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Homology cobordism invariants and the
Cochran–Orr–Teichner filtration of the link concordance

group

SHELLY L HARVEY

For any group G, we define a new characteristic series related to the derived series,
that we call the torsion-free derived series of G. Using this series and the Cheeger–
Gromov �–invariant, we obtain new real-valued homology cobordism invariants �n

for closed .4k�1/–dimensional manifolds. For 3–dimensional manifolds, we show
that f�njn 2Ng is a linearly independent set and for each n� 0 , the image of �n is
an infinitely generated and dense subset of R .

In their seminal work on knot concordance, T Cochran, K Orr and P Teichner define
a filtration Fm

.n/
of the m–component (string) link concordance group, called the

.n/–solvable filtration. They also define a grope filtration Gm
n . We show that �n

vanishes for .nC1/–solvable links. Using this, and the nontriviality of �n , we show
that for each m � 2 , the successive quotients of the .n/–solvable filtration of the
link concordance group contain an infinitely generated subgroup. We also establish a
similar result for the grope filtration. We remark that for knots (mD1), the successive
quotients of the .n/–solvable filtration are known to be infinite. However, for knots,
it is unknown if these quotients have infinite rank when n� 3 .

57M27; 20F14

1 Introduction

The main objective of this paper is to investigate the set of 3–dimensional manifolds
up to homology cobordism. To do this, we define, for each n 2 N , an invariant of
.4k�1/–dimensional manifolds (k � 1) that we call �n . Loosely speaking, �n.M / is
defined as a signature defect closely associated to a term of the torsion-free derived
series of �1.M / and (for smooth manifolds) can be interpreted as the Cheeger–Gromov
invariant of M associated to the n–th torsion-free derived regular cover of M . Using a
derived version of Stallings’ Theorem [9], we show that �n is an invariant of homology
cobordism whereas the Cheeger–Gromov �–invariant associated to an arbitrary cover
is only a priori a homeomorphism invariant.
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Theorem 4.2 If M 4k�1
1

is rationally homology cobordant to M 4k�1
2

.k � 1/ then
�n.M1/D �n.M2/.

To define the invariant �n , we first define a new characteristic series fG.n/

H g of a group
G (Section 2) closely related to the derived series, that we call the torsion-free derived
series and establish its basic properties. One should view the torsion-free derived series
fG.n/

H g of a group G as a series that is closely related to the derived series but whose
successive quotients G.n/

H =G.nC1/

H are torsion-free as ZŒG=G.n/

H �–modules. This can
be compared to the rational derived series G.n/

r
(which we studied in [19]) which is a

series whose successive quotients are torsion-free as abelian groups.

Let M be a .4k�1/–dimensional manifold and let GD�1.M /. The invariant �n.M /

is defined as follows (see Section 3 for more details). Recall that for any group ƒ, the
L2 –signature � .2/

ƒ
is a real-valued homomorphism on the Witt group of hermitian forms

on finitely generated projective Uƒ–modules, where Uƒ is the algebra of unbounded
operators associated to the von Neumann algebra of ƒ. Following Hausmann [20], we
show (see Lemma 3.4 and Corollary 3.5) that for every coefficient system �W G !

G=G.nC1/

H , there exists a positive integer r and a 4k –dimensional manifold W such
that the pair .rM; r�/ is stably nullbordant via .W; ˆ W �1.W /! ƒ/. Let hW be
the intersection form associated to the regular ƒ–covering space of W and let � be
the ordinary signature function. We show in Lemma 3.6 that 1

r
.� .2/
ƒ
.hW /� �.W // is

independent of the stable nullbordism .W; ˆ/ and define

�n.M /D
1

r

�
� .2/
ƒ
.hW /� �.W /

�
:

More generally, we define �� for any coefficient system �W �1.M / ! � (note
that one can also define �� via the Cheeger–Gromov construction for smooth man-
ifolds). Hence one could also study �.n/.M / (respectively �lcs

n .M /), the canoni-
cally defined �–invariant associated to � D �1.M /=�1.M /.nC1/ (respectively � D
�1.M /=�1.M /lcs

nC1
) where G.n/ (respectively Glcs

n ) is the n–th term of the derived
series (respectively lower central series) of G . Despite the fact that the torsion-free
derived series may seem a bit unwieldy, we focus on �n (rather than �.n/ or �lcs

n ) since it
gives an invariant of rational homology cobordism and provides new information about
the structure of the .n/–solvable and grope filtrations of the (string) link concordance
group (see below and Section 6). By contrast, �.n/ is only a homeomorphism invariant.
One can use Stallings’ Theorem [31] and follow through the proof of Theorem 4.2 to
show that �lcs

n is a homology cobordism invariant. However, we choose to use �n in
our work since it is more directly related to the .n/–solvable and grope filtrations of
the link concordance group than �lcs

n .
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We show that the �n are highly nontrivial and independent for 3–manifolds (Section 5).
To accomplish this, we construct an infinite family of examples of 3–manifolds
fM.�;K/g that are constructed by a method known as genetic infection. More specifi-
cally, to construct M.�;K/ we start with a 3–manifold M and infect M by a knot
K along a curve � in the n–th term of the derived series of the fundamental group of
M . We prove that �i.M.�;K// depends only on n and �0.K/, where �0.K/ is the
integral of the Levine–Tristram signatures of K .

Theorem 5.8 Let M be a compact, orientable manifold, � an embedded curve in M ,
K a knot in S3 , and P D �1.M /. If � 2 P .n/

H
�P .nC1/

H
for some n� 0 then

�i.M.�;K//� �i.M /D

�
0 0� i � n� 1I

�0.K/ i � n:

Let H3
Q be the set of Q–homology cobordism classes of closed, oriented 3–dimensional

manifolds. Using the set of examples fM.�;K/g with varying K we establish the
following theorem.

Theorem 5.11 The image of �nW H3
Q ! R is (1) dense in R and (2) an infinitely

generated subgroup of R .

Moreover, in Theorem 5.13, we show that f�ng is a linearly independent subset of the
vector space of functions on H3

Q .

We remark that S Chang and S Weinberger [5] use a similar type of signature defect, one
associated to the universal cover of a manifold, to define a homeomorphism invariant
�.2/ of a .4k�1/–dimensional manifold (k � 1). Using �.2/ they show that if M is a
.4k�1/–dimensional (smooth) manifold with k � 2 and �1.M / is not torsion-free
then there are infinitely many (smooth) manifolds homotopy equivalent to M but not
homeomorphic to M .

For the rest of the paper, we turn our attention to the study of link concordance. Recall
that if two links L1 and L2 in S3 are concordant then ML1

and ML2
are homology

cobordant where ML is the zero surgery on L. We define �n.L/D �n.ML/ for a link
L in S3 . Hence, by Theorem 4.2, �n is a link concordance invariant.

In [11], T Cochran, K Orr and P Teichner defined the .n/–solvable (and grope) fil-
tration of the knot concordance group C . In [11] and their two subsequent papers
[12; 13], they showed that the quotients F.n/=F.nC1/ of the .n/–solvable filtration of
the knot concordance group are nontrivial. In particular, they showed that for nD 1; 2,
F.n/=F.nC1/ has infinite rank and for all n � 3, the quotient has rank at least 1. It is
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still unknown if any of the quotients is infinitely generated for n� 3. In the current
paper, we investigate the .n/–solvable (and grope) filtration Fm

.n/
of the string link

concordance group C.m/ and the subgroup generated by boundary links B.m/ for
links with m� 2 components. Since connected sum is not a well-defined operation for
links, it is necessary to use string links to obtain a group structure. Using �n we show
that, for m� 2, each of the successive quotients of the .n/–solvable filtration of the
boundary string link concordance group BFm

.n/
is infinitely generated.

Theorem 6.8 For each n � 0 and m � 2, the abelianization of BFm
.n/
=BFm

.nC1/

has infinite rank. In particular, for m � 2, BFm
.n/
=BFm

.nC1/
is an infinitely generated

subgroup of Fm
.n/
=Fm

.nC1/
.

We note the previous theorem holds “modulo local knotting” (see Corollary 6.9), hence
this result cannot be obtained using the work of Cochran–Orr–Teichner on knots. We
also prove a similar statement for the grope filtrations BGm

n and Gm
n of the boundary

and string link concordance groups respectively.

Theorem 6.13 For each n � 1 and m � 2, the abelianization of BGm
n =BGm

nC2
has

infinite rank. Hence BGm
n =BGm

nC2
is an infinitely generated subgroup of Gm

n =Gm
nC2

.

We also prove that the abelianization of BGm
n =BGm

nC1
has nonzero rank for n� 2 and

m� 2 in Proposition 6.14. We conjecture these quotients groups are in fact infinitely
generated.

To prove Theorem 6.8, we first show that �n is additive when restricted to B.m/, the
subgroup of C.m/ consisting of m component boundary string links. We note that �n

is not additive on C.m/ itself.

Corollary 6.7 For each n� 0 and m� 1, �nW B.m/!R is a homomorphism.

Next, we show that .nC1/–solvable links have vanishing �n . Thus, for each n � 0,
�n is a homomorphism from BFm

.n/
=BFm

.nC1/
to R.

Theorem 6.4 If a 3–manifold M is .n/–solvable then for each .n/–solution W and
k � n, the inclusion i W M !W induces monomorphisms

i�W H1.M IK.�1.W /=�1.W /.k/
H
// ,!H1.W IK.�1.W /=�1.W /.k/

H
//;

i�W
�1.M /

�1.M /.kC1/

H

,!
�1.W /

�1.W /.kC1/

H

�k�1.M /D 0:and

Thus, if L 2 F.n/ then �k�1.L/D 0 for k � n.
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To complete the proof of Theorem 6.8, we construct a collection of links that are
.n/–solvable and have independent �n . To do this we perform genetic infection on the
m–component trivial link using some knot K along some carefully chosen curve � in
F .n/ where F is the fundamental group of the trivial link. This produces a collection
of boundary links fL.�;K/g that are .n/–solvable and such that the image of �n

restricted to fL.�;K/g is infinitely generated.

We remark that the invariant �n is related to certain “finite” concordance invariants
of boundary links associated to p–groups. Suppose L is a boundary link with m

components. Then there is a surjective map � W G ! F where G D �1.ML/ and
F is the free group on m generators. By Theorem 4.1 of [9] (respectively Stallings’
Theorem [31]), G=G.n/

H Š F=F .n/ (respectively G=Gn Š F=Fn ). Moreover, ML is
the boundary of a 4–dimensional manifold W over F . Since F=F .n/ and F=Fn are
residually finite p–groups, by work of W Lück and T Schick, both �n and �lcs

l
can

be approximated by signatures of finite covers of W where the covering groups are
p–groups. These finite p–group signatures are closely related to the concordance
invariants of boundary links studied by S Friedl [17] and J C Cha and K H Ko [2].

We finish this paper by mentioning some applications to boundary link concordance
in Section 7. In particular, we show �k gives a homomorphism from certain gamma
groups (modulo automorphisms of the free group) to R, generalizing work of S Cappell
and J Shaneson. Here, B.n;m/ is the group of concordance classes of m component,
n–dimensional boundary disk links in DnC2 .

Proposition 7.3 For each n � 1 mod 4 with n > 1, and each k � 0, there is an
induced homomorphism

z�k W
z�nC3.ZF ! Z/=Aut F �!R

that factors through B.n;m/.

Acknowledgements The author was partially supported by an NSF Postdoctoral
Fellowship, NSF DMS-0539044, and a fellowship from the Alfred P Sloan Foundation.

2 The torsion-free derived series

To define �n , we must first introduce a new characteristic series of a group called the
torsion-free derived series. In this section, we will define the torsion-free derived series
and establish some its basic properties.

If G is a group then G=G.1/ is an abelian group but may have Z–torsion. If one would
like to avoid Z–torsion then, in direct analogy to the rational lower-central series,
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one can define G.1/

r D fx 2G j xk 2 ŒG;G� for some k ¤ 0g, which is slightly larger
than G.1/ , so that G=G.1/

r is Z–torsion-free. Proceeding in this way, defining G.n/

r to
be the radical of ŒG.n�1/

r ;G.n�1/

r �, leads to what has been called the rational derived
series of G [7; 19]. This is the most rapidly descending series for which the quotients
of successive terms are Z–torsion-free abelian groups. Note that if N is a normal
subgroup of G then N=ŒN;N � is not only an abelian group but it is also a right module
over ZŒG=N �, where the action is induced from conjugation in G ( Œx�g D Œg�1xg�).
To define the torsion-free derived series, we seek to eliminate torsion “in the module
sense” from the successive quotients. We define the torsion-free derived series G.n/

H of
G as follows. First, set G.0/

H DG . For n� 0, suppose inductively that G.n/

H has been
defined and is normal in G (we will show that G.n/

H is normal in G below). Let Tn

be the subgroup of G.n/

H =ŒG.n/

H ;G.n/

H � consisting of ZŒG=G.n/

H �–torsion elements, ie the
elements Œx� for which there exists some nonzero  2 ZŒG=G.n/

H �, such that Œx� D 0.
(In fact, since it will be (inductively) shown below that ZŒG=G.n/

H � is an Ore Domain,
Tn is a submodule). Now consider the epimorphism of groups

G.n/

H

�n
��!

