 and that M is holomorphically equivalent to D
.2/
s

(see (2–67)). We now recall that D
.2/
1

is equivalent to �2 (see (11)(c)), and, excluding
the value s D 1, obtain (vi) of the theorem.

We now assume that M 0 is holomorphically equivalent to one of the n–sheeted covers,
for n � 2, of the previously considered possibilities: �.n/s;t (the cover of �s;t ) with

�1� s < t � 1 – see (2–54); D
.n/
s;t (the cover of Ds;t ) with 1� s < t �1, where n

is odd – see (10); D
.2n/
s;t (the cover of D

.2/
s;t ) with 1� s < t �1 – see (2–59); D.n/s;t

(the cover of D.1/s;t ) with �1� s < 1< t �1, where s D�1 and t D1 do not hold
simultaneously – see (11)(d). We will now formulate a number of useful properties
that hold for the covers. These properties (that we hereafter refer to as Properties (P))
follow from the explicit construction of the covers in (10), (11).

Let S be one of �s;t , Ds;t , D
.2/
s;t , D.1/s;t and let S .n/ be the corresponding n–sheeted

cover of S (for S D Ds;t we assume that n is odd). Let H WD G.S/ and H .n/ WD

G
�
S .n/

�
. Then we have:

(a) the group H .n/ consists of all lifts from S to S .n/ of all elements of H , and
the natural projection � W H .n/!H is a Lie group homomorphism and realizes
H .n/ as an n–sheeted cover of H ;

(b) it follows from (a) that for every maximal compact subgroup K0 �H (all such
subgroups are isomorphic to U1 ) the subgroup ��1.K0/ is maximal compact
in H .n/ , and all maximal compact subgroups of H .n/ are obtained in this way;

(c) for every maximal compact subgroup K �H .n/ the family of all K–invariant
complex curves in S .n/ consists of the lifts from S to S .n/ of all �.K/–invariant
complex curves in S , where every connected �.K/–invariant curve C is lifted
to a unique connected K–invariant curve C .n/ (in particular, C .n/ covers C in
an n–to–1 fashion);
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(d) if S is one of Ds;t , D
.2/
s;t , D.1/s;t , then every maximal compact subgroup K �

H .n/ is the isotropy subgroup – with respect to the H .n/–action – of a unique
point in O.n/ (see (11)(b)) in the first case, and a unique point in O.2n/ (see
(2–65)) in each of the other two cases; every K–invariant closed complex curve
in S .n/ equivalent to a punctured disk accumulates to this point (provided, for
S DD

.1/
s;t , we assume that s > �1).

Properties (P) yield that if M 0 is equivalent to either D
.n/
s;t for odd n or D

.2n/
s;t for

n� 2, then t D1 and M is holomorphically equivalent to either D
.n/
s (see (2–68))

or D
.2n/
s (see (2–67)), respectively; this gives (vii) of the theorem.

Suppose now that M 0 is equivalent to �.n/s;t by means of a map f . Then Properties

(P) imply that s D�1. Recall that ‰� ıˆ
.n/
� W �

.n/
�1;t
!��1;t is an n–to–1 covering

map (see (10)). Consider the composition zf WD ‰� ıˆ
.n/
� ı f . This is an n–to–1

covering map from M 0 onto ��1;t satisfying (3–9) for all g 2 G.M /, q 2 M 0 ,
where 'W G.M /!R� is an n–to–1 covering homomorphism. Fix p0 2 O . Since
K0 WD '.Ip0

/ is a maximal compact subgroup of R� , there is a unique q0 2O5 such
that K0 is the isotropy subgroup of q0 under the R� –action on �1 . We now define
zf .p0/ WD q0 . Thus, we have extended zf to an equivariant map from yM onto �t that

takes O onto O5 . As before, it can be shown that zf is holomorphic on yM . However,
O5 is totally real in ��1;t and therefore M 0 cannot in fact be equivalent to �.n/s;t .

Let M 0 be equivalent to D.n/s;t , and let f be an equivalence map. In this case Properties
(P) imply that either s D �1 or t D 1. If s D �1, arguing as in the preceding
paragraph, we extend the map zf WD ˆ.n/ ı f to a holomorphic map from yM onto
yD
.1/
t that takes O onto O6 . As before, this is impossible since O6 is totally real in
yD
.1/
t , and therefore we in fact have t D1. In this case Properties (P) yield that M is

holomorphically equivalent to D.n/s , and we have obtained (viii) of the theorem.

