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Covering link calculus and iterated Bing doubles

JAE CHOON CHA

TAEHEE KIM

We give a new geometric obstruction to the iterated Bing double of a knot being a
slice link: for n> 1 the .nC 1/–st iterated Bing double of a knot is rationally slice
if and only if the n–th iterated Bing double of the knot is rationally slice. The main
technique of the proof is a covering link construction simplifying a given link. We
prove certain similar geometric obstructions for n� 1 as well. Our results are sharp
enough to conclude, when combined with algebraic invariants, that if the n–th iterated
Bing double of a knot is slice for some n , then the knot is algebraically slice. Also
our geometric arguments applied to the smooth case show that the Ozsváth–Szabó
and Manolescu–Owens invariants give obstructions to iterated Bing doubles being
slice. These results generalize recent results of Harvey, Teichner, Cimasoni, Cha
and Cha–Livingston–Ruberman. As another application, we give explicit examples
of algebraically slice knots with nonslice iterated Bing doubles by considering von
Neumann �–invariants and rational knot concordance. Refined versions of such
examples are given, that take into account the Cochran–Orr–Teichner filtration.

57M25, 57N70

1 Introduction

The Bing double BD.K/ of a knot K is defined to be the 2–component link obtained
by taking two zero-linking parallel copies of K and introducing positive and negative
clasps, as in Figure 1. Taking the Bing double of each component of BD.K/, we obtain
the second iterated Bing double BD2.K/ of K . Iterating this process, we define the
n–th iterated Bing double BDn.K/ of K , which is a link with 2n components. As our
convention, for nD 0, BDn.K/ designates K itself.

The problem of deciding whether BDn.K/ is slice for some n� 1 has been studied
actively, partly motivated by the relationship with the 4–dimensional surgery theory.
We recall that a link L in the 3–sphere S3 is a slice link if the components of L bound
disjoint locally flat 2–disks in the 4–ball B4 . A fact that makes the problem more
interesting is that many previously known obstructions to being a slice link vanish for
any (iterated) Bing double. For an excellent discussion on this, the reader is referred to
Cimasoni’s paper [8].
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K D BD0.K/ BD1.K/ BD2.K/

Figure 1: Iterated Bing doubles BDn.K/ of a knot K

It can be seen easily that if BDn.K/ is slice, then so is BDnC1.K/. Consequently if
K is slice then all iterated Bing doubles of K are slice. The converse is a well known
open problem. Recently, there has been significant progress that enables us to extract
obstructions for (iterated) Bing doubles to be slice, and consequently partial results on
the converse.

A first remarkable result in this direction has been proved by Harvey [20] and Teichner
independently (unpublished), using von Neumann �–invariants: if BDn.K/ is slice for
some n, then the integral of the Levine–Tristram signature of K over the unit circle
is zero. In [8] Cimasoni proved that K is algebraically slice if BD.K/ is “boundary”
slice in the sense of Cappell and Shaneson [1], Ko [21], Mio [25] and Duval [18].

As an application of his Hirzebruch-type intersection form defect invariants, the first
author found a new technique to detect nonslice iterated Bing doubles which is effective
even for knots of finite order in the knot concordance group [3]. Using this, he
generalized the result of Harvey and Teichner by proving that for any n the Levine–
Tristram signature function of K is determined by (the concordance class of) BDn.K/,
and also found infinitely many amphichiral knots with nonslice iterated Bing doubles
[3, Theorems 1.5 and 1.6]. In particular he gave the first proof that any iterated Bing
double of the figure eight knot is not slice. Subsequent to this, Livingston, Ruberman
and the first author proved that if BD.K/ is slice, then K is algebraically slice [7,
Theorem 1]. Recently, Cochran, Harvey and Leidy showed that there are algebraically
slice knots with nonslice iterated Bing doubles using higher-order L2 –signatures [10].

In this paper, we extend the aforementioned results on slicing iterated Bing doubles.
First we prove a geometric result that the converse of the fact “BDn.K/ is slice H)
BDnC1.K/ is slice” is rationally true for higher n:

Theorem 1.1 For any n> 1, BDnC1.K/ is rationally slice if and only if BDn.K/ is
rationally slice.
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Here, as in [6; 5], a link L is said to be a rationally slice link if its ambient space is
the boundary of some rational homology 4–ball W and there are disjoint locally flat
2–disks in W with boundary L. For a prime p , a Z.p/–slice link is defined similarly,
namely slicing disks exist in a Z.p/–homology ball instead. (Here Z.p/ denotes the
localization of Z at the prime p .) A slice link is Z.p/–slice for every prime p . A link
is Z.p/–slice for some prime p if and only if it is rationally slice.