G.n/

H

ŒG.n/

H ;G.n/

H �

and define G.nC1/

H to be the inverse image of Tn under �n . Then G.nC1/

H is, by
definition, a normal subgroup of G.n/

H that contains ŒG.n/

H ;G.n/

H �. It follows inductively
that G.n/

H contains G.nC1/

H (and G.nC1/

r ). Moreover, since G.n/

H

ı
G.nC1/

H is the quotient
of the module G.n/

H

ı
ŒG.n/

H ;G.n/

H � by its torsion submodule, it is a ZŒG=G.n/

H � torsion-
free module [32, Lemma 3.4]. Hence the successive quotients of the torsion-free
derived subgroups are torsion-free modules over the appropriate rings. We define
G.!/

H
D
T

n<! G.n/

H as usual.

We now establish some elementary properties of the torsion-free derived series of a
group. Recall that a group is poly-(torsion-free abelian) (often abbreviated PTFA) if
it has a finite subnormal series whose successive quotients are torsion-free abelian
groups. Such a group is solvable, torsion free, and locally indicable [33, Proposition
1.9]. If G is PTFA then ZG is an Ore domain and hence admits a classical (right)
ring of quotients KG , into which ZG embeds [29, pp 591–592]. Hence any finitely
generated (right) module M over ZŒG=G.n/

H � has a well-defined rank that is defined to
be the rank of the vector space M ˝

ZŒG=G
.n/

H
�
K.G=G.n/

H / [14, p 48]. Alternatively the
rank can be defined to be the maximal integer m such that M contains a submodule
isomorphic to .ZŒG=G.n/

H �/m .

Proposition 2.1 For each 0� n< ! , G.n/

H is a normal subgroup of G and G=G.n/

H is
a poly-(torsion-free abelian) group. Consequently, ZŒG=G.n/

H � is an Ore domain.
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Proof We prove this by induction on n. The statement is clear for nD 0. Assume
G.n/

H is a normal subgroup of G and G=G.n/

H is PTFA. Let x 2G.nC1/

H and g 2G . Then
x and g�1xg lie in G.n/

H by assumption. By definition of the right module structure on
G.n/

H =ŒG.n/

H ;G.n/

H �, �n.g
�1xg/D�n.x/g . Since x 2G.nC1/

H , �n.x/ is torsion. To show
that g�1xg 2G.nC1/

H
, it suffices to show that �n.x/g is torsion. Recall that the set of

torsion elements of any module over an Ore domain is known to be a submodule [32,
p 57]. Since ZŒG=G.n/

H � is an Ore domain, it follows that the set of torsion elements in
G.n/

H =ŒG.n/

H ;G.n/

H � is a submodule. Thus, �n.x/g is torsion and hence G.nC1/

H is normal
in G .

Consider the normal series for G=G.nC1/

H :

1D
G.nC1/

H

G.nC1/

H

G
G.n/

H

G.nC1/

H

G � � � G
G.1/

H

G.nC1/

H

G
G

G.nC1/

H

:

Since the successive quotients of the above series are torsion-free abelian groups,
G=G.nC1/

H is PTFA.

For convenience, we will often write G=G.n/

H as Gn for any group G (not to be confused
with the terms of the lower central series of G which we will denote by Glcs

n in this
paper).

We remark that the torsion-free derived subgroups are characteristic subgroups but they
are not totally invariant. That is, an arbitrary homomorphism �W A! B need not
send A.n/

H to B.n/

H . To see this, let AD hx;y; zjŒz; Œx;y��i, B D hx;yi and �W A!B

be defined by �.x/D x , �.y/D y and �.z/D 1. Then we have Œx;y� 2A.2/

H since
Œx;y� is .z��1/–torsion in A.1/

H =ŒA
.1/

H ;A
.1/

H � where z� D Œz� 2A=A.1/

H but �.Œx;y�/D
Œx;y� 62 B.2/ D B.2/

H (see Proposition 2.3).

Proposition 2.2 If �W A! B induces a monomorphism �W A=A.n/

H ,! B=B.n/

H , then
�.A.nC1/

H /�B.nC1/

H and hence � induces a homomorphism �W A=A.nC1/

H !B=B.nC1/

H .

Proof Note that the hypothesis implies that � induces a ring monomorphism

z�W ZŒA=A.n/

H
�! ZŒB=B.n/

H
�:

Suppose that x 2A.nC1/

H . Consider the diagram below.
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A.n/

H

�A- A.n/

H

A.nC1/

H

B.n/

H

?

�

�B- B.n/

H

B.nC1/

H

?
x�

By definition, �A.x/ is torsion. That is, there is some nonzero  2 ZŒA=A.n/

H � such
that �A.x/ D 0. It is easy to check that x� is a homomorphism of right ZŒA=A.n/

H �–
modules using the module structure induced on B.n/

H =B.nC1/

H by z� (since �.a�1xa/D

�.a/�1�.x/�.a/). Thus x�.�A.x//z�. / D 0. Since z� is injective, x�.�A.x// is a
ZŒB=B.n/

H �–torsion element. But x�.�A.x//D �B.�.x//, showing that �.x/ 2B.nC1/

H .
Hence �.B.nC1/

H /� B.nC1/

H .

For some groups, such as free groups and free-solvable groups F=F .n/ , the derived
series and the torsion-free derived series coincide.

Proposition 2.3 If G is a group such that, for each n, G.n/=G.nC1/ is torsion-free as
a ZŒG=G.n/�–module, then the torsion-free derived series of G agrees with the derived
series of G . Hence for a free group F , F .n/

H D F .n/ for each n.

Proof By definition, G.n/

H D G.0/ D G . Suppose G.n/

H D G.n/ . Then, under the
hypotheses, G.n/

H =ŒG.n/

H ;G.n/

H � is a torsion-free module and hence G.nC1/

H D ker�n D

ŒG.n/

H ;G.n/

H �D ŒG.n/;G.n/�DG.nC1/ .

It is well known that F .n/=F .nC1/ is a ZŒF=F .n/�–torsion-free module. This can be
seen by examining the free ZŒF=F .n/� cellular chain complex for the covering space
of a wedge of circles corresponding to the subgroup F .n/ . The module F .n/=F .nC1/

is merely the first homology of this chain complex. Since the chain complex can be
chosen to have no 2–cells, its first homology is a submodule of a free module and thus
is torsion-free. Hence, by the first part of this proposition, the derived series and the
torsion-free derived series of a free group agree.

In [9], T Cochran and the author prove a version of Stallings’ Theorem [31] for the
derived series. Specifically, it was there shown that if a map of finitely presented groups
�W A! B is rationally 2–connected then it induces a monomorphism

��W A=A
.n/

H
,! B=B.n/

H

Geometry & Topology, Volume 12 (2008)
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for all n� 0 [9, Theorem 4.1] (see Theorem 2.4 and Proposition 2.5 below). For this
paper, we will need the following “generalization” of that theorem. The following
theorem is in fact a consequence of the proof of Theorem 4.1 of [9]. For the conve-
nience of the reader, we will sketch the proof of Theorem 2.4 after the statement of
Proposition 2.5.

Theorem 2.4 (Scholium to Theorem 4.1 of [9]) Let n be a nonnegative integer or
nD! . If �W A!B is a homomorphism that for each k � n induces a monomorphism
��W H1.AIK.B=B.k/

H // ! H1.BIK.B=B.k/

H //, then for each k � n, � induces a
monomorphism A=A.kC1/

H ,! B=B.kC1/

H . Moreover, if �W A! B induces an isomor-
phism ��W H1.AIK.B=B.k/

H //! H1.BIK.B=B.k/

H // for each k � n, then for each
k � n, � induces a monomorphism A.k/

H =A.kC1/

H ,!B.k/

H =B.kC1/

H between modules of
the same rank (over ZŒA=A.k/

H � and ZŒB=B.k/

H � respectively). In addition, if � is onto
then ��W A=A.kC1/

H ! B=B.kC1/

H is an isomorphism.

The following proposition guarantees that one of the hypotheses of Theorem 2.4 is
satisfied whenever � is a rationally 2–connected map. Note that Proposition 2.5
and Theorem 2.4 together imply Theorem 4.1 of [9]. The justification for calling
Theorem 2.4 a generalization of Theorem 4.1 of [9], is that, in the subsequent sections
we will describe several conditions (see Proposition 3.15, Theorem 5.8, Theorem 6.4,
Proposition 6.6, and Lemma 6.5) under which the hypothesis of Theorem 2.4 is satisfied
but where the 2–connected hypothesis of Theorem 4.1 of [9] (and Proposition 2.5 and
Proposition 4.3 of [9]) fails.

Proposition 2.5 (Proposition 4.3 of [9]) Let A be a finitely generated group and B

a finitely related group. Suppose �W A! B induces a monomorphism (respectively
isomorphism) on H1.�IQ/ and an epimorphism on H2.�IQ/. Then for each k � 0,
� induces a monomorphism (respectively isomorphism) ��W H1.AIK.B=B.k/

H //!

H1.BIK.B=B.k/

H //.

Proof of Theorem 2.4 We sketch the inductive proof of the first claim of the the-
orem, referring the reader to [9] for more details. For n D 0, A=A.1/

H is merely
H1.AIZ/=fZ-Torsiong. But A=A.0/

H D feg so K.A=A.0/

H /DQ. Thus our hypothesis,
that � induces a monomorphism on H1.�IQ/, implies that � induces a monomor-
phism on H1.�IZ/ modulo torsion. Now assume that � induces a monomorphism
A=A.n/

H � B=B.n/

H . We will prove that this holds for nC 1.

It follows from Proposition 2.2 that �.A.nC1/

H / � B.nC1/

H . Thus from the commuta-
tive diagram below we see that it suffices to show that � induces a monomorphism
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A.n/

H =A.nC1/

H ! B.n/

H =B.nC1/

H .

1 - A.n/

H
=A.nC1/

H
- A=A.nC1/

H
- A=A.n/

H
- 1

1 - B.n/

H
=B.nC1/

H

?

�

- B=B.nC1/

H

?

�nC1

- B=B.n/

H

?

�n

- 1

Now suppose that A.n/

H =A.nC1/

H !B.n/

H =B.nC1/

H were not injective. From our discussions
above in the proof of Proposition 2.2 we see that there would exist an a 2 A.n/

H

representing a nontorsion class Œa� in A.n/

H =ŒA.n/

H ;A.n/

H � such that �.a/ represents a
torsion class in B.n/

H =ŒB.n/

H ;B.n/

H �. But

A.n/

H
=ŒA.n/

H
;A.n/

H
�ŠH1.AIZŒA=A

.n/

H
�/:

The torsion submodule is characterized precisely as the kernel of the canonical map

H1.AIZŒA=A
.n/

H
�/!H1.AIZŒA=A

.n/

H
�/˝

ZŒA=A.n/
H
�
K.A=A.n/

H
/ŠH1.AIK.A=A.n/

H
//:

A similar statement holds for B . But the inductive hypothesis that A=A.n/

H �B=B.n/

H

guarantees that
H1.AIK.A=A.n/

H
//!H1.AIK.B=B.n/

H
//

is injective. Moreover, the hypothesis of the theorem guarantees that

H1.AIK.B=B.n/

H
//!H1.BIK.B=B.n/

H
//

is injective, leading to a contradiction.

3 Definition of �n

On the class of closed, oriented .4k�1/–dimensional manifolds, we will define a Q–
homology cobordism invariant �n for each n 2N . This will be defined as a signature
defect associated to the n–th term of the torsion-free derived series of the fundamental
group of the manifold. We begin by recalling the definition of the L2 –signature of a
4k –dimensional manifold. For more information on L2 –signature and �–invariants
see Cochran and Teichner [13, Section 2], Cochran, Orr and Teichner [11, Section 5]
and Lück and Schick [26].

Let ƒ be a countable group and Uƒ be the algebra of unbounded operators affiliated
to Nƒ, the von Neumann algebra of ƒ. Then � .2/

ƒ
W Hermn.Uƒ/!R is defined by

� .2/
ƒ
.h/D trƒ.pC.h//� trƒ.p�.h//
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for any h2Hermn.Uƒ/ where tr
ƒ

is the von Neumann trace and p˙ are the character-
istic functions on the positive and negative reals. It is known that � .2/

ƒ
can be extended

to the Witt group of Hermitian forms on finitely generated projective Uƒ–modules.

Lemma 3.1 (see for example Corollary 5.7 of [11] and surrounding discussion) The
L2 –signature, � .2/

ƒ
, is a well-defined real-valued homomorphism on the Witt group

of hermitian forms on finitely generated projective Uƒ–modules. Restricting this
homomorphism to nonsingular forms on free modules gives

� .2/
ƒ
W L0.Uƒ/!R:

In particular, if h is a nonsingular pairing with a metabolizer then � .2/
ƒ
.h/D 0.