We now assume that every codimension 2 orbit in M is totally real. We will go again
through all the possibilities for the group G.M / listed in Lemma 3.2, paying attention
to constraints imposed on G.M / by this condition. In what follows O denotes a totally
real orbit in M . In case (E) with G.M / isomorphic to G"b

(see (5–2)) we obtain, as
before, that Ip D I WD '�1.J "b / for every p 2O , and thus Ip acts trivially on O.p/

for every p 2O which contradicts (iv) of Proposition 1.1. A similar argument gives a
contradiction in case (G). In case (E) with G.M / isomorphic to Vb the argument given
above for the case of complex curve orbits shows that f extends to a biholomorphic
map between yM and either Eb;s (see (5–3)) or domain (5–4), with either f .O/DO7

or f .O/ D O8 , respectively, which is impossible, since O is totally real, whereas
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O6 , O7 are complex curves. Next, in subcase (l 0 ) of case (A) the group G.M / is
isomorphic to SU2 , which implies that M is holomorphically equivalent to one of the
manifolds listed in [13]. However, none of the manifolds on the list has a totally real
orbit. Therefore, it remains to consider subcases (j), (j 00 ), (l), (l 00 ), (m), (m 00 ), (n), (n 00 )
of case (A), and case (C).

We start with case (C). In this situation G.M / is isomorphic to SU2 , if m is odd and
to SU2= f˙idg, if m is even. To rule out the case of odd m we again use the result of
[13]. We now assume that m is even. In this case M 0 is holomorphically equivalent to
Sm;s;t (see (3–12)), with 0� s < t <1, by means of a map f that satisfies (3–9) for
all g 2G.M /, q 2M 0 and some isomorphism 'W G.M /! SU2= f˙idg.

Fix p0 in O and consider the connected compact 1–dimensional subgroup '.I0
p0
/�

SU2= f˙idg. It then follows that '.I0
p0
/ is conjugate in SU2= f˙idg to the subgroup

JL that consists of all elements of the form�
ei 0

0 e�i 

�
f˙idg ;

where  2R (see eg [12, Lemma 2.1]). Suppose that p0 is chosen so that '.I0
p0
/D

JL . Let Cp0
be a connected I0

p0
–invariant complex curve in M that intersects O

transversally at p0 . Then f .Cp0
n fp0g/ is a connected JL–invariant complex curve

in Sm;s;t . It is straightforward to see that every connected JL–invariant complex curve
in Sm;s;t extends to a closed curve equivalent to either an annulus or a punctured disk.
The only closed connected JL–invariant curves in Sm;s;t that can be equivalent to a
punctured disk (which only occurs for s D 0) are�

fz D 0g=Zm

�
\Sm;s;t

and �
fw D 0g=Zm

�
\Sm;s;t :

Therefore, the curve f .Cp0
n fp0g/ extends to one of these curves, and we have s D 0.

Let Bt be the ball of radius t in C2 and cBt its blow-up at the origin, ie

cBt WD

nh
.z; w/; .� W �/

i
2 Bt �CP1

W z� D w�
o
;

where .� W �/ are homogeneous coordinates in CP1 . We define an action of U2 oncBt as follows: for g 2 U2 and
h
.z; w/; .� W �/

i
2 cBt set

g
h
.z; w/; .� W �/

i
WD

h
g.z; w/;g.� W �/

i
;
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where in the right-hand side we use the standard actions of U2 on C2 and CP1 . Next,
we denote by cBt =Zm the quotient of cBt by the equivalence relation

h
.z; w/; .� W

�/
i
� e

2�i
m

h
.z; w/; .� W �/

i
. Let

nh
.z; w/; .� W �/

io
2cBt =Zm be the equivalence class

of
h
.z; w/; .� W �/

i
2 cBt . We now define in a natural way an action of SU2= f˙idg

on cBt =Zm : for
nh
.z; w/; .� W �/

io
2 cBt =Zm and g f˙idg 2 SU2= f˙idg we set

g f˙idg
nh
.z; w/; .� W �/

io
WD

n
g
h
.z; w/; .� W �/

io
:

The points
nh
.0; 0/; .� W �/

io
form an SU2= f˙idg–orbit that we denote by O9 ; this

is a complex curve equivalent to CP1 . Everywhere below we identify Sm;0;t withcBt =Zm nO9 .