In fact, we prove the Z.p/–analogue of Theorem 1.1, from which Theorem 1.1 follows
immediately. As the main technique of the proof, we perform certain iterated covering
link calculus for iterated Bing doubles. Given a link L in a Z.p/–homology sphere, the
pa –fold cyclic cover of the ambient space branched over a component of L becomes
another Z.p/–homology sphere and the preimage of L can be regarded as a new link.
The idea of taking such a branched cover was first applied to (noniterated) Bing doubles
in the work of Cha, Livingston and Ruberman [7]. We perform a more sophisticated
covering link calculus, by iterating the process of taking branched coverings and taking
sublinks; we call links obtained in this way p–covering links. (See Section 2.) The
essential part of the proof of Theorem 1.1 is the following: for n > 1, BDn.K/ is a
p–covering link of a more complicated link, namely BDnC1.K/. (See Proposition
3.1.)

For the case of n� 1, we do not know whether or not BDn.K/ is a p–covering link of
BDnC1.K/. However, similarly to results for nD 0 in [7], our iterated covering link
technique can be used to show that certain band sums of (parallel copies of) K and its
reverse Kr are Z.p/–slice if BDnC1.K/ is Z.p/–slice for n� 1. (For example, see
Proposition 3.3 and its use in Section 4.) The following result is a simple special case:

Proposition 1.2 If BDn.K/ is Z.p/–slice for some n � 0, then 2K# 2Kr is Z.p/–
slice.

We remark that our covering link calculus argument works in both topological and
smooth cases, so that Theorem 1.1 and Proposition 1.2 hold in the smooth case as well.

Combining our geometric results with previously known facts on algebraic invariants
of the Z.2/–concordance group [14; 5], we can deduce the following second main
theorem of this paper:

Theorem 1.3 For any n, if BDn.K/ is slice, then K is algebraically slice.

This generalizes the result for BD1.K/ due to Cha, Livingston and Ruberman [7,
Theorem 1] and generalizes the first author’s Levine–Tristram signature obstruction for
BDn.K/ to be a slice link [3]. Theorem 1.3 can also be used to show the following

Geometry & Topology, Volume 12 (2008)



2176 Jae Choon Cha and Taehee Kim

result which was first shown in [3]: there exist infinitely many knots K such that K is
amphichiral (so that it has order 2 in the knot concordance group) but BDn.K/ is not
slice for any n.

Our geometric results can also be applied to investigate (non)sliceness of iterated Bing
doubles of algebraically slice knots. Recently Cochran, Harvey and Leidy [10] showed
the existence of algebraically slice knots K with nonslice BDn.K/. In this paper,
using techniques different from the ones in [10], we construct explicit examples:

Theorem 1.4 The knot K illustrated in Figure 2 is algebraically slice but BDn.K/ is
not slice for any n.

In fact, our method gives infinitely many explicit examples. For example, for any odd
prime q , the knot obtained from K in Figure 2 by replacing the ˙3 full twists on the
leftmost and rightmost bands with ˙q full twists satisfies the conclusion of Theorem
1.4. (More examples are given in Section 6.1.)

We remark that [10] does not give an explicit single knot with this property; they
construct a family of knots such that all but possibly one in the family should have the
desired property, but it is unknown which ones have the property. (Subsequent to our
work, in [12] they find certain explicit examples using the method of [10].)

Figure 2: An algebraically slice knot K with BDn.K/ nonslice

It is known that the subgroup of algebraically slice knots in the knot concordance group
has a very rich structure. In [16], Cochran, Orr and Teichner constructed a filtration of
the knot concordance group C ,

0� � � � � F.n:5/ � F.n/ � � � � � F.1:5/ � F.1/ � F.0:5/ � F.0/ � C;

where F.h/ is the subgroup of .h/–solvable knots. The subgroup of algebraically slice
knots is exactly F.0:5/ , the subgroup of .0:5/–solvable knots. Regarding this filtration,
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our covering link method can also be used to produce examples which satisfy the
following refined statement:

Theorem 1.5 [10] For any integer h� 1, there are .h/–solvable knots K such that
for any n, BDn.K/ is not slice.

Our examples and proofs are different from those given in [10]. To prove Theorems 1.4
and 1.5, appealing to Proposition 1.2 stated above, it suffices to find an algebraically slice
or .h/–solvable knot K for which 2K# 2Kr is not rationally slice. For this purpose
we use von Neumann �–invariants, which were used in [5] to give an obstruction for
algebraically slice knots to being rationally slice (and to being linearly independent
in the rational knot concordance group). For the highly solvable case of Theorem 1.5,
we show that the examples in [13] satisfy our rational nonslice condition of 2K# 2Kr .
For this purpose, in Section 7 we generalize some results on integral knot concordance
in [13] to the rational case. Some arguments are essentially the same as the ones in
[13] but some results in Section 7 are not immediate consequences of [13]. (Probably
Theorem 7.2 and Proposition 7.5 are of independent interest.)