Let W be 4k –dimensional manifold and ˆW �1.W /!ƒ be a coefficient system for
W . Let hW ;ƒ be the composition of the following homomorphisms

(1) H2k.W IUƒ/!H2k.W; @W IUƒ/ PD
��!H 2k.W IUƒ/ ��!H2k.W IUƒ/�

where H2k.W IUƒ/� D HomUƒ.H2k.W IUƒ/;Uƒ/. Since Uƒ is a von Neumann
regular ring, the modules H2k.W IUƒ/ are finitely generated projective right Uƒ–
modules. Then hW ;ƒ 2Hermn.Uƒ/ and we define � .2/.W; ƒ/D � .2/

ƒ
.hW ;ƒ/. We will

sometimes write � .2/.W; ƒ/ as � .2/
ƒ
.W / or � .2/.W; ˆ/ when we want to emphasize

the map ˆ.

Suppose that ƒ is PTFA. Let U be a (possibly empty) union of components of the
boundary of W . Then Zƒ embeds in its right ring of quotients Kƒ. Moreover, the
map from Zƒ to Uƒ factors as Zƒ!Kƒ! Uƒ making Uƒ into a Kƒ�Uƒ–bi-
module. Since any module over a skew field is free, Uƒ is a flat Kƒ–module. Hence,
H2k.W;U IUƒ/ŠH2.W;U IKƒ/˝Kƒ Uƒ. In particular, H2k.W;U IKƒ/D 0 if
and only if H2.W;U IUƒ/=0.

We will use the following facts about L2 –signatures throughout this paper. The first
two remarks follow directly from the definition of � .2/.W; ƒ/.

Remark 3.2 Suppose W is a compact, oriented 4k –dimensional manifold and
‰W �1.W /!ƒ is a coefficient system for W .

(1) If H2k.W;U IUƒ/D 0 (or H2k.W;U IKƒ/D 0 if ƒ is PTFA), where U is a
(possibly empty) union of components of the boundary of W then � .2/.W;ƒ/D0.

(2) If ƒDf1g is the trivial group then � .2/.W; ƒ/D �.W / where � is the ordinary
signature function.
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(3) If ƒ � ƒ0 then � .2/.W; ƒ/D � .2/.W; ƒ0/ (see for example, Proposition 5.13
of [11]).

(4) Suppose V is a compact, oriented 4k –dimensional manifold, ‰0W �1.V /!ƒ

is a coefficient system for V and .V; ‰0/ has the same oriented boundary as
.W; ‰/ (meaning the maps to ƒ agree on the boundary) then

� .2/.W [@W xV ; ‰[‰
0/D � .2/.W; ‰/� � .2/.V; ‰0/

(see for example, Lemma 5.9 of [11]).

(5) If W is closed then � .2/.W; ƒ/D �.W / (see for example, Lemma 5.9 of [11]).

We now define ��.M / for a .4k�1/–dimensional manifold and coefficient system
�1.M /! � . Let M be a closed, orientable, l –dimensional manifold with l 6� 0

mod 4. It is well known that rM is the boundary of some compact, orientable manifold
for r 2f1; 2g. J-C Hausmann showed further [20, Theorem 5.1] that rM is the boundary
of a compact, orientable manifold W for which the inclusion map of M into W induces
a monomorphism on �1 . That is, rM is stably nullbordant over �1.M / for some
r 2 f1; 2g in the language of Definition 3.3 below. In [5], S Chang and S Weinberger use
this fact to define a new “Hirzebruch type” invariant �.2/ for a .4k � 1/ dimensional
manifold M by setting �.2/.M / D 1

r
.� .2/.W; �1.W // � �.W //. To define �n we

proceed in a similar manner, stably bounding over �1.M /n instead of �1.M /. To do
this, we will show that rM is stably nullbordant over � for any coefficient system
�1.M /! � .

Definition 3.3 Let M DM1[ � � � [Mm be a disjoint union of m connected, closed,
oriented l –dimensional manifolds and S D f�i W �1.Mi/! �ig

m
iD1

be a collection of
coefficient systems for M . We say that .M;S/ is stably nullbordant (or s-nullbordant)
if there exists a triple .W; ˆ; T / where W is a compact, connected, oriented .lC1/–
dimensional manifold with @W DM , ˆW �1.W /! ƒ is a coefficient system for
W , and T D f�i W �i ,!ƒgm

iD1
is a collection of monomorphisms such that for each

1 � i � m, the following diagram commutes (after modifying ˆ by a change of
basepoint isomorphism)

(2)

�1.Mi/
�i - �i

�1.W /
?

.�i /�

ˆ - ƒ
?

\

�i
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where �i W Mi ! W is the inclusion map. We call the triple .W; ˆ; T / a stable
(or s-)nullbordism for .M;S/. We say that .M1;S1/ is stably (or s-)bordant to
.M2;S2/ if .M1 [

SM2;S1 [ S2/ is s-nullbordant. If, in addition, �i Š � for each
i D 1; : : : ;m, we say that M is stably (or s-)nullbordant over � or that .M; �/ is
stably (or s-)nullbordant.

We remark that stable bordism is an equivalence relation since if .Wi ; ˆi W �1.Wi/!

ƒi ; f�
i
i ; �

i
iC1
g/ is an s-nullbordism for .Mi [

SMiC1; f�i ; �iC1g/ (i D 1; 2) then
.W DW1[M2

W2; ˆW �1.W /!ƒ1��2
ƒ2; f�

0
1
; � 0

3
g/ is an s-nullbordism for .M1[

SM3; f�1; �3g/ when ˆDˆ1 �ˆ2 , and � 0
1

, � 0
3

are the obvious compositions.

The proof of the next lemma is similar to the proof of Hausmann’s Theorem 5.1 [20].

Lemma 3.4 Let M D M1 [ � � � [Mm be a disjoint union of closed, connected,
oriented l –dimensional manifolds and S D f�i W �1.Mi/! �ig

m
iD1

be a collection of
coefficient systems. If M is nullbordant then .M;S/ is s-nullbordant.

Proof If � D �1 � � � � � �m is the free product of the collection f�ig then there
is a natural inclusion �i ,! � for each i . By the homological coning construction
of W Thurston and W Kan, � is subgroup of an acyclic group ƒ� [21, Section 3].
For each i , let �i W �i ,!ƒ� be the inclusion of �i into the acyclic group ƒ� . The
collection f�i ı �ig gives us a map f W M ! K.ƒ� ; 1/ such that .fjMi

/� D �i ı �i

for each i and the following diagram commutes.

M
f - K.ƒ� ; 1/

W
?

�

- pt
?

Since K.ƒ� ; 1/ is acyclic, the map K.ƒ� ; 1/!pt induces an isomorphism on integral
homology, hence an isomorphism on oriented bordism theory. Since M D @W , this
implies that there is a compact manifold W 0 and map gW W 0!K.ƒ� ; 1/ such that
gj@W 0 D f . Hence .W 0;g�; f�ig/ is an s-nullbordism for M .

Since the l –dimensional oriented bordism group �or
l
.pt/ is 2–torsion when l 6� 0

mod 4, there is always an .lC1/–dimensional manifold W such that @W D 2M .
Hence we see that .2M; f�g/ is always s-nullbordant.

Geometry & Topology, Volume 12 (2008)



400 Shelly L Harvey

Corollary 3.5 If M is a closed, connected, oriented l –dimensional manifold with
l 6� 0 mod 4 and �W �1.M /!� is a coefficient system for M then there is an integer
r 2 f1; 2g such rM is s-nullbordant over � .

In this paper, we will often assume that M is a 3–dimensional manifold. Since
every closed, oriented 3–dimensional manifold is the boundary of a compact, oriented
4–dimensional manifold, .M; �/ is s-nullbordant for any �W �1.M /! � .

For a .4k�1/–dimensional closed, oriented manifold M along with homomorphism
�W �1.M /! � , we define

�.M; �/ WD
1

r
.� .2/.W; ƒ/� �.W //

for .W; ˆ/ any s-nullbordism for .rM; �/ where �.W / is the ordinary signature of
W . By the following lemma, this definition only depends on M and � .

Lemma 3.6 �.M; �/ is independent of the choice of .W; ˆ; T /.

Proof Let .W; ˆ; T / and .W 0; ˆ0; T 0/ be two s-nullbordisms for .r1M; f�g/ and
.r2M; f�g/ respectively. Assume that r1 D r2 D 1. Let C DW [W 0 be the closed,
oriented 4k –manifold obtained by gluing W and W 0 along M . Then there is a
coefficient system for C,

ˆ�ˆ0W �1.C /D �1.W /��1.M / �1.W
0/!ƒ��1.M /ƒ

0
Dƒ�� ƒ

0

such that ˆ �ˆ0.˛/D iƒ.ˆ.˛// for all ˛ 2 �1.W / where iƒW ƒ!ƒ �� ƒ
0 sends

� 2 ƒ to the word � 2 ƒ �� ƒ0 (similarly for ˛ 2 �1.W
0/). Since � W � ! ƒ and

� 0W �!ƒ0 are monomorphisms, the maps iƒ and iƒ0 are monomorphisms. Hence by
Remark 3.2 (3), � .2/.W; ƒ/D� .2/.W; ƒ��ƒ

0/ and � .2/.W 0; ƒ0/D� .2/.W; ƒ��ƒ
0/:

Moreover, by Remark 3.2 (4)

(3) � .2/
ƒ��ƒ0

.C /� �.C /D .� .2/
ƒ��ƒ0

.W /� �.W //� .� .2/
ƒ��ƒ0

.W 0/� �.W 0//:

Since C is closed, by Remark 3.2 (5), the left hand side of (3) is 0. Therefore,
� .2/
ƒ
.W /� �.W /D � .2/

ƒ0
.W 0/� �.W 0/. The proofs when ri ¤ 1 are similar and are

not included since most of our applications focus on 3–manifolds where r can be
assumed to be 1.

Note that we may occasionally write �.M; �/ as ��.M / or �.M; �/ when the map �
is clear. As a result of Remark 3.2 (3), ��.M / only depends on the image of �1.M /

in � .
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Lemma 3.7 (� –induction) Suppose M is a closed, oriented .4k�1/–dimensional
manifold and �W �1.M / ! � is a coefficient system for M . If �W � ,! � 0 is a
monomorphism then �.M; �/D �.M; � ı�/.

Definition 3.8 For each 0�n�! and .4k�1/–dimensional closed, oriented manifold
M , we define the n–th order �–invariant of M by

�n.M / WD �.M; �nW G � G=G.nC1/

H
/ 2R

where G D �1.M /.

We will now define the n–th order �–invariant of a link in S3 . First, suppose L� S3

is an m–component link in S3 with linking numbers 0. Let N.L/ be a neighborhood
of L in S3 .

Proposition 3.9 Let L� S3 be a link for which all the pairwise linking numbers are
zero and G D �1.S

3�N.L//. The longitudes of L lie in G.!/

H .

Proof Let �i be the longitude of the i –th component of L. We will show that for each
n � 1, �i 2 G.n/

H . Since the linking numbers of L are zero, �i 2 G.1/

H . Suppose that
�i 2G.n/

H , for some n� 1. Since the longitudes lie on the boundary tori, they commute
with the meridians xi . Hence for each i , Œxi ; �i �D 1 is a relation in G . The relation
Œxi ; �i �D 1 in G creates the relation �i.1�xi/D 0 in the module G.n/

H =ŒG.n/

H ;G.n/

H �,
showing that �i 2G.nC1/

H since xi ¤ 1 in G=G.n/

H .

By contrast, the longitudes rarely lie in G! , much less lie in G.!/ , the former being
true if and only if all of Milnor’s x�–invariants are zero. The Borromean Rings and the
Whitehead links provide examples where the longitudes lie in G.!/

H
but not in G! .

As a corollary, performing 0–framed surgery on a link with linking numbers 0 does
not change the quotient of the link group by a term of its torsion-free derived series.

Corollary 3.10 (see Proposition 2.5 of [9]) Suppose L� S3 is a link with linking
numbers 0. Let ML be the closed 3–manifold obtained by performing 0–framed
surgery on the components of L and i W S3�N.L/!ML be the inclusion map. Then
for each n� 1,

�1.S
3�N.L//

�1.S3�N.L//.n/
H

Š
�!

�1.ML/

�1.ML/
.n/

H

:

Proof The kernel of i� is the normal subgroup generated by the longitudes. But by
Proposition 3.9 above, the longitudes lie in �1.S

3�N.L//.n/H for all n� 0.
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Hence it makes sense to make the following definition of �n for a link. Note that the
following definition does not require that the linking numbers be 0.

Definition 3.11 Let L be a link in S3 . For each 0� n� ! we define

�n.L/D �

 
ML; �nW �1.ML/� �1.ML/

�1.ML/
.nC1/

H

!
:

As an easy example, we show that �n.#m
iD1

S1 � S2/ D �n.trivial link/ D 0 for all
0� n� ! .