For q0 2O9 let JLq0
be the isotropy subgroup under the action of SU2= f˙idg. It is

straightforward to see that every subgroup JLq0
is conjugate to JL in SU2= f˙idg and

that for every q0 there is exactly one q0
0
2O9 , q0

0
¤ q0 , such that JLq0

D JL
q0

0

(for exam-

ple, JL is the isotropy subgroup of each of
nh
.0; 0/; .1 W 0/

io
and

nh
.0; 0/; .0 W 1/

io
).

Fix q0 2O9 and let p0 2O be such that '.I0
p0
/D JLq0

. As we noted at the beginning
of the proof of the theorem, there are exactly two connected I0

p0
–invariant complex

curves Cp0
and zCp0

in a neighborhood of p0 that intersect O at p0 transversally. The
curves f .Cp0

nfp0g/ and f . zCp0
nfp0g/ extend to the two distinct closed JLq0

–invariant
complex curves in cBt =Zm nO9 that are equivalent to a punctured disk. Since there
are no other closed JLq0

–invariant complex curves in cBt =Zm nO9 equivalent to a
punctured disk, it follows that I0

p0
0

¤ I0
p0

for every p0
0
2O , p0

0
¤ p0 .

Observe that if q; q0 2 O9 , q ¤ q0 , are such that JLq D JLq0 DW J , then one of the
J –invariant complex curves equivalent to a punctured disk accumulates to q and the
other to q0 . Therefore, we can extend F WD f �1 to a map from cBt =Zm onto yM by
setting F.q0/ WD p0 , where q0 2O9 and p0 2O are related as indicated above (hence
F is 2–to–1 on O9 ). As before, it can be shown that F is continuous on cBt =Zm

and thus is holomorphic there. However, F maps the complex curve O9 �
cBt =Zm

onto the totally real submanifold O � yM , which is impossible. Hence, M 0 cannot be
equivalent to Sm;s;t .

We now consider the remaining subcases of case (A). In subcase (j) the manifold M 0 is
holomorphically equivalent to Ss;t for 0� s < t <1 (see (2–9)). The group R� (see
(2–10)) acts on C2 with the only codimension 2 orbit O2 (see (2–13)). The isotropy
subgroup of a point .iy0; iv0/ 2O2 is the group J

�

.y0;v0/
of all transformations of the
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form (2–10) with ˇ D y0 � cos � y0 � sin � v0 , 
 D v0C sin � y0 � cos � v0 ,
where

AD

�
cos sin 
� sin cos 

�
;

with  2R. Note that these subgroups are maximal compact in R� (which implies
that Ip is connected for every p 2O ), and the isotropy subgroups of distinct points in
O2 do not coincide.

We now argue as in the second part of case (E) for complex curve orbits. There
is a family FS

.y0;v0/
of connected closed complex curves in Ss;t invariant under

the J
�

.y0;v0/
–action, such that every connected J

�

.y0;v0/
–invariant complex curve in

Ss;t extends to a curve from FS
.y0;v0/

. The family FS
.0;0/

consists of the connected
components of non-empty sets analogous to (5–5), where the sets on the left must
be intersected with Ss;t rather than �s;t . Among the curves from FS

.0;0/
, only the

last two can be equivalent to a punctured disk. This occurs only for s D 0, in which
case the curves accumulate to .0; 0/ 2O2 . Arguing as before, we can now construct
a biholomorphic map between M and St (see (2–12)). Clearly, St is equivalent to
S1 , and we have obtained (i) of the theorem.

Consider subcase (j 00 ). In this situation M 0 is holomorphically equivalent to the n–
sheeted cover S.n/s;t of Ss;t for 0 � s < t <1, n � 2 (see (2–15)), by means of a
map f . From the explicit construction of the covers in (4) it follows that Properties
(P) hold for S D Ss;t . Let zf WD ˆ.n/� ı f , where ˆ.n/� W S

.n/
s;t ! Ss;t is the n–to–1

covering map defined in (2–14). Arguing as in the case of complex curve orbits when
M 0 was assumed to be equivalent to �.n/s;t , we extend zf to a holomorphic map from
yM DM 0[O onto St , that takes O onto O2 .