In fact using this approach we show a further generalization of Theorem 1.5: there are
highly solvable knots K whose iterated Bing doubles are not only nonslice but also
nonsolvable. (For a precise statement, refer to Theorem 6.11.) For this purpose we use
a previous result of the first author called Covering Solution Theorem [4, Theorem 3.5],
which estimates solvability of covering links.

As well as the above results that hold in both topological and smooth cases, our covering
link calculus method also gives results peculiar to the smooth case: using Proposition
1.2, we show that if BDn.K/ is smoothly slice for some n� 0, then the Heegaard Floer
homology theoretic concordance invariants of Ozsváth and Szabó [26] and Manolescu
and Owens [24] of K vanish (see Theorem 5.1). This generalizes the special case of
nD 1 proved in [7].

The paper is organized as follows. In Section 2 we define p–covering links and
show their properties. We prove Theorem 1.1 and Proposition 1.2 in Section 3 and
Theorem 1.3 in Section 4. Our results on the Heegaard Floer invariants are proved in
Section 5. Theorem 1.4 and their refinements are proved in Section 6, and in Section 7
we investigate rational knot concordance and von Neumann �–invariants.
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2 Covering links

Let p be a prime and † a Z.p/–homology 3–sphere. Note that a manifold is a Z.p/–
homology sphere if and only if it is a Zp –homology sphere (and this is equivalent to
that it is a Zpa –homology sphere for all/some a). Given a link L in †, we think of
the following two operations producing new links from L:

(C1) Taking a sublink of L, a link in the same ambient space † is obtained.

(C2) Choose a component K of L and a positive integer a. From the homology long
exact sequence for .†;†�K/ with Zpa –coefficients and Alexander duality,
we have

H1.†�KIZpa/ŠH2.†;†�KIZpa/ŠH 1.KIZpa/Š Zpa :

Therefore there is a canonical map �W H1.†�K/! Zpa sending a meridian
to a generator. If the .Q=Z/–valued self-linking of K in † is trivial, then there
is a “preferred longitude” of K which is mapped to zero under the map � , due
to [5]. Therefore in this case the pa –fold cyclic branched cover, say z†, of †
branched along K is defined. By results of Casson and Gordon [2] or more
generally of Levine [23], z† is a Z.p/–homology sphere and the preimage of L

can be viewed as a new link in z†.

Definition 2.1 A link zL obtained from L by applying (C1) and/or (C2) above repeat-
edly is called a p–covering link of L of height � h, where h is the number of (C2)
applied.

We remark that a different exponent a can be used for each (C2) applied. As an abuse
of terminology, we will often say that zL in Definition 2.1 is of height h, although the
precise definition of the height should be the minimal number of (C2) applied.

It can be seen easily that if L is a link in S3 , the .Q=Z/–linking number condition in
(C2) above is automatically satisfied. Moreover, if a component K of L in a Z.p/–
homology sphere satisfies the condition as in (C2), then the condition also holds for
any component of the preimage of L in z† which projects to K ; for, due to [5], K

satisfies the .Q=Z/–linking number condition if and only if there is a “generalized
Seifert surface” F , namely, an embedded oriented surface F in † which is bounded
by the union of c > 0 parallel copies of K taken along the zero-framing. Considering
a component of the preimage of F in z†, the claim easily follows. These observations
enable us to iterate (C2) in Definition 2.1 above in many cases.

Using the following well-known fact, we investigate the sliceness of a link via its
p–covering links:
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Theorem 2.2 Let p be a prime and L a link in a Z.p/–homology sphere †. If L is
Z.p/–slice, then any p–covering link of L is Z.p/–slice.

Proof A sublink L0 of L is obviously a Z.p/–slice link. Suppose L bounds slice
disks in a Z.p/–homology 4–ball W . Let zL be the preimage of L in z†, where z† is
a Z.p/–homology sphere obtained by taking a pa –fold cyclic branched cover of †
branched along a component of L, say K . By taking a pa –fold cyclic branched cover
of W branched along the slice disk for K in W , we obtain a 4–manifold �W such
that z†D @ �W . Due to [2], �W is a Z.p/–homology ball, and the preimages of the slice
disks for L are slice disks in �W for zL.

The following construction of covering links will play a crucial role for our purpose.

Lemma 2.3 Suppose p is a prime and let L0 , L1 , and L2 be the links in S3

illustrated in Figures 3, 4 and 5, respectively. Then the following conclusions hold:

(1) L1 is a p–covering link of L0 of height 1.