Example 3.12 Let W be the boundary connected sum of m copies of S1�D3 . Then
@W D #m

iD1
S1 �S2 . Moreover, the inclusion i W @W !W induces an isomorphism

on �1 . Let �n D F=F .nC1/

H
where F D �1.W / is the free group with m generators.

By definition, �n.@W / D � .2/
�n
.W /� �.W /. Since W is homotopy equivalent to a

1–complex, H2.W IZ�n/D 0. Hence, � .2/
�n
.W /D �.W /D 0. In particular, we have

�n.#m
iD1

S1 �S2/D �n.trivial link/D 0.

The most important and easiest example to understand is �0 for a knot in S3 . In this
case, �0 is determined by the Levine–Tristam signatures of the knot.

Example 3.13 Let K be a knot in S3 . By Lemma 5.4 of [11] and Lemma 5.3 of [12],

�0.K/D

Z
S1

�!.K/d!

where �!.K/ is the Levine–Tristram signature of K at ! 2 S1 and the circle is
normalized to have length 1. Since ˇ1.MK /D 1, the Alexander module of MK is
torsion [11, Proposition 2.11]. Therefore, for n � 0, �1.MK /

.nC1/

H D �1.MK /
.1/ ;

hence �n.K/D �0.K/.

A nice property of �n is that it is additive under the connected sum of manifolds. To
prove this, we show that the torsion free derived series behaves well under the inclusion
A!A�C B for suitable C . We start with a lemma.

Lemma 3.14 Let �W C !G be a homomorphism. If ˇ1.C /D 0 then the image of �
is contained in G.!/

H .

Proof We will show by induction on n that �.C /�G.n/

H for all n� 0. This is trivial
when n D 0. Suppose for some n � 0, that �.C / � G.n/

H . Then � induces a map
��W C=ŒC;C � ! G.n/

H =ŒG.n/

H ;G.n/

H � ! G.n/

H =G.nC1/

H . Since ˇ1.C / D 1, C=ŒC;C � is
Z–torsion. However, G.n/

H =G.nC1/

H is Z–torsion free, hence �� is trivial which implies
�.C /�G.nC1/

H .
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Proposition 3.15 Let A�C B be the amalgamated product of A and B where C ,!A

and C ,! B are monomorphisms and ˇ1.C /D 0. For each 0� n� ! , the inclusion
i W A!A�C B induces a monomorphism

(4) i�W
A

A.n/

H

,!
A�C B

.A�C B/.n/
H

:

Proof Let G D A �C B . For each n � 0, we have the following Mayer–Vietoris
sequence for group homology with KGn –coefficients

!H1.C IKGn/!H1.AIKGn/˚H1.BIKGn/!H1.GIKGn/!

where the coefficients systems for A;B;C and G are the obvious ones. By Lemma
3.14, the image of C !G � Gn is trivial hence H1.C IZGn/ŠH1.C IZ/˝Z ZGn .

Since Q is a flat Z–module, KGn is a flat ZGn –module, and ˇ1.C /D 0, it follows
that H1.C IKGn/ŠH1.C IQ/˝QKGnD 0. Here, the map Q!KGn is induced by
1 ,! Gn . Thus i�W H1.AIKGn/!H1.GIKGn/ is a monomorphism. By Theorem
2.4, i induces a monomorphism A=A.n/

H ,! G=G.n/

H as desired. Since A=A.n/

H ,!

G=G.n/

H for all n� 0, it follows immediately from the definition of A.!/

H and G.!/

H that
A=A.!/

H ,!G=G.!/

H .

Proposition 3.16 Let k � 1 and let M1 and M2 be closed, oriented, connected
.4k�1/–dimensional manifolds. For each 0� n� ! ,

�n.M1#M2/D �n.M1/C �n.M2/:

Proof Let W be the 4k –manifold obtained by adding a 1–handle to .M1tM2/� I

along some D4k�1tD4k�1� .M1tM2/�f1g and GD�1.W /. Then @W DM1t

M2tM1#M2 so � .2/.W;Gn/��.W /D �.M1;Gn/C�.M2;Gn/��.M1#M2;Gn/.
Since the inclusion i W M1#M2!W induces an isomorphism on �1 , by Lemma 3.7,
�n.M1#M2/D �.M1#M2;Gn/. Moreover G D �1.M1/��1.M2/ and the inclusion
map i1W M1!W induces the inclusion map .i1/�W �1.M1/! �1.M1/��1.M2/ on
�1 . Therefore, by Proposition 3.15, .i1/�W �1.M1/n!Gn is a monomorphism for all
n� ! . Thus, by Lemma 3.7, �n.M1/D �.M1;Gn/ (similarly for M2 ).

To finish the proof, it suffices to show that � .2/.W;Gn/� �.W /D 0. To see this, note
that .W;M1#M2/ is homotopy equivalent to .W 0;M1#M2/ where W 0 is obtained by
attaching a .4k�1/–dimensional cell to M1#M2 . Therefore, H2k.W;M1#M2Iƒ/D

0 for any coefficient system �W �1.W / ! � and left Z� –module ƒ. Therefore,
H2k.W;M1#M2IUGn/D 0 and hence � .2/.W;Gn/D �.W /D 0.
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4 Homology cobordism

Our primary interest in this paper is the study of manifolds up to (rational) homology
cobordism. We begin with a definition.

Definition 4.1 Let M m
1

and M m
2

be oriented, closed m–dimensional manifolds. We
say that M1 is Q–homology cobordant (respectively homology cobordant) to M2

if there exists a oriented, .mC1/–manifold W mC1 such that @W DM1 [
SM2 , and

the inclusion maps ij W Mj ! W induce isomorphisms on H�.�IQ/ (respectively
H�.�IZ/). In this case we write M1�QH M2 (respectively M1�ZH M2 ) and define
the set of rational (respectively integral) homology cobordism classes of m–dimensional
manifolds to be Hm

Q D fM
mg=�QH (respectively Hm

Z D fM
mg=�ZH ).

We will show that �n is an invariant of Q–homology cobordism. Since two manifolds
that are homology cobordant are necessarily rationally homology cobordant, �n is an
invariant of homology cobordism.

Theorem 4.2 If M 4k�1
1

is Q–homology cobordant to M 4k�1
2

.k � 1/ then

�n.M1/D �n.M2/:

Proof Let W be a 4k –dimensional manifold such that @W DM1[
SM2 , ij W Mj !

W be the inclusion maps, E D �1.W /, and Gj D �1.Mj / for j D 1; 2. Since
.ij /�W Hk.Mj IQ/!Hk.W IQ/ is an isomorphism for kD1; 2, .ij /�W H1.Gj IQ/!
H1.EIQ/ is an isomorphism and .ij /�W H2.Gj IQ/!H2.EIQ/ is surjective. Hence
by Theorem 4.1 of [9], for each n� 0, the inclusion maps induce monomorphisms

.ij /�W
Gj

.Gj /
.nC1/

H

,!
E

E.nC1/

H

:

Let �n D E=E.nC1/

H then we have coefficient systems . ǰ /nW Gj ! �n defined by
.ij /� ı .�j /n where .�j /nW Gj � Gj=.Gj /

.nC1/

H is the quotient map. By Remark
3.2 (3), we have �n.Mj /D �.Mj ;Gj ! �n/. Therefore

�n.M1/� �n.M2/D �.@W; �n/D �
.2/.W; �n/� �.W /:

To finish the proof, we show � .2/.W; �n/D �.W /D 0. Since .i1/�W H2.M1IQ/�
H2.W IQ/ is surjective, the second homology of W comes from the boundary. Thus
the intersection of any two classes is H2.W IQ/ is zero. In particular �.W / D 0.
Let Kn be the classical right ring of quotients of Z�n . Since Hi.W;M1IQ/D 0 for
i D 0; 1; 2 then by Proposition 2.10 of [11], Hi.W;M1IKn/D 0 for i D 0; 1; 2. By
Remark 3.2 (1), � .2/.W; �n/D 0.
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Hence, for each n� 0 and mD 4k � 1 with k � 1 we have a map

�nW Hm
Q!R:

Note that if L1 and L2 are concordant links then their 0–surgeries are homology
cobordant hence �n.L1/D �n.L2/. Moreover, �n of the trivial link is 0 as in Example
3.12.

Corollary 4.3 For each n� 0, �n is a concordance invariant of links and is 0 for slice
links.

We will use �n to further investigate the structure of concordance classes of links in
Section 6.

5 Nontriviality of �n

We will show that the �n are highly nontrivial. To do this we will show that the image
of �nW H3

Q!R in R is dense and is an infinitely generated subset of R. Before we
can do this, we must define a family of examples of 3–manifolds on which we can
calculate �n .

5.1 Examples: genetic modification

We describe a procedure wherein one starts with a 3–manifold M (respectively a
link L in S3 ) and “infects” M (respectively L) along a curve � in M (respectively
S3 �L) with a knot K in S3 to obtain a new 3–manifold M.�;K/ with the same
homology as M (respectively link L.�;K/ in S3 ). This construction is a specific
type of satellite constructions which has been dubbed genetic infection (see Section 3
of [12]).

We first describe the construction for a general 3–manifold. Let M be a compact,
connected, oriented 3–manifold, � be a curve embedded in M , and K be a knot in
S3 . Denote by N.�/ and N.K/ a tubular neighborhood of � in M and K in S3

respectively. Let �� and �K be the meridians of � and K respectively, and let l� and
lK be the longitudes of � and K respectively. Note that if � is not nullhomologous then
the longitude of � is not well-defined. In this case, we choose l� to be an embedded
curve on N.�/ that is isotopic to � in M and intersects �� geometrically once. Define

(5) M.�;K/D .M �N.�//[f .S
3
�N.K//
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where f W @.S3�N.K//! @.M �N.K// is defined by f�.�K /D l�1
� and f�.lK /D

�� . If � is not nullhomologous, then there is a choice of longitude for � and the
homeomorphism type of M.�;K/ will depend on this choice. Since H�.S

3�N.K//
is independent of K , an easy Mayer–Vietoris argument shows that M and M.�;K/

have isomorphic homology groups.

Now, consider the case when M DS3�N.L/ where L is an m–component link in S3

and � is a curve in S3�N.L/� S3 . Even in the case that � is not nullhomologous in
H1.S

3�N.L// there is still a well defined longitude l� for � since � is nullhomologous
in S3 . By choosing this longitude, we have a well-defined manifold M.�;K/. We
now further assume that � bounds an embedded disk D in S3 . It is well known that in
this case, M.�;K/ is homeomorphic to S3�N.L.�;K// where L.�;K/ is another
m–component link in S3 . Moreover, one can check that L.�;K/ can be obtained
by the following construction. Seize the collection of parallel strands of L that pass
through the disk D in one hand, just as you might grab some hair in preparation for
braiding. Then, treating the collection as a single fat strand, tie it into the knot K .
Note that in the special case that � is a meridian of the i –th component Li of L then
L.�;K/ is the link obtained adding a local knot K to Li .

Remark 5.1 If L is a boundary link in S3 then L.�;K/ is also a boundary link in
S3 . Hence T .�;K/ is always a boundary link where T is the trivial link.

Remark 5.2 Let ML be the result of performing 0–framed surgery on a link L in
S3 with all linking numbers 0 and let � be a curve in S3�N.L/�ML that bounds
an embedded disk in S3 . Then ML.�;K/DML.�;K / .

Example 5.3 (Iterated Bing doubles of K ) Let T be the trivial link with 2 compo-
nents and let �bing be the curve in Figure 1. Then �bing bounds a disk in S3 . L.�;K/

is the link in Figure 2 and is more commonly known as the (untwisted) Bing double of
K , BD.K/. We note that �bing 2 F .1/�F .2/ where F D �1.S

3�N.T //. Moreover,
any (untwisted) iterated Bing double of K can be obtained as T .�;K/ where T is a
trivial link with m� 2 components and � 2 F .n/�F .nC1/ for some n� 1.

We now construct a cobordism C DC.�;K;W / between M and M.�;K/ for which
the inclusion maps will behave nicely modulo the torsion-free derived series of their
respective fundamental groups. Recall that MK , the 0–surgery on K in S3 , is defined
as MK D .S

3�N.K//[q ST where STDS1�D2 and qW @.ST/! @.S3�N.K// is
defined so that q�.fptg�@D2/D lK . By [12, p 118], MK bounds a compact, oriented
4–manifold W such that �.W /D 0 and �1.W /Š Z, generated by ��.�K / where
�W MK !W is the inclusion map. We have an exact sequence �2.W /!H2.W /!
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�bing

Figure 1: �bing 2 S3�ftrivial linkg

K

Figure 2: Bing double of K

H2.�1.W //. Since �1.W /ŠZ, the last term is zero, and the first map is surjective.
Hence H2.W / D image.�2.W / ! H2.W //. Using the 4–manifold W, we can
construct a cobordism C DC.�;K;W / between M and M.�;K/ as follows. Glue W ,
as above, to M�I by identifying ST�MK D@W to N.�/DD2�S1�M�f1g so that
l�1
� is identified with �K and �� is identified to lK . It follows that @C DMtM.�;K/.