Suppose that the differential of zf is degenerate at a point in O . Then, since zf satisfies
(3–9), its differential degenerates everywhere on O . Since O is totally real, it follows
that the differential of zf is degenerate everywhere in yM . This is impossible since zf
is a covering map on M 0 , and thus zf is non-degenerate at every point of O . Hence,
for every p 2O there exists a neighborhood of p in which zf is biholomorphic. Fix
p0 2O and let Cp0

be a connected Ip0
–invariant complex curve intersecting O at p0

transversally (observe that Ip0
is connected). Then it follows from (c) of Properties (P)

that f .Cp0
nfp0g/ covers zf .Cp0

nfp0g/ in an n–to–1 fashion, and hence zf cannot be
biholomorphic in any neighborhood of p0 . This contradiction yields that M 0 cannot
be equivalent to S.n/s;t .

Consider subcase (l). In this situation M 0 is holomorphically equivalent to Es;t for
1� s < t <1 (see (2–23)). The group R� (see (2–24)) acts on CP2 with the totally
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real orbit O3 (see (2–27)). Every connected 1–dimensional compact subgroup of R�
is conjugate in R� to the subgroup J� that consists of all matrices of the form

(5–7)

0@ 1 0 0

0 cos sin 
0 � sin cos 

1A ;
where  2R (this follows, for instance, from [12, Lemma 2.1]). It is straightforward to
see that the isotropy subgroup J

�
q of a point q 2O3 under the R�–action is conjugate

to J� (note that J� D J
�

.1W0W0/
) and that the isotropy subgroups of distinct points do

not coincide.

There is a family FE
q of connected closed complex curves in Es;t invariant under the

J
�
q –action, such that every connected J

�
q –invariant complex curve in Es;t extends

to a curve from FE
q . The family FE

.1W0W0/
consists of the connected components of

non-empty sets of the formn
.� W z W w/ 2CP2

W z2
Cw2

D ��2
o
\Es;t ;n

.� W z W w/ 2CP2
W z D iw

o
\Es;t ;n

.� W z W w/ 2CP2
W z D�iw

o
\Es;t ;

where � 2C� . Among the curves from FE
.1W0W0/

, only the last two can be equivalent
to a punctured disk. This occurs only for s D 1, in which case the curves accumulate
to .1 W 0 W 0/ 2 O3 . Arguing as before, we can now construct a biholomorphic map
between M and Et (see (2–26)), which gives (ii) of the theorem.

Further, in subcase (l 00 ) M 0 is holomorphically equivalent to E
.2/
s;t for some 1� s <

t <1 (see (2–29)). Let f be an equivalence map that satisfies (3–9) for all g 2G.M /,
q 2M 0 and some isomorphism 'W G.M /!R.2/� (see (2–30)). The group R.2/� acts
on QC (see (2–28)) with the totally real orbit O4 (see (2–35)). All 1–dimensional
compact subgroups are described as in subcase (l) – see (5–7). The isotropy subgroup
J
�.2/

q of a point q 2 O4 under the R.2/� –action is conjugate to J� , and for every

q 2O4 there exists exactly one q0 2O4 , q0 ¤ q , for which J
�.2/

q D J
�.2/

q0 (note that

q0 D�q and J� D J
�.2/

.˙1;0;0/
).

Again, there is a family FE.2/

q of connected closed complex curves in E
.2/
s;t invariant

under the J
�.2/

q –action, such that every connected J
�.2/

q –invariant complex curve in
E
.2/
s;t extends to a curve from FE.2/

q . The family FE.2/

.˙1;0;0/
consists of the connected
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components of non-empty sets of the formn
.z1; z2; z3/ 2C3

W z2
2 C z2

3 D �z2
1

o
\E

.2/
s;t ;

C1 WD

n
.z1; z2; z3/ 2C3

W z1 D 1; z2 D iz3

o
\E

.2/
s;t ;

C2 WD

n
.z1; z2; z3/ 2C3

W z1 D 1; z2 D�iz3

o
\E

.2/
s;t ;

C3 WD

n
.z1; z2; z3/ 2C3

W z1 D�1; z2 D iz3

o
\E

.2/
s;t ;

C4 WD

n
.z1; z2; z3/ 2C3

W z1 D�1; z2 D�iz3

o
\E

.2/
s;t ;

where � 2 C� . Among the curves from FE.2/

.˙1;0;0/
, only Cj can be equivalent to a

punctured disk, which occurs only for sD 1. It then follows that sD 1, and in this case
C1 , C2 accumulate to .1; 0; 0/ 2O4 , while C3 , C4 accumulate to .�1; 0; 0/ 2O4 .