(2) L2 is a p–covering link of L0 of height 2.

T

Figure 3: Link L0

T T T

pa

Figure 4: Link L1
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T T T

p1

Figure 5: Link L2

Proof (1) The link L1 is obtained by taking the pa –fold cyclic branched cover of
S3 along the leftmost component of L0 .

(2) Forgetting appropriate components of L1 , we obtain the link L0
1

in Figure 6.
Taking the pa –fold cyclic branched cover of S3 branched along the leftmost component
of L0

1
, we obtain L2 .

T

Figure 6: Link L0
1

3 Covering link construction relating iterated Bing doubles

For clarity, we describe how the iterated Bing doubles are constructed and fix notation.
In what follows a solid torus is always embedded in S3 , so that its preferred longitude
is defined. Let BD be the 2–component link contained in an unknotted solid torus
illustrated in Figure 7. For a link L, we define the Bing double BD1.L/D BD.L/ to
be the link L obtained by replacing a tubular neighborhood of each component with
a solid torus containing BD in such a way that a preferred longitude and a meridian
of the solid torus for BD are matched up with those of the component of L. The
n–th iterated Bing double BDn.L/ is defined to be BDn.L/D BD.BDn�1.L//. For
convenience, we denote BD0.L/DL.

For a knot K , we can construct BDn.K/ using the process called infection. A precise
description is as follows. Fix an unknotted solid torus V in S3 , and let BD0 be
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Figure 7: The link BD in a solid torus

the core of V . Let BDn D BDn.BD0/ be the 2n –component link in V . Let ˛ be a
meridional curve of V . See Figure 8 for a picture of BDn[˛ . As a simple closed

˛

solid tori containing BDn�2

Figure 8: BDn[˛

curve in S3 , ˛ is unknotted. We take the union of the exterior of ˛ � S3 and that
of the given knot K � S3 , glued along the boundaries such that a longitude and a
meridian for ˛ are identified with a meridian and a longitude for K , respectively. Then
the resulting manifold is homeomorphic to S3 , and BDn.K/ is the image of BDn in
this new ambient manifold.

Proposition 3.1 Let K be a knot in S3 . For any prime p and any n� 3, BDn�1.K/

is a p–covering link of BDn.K/ of height 2.

From Proposition 3.1 and Theorem 2.2, Theorem 1.1 follows immediately.

Proof of Proposition 3.1 We regard BDn[˛ as a link in S3 , and will show that
BDn�1[˛ is a p–covering link of BDn[˛ by constructing a sequence of (C1) and
(C2) operations. In addition, we will observe that these operations behave in such a
way that by performing infection along (preimages of) ˛ , it follows that BDn�1.K/ is
a p–covering link of BDn.K/ for any knot K .

Geometry & Topology, Volume 12 (2008)
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We define Vk , 1� k � n, to be a link in an unknotted solid torus as follows: first, Vn

is the core denoted by ˛ , as in the left in Figure 9. For k � n, we inductively define
Vk�1 as in the right in Figure 9. Note that each Vk has a component denoted by ˛ .

Vn Vk�1

solid tori containing BDk�2

Vk

Figure 9: Vk for 1� k � n

BDn[˛ can be illustrated as in the left in Figure 10. (For convenience, the solid torus
labeled as Vk represents our link Vk contained in the solid torus.) It can be seen that
this is isotopic to the right diagram in Figure 10. Note that we may denote this diagram
by BDn�1[Vn�1 , by comparing it with Figure 8.

Vn�1

Vn�1

solid tori containing BDn�2 solid tori containing BDn�3

Figure 10: BDn[˛ isotoped to BDn�1[Vn�1

Repeatedly applying this process, we have

BDn[˛ � BDn[Vn � BDn�1[Vn�1 � � � �BD1[V1

where BD1[V1 is illustrated in Figure 11.
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V1

V2

Figure 11: BD1[V1

V2 V2

pa

Figure 12: A p–covering link of BDn[˛

By Lemma 2.3 (2), the link in Figure 12 is a p–covering link of the link in the right in
Figure 11 (of height 2), hence of BDn[˛ .

Forgetting some components of the link in Figure 12, we obtain the link in Figure 13.

V2

V2

Figure 13: Another p–covering link of BDn[˛

Furthermore, since n� 3, V2 ¤ Vn D ˛ . Therefore we can forget all components of
the link in (the solid torus for) the second copy of V2 in Figure 13, in order to obtain
BD1[V2 . In order to be precise, we need to be more careful with the component
labeled as ˛ in the second copy of V2 , since it is used as an infection curve. Nonetheless,
forgetting all components in the second V2 but the concerned ˛ , one completely splits
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the ˛ from the other remaining components, so that infection along ˛ changes nothing.
We also note that one could not eliminate the second copy of V2 in Figure 13 if V2

were ˛ .