Let i W M ! C and j W M.�;K/! C be the inclusion maps.

We use this cobordism to show that the difference between �i.M / and �i.M.�;K//

depends only on �0.K/ and maxfn j � 2 .�1.M //.n/H g (see Theorem 5.8 below). We
begin with some algebraic lemmas that will be employed in the proof of Theorem 5.8.

Lemma 5.4 i�W �1.M /! �1.C / is an isomorphism.

Proof �1.W / Š Z which is generated by ��.�K /. Moreover, �K generates the
group �1.W \ .M �I//D �1.��D2/. Hence, by the Seifert–Van Kampen Theorem,
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�1.M � I/! �1.C /, induced by the inclusion map, is an isomorphism. Therefore i�
is an isomorphism.

In particular, the inclusion map induces isomorphisms between �1.M /=�1.M /.i/H and
�1.C /=�1.C /

.i/

H for all i . In order to show that j induces an isomorphism between
�1.M.�;K//=�1.M.�;K//.i/H and �1.C /=�1.C /

.i/

H for all i , we appeal to Theorem
2.4 and Proposition 2.5. The next two lemmas will guarantee that the hypotheses of
Proposition 2.5 are satisfied.

Lemma 5.5 j�W �1.M.�;K//! �1.C / is an epimorphism.

Proof Let ˛ be a curve in �1.C /. By Lemma 5.4, i� is an isomorphism. Hence ˛ can
be represented by a curve in M . Moreover, by general position, we can assume ˛ misses
N.�/. Push ˛ into M �f1g to get a curve ˇ in .M �f1g/� .N.�/�f1g/�M.�;K/

such that j�.ˇ/D ˛ .

Lemma 5.6 j�W �1.M.�;K//! �1.C / induces an isomorphism on H1.�IZ/ and
an epimorphism on H2.�IZ/.

Proof Let G D �1.M.�;K// and E D �1.C /. Since j induces an epimorphism on
�1 , j induces an epimorphism on H1.�/. The inclusion l W M �N.�/!M.�;K/

induces a epimorphism on H1.�IZ/. Moreover, the inclusion l 0W M �N.�/!M

induces an epimorphism on H1.�IZ/ and the kernel of l 0� is the subgroup generated
by �� 2H1.M �N.�//.

Consider the following commutative diagram where all of the maps are induced from
inclusion maps:

H1.M �N.�//
l 0�-- H1.M /

H1.M.�;K//

??

l�

j�-- H1.C /:
?

Š
i�

Suppose ˛ 2 H1.M.�;K// and j�.˛/ D 0. Since l� is surjective, there exists  2
H1.M �N.�// such that l�. /D ˛ . Hence i�.l

0
�. //D j�.l�. //D 0. Since i� is

injective,  2ker.l 0�/ so  is a multiple of �� . However, l�.��/D0 since in M.�;K/,
�� is identified with lK , which bounds a surface in S3�K �M.�;K/. Therefore
j�W H1.M.�;K// ! H1.C / is a monomorphism. Since H1.M.�;K// D H1.G/

(similarly for E ), j�W H1.G/!H1.E/ is an isomorphism.
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Let ˛ 2H2.E/, then there exists ˇ 2H2.C / such that k.ˇ/D ˛ where kW H2.C /!

H2.E/ is the map in the exact sequence

�2.C /!H2.C /
k
�!H2.E/! 0:

By a Mayer–Vietoris argument, we see that H2.C /ŠH2.W /˚H2.M � I/ (in the
obvious way). Since H2.W /D im.�2.W /! H2.W // and any element of �2.W /

goes to zero under k , we can assume that ˇ 2H2.M �I/˚f0gŠH2.M /. Let Sˇ be
a surface in M representing ˇ . We will construct a surface S 0

ˇ
�M.�;K/ such that

k.j�.ŒS
0
ˇ
�//D k.i�.ŒSˇ �//D ˛ . This will complete the proof since k ı j� D j� ı k 0

where k 0W H2.M.�;K//� H2.G/.

We can assume that Sˇ intersects N.�/ in finitely many disks Di . To construct S 0
ˇ

,
remove each of these disks and replace them with a copy of a chosen seifert surface
for K in S3�K �M.�;K/ oriented according the signed intersection of � with Sˇ .
Let F be the surface in W � C obtained by gluing a disk in .M �f1g/\W whose
boundary is �� with a copy of the chosen seifert surface for K . Since H2.�1.W //D0,
k.ŒF �/ is trivial in H2.E/. Moreover ŒS 0

ˇ
�DmŒF �C ŒSˇ � in H2.C / for some m so

k.j�.ŒS
0
ˇ
�//D k.i�.ŒSˇ �//.

Note that MK D @W � C . For each i � 0, let �i W �1.MK /! �1.C /=�1.C /
.iC1/

H
be

the composition of the map induced by inclusion �1.MK /! �1.C / and the quotient
map �1.C /! �1.C /=�1.C /

.iC1/

H
.

Lemma 5.7 If �i W �1.MK /! �1.C /=�1.C /
.iC1/

H
is the homomorphism as described

above then

Im.�i/Š

�
f1g 0� i � n� 1I

Z i � n:

Proof Let ED�1.C /. Recall that �1.MK /Š�1.S
3�K/=hlK i where lK is the lon-

gitude of K . Hence every element of �1.MK / can be represented by ˛D
Q

i gi�K g�1
i

where gi 2 �1.S
3 �K/ and �K is a fixed meridian of K . Let � W �1.MK /! E

be induced by the inclusion of MK into C . Since �K is identified to l�1
� in

E , we see that �.˛/ D
Q

i �.gi/i�.l�/
�1�.gi/

�1 . Moreover, since l� 2 P .n/

H and
P=P .iC1/

H ŠE=E.iC1/

H for all i , �.˛/ 2E.iC1/

H for 0� i � n�1. Therefore the image
of �i is trivial for 0� i � n� 1.

We will prove that the image of �i is Z for i � n by induction on i . First we prove this
is true for i D n. Since �.�1.MK //�E.n/

H , �.Œ�1.MK /; �1.MK /�/� ŒE
.n/

H ;E.n/

H ��

E.nC1/

H . Hence we have a well-defined map

x� W ZŠ �1.MK /=�1.MK /
.1/
!E=E.nC1/

H :
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Since l� 62 P .nC1/

H and P=P .nC1/

H ŠE=E.nC1/

H , we have �.�K /D i�.l
�1
� / 62 E.nC1/

H .
Therefore x� is nontrivial. Moreover, since �.�1.MK // � E.n/

H , the image of x� is
contained is E.n/

H =E.nC1/

H which is Z–torsion free. It follows that the image of �n is
isomorphic to Z.

To finish the induction, assume that the image of �i is isomorphic to Z for some
i � n. Let A D �1.MK /; then by Example 3.13, A=A.jC1/

H Š Z for all j � 0.
By assumption, � induces a monomorphism ��W A=A

.iC1/

H ,!E=E.iC1/

H . Thus, by
Proposition 2.2, � induces a map ��W A=A.iC2/

H !E=E.iC2/

H . Since A.iC1/

H DA.iC2/

H ,
the map ��W A=A.iC2/

H !E=E.iC2/

H is a monomorphism. Therefore the image of �iC1

is Z.

Theorem 5.8 Let M.�;K/ be as defined in .5/ and P D�1.M /. If �2P .n/

H
�P .nC1/

H

for some n� 0 then

�i.M.�;K//� �i.M /D

�
0 0� i � n� 1I

�0.K/ i � n:

Before proving Theorem 5.8, we establish two easy corollaries.

Corollary 5.9 Let � be a embedded curve in #m
iD1

S1 �S2 that is nontrivial in F D

�1.#m
iD1

S1 �S2/. If K is a knot with �0.K/¤ 0 then M.�;K/ is not Q–homology
cobordant to #m

iD1
S1 �S2 .

Proof Since F is a free group, F .k/

H D F .k/ for all k � 0 and F .!/ D f1g. Therefore
� 2 F .n/ � F .nC1/ for some n � 0. By Theorem 5.8, �n.M.�;K// D �0.K/ C

�n.#m
iD1

S1 �S2/D �0.K/. Thus, if K is a knot with �0.K/¤ 0 then M.�;K/ is
not Q–homology cobordant to #m

iD1
S1 �S2 .

Corollary 5.10 Suppose K is a knot in S3 with �0.K/¤ 0. Then no iterated Bing
double of K is slice.

Proof Any iterated Bing double of K can be obtained as T .�;K/ where � is a
nontrivial commutator of length mC 1 where m is the number of components of
T .�;K/ [6]. Therefore, � is a nontrivial element in F .n/=F .nC1/ for some n � 1

where F D �1.T /. By Theorem 5.8, �n.T .�;K//D �0.K/¤ 0. Hence T .�;K/ is
not slice.

Subsequent to our work, it has been shown that if the Bing double of K is slice then
K is algebraically slice [4].

We will now prove Theorem 5.8.
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Proof of Theorem 5.8 Let W be as defined before, V be an open neighborhood of
MK D @W in W , WV D W � V , and CV D C �WV where C D C.�;K;W / is
as described in the discussion preceding Lemma 5.4. Then V is homeomorphic to
MK � Œ0; 1� and CV can be obtained by gluing M � Œ0; 1� to MK � Œ0; 1� where ��D2

is identified to STDD2�S1 in MK . It follows that CV has 3 boundary components;
in particular, @CV DM tM.�;K/tMK .

M � f0g

M.�;K/ MK

Figure 3: The 4k –manifold CV with @CV DM tM.�;K/tMK

Let G D �1.M.�;K//, E D �1.C /, and �i DE=E.iC1/

H for i � 0. Since CV � C ,
there is an obvious coefficient system �1.CV / ! �i (similarly for M , M.�;K/,
and MK ). By Lemmas 5.4, 5.5 and 5.6, Theorem 2.4, and Proposition 2.5, the maps
i�W P=P

.iC1/

H ! �i and j�W G=G.iC1/

H ! �i are isomorphisms for all i � 0. Therefore,
�i.M /D �.M; �i/ and �i.M.�;K//D �.M.�;K/; �i/. Hence we have

(6) �i.M /� �i.M.�;K//C �.MK ; �i/D �
.2/.CV ; �i/� �.CV /

for all i � 0.

Since the abelianization of �1.MK / is Z, there is a unique surjective homomorphism
�1.MK /� Z up to isomorphism. Therefore, by Lemma 5.7 and Lemma 3.7 we have
�.MK ; �i/D �0.MK / for all i � n, and �.MK ; �i/D 0 for 0� i � n� 1.

To finish the proof, we will show that � .2/.CV ; �i/� �.CV /D 0 for all i � 0. Since
U�i is a flat Z�i –module it suffices to show that the map induced by the inclusion
H2.@CV IZ�i/!H2.CV IZ�i/ is surjective for �1� i (recall that ��1 D f1g/.

Recall that CV DMK � I [��D2 M � I . Consider the Mayer–Vietoris sequence

!H2.MK � I IZ�i/˚H2.M � I IZ�i/!H2.CV IZ�i/!H1.��D2
IZ�i/

!H1.M � I IZ�i/˚H1.MK � I IZ�i/:
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By Lemma 5.7, if i � n� 1 then MK lifts to the �i –cover hence the homology group
H1.MK �I IZ�i/ŠZ�i is generated by �K . Moreover, in this case, � lifts to the �i –
cover and H1.��D2IZ�i/!H1.MK IZ�i/ is an isomorphism. Therefore H2.MK�

I IZ�i/˚H2.M �I IZ�i/!H2.CV IZ�i/ is surjective for i � n�1. If i � n, then
the image of �1.��D2/ in �i is Z by Lemma 5.7. Hence H1.��D2IZ�i/ D 0.
Thus for i � n we have that H2.MK � I IZ�i/˚H2.M � I IZ�i/!H2.CV IZ�i/

is surjective. Thus H2.@CV IZ�i/!H2.CV IZ�i/ is surjective for all i � �1.

5.2 Nontriviality of examples

For each knot K in S3 , there exists a degree one map fK W S
3�K! S4�T (where

T is the unknot) that induces an isomorphism on homology with Z coefficients and
fixes the boundary. Hence, there is a degree one map xfK W M.�;K/!M.�;T /DM

that induces an isomorphism on H.�IZ/. Recall that Hm
Q is the set of Q–homology

cobordism classes of closed, oriented m–dimensional manifolds. For a fixed closed,
oriented m–dimensional manifold M , we define Hm

Q.M /�Hm
Q as follows: ŒN 0� 2

Hm
Q.M / if there exists an N such that ŒN � D ŒN 0� 2 Hm

Q and there exists a degree
one map f W N !M that induces an isomorphism on H�.�IQ/. By Proposition
3.16, �n is additive under the connected sum of manifolds. Therefore the images of
�nW Hm

Q.M /!R and �nW Hm
Q!R are subgroups of R.