Fix p0 2 O and let q0 2 O4 be such that '.I0
p0
/ D J

�.2/

q0
and such that, for a I0

p0
–

invariant complex curve Cp0
intersectingO at p0 transversally, the curvef

�
Cp0
n fp0g

�
extends to a complex curve from FE.2/

q0
that accumulates to q0 . We extend F WD f �1

to a map from E
.2/
t (see (2–34)) onto yM DM 0 [O that takes O4 onto O . Define

F.q0/ WDp0 and for any h2R.2/� set F.hq0/ WD'
�1.h/p0 . Since '�1

�
J
�.2/

q0

�
� Ip0

,

this map is well-defined. Furthermore, the extended map satisfies (3–10) for all h2R.2/� ,

q 2E
.2/
t , and for every q 2O4 there exists a J

�.2/

q –invariant complex curve C in E
.2/
t

that intersects O4 at q transversally and such that F .C n fqg/ is an I0
F.q/

–invariant
complex curve that accumulates to F.q/. Arguing as in the second part of case (E) for
complex curve orbits, we now obtain that F is holomorphic on E

.2/
t . Further, as in

subcase (j 00 ) above, we see that F is locally biholomorphic in a neighborhood of every
point in O4 .

We will now show that F is 1–to–1 on O4 . Suppose that for some q; q0 2O4 , q ¤ q0 ,
we have F.q/ D F.q0/ D p for some p 2 O . Since F satisfies (3–10), we have
J
�.2/

q D J
�.2/

q0 D '.I0
p /, and therefore q0 D �q . Consider the four J

�.2/

q –invariant

connected complex curves in E
.2/
1;t

equivalent to a punctured disk; a pair of these curves
accumulates to q , while the other pair accumulates to �q . The curves are mapped
by F into four distinct I0

p –invariant complex curves in M 0 whose extensions in yM
intersect O transversally at p . However, as we noted at the beginning of the proof of
the theorem, there are exactly two I0

p –invariant complex curves near p that intersect
O transversally at p . This contradiction yields that F is a biholomorphic map from
E
.2/
t onto yM . It can be now shown, as before, that O is the only codimension 2

Geometry & Topology, Volume 12 (2008)
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orbit in M , which gives that M is holomorphically equivalent to E
.2/
t , and we have

obtained (iii) of the theorem.

It now remains to consider subcases (m), (m 00 ), (n), (n 00 ). We will proceed as in the
situation when a complex curve orbit was assumed to be present in M . If M 0 is
equivalent to one of Ds;t , D

.n/
s;t for n� 2, D.n/s;t for n� 1 (where in the last case we

assume that s > �1), we obtain a contradiction since O is totally real in M whereas
O and O.n/ for n� 2 are complex curves in the corresponding manifolds. Further, if
M 0 is equivalent to �s;t , we obtain that sD�1 and M is holomorphically equivalent
to �t . Recalling that �1 is equivalent to �2 (see (11)(c)) and excluding the value
t D 1, we obtain (iv) of the theorem. Next, If M 0 is equivalent to D.1/

�1;t
, then M is

equivalent to yD.1/t , which are the manifolds in (ix) of the theorem.

Suppose now that M 0 is equivalent to �.n/s;t for some �1� s < t �1. In this case we
obtain a holomorphic map zf from yM onto �t that takes O onto O5 and such that
zf jM 0 is an n–to–1 covering map from M 0 onto ��1;t . Now, arguing as in subcase

(j 00 ), we obtain that the differential of zf is non-degenerate at every point of O which
leads to a contradiction. Finally, a similar argument leads to a contradiction if M 0 is
equivalent to D.n/

�1;t
for n� 2.

The proof of the theorem is complete.
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