Now we have that BD1[V2 as a p–covering link of BDn[˛ . Performing isotopies
which were described above, we obtain

BD1[V2 � BD2[V3 � � � � � BDn�1[Vn D BDn�1[˛:

It follows that BDn�1[˛ is a p–covering link of BDn[˛ .

For nD 2, the proof of Proposition 3.1 shows the following proposition:

Proposition 3.2 For any prime p , BD.K# Kr / is a p–covering link of BD2.K/ of
height 2.

Proof As in the proof of Proposition 3.1, the link in Figure 13 is a p–covering link
of BD2[˛ of height 2. Since nD 2, one sees that V2 D ˛ . By carefully following
the transform from Figure 12 to Figure 13, one can see that the two copies of ˛.D V2/

in Figure 13 are with opposite string orientations. Performing infection by K along
the two copies of ˛ , the proposition follows.

By arguments in [7] or by applying Lemma 2.3 (1), it can be seen easily that K# Kr

is a p–covering link of BD.K/. Consequently, by Proposition 3.2, the knot 2K# 2Kr

is a p–covering link of BD2.K/. The following statement is a generalization of this
observation, which will be useful in investigating algebraic invariants of iterated Bing
doubles in Section 4:

Proposition 3.3 Let K be a knot in S3 . For every prime p , the link zL in Figure 14
is a p–covering link of BD2.K/ of height 4.

Proof As in the proof of Theorem 1.1, we start with the link BD2[˛ which is
illustrated in Figure 15.

By Lemma 2.3 (2), the link in the left in Figure 16 is a p–covering link of BD2[˛

of height 2. Forgetting some components, we obtain the link in the right in Figure 16.

Applying Lemma 2.3 (1), it follows that the link in the left in Figure 17 is a p–covering
link of BD2[˛ of height 3. Forgetting some components, we obtain the link in the
right in Figure 17.
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K

K

K

Kr

Kr Kr

Kr

Figure 14: A p–covering link zL of BD2.K/ .

˛

Figure 15: Link BD2[˛

pa

˛ ˛
˛ ˛

˛

Figure 16: p–covering links of BD2[˛ of height 2

Again applying Lemma 2.3 (1), it follows that the link in the left in Figure 18 is a
p–covering link of BD2[˛ of height 4. Forgetting some components, we obtain the
link in the right in Figure 18 as a p–covering link of BD2[˛ of height 4.

Finally performing infection by K along ˛ , it follows that the link zL in Figure 14 is a
p–covering link of BD2.K/ of height 4.

Proof of Proposition 1.2 For n D 1, the conclusion is known by arguments in [7].
(Or alternatively, apply Lemma 2.3 (1) and Theorem 2.2.) Suppose n� 2 and BDn.K/
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˛ ˛

˛

˛ ˛

˛
˛

˛

˛

˛

˛

Figure 17: p–covering links of BD2[˛ of height 3

˛

˛
˛

˛

˛

˛

˛
˛

˛

˛

˛

˛
˛

˛

˛

˛

˛

Figure 18: p–covering links of BD2[˛ of height 4

is Z.p/–slice. By Theorem 1.1, we may assume that nD 2. Note that 2K# 2Kr is a
p–covering link of BD2.K/ by forgetting one component of the link zL in Proposition
3.3. (Or alternatively, apply the paragraph above Proposition 3.3.) Therefore 2K# 2Kr

is Z.p/–slice by Theorem 2.2.

4 Algebraic invariants and iterated Bing doubles

In this section we apply our geometric method to investigate algebraic invariants of knots
with slice iterated Bing doubles. Recall that in Section 3 we showed that 2K# 2Kr

is Z.p/–slice if BDn.K/ is slice for some n (Proposition 1.2). It can be seen that
this conclusion is strong enough to detect interesting examples of K with nonslice
BDn.K/ when the Levine–Tristram signature of K is nontrivial, and furthermore when
a certain von Neumann �–invariant of K is nontrivial. However, it gives no conclusion
when K is 2–torsion in the (integral or Z.p/ ) knot concordance group, in particular
when K is amphichiral. The first successful result on the nonsliceness of BDn.K/

for amphichiral K was obtained in [3] using invariants from iterated p–covers. Our
Proposition 3.3 enables us to extract further information when K is amphichiral, via
algebraic invariants of K , as shown in the proof of Theorem 1.3 below.
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Proof of Theorem 1.3 Suppose BDn.K/ is slice. Let A be a Seifert matrix of K

and ŒA� be the element in the Levine’s algebraic concordance group [22] represented
by A. Our goal is to show that ŒA� D 0. For this purpose, we need the follow-
ing facts on Z.p/–concordance: in [5] the algebraic Z.p/–concordance group and
a canonical homomorphism from the algebraic concordance group to the algebraic
Z.p/–concordance group are defined. If a knot is Z.p/–slice, then its Seifert matrix
represents a trivial element in the algebraic Z.p/–concordance group. For p D 2, it is
known that the homomorphism of the algebraic concordance group to the algebraic
Z.2/–concordance group is injective. (For a detailed discussion on the necessary facts
on Z.p/–concordance, see Cha [5].)