Theorem 5.11 Let M be a closed, oriented 3–manifold, G D �1.M / and n� 0. If
G.n/

H =G.nC1/

H ¤ f1g then the image of �nW H3
Q.M /!R is (1) dense in R and (2) an

infinitely generated subgroup of R. In particular, the image of �nW H3
Q ! R is (1)

dense in R and (2) an infinitely generated subgroup of R .

Proof Let �2 < r < 2. By [3, Section 2], for all � > 0, there exists a knot Kr;� in
S3 such that ˇ̌̌̌Z

S1

�!.Kr;�/d! � r

ˇ̌̌̌
< �:

Here, �!.K/ is the Levine–Tristram signature of K at ! 2 S1 and the circle is
normalized to have length 1. By [11, Lemma 5.4], �0.MK /D

R
S1 �!.K/d! for any

knot K in S3 . Let � be a curve in M representing an element in G.n/

H �G.nC1/

H . Then
by Theorem 5.8, �n.M.�;K//D �0.MK /. Moreover, by the above remarks, there is
a degree one map from M.�;K/ to M hence r 2 �n.H3

Q.M //.

For arbitrary r 2R there exists a positive integer m such that r=m2 .�2; 2/. Let � > 0

and set �0 D �=m. As above, there exists a knot Kr=m;�0 such that j�0.MKr=m;�0
/�

r=mj < �0 . We remark that K1#K2 can be obtained as MK1
.�;K2/ where � is a

meridian of K1 in MK1
. Hence by Theorem 5.8, �0.MK1#K2

/D�0.MK1
/C�0.MK2

/
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(this can also be computed directly). Hence �0.MmK /Dm�0.MK / where mK is the
connected sum of K with itself m times. Thereforeˇ̌̌

�0.MmKr=m;�0
/� r

ˇ̌̌
Dm

ˇ̌̌
�0.MKr=m;�0

/� r=m
ˇ̌̌
<m�0 D �:

As before, it follows that r 2 �n.H3
Q.M //. This completes the verification that the

image of �n is dense in R.

By Proposition 2.6 of [12], there exists an infinite set fJi ji 2 ZCg of Arf invariant
zero knots such that f�0.MJi

/g is linearly independent over the integers. Therefore
f�n.M.�;Ji//g is an infinitely generated subgroup of R. Since �n.H3

Q.M // is an
abelian group that contains this subgroup, it is itself infinitely generated.

Let T be a trivial link. If L is a boundary link then, just as for a knot, there is a degree
one map S3�L to S3�T that fixes the boundary and induces an isomorphism on
homology. In particular, there is a degree one map from the 0–surgery on a boundary
link with m components to the connected sum of m copies of S1 �S2 that induces
an isomorphism on homology. Thus, for each m � 1, we can consider the subset
H3;b

Q .m/�H3
Q.#

m
iD1

S1 �S2/ defined by ŒN 0�2H3;b
Q .m/ if ŒN 0�D ŒN �2H3

Q where
N is 0–surgery on an m component boundary link in S3 . As before, for each n and
m, the image of �nW H3;b

Q .m/!R is a subgroup of R.

Corollary 5.12 For each n � 0 and m � 2, the image of �nW H3;b
Q .m/! R is (1)

dense in R and (2) an infinitely generated subgroup of R.

Proof Let M be the manifold obtained by performing 0–surgery on the trivial link
with m � 2 components. Then M D #m

iD1
S1 � S2 and �1.M / Š F.m/. Since

F .n/

H =F .nC1/

H D F .n/=F .nC1/ is nontrivial for n� 0, there exists an � 2 F .n/

H �F .nC1/

H .
We can assume that �2�1.S

3�T / where T is the trivial link in S3 since the inclusion
S3�T !M induces an isomorphism on �1 . Moreover, we can alter � by a homotopy
in S3�T to obtain a curve �0 that bounds a disk in S3 . Thus, as we showed in the proof
of Theorem 5.11, the image of �nW fM.�0;K/jK is a knot in S3g �H3;b

Q .m/!R is
dense in R and is an infinitely generated subgroup of R.

We will now show that the �n are independent functions. For each m� 2, let Vm D

ff W H3;b
Q .m/!Rg, be the vector space of functions from the set H3;b

Q .m/ to R and
V D ff W H3

Q!Rg be the vector space of functions from H3
Q to R.

Theorem 5.13 For each m� 2, f�ng
1
nD0

is a linearly independent subset of Vm . In
particular, f�ng

1
nD0

is a linearly independent subset of V .
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Proof Let ˛D r1�i1
C� � �Crk�ik

where ri are nonzero real numbers, �ij W H
3;b
Q .m/!

R and ij < ij 0 if j < j 0 . Suppose ˛ D 0. Let M be 0–surgery on the m–component
trivial link T in S3 and F D �1.M /. As in the proof of Corollary 5.12 above, for
each n � 0, there is a curve �n in S3 � T such that �n bounds a disk in S3 and
�n2F .n/

H �F .nC1/

H . For each n�0, let MnDM.�n;K/ for some K with �0.MK /¤0

(for example, let K be the right handed trefoil). By the remarks above Corollary 5.12,
Mn �H3;b

Q .m/. By Theorem 5.8, �i.Mn/D 0 for i � n�1 and �n.Mn/¤ 0. Hence
0D ˛.Mik

/D rk�ik
.Mik

/. Since �ik
.Mik

/¤ 0, rk D 0. This is a contradiction.

6 The grope and .n/–solvable filtrations

We now investigate the grope and .n/–solvable filtrations of the string link concordance
group (with m� 2 strands) first defined for knots by T Cochran, K Orr and P Teichner
in [11]. We will show that the function �n is a homomorphism on the subgroup
of boundary links and vanishes for .nC1/–solvable links. Using this, we will show
that each of the successive quotients of the .n/–solvable filtration of the string link
concordance group contains an infinitely generated subgroup (even modulo local
knotting). We will also show that a similar statement holds for the grope filtration of
the string link concordance group. The reason that we study string links instead of
ordinary links is that the connected sum operation for ordinary links is not well-defined.
Thus, in order to have a group structure on the set of links up to concordance, we must
use string links.

We begin by recalling some definitions. Recall that an m–component string link
(sometimes called an m–component disk link [25; 23]) is a locally flat embedding
f W
F

m I ! D3 of m oriented, ordered copies of I in D3 that is transverse to the
boundary and such that f jF

m @I
is the standard m–component trivial 0–link in S2 ,

j0W
F

m @I ! S2 . Two m–component string links f;g are concordant if there exists
a locally flat embedding F W

F
m I � I !D3 � I that is transverse to the boundary

and such that F jF
m I�f0g D f;F jF

m I�f1g D g and F jF
m @I�I D j0 � idI . The

concordance classes of m–component string links forms a group under stacking (see
Figure 5) which we denote by C.m/ (see [23] for more details). In the literature this
group is often denoted C.m; 1/ or CSL.m/. This group is known to be nonabelian
when m� 2 [23] and abelian when mD 1. Let B.m/ be the subgroup of boundary
disk links in C.m/.

If L is a string link then the closure of L, denoted by bL , is the oriented, ordered
m–component link in S3 obtained by adjoining to its boundary the standard trivial
string link (see Figure 4). A string link is equipped with a well-defined set of meridians
that we denote by �1; : : : ; �m .
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LD D yL

Figure 4: The string link L and its closure yL

6.1 .n/–Solvable filtration of C.m/

In [11, Definition 8.5, p 500] and [11, Definition 8.7, p 503], Cochran, Orr, and Teichner
define an .n/–solvable knot and link where n 2 1

2
N0 . We recall the definitions here.

We first recall the definition of an .n/–Lagrangian. Let M be a fixed closed, oriented
3–manifold. An H1 –bordism is a 4–dimensional spin manifold W with boundary
M such that the inclusion map induces an isomorphism H1.M /ŠH1.W /. For any
4–manifold W , let W .n/ denote the regular covering of W that corresponds to the
n–th term of the derived series of �1.W /. For each n� 0, one can define the quadratic
forms �n; �n on H2.W

.n// in terms of equivariant intersection and self-intersection
numbers of surfaces in W that lift to the cover W .n/ . If F is a closed, oriented,
immersed, and based surface in W that lifts to W .n/ then F is called an .n/–surface.
See [11, Chapter 7, pp 493–496] for the precise definitions.

Definition 6.1 Let W be an H1 –bordism such that �0 is a hyperbolic form.

(1) A Lagrangian for �0 is a direct summand of H2.W / of half rank on which �0

vanishes.

(2) An .n/–Lagrangian is a submodule L�H2.W
.n// on which �n and �n vanish

and which maps onto a Lagrangian of the hyperbolic form �0 on H2.W /.

(3) Let k�n. We say that an .n/–Lagrangian L admits .k/–duals if L is generated
by .n/–surfaces l1; : : : ; lg and there are .k/–surfaces d1; : : : ; dg such that
H2.W / has rank 2g and

�k.li ; dj /D ıij :
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We now define .n/–solvability for a 3–manifold or link in S3 .

Definition 6.2 Let M be a closed, oriented 3–manifold and n 2 N . M is called
.0/–solvable if it bounds an H1 –bordism W such that .H2.W /; �0/ is hyperbolic.
M is called .n/–solvable for n> 0 if there is an H1 –bordism W for M that contains
an .n/–Lagrangian with .n/–duals. The 4–manifold W is called an .n/–solution for
M . A link L in S3 is said to be .n/–solvable if the zero surgery on L is .n/–solvable.
A string link L 2 C.m/ is said to be .n/–solvable if yL is .n/–solvable.

Definition 6.3 Let M be a closed, oriented 3–manifold and n 2N0 . M is said to be
.n:5/–solvable if there is an H1 –bordism for M that contains an .nC1/–Lagrangian
with .n/–duals. The 4–manifold is called an .n:5/–solution. A link L in S3 is said to
be .n:5/–solvable if the zero surgery on L is .n:5/–solvable. A string link L 2 C.m/

is said to be .n:5/–solvable if yL is .n:5/–solvable.

Hence, for each m� 1, we can define a filtration of the string link concordance group

� � � � Fm
.n:5/
� Fm

.n/
� � � � � Fm

.0:5/
� Fm

.0/
� C.m/

by setting Fm
.n/

to be the set of .n/–solvable L 2 C.m/ for n 2 1
2
N0 . It is easy to

check that Fm
.n/

is a subgroup of C.m/ and in fact is a normal subgroup of C.m/ for
each m 2N and n 2 1

2
N0 .

When mD 1, C.1/ is the concordance group of knots which is an abelian group. It was
shown in [11] that C=F1

.0/
ŠZ2 given by the Arf invariant and C=F1

.0:5/
is J P Levine’s

algebraic concordance group which is isomorphic to Z1˚Z1
2
˚Z1

4
[24]. It was

also shown in [11; 12] that F1
.n/
=F1

.n:5/
for n D 1; 2 has infinite rank. Moreover, in

[13], Cochran and Teichner showed that for each n 2N , F1
.n/
=F1

.n:5/
is of infinite order.

However, it is still unknown whether F1
.n/
=F1

.n:5/
has infinite rank for n� 3.

For m � 2, we will show that for all n 2 N0 , Fm
.n/
=Fm

.nC1/
contains an infinitely

generated subgroup, the subgroup “generated by boundary links” defined as follows.
Define the .n/–solvable filtration of B.m/, the subgroup of boundary string links, by

(7) BFm
.n/
WD B.m/\Fm

.n/
:

Then for each n� 0, BFm
.n/
=BFm

.nC1/
is a subgroup of Fm

.n/
=Fm

.nC1/
. We will show that

the abelianization of BFm
.n/
=BFm

.nC1/
has infinite rank. It would be very interesting to

know whether BFm
.n/
=BFm

.n:5/
is infinitely generated. It would be even more interesting

to exhibit nontrivial links in BFm
.n:5/

=BFm
.nC1/

. To show that BFm
.n/
=BFm

.nC1/
is infinitely

generated, we show that �n is a homomorphism on the subgroup B.m/ and that �n

vanishes on .nC1/–solvable links. We begin with the latter.
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Theorem 6.4 If a 3–manifold M is .n/–solvable then for each .n/–solution W and
k � n, the inclusion i W M !W induces monomorphisms

i�W H1.M IK.�1.W /=�1.W /.k/
H
// ,!H1.W IK.�1.W /=�1.W /.k/

H
//;

i�W
�1.M /

�1.M /.kC1/

H

,!
�1.W /

�1.W /.kC1/

H

�k�1.M /D 0:and

Thus, if L 2 F.n/ then �k�1.L/D 0 for k � n.

Proof Let W be an .n/–solution for M , G D �1.M /, and E D �1.W /. We
will prove the result by induction on k . The result is clearly true for k D 0 (here
��1.M /D 0 for any M ). Assume the result is true for some k � n� 1.

Let W .kC1/

H be the regular cover of W corresponding to E.kC1/

H , the k –th term of the
torsion-free derived series of E . Since E.n/ �E.n/

H �E.kC1/

H , W admits a “torsion-
free .kC1/–Lagrangian” with “torsion-free .kC1/–duals.” Specifically, there are
intersection and self-intersection forms �H

kC1
and �H

kC1
on H2.W

.kC1/

H /. We project
the .n/–Lagrangian L and .n/–duals for L to H2.W

.kC1/

H / to get “torsion free .kC1/–
surfaces” l1; : : : ; lg; d1; : : : ; dg such that

�H
kC1.li ; lj /D 0 and �H

kC1.li ; dj /D ıij

for 1� i; j � g .

Recall that for a group E , EkC1 DE=E.kC1/

H . We will show that

fl1; : : : ; lg; d1; : : : ; dgg

is a ZEkC1 –linearly independent set in H2.W
.kC1/

H /. Suppose

0D

gX
iD0

mili C nidi

for some mi ; ni 2 ZEkC1 . Then applying �H
kC1

.lj ;�/ we get

0D

gX
iD0

mi�
H
kC1.lj ; li/C ni�

H
kC1.lj ; di/D nj

for 1 � j � g . We now apply �H
kC1

.�; dj / to the new equality 0 D
Pg

iD0
mili to

get mj D 0 for all 1� j � g . Therefore fli ; di j1� i � gg is a linearly independent
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set. Thus fl1; : : : ; lg; d1; : : : ; dgg generates a rank 2g free ZEkC1 –submodule of
H2.W

.kC1/

H /. Moreover, since

rankKEkC1
H2.W IKEkC1/� ˇ2.W /D 2g;

by Proposition 4.3 of [11], fl1; : : : ; lg; d1; : : : ; dgg generates H2.W IKEkC1/ as a
KEkC1 –module. In particular, H2.W IKEkC1/ is a free KEkC1 –module of rank 2g .

Consider the homomorphism xhW ;EkC1
W H2.W IKEkC1/!H2.W IKEkC1/

� defined
by replacing the coefficients Uƒ in Section 3 (1) with Kƒ where ƒDEkC1 . Since
xhW ;EkC1

.di/.lj /D�kC1.li ; dj /˝KEkC1Dıij and xhW ;EkC1
.li/.lj /D�kC1.li ; lj /˝

KEkC1 D 0 for 1� i; j � g , we can use the same argument as before to show that if
xhW ;EkC1

.
Pg

iD0
miliCnidi/D 0 then mi D ni D 0 for all 1� i �g . Hence xhW ;EkC1

is a monomorphism. However, since xhW ;EkC1
is a monomorphism between modules of

the same rank, xhW ;EkC1
is an isomorphism. In particular, the map H2.W IKEkC1/!

H2.W;M IKEkC1/ is surjective which implies that the map H1.M IKEkC1/ !

H1.W IKEkC1/ is a monomorphism. Hence, by Theorem 2.4,

(8) i�W
�1.M /

�1.M /.kC2/

H

,!
�1.W /

�1.W /.kC2/

H

is a monomorphism. Moreover, .W; �k W E!EkC1; i�W GkC1!EkC1/ is therefore
an s-nullbordism for .M; �k W G!GkC1/. By definition, �k.M /D � .2/.W;EkC1/�

�.W /.

Since �.W / D 0, to complete the proof, we show that � .2/.W;EkC1/ D 0. Re-
call that H2.W;M IKEkC1/ŠH2.M IKEkC1/

� Š .KEkC1/
2g where the isomor-

phism is given by the composition of the Poincare duality and Kronecker map. Thus
H2.W IKEkC1/!H2.W;M IKEkC1/ is a surjective map between finitely generated
KEkC1 –modules of the same rank; hence is an isomorphism. Since EkC1 is an
Ore domain, UEkC1 is flat as a right KEkC1 –module hence H2.W IUEkC1/ !

H2.W;M IUEkC1/ is an isomorphism. By naturality, the .kC1/–Lagrangian above
also becomes a metabolizer for hW ;EkC1

with UEkC1 coefficients. Thus, hW ;EkC1

is a nonsingular pairing with metabolizer so by Lemma 3.1, � .2/.W;EkC1/D 0.

We now show that �n is additive on boundary links. We begin with an algebraic lemma
that will be useful in the proof.

Lemma 6.5 Let A be a finitely related group, E be a finitely generated group and
i W A ,!E be a monomorphism that induces an isomorphism on H1.�IQ/. If there
is a retract r W E ! A then for each n � 0, both i and r induce an isomorphism
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i�W A=A
.n/

H ,! E=E.n/

H and r�W E=E
.n/

H ! A=A.n/

H respectively. Moreover, for each
n� 0,

rankK.E=E.n/
H
/
H1.EIK.E=E.n/

H
//D rankK.A=A.n/

H
/
H1.AIK.A=A.n/

H
//:

Proof Since r is a retract and i induces an isomorphism on H1.�IQ/, r induces an
isomorphism on H1.�IQ/ and a surjective map H2.�IQ/. Hence, by Theorem 4.1 of
[9] (see also Theorem 2.4 and Proposition 2.5 of this paper), r induces isomorphisms
r�W E=E

.n/

H ! A=A.n/

H for all n � 0. We will prove i induces monomorphisms
i�W A=A

.n/

H ,! E=E.n/

H by induction. This is clear when n D 0; 1. Assume that the
result holds for some n � 1, then by Proposition 2.2, i induces a homomorphism
inC1
� W A=A.nC1/

H !E=E.nC1/

H . Moreover, if we postcompose inC1
� with

r�W E=E
.nC1/

H

Š
�!A=A.nC1/

H
;

we get the identity. Hence inC1
� is an isomorphism. The last statement follows from

the last part of Theorem 2.4.

If L1 and L2 are m–component string links then L1L2 is the m–component string
link obtained by stacking L1 on top of L2 as depicted in Figure 5. This stacking
operation induces the multiplication in the group C.m/.

L1

L2

L1L2 D

Figure 5: The product of L1 and L2 , L1L2

Proposition 6.6 If L1;L2 2C.m/ and yL1; yL2 are boundary links then for each n� 0,

�n.L1L2/D �n.L1/C �n.L2/:

Proof If yL1 and yL2 are boundary links then 1L1L2 is also a boundary link. Let
M1 , M2 and M be the closed 3–manifolds obtained by performing 0–framed Dehn
surgery on yL1 , yL2 , and 1L1L2 respectively. Let M 0 be the 3–manifold obtained
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L2

L1

0 0 0

0 0 0

H)

L2

L1

0 0 0

0 0 0

0 0 0���
˛1 ˛m

c

Figure 6: The 3–manifolds M1#M2 and M 0

by performing 0–framed Dehn surgery along the curves ˛1; : : : ; ˛n in M1#M2 as in
Figure 6. We will show that M 0 is homeomorphic to M . To see this, we first isotope
the curve c in M 0 (by a “handle slide”) to obtain the 3–manifold on the left-hand side
of Figure 7. Note that by zLi , we mean the .mC1/–component string link obtained
from Li by adding a copy of the “first string” by doing a 0–framed pushoff. Then by
doing a slam-dunk [8, The Slam-Dunk Theorem, p 15] move on the middle surgery
diagram of Figure 7, we see that M 0 is homeomorphic to the 3–manifold on the
right-hand side of Figure 7. We continue this process until we arrive at the surgery
description of M 0 in Figure 8. Hence M 0 is homeomorphic to M .

Thus .M1#M2/t SM D @W where W is a 4–dimensional manifold that is obtained by
adding 0–framed 2–handles to .M1#M2/�I along the curves ˛1�f1g; : : : ; ˛m�f1g.
Let ED�1.W /, AD�1.M1/, BD�1.M2/ and �j

1
; : : : �

j
m be the standard meridians

of Lj included into Mj . Then

E ŠA�B=h�1
1 D �

2
1; : : : ; �

1
m D �

2
mi:

Recall that M1tM2tM1#M2D @W
0 where W 0 is obtained by adding a 1–handle to

.M1tM2/�I . Let V DW [M1#M2
W 0 then @V DM1tM2t

SM and the inclusion
map of W into V induces an isomorphism �1.V / Š �1.W /. Let i; j and k be the
inclusion maps of M1;M2 and M into V respectively and let �n DE=E.nC1/

H . To
complete the proof we will show that (1) i�W A!E (similarly for j ; k ) induces an
isomorphism A=A.nC1/

H ! �n and (2) �.V; �n/� �.V / D 0 for each n � 0. Thus,
�n.M1/C �n.M2/D �n.M /.

Geometry & Topology, Volume 12 (2008)



Homology cobordism invariants 421

L2

zL1

0 0 0

0
0
0

0 0 ��� 0

c

H)
Š

L2

zL1

0 0 0

0 0

0

0 ��� 0
0

H)
Š

L2

L1

0 0

0

0 0

0 ��� 0
slam-dunk

Figure 7

L2

L1

0 0 0

Figure 8: The 3–manifold M that is homeomorphic to M 0

We first prove (1). Let F D hx1; : : : ;xmi be the free group on m generators and
iBW F ! B and iAW F ! A be the inclusion maps of sending xi 7! �

j
i . Then

E Š A �F B . Since B is the fundamental group of 0–surgery on a boundary link,
there is a retract rBW B! F giving a retract r W E!A where the inclusion is i� as
above. Therefore, by Lemma 6.5, A=A.nC1/

H ! �n is a monomorphism for all n� 0.
The proof for B is the same as for A.

Let G D �1.M /. We will show that k� induces an isomorphism G=G.n/

H !E=E.n/

H

for each n � 0. Since A has a retract to F and iA induces an isomorphism on
H1 , by Lemma 6.5, rankKAn

H1.AIKAn/ D rankKFn
H1.F IKFn/ D m� 1 for all

n�0. Similarly, rankKAn
H1.AIKAn/D rankKEn

H1.EIKEn/. Hence, for all n�0,
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rankK�n
H1.EIK�n/Dm� 1. Since G is also the fundamental group of 0–surgery

on a boundary link, rankKGn
H1.GIKGn/Dm� 1.

We show by induction on n that k�W G!E induces an isomorphism H1.GIKEn/!

H1.EIKEn/ for all n� 0. First, E DG=hŒ�i ;gi �i where �i are the given meridians
for the string link L1L2 included into G . Hence H1.GIKE0/! H1.EIKE0/ is
an isomorphism. Now, assume that H1.GIKEn/!H1.EIKEn/ is an isomorphism
for all k � n. By Theorem 2.4, G=G.nC1/

H ! E=E.nC1/

H is an isomorphism. Hence,
rankKEnC1

H1.GIKEnC1/D rankKGnC1
H1.GIKGnC1/Dm�1. Since k�W G!E

is surjective, k induces a surjective map H1.GIKEnC1/� H1.EIKEnC1/ between
KEnC1 –modules of the same rank; hence is an isomorphism. Thus, for each n� 0,
G=G.n/

H !E=E.n/

H is an isomorphism by Theorem 2.4.

To prove (2), note that there is an exact sequence coming from the long exact sequence
of the pair .W;M�/ with coefficients in K.�n/

0! Im.˛/!H2.W;M�/!H1.M�/!H1.W /!H1.W;M�/! 0

where M� D MA [MB and ˛W H2.W / ! H2.W;MA [MB/. Since W is ob-
tained by adding a 1–handle and m 2–handles to M� � I , rankK� H2.W;M�/�

rankK� H1.W;M�/Dm�1. Since rankK� H1.W /Dm�1 and rankK� H1.M�/D

2m� 2, it follows that rankK� Im.˛/D 0. Hence H2.M�/!H2.W / is a surjective
homomorphism.

Corollary 6.7 For each n� 0 and m� 1, �nW B.m/!R is a homomorphism.

We now establish the main theorems of this paper.

Theorem 6.8 For each n � 0 and m � 2, the abelianization of BFm
.n/
=BFm

.nC1/

has infinite rank. In particular, for m � 2, BFm
.n/
=BFm

.nC1/
is an infinitely generated

subgroup of Fm
.n/
=Fm

.nC1/
.

Proof Let T be the m–component trivial link in S3 with m � 2. Then F D

�.S3�T /D �1.MT / is free group on m–enumerators. Let � be a curve in S3�T

such that � is a trivial knot and the homotopy class of � is in F .n/�F .nC1/ . Define

(9) S� D fT .�;K/ jK is a knot in S3 with Arf invariant zerog � B.m/:

Since the trivial link is .n/–solvable, by the proof Proposition 3.1 of [12] (this result
holds if one replaces .n/–solvable knot with .n/–solvable link), T .�;K/ is .n/–
solvable if the Arf invariant of K is 0. Hence S� � BFm

.n/
. By Theorem 6.4, �n
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vanishes on Fm
.nC1/

. Therefore

�nW
BFm

.n/

BFm
.nC1/

!R

is a homomorphism.