The map sending a knot J to its .c; 1/–cable ic.J / induces an endomorphism on
the algebraic (integral and Z.p/ ) concordance group, and we denote the image of ŒA�
under this homomorphism by ic ŒA�, following [5]. Consider the link zL in Figure 14,
which is Z.p/–slice by Proposition 3.1 and Proposition 3.3 and Theorem 2.2. Taking
one and c parallel copies of the left and right components of L, respectively, and then
attaching appropriate bands joining distinct components, we obtain a knot which is
Z.2/–slice and has a Seifert matrix identical to that of the following connected sum:

J D ic.K/ # 2ic.K
r / # ic�1.K/ # 2K # Kr :

Since K and Kr give the same element in the algebraic concordance group,

3ic ŒA�C ic�1ŒA�C 3ŒA�D 0

in the algebraic Z.2/ concordance group and thus in the algebraic concordance group.

For c D 1, we have 6ŒA�D 0. Since 4ŒA�D 0 whenever ŒA� is torsion [22], it follows
that 2ŒA�D 0. Therefore we have

ic ŒA�C ic�1ŒA�C ŒA�D 0:

By the arguments of [7, Proof of Theorem 1], it follows that ŒA�D 0 in the (integral)
algebraic concordance group.

5 Heegaard Floer homology theoretic concordance invari-
ants and iterated Bing doubles

In this section we consider two concordance invariants obtained from Heegaard Floer
homology theory, namely the Ozsváth–Szabó � –invariant [26] and Manolescu–Owens
ı–invariant [24]. Our result can be stated in a general form as follows:
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Theorem 5.1 Suppose � is a torsion-free-abelian-group-valued knot invariant with
the following properties:

(1) � is an invariant of unoriented knots, ie, �.K/D �.Kr /.

(2) � is additive under connected sum, ie, �.K1# K2/D �.K1/C�.K2/.

(3) � is invariant under (smooth or topological) Z.p/–concordance for some prime
p , ie, �.K/D 0 if K is (smoothly or topologically) Z.p/–slice.

If BDn.K/ is (smoothly or topologically) slice for some n, then �.K/D 0.

Proof It follows immediately from Proposition 1.2.

As mentioned in [7, Section 4], � and ı satisfy the above (1), (2), and (3) (for any p

and for p D 2, respectively) in the smooth case. Therefore, if BDn.K/ is smoothly
slice for some n, then �.K/D 0 and ı.K/D 0.

6 Von Neumann �–invariants and iterated Bing doubles

In this section we construct algebraically slice knots with nonslice iterated Bing doubles.
By Proposition 1.2 the knot 2K# 2Kr is Z.p/–slice for any prime p if BDn.K/ is
Z.p/–slice for some n. Therefore for our purpose we will construct algebraically slice
knots K such that 2K# 2Kr is not rationally slice.

6.1 Explicit examples

In [5, Section 5], it was shown that there exist concrete and explicit examples of
algebraically slice knots Ki , i � 1, which are linearly independent in the rational knot
concordance group. In particular, it was shown that for each i , the knot 2Ki # 2Ki

(D 4Ki ) is not rationally slice. Using the same argument we will show that 2Ki # 2Kr
i

is not rationally slice, in order to obtain the following theorem:

Theorem 6.1 For the algebraically slice knots Ki in [5, Section 5], BDn.Ki/ is not
slice for any n� 1.

Proof First we describe the construction of K D Ki . We choose a “seed knot”
K0 which is slice and has the rational Alexander module QŒt˙1�=hp.t/2i where
p.t/ is a Laurent polynomial such that p.t�1/ equals p.t/ up to multiplication by
a unit in QŒt˙1�, p.1/ D ˙1, and p.tc/ is irreducible for any integer c > 0. The
existence of such p.t/ and K0 was shown in [5, Section 5]. We choose a simple
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closed curve � in S3�K0 which is unknotted in S3 and satisfies the following: (1)
`k.�;K0/D 0, (2) the homology class Œ�� in the rational Alexander module for K0

equals 1Chp.t/2i2QŒt˙1�=hp.t/2i. In particular, Œ�� generates the rational Alexander
module for K0 . Let J be a knot such that �.J /¤ 0 where �.J / denotes the integral
of the Levine–Tristram signature function of J over the unit circle normalized to length
one. For example, one can take J to be the connected sum of copies of the trefoil knot.
Then our KDKi is the knot K0.�;J /, which denotes K0 infected by a knot J along
the curve �.