By Theorem 5.8, �n.T .�;K//D �0.K/. Moreover, by Proposition 2.6 of [12], there
is an infinite set of Arf invariant zero knots fJig such that f�0.Ji/g is Z–linearly
independent. Since R is abelian, this implies that the abelianization of BFm

.n/
=BFm

.nC1/

has infinite rank.

Since adding a local knot to L 2 B.m/ doesn’t change �n � �0 , we can show that
BFm

.n/
=BFm

.nC1/
is infinitely generated “modulo local knotting.” We make this precise

starting with the following definition. Let K.m/ be the subgroup of B.m/ of split
string links. K.m/ is a normal subgroup of C.m/ and hence is a normal subgroup
of B.m/. For each n � 0, define KFm

.n/
D Fm

.n/
\K.m/. Then KFm

.nC1/
is a normal

subgroup of KFm
.n/

and KFm
.n/
=KFm

.n/
is a normal subgroup of BFm

.n/
=BFm

.nC1/
. Note

that adding a local knot to L 2 B.m/ is the same as multiplying L by an element of
K.m/. As a corollary of the proof of Theorem 6.8 we have the following result.

Corollary 6.9 (Theorem 6.8 remains true modulo local knotting) For each n� 1 and
m� 2, the abelianization of

BFm
.n/
=BFm

.nC1/

KFm
.n/=KFm

.n/

has infinite rank; hence .BFm
.n/
=BFm

.nC1/
/=.KFm

.n/
=KFm

.n/
/ is an infinitely generated

subgroup of .Fm
.n/
=Fm

.nC1/
/=.KFm

.n/
=KFm

.n/
/.

Proof This follows from the proof of Theorem 6.8 once we show that �n vanishes for
.n/–solvable string links with n� 1. To see this, let L 2KFm

.n/
where n� 1. Since

L is .n/–solvable for n� 1, �0.L/D 0. Since L 2K.m/, L can be obtained from
the trivial string link by tying local knots into the strings. That is, yLDLm.�m;Km/

where Li is defined inductively by: L0 is the trivial link and LiC1 DLi.�i ;Ki/ for
some �i 2 �1.S

3�Li/��1.S
3�Li/

.1/

r and knot Ki . Hence by applying Theorem
5.8 multiple times we have �n.L/D

Pm
iD1 �0.Ki/D �0.L/D 0.

Question 6.10 Is BFm
.n/
=BFm

.n:5/
(modulo local knotting for m�2 and n�1) infinitely

generated for each n� 0 and m� 1? Is BFm
.n:5/

=BFm
.nC1/

(modulo local knotting for
m� 2 and n� 1) infinitely generated for each n� 0 and m� 1?
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6.2 Grope filtration of C.m/

There is another filtration of the link concordance group called the grope filtration, Gm
n ,

that is more geometric than the .n/–solvable filtration.

Definition 6.11 A grope is a special pair (2–complex, base circles). A grope has a
height n 2 N . A grope of height 1 is precisely a compact, oriented surface † with
a nonempty boundary. A grope of height .nC 1/ is defined inductively as follows:
Let f˛i ; i D 1; : : : ; 2gg be a standard symplectic basis of circles for †, the bottom
stage of the grope. Then a grope of height .nC 1/ is formed by attaching gropes
of height n (with a single boundary component, called the base circle) to each ˛i

along the base circle. A model of a grope can be constructed in R3 and thus has a
regular neighborhood. Viewing R3 as R3�f0g ,!R3� Œ�1; 1�, this model grope has
a 4–dimensional regular neighborhood. When we say that a grope is embedded in
a 4–dimensional manifold, we always mean that there is an embedding of the entire
4–dimensional regular neighborhood.

We say that L 2 C.m/ is in Gm
n if yL 2 S3 D @.D4/ bounds a embedded grope of

height n in D4 . Note that if L1;L2 2C.m/ and cLi for i D 1; 2 bounds an embedded
grope of height n in D4 then 1L1L2 bounds an embedded grope of height n in D4 .
Therefore, Gm

n is a subgroup of C.m/. Moreover, since
4L1L2L�1

1
DcL2;

Gm
n is a normal subgroup of C.m/. We call

0� � � � � Gm
n � � � � � Gm

1 � C.m/

the grope filtration of C.m/. We define the grope filtration of the concordance group
of boundary string links by BGm

n D Gm
n \B.m/. For more about the grope filtration of

a knot, see Cochran, Orr and Teichner [11; 12] and Cochran and Teichner [13]. For
more about gropes, see Freedman and Quinn [15] and Freedman and Teichner [16].

The .n/–solvable and grope filtrations are related by the following theorem of T Cochran,
K Orr and P Teichner.

Theorem 6.12 (Cochran–Orr–Teichner [11, Theorem 8.11]) If a link L bounds a
grope of height .nC 2/ in D4 then L is .n/–solvable.

Hence for all n� 0 and m� 1, Gm
nC2
� Fm

.n/
(and hence BGm

nC2
� BFm

.n/
). Note that

Cochran–Orr–Teichner only state the above theorem for knots but their proof holds for
links in S3 as well. We show that certain quotients of the grope filtration are nontrivial.
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Theorem 6.13 For each n � 1 and m � 2, the abelianization of BGm
n =BGm

nC2
has

infinite rank; hence BGm
n =BGm

nC2
is an infinitely generated subgroup of Gm

n =Gm
nC2

.

Proof Let � be a curve such that the homotopy class of � is in F .n/�F .nC1/ where
F D �1.S

3�T / and n� 0. By Lemma 3.9 of [13], after changing � by a homotopy
in S3�T , we can assume that � bounds a disk in S3 and that � bounds an embedded
height n grope in S3�N.T /. Consider the set S� as defined in (9) (but now using these
specially chosen isotopy classes for �). We showed in the proof of Theorem 6.8 that
�n.S�/ is a Z–linearly independent subset of R. We will show that if L 2 S� then L

bounds a grope of height .nC1/. Since BGm
nC3
� BFm

.nC1/
, �nW BGm

nC1
=BGm

nC3
!R

is a well defined homomorphism. This will complete the proof of the theorem.

Let L 2 S� then L D T .�;K/ where K is a knot. By Murakami and Nakanishi
[28], K can be obtained from the unknot by doing a sequence of delta moves. Hence,
in the language of Habiro [18], K is related to the unknot by a finite sequence of
simple C2 –moves and ambient isotopies. Therefore, by Theorem 3.17 of [18], K is
the result of clasper surgery on the unknot along

Fl
iD1 C.Ti ;ri / where .Ti ; ri/ is a

rooted symmetric tree of height 1 and the leaves are copies of the meridian of the
unknot. Therefore, L D T .�;K/ is the result of clasper surgery on the trivial link
T along

Fl
iD1 C.Ti ;ri / where .Ti ; ri/ is a rooted symmetric tree of height 1 and the

leaves are copies of �. Since � bounds an embedded height n grope in S3�N.T /,
by Corollary 3.14 of [13], L bounds a height .nC 1/ grope in D4 .

We remark that there are knots that are the result of a union of clasper surgeries on the
unknot along rooted trees of height 2 and have nonzero �0 (see for example Figure 3.6
of [13]). By the same argument that was used in the proof of Theorem 6.13, we can
show that if you choose such a K then LD T .�;K/ bounds a grope of height nC 2

for n� 0. As a result, we see that the groups BGm
nC2

=BGm
nC3

are nontrivial for n� 0.

Proposition 6.14 For each n � 2 and m � 2, the rank of the abelianization of
BGm

n =BGm
nC1

is at least 1; hence Gm
n =Gm

nC1
contains an infinite cyclic subgroup.

Just as in the case of the .n/–solvable filtration, Theorem 6.13 and Proposition 6.14 are
true “modulo local knotting.” We formalize this below. Thus these results cannot be
obtained using the results in [11; 12; 13]. For each n� 0, define KGm

n D Gm
n \K.m/.

Then KGm
nC1

is a normal subgroup of KGm
n and KGm

n =KGm
n is a normal subgroup of

BGm
n =BGm

nC1
. The proof of the following corollary is similar to the proof of Corollary

6.9 so we will omit the proof.
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Corollary 6.15 (1) For each n� 3 and m� 2, the abelianization of

BGm
n =BGm

nC2

KGm
n =KGm

nC2

has infinite rank; hence .BGm
n =BGm

nC2
/=.KGm

n =KGm
nC2

/ is an infinitely generated
subgroup of .Gm

n =Gm
nC2

/.KGm
n =KGm

nC2
/.

(2) For each n� 3 and m� 2, the rank of the abelianization of

.BGm
n =BGm

nC1/.KG
m
n =KGm

nC2/

is at least 1; hence .Gm
n =Gm

nC1
/=.KGm

n =KGm
nC2

/ contains an infinite cyclic subgroup.

7 Applications to boundary link concordance

We point out some applications of our work to the study of boundary link concordance
and to the abstract determination of certain � –groups and relative L–groups that have
been previously studied by Cappell–Shaneson and Le Dimet in the context of the
classification of links up to concordance (sometimes called cobordism).

Recall that boundary links are amenable to classification because each component
bounds a disjoint Seifert surface (alternatively because the fundamental groups of their
exteriors admit epimorphisms to the free group). In fact it was originally hoped that
every odd-dimensional link was concordant to a boundary link, so the classification of
link concordance would have been reduced to the case of boundary links. Despite the
collapse of this hope [10], boundary links remain an important case for study.

S Cappell and J Shaneson first considered pairs .L; �/ called F –links where L is an
m–component boundary link and � is a fixed map �1.S

3nL/! F that is a splitting
map for a meridional map. They defined a suitable concordance relation, called F –
concordance , which entailed an ordinary link concordance between L0 and L1 but
required that the fundamental group of the exterior of the concordance admit a map
to F extending �0 and �1 . See Cappell and Shaneson [1] for details. Let the m–
component F –concordance classes of (n–dimensional) F –links in SnC2 be denoted
by CF.n;m/. This is an abelian group if n> 1, or if nDmD 1 in which case it is
equal to the classical knot concordance group. The boundary concordance group of
boundary links, B.n;m/, is obtained by dividing out be the action of Aut0.F /, the
group of generator-conjugating automorphisms of the free group, which eliminates the
dependence on choice of � . This classification (for n > 1) was later accomplished
by K Ko [22] and W Mio [27] in terms of Seifert matrices and Seifert forms. More
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recently, D Sheiham completed a more explicit classification in terms of signatures
associated to quivers [30].

For a link L in SnC2 (with n> 1), define ML to be the .nC2/–dimensional manifold
obtained by doing surgery on SnC2 along the components of L with the unique normal
framing. For each link L in SnC2 where n� 1 mod 4 with n> 1, and each k � 0,
we define �k.L/ D �k.ML/. It is then relatively straightforward (see Proposition
7.1) to show that the �–invariants considered herein give a rich source of invariants
of CF.n;m/ (n � 1 mod 4 and n > 1). One should compare Levine [25] where
�–invariants associated to representations into finite unitary groups are used in an
analogous fashion.

Proposition 7.1 For any k � 0, n� 1 mod 4 with n> 1, the invariant �k induces a
homomorphism z�kCF.n;m/ �!R that factors through B.n;m/.

Proof The situation can be summarized in the following diagram where B.n;m/ is
the group of concordance classes of m component, n–dimensional boundary disk links
in DnC2 (sometimes called boundary string links if nD 1); where  is the natural lift
defined by Levine [25, Proposition 2.1] (only for n> 1); and I is the natural forgetful
map.

B.n;m/

CF.n;m/ --

 

-

B.n;m/D CF.n;m/=Aut0.F /
I-- fBoundary Linksg

concordance

?
�k - R

Since �k is an invariant of concordance of links, the horizontal composition, denoted
z�k , exists.

The group CF.n;m/, n > 1, has been classified by the aforementioned authors in
terms of � –groups, Seifert matrices and quiver signatures. The biggest question in
this field is whether or not I is injective. Our results offer further evidence that it is
injective by showing that many powerful signature invariants (the �k ) of boundary links,
that a priori are only invariants of F –concordance, are actually ordinary concordance
invariants.

Question 7.2 How many of Sheiham’s quiver-signatures are captured by information
from �k ?
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If the f�kg were strong enough to detect all of Sheiham’s signatures then it would
follow that the kernel of I is torsion.

Since Cappell and Shaneson have essentially identified CF.n;m/, n > 1, with the
quotient of a certain gamma group �nC3.ZF ! Z/ (relative L–group) modulo the
image of LnC3.ZF / [1, Theorem 2, Theorem 4.1] we have the following result.

Proposition 7.3 For each n � 1 mod 4 with n > 1, and each k � 0, there is an
induced homomorphism

z�k W
z�nC3.ZF ! Z/=Aut F �!R:

Using the techniques of this paper we can also show that each z�k extends to the
corresponding � –groups of the algebraic closure yF of the free group, in terms of
which Le Dimet has successfully “classified” the higher-dimensional concordance
group of disk links [23].
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