In [5, Proof of Theorem 5.25] it was shown that if 2K# 2K0.�0;J 0/ is rationally slice
for some slice knot K0 and a simple closed curve �0 , then

�.J /C � � �.J /C �0 � �.J 0/D 0;

for some nonnegative integers � and �0 . Note that Kr DKr
i DKr

0
.�;J /. Therefore

from the above equation, if 2K# 2Kr were rationally slice, then

�.J /C �00 � �.J /D 0;

for some nonnegative integer �00 . Since �.J /¤ 0 by our choice of J , one can conclude
that 2K# 2Kr is not rationally slice, and the theorem follows.

Theorem 1.4 stated in the introduction is a special case of our construction in the above
proof. In fact, using a trefoil knot as J , a genus 2 slice knot with p.t/D 3t2�7tC3 as
K0 , we can obtain the knot illustrated in Figure 2. The required irreducibility condition
is satisfied by Lemma 5.20 of [5].

6.2 Examples of higher solvability

In [16], Cochran, Orr and Teichner introduced a filtration on the knot concordance
group C

0� � � � � F.n:5/ � F.n/ � � � � � F.1/ � F.0:5/ � F.0/ � C;
where F.h/ is the subgroup of .h/–solvable knots for each nonnegative half-integer h.
The subgroup F.0:5/ is exactly the subgroup of algebraically slice knots [16, Remark
1.3.2]. It is known that the filtration is nonstable. For example, F.h/=F.h:5/ is nontrivial
for any integer h� 0 [15; 17].

We will show that for each integer h > 0, there are .h/–solvable knots K such that
BDn.K/ is nonslice for any n. As we discussed above, by Proposition 1.2, it suffices
to find .h/–solvable knots K such that 2K# 2Kr is not rationally slice. We will show
that certain examples of knots K considered by Cochran and the second author in [13]
have the desired property. In [13], these knots K were shown to have the property that
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4K D 2K# 2K is not (integrally) slice, and it can be easily seen that their argument
also shows that 2K# 2Kr is not (integrally) slice. We will show that it generalizes to
that 2K# 2Kr is not rationally slice.

Our argument is best described in terms of rational (or Z.p/–) analogues of .h/–
solvability and a relative version called “rational .h/–solvequivalence”, which are due
to Cochran, Orr and Teichner [16], Cha [5; 4], and Cochran and Kim [13]. Although
we will not use the definitions excessively, we give precise definitions below for the
convenience of the reader. For a group G , the n–th derived group G.n/ of G is defined
inductively as follows: G.0/ D G and G.nC1/ D ŒG.n/;G.n/�. Let R be a subring
of Q. The examples to keep in mind are RD Z;Z.p/ , and Q where p is a prime.

Definition 6.2 Let n be a nonnegative integer and W a 4–manifold with boundary
components M1; : : : ;Ms such that H1.Mi IR/ŠR for each i . The 4–manifold W

is called an R–coefficient .n/–cylinder if the following hold:

(1) H1.Mi IR/!H1.W IR/ is an isomorphism for each i .

(2) There exist elements

u1; : : :um; v1; : : : ; vm 2H2

�
W IRŒ�=�.n/�

�
;

where m D .1=2/ dimQ CokerfH2.M IQ/ ! H2.W IQ/g and � D �1.W /,
such that the RŒ�=�.n/�–valued intersection form �

.n/
W

on H2

�
W IRŒ�=�.n/�

�
satisfies �.n/

W
.ui ;uj /D 0 and �.n/

W
.ui ; vj /D ıij (the Kronecker symbol).

In addition, if the following holds then W is called an R–coefficient .n:5/–cylinder:

(3) There exist zu1; : : : ; zum 2 H2

�
W IRŒ�=�.nC1/�

�
such that �.nC1/

W
.zui ; zuj /D 0

and ui is the image of zui for each i .

Here the submodules generated by fuig, fvig, and fzuig are called an .n/–Lagrangian,
an .n/–dual, and an .nC 1/–Lagrangian, respectively.

As a special case, for a nonnegative half-integer h, an R–coefficient .h/–cylinder W

with connected boundary M is called an R–coefficient .h/–solution for M .

Definition 6.3 Let h be a nonnegative half-integer. Two 3–manifolds M and M 0

are R–coefficient .h/–solvequivalent if there exists an R–coefficient .h/–cylinder W

such that @W DM
`
�M 0 . A 3–manifold M is R–coefficient .h/–solvable if there

is a R–coefficient .h/–solution for M .

Two links in an R–homology 3–sphere are R–coefficient .h/–solvequivalent if the
zero surgeries on the links are R–coefficient .h/–solvequivalent. A link in an R–
homology 3–sphere is R–coefficient .h/–solvable if the zero surgery on the link is
R–coefficient .h/–solvable.
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In the above definitions, when R D Q, we often use “rationally” in place of “Q–
coefficient”. Note that if a link is (R–coefficient) slice then it is R–coefficient .h/–
solvable for any subring R of Q and for any h.

In this subsection we only need a couple of facts on solvability and solvequivalence
(Proposition 6.4 and Lemma 6.5). First, the following is an R–coefficient version of
[13, Proposition 2.7]. The proof is identical to the argument in [13], and therefore we
omit details.

Proposition 6.4 For two knots J and K , if J �K is R–coefficient .h/–solvable,
then J is R–coefficient .h/–solvequivalent to K . In particular, if J �K is rationally
slice, then J is rationally .h/–solvequivalent to K for all h.

Here �K is the mirror image with reversed orientation (ie, a concordance inverse) and
J �K denotes the connected sum of J and �K .

Denote the zero surgery manifold of a knot K by M.K/. In [13], for any given
integer h > 0, they constructed an infinite family of certain knots Ki such that for
any i > j , Ki �Kj is .h/–solvable and

`
kM.Ki/ is not .h:5/–solvequivalent to`

kM.Kj / whenever k > 0. The only property of the Ki we need is the following
rational analogue:

Lemma 6.5 For any i > j and k > 0,
`

kM.Ki/ and
`

kM.Kj / are not rationally
.h:5/–solvequivalent.

The proof of Lemma 6.5 is postponed to Section 7. (A precise description of the Ki is
also given in Section 7.)

Proof of Theorem 1.5 We will show that for the knot K DKi �Kj (with i > j ),
BDn.K/ is not slice for any n. Since 2K# 2Kr D 2.Ki # Kr

i / � 2.Kj # Kr
j /, by

Propositions 1.2 and 6.4, it suffices to show that 2.Ki # Kr
i / is not rationally .h:5/–

solvequivalent to 2.Kj # Kr
j /.

Suppose that there is a rational .h:5/–cylinder, say U , between M.2.Ki # Kr
i //

and M.2.Kj # Kr
j //. Note that for any finite collection fJ`g of knots, there is a

“standard” cobordism between M.# `J`/ and
`
`M.J`/ (eg, see [16, p 113]). At-

taching such standard cobordisms to U , we obtain a rational .h:5/–cylinder between`
2
�
M.Ki/

`
M.Kr

i /
�

and
`

2
�
M.Kj /

`
M.Kr

j /
�
. Since M.J /DM.J r / for any

knot J , we have actually obtained a rational .h:5/–cylinder between
`

4M.Ki/ and`
4M.Kj /. This contradicts Lemma 6.5.
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6.3 Further refinement

In this subsection, we investigate relationships between Z.p/–coefficient solvability
of a link L and that of a p–covering link of L. The first interesting result along this
line is the Covering Solution Theorem obtained by the first author in [4, Theorem 3.5].
For a space X and a group homomorphism �1.X /! � , let X� denote the induced
� –cover of X .

Theorem 6.6 [4, Covering Solution Theorem] Let p be a prime and h � 1 be a
half-integer. Let M be a closed 3–manifold. Suppose W is a Z.p/–coefficient .h/–
solution for M , �W �1.M /! � is a homomorphism onto an abelian p–group � , and
both H1.M / and H1.M�/ are p–torsion free. Then � extends to �1.W /, and W� is
an .h�1/–solution for M� .

It immediately follows that (C2) in Definition 2.1 reduces solvability of a link by at
most one:

Corollary 6.7 Let p be a prime and h a half-integer with h�1. Suppose L is a Z.p/–
coefficient .h/–solvable link in a Z.p/–homology 3–sphere and zL is a p–covering
link of L obtained by applying (C2) in Definition 2.1 once. Then zL is Z.p/–coefficient
.h�1/–solvable.

On the other hand, the following theorem and its corollary show that (C1) in Definition
2.1 preserves solvability of a link.

Theorem 6.8 Let M be a closed 3–manifold and h a nonnegative half-integer. Sup-
pose W is an R–coefficient .h/–solution for M . Suppose ˛ is a simple closed curve
in M such that the homology class Œ˛� 2 H1.M IR/ is of infinite order. Moreover,
suppose that for the meridian �˛ for ˛ , the homology class Œ�˛ �D 0 in H1.M �˛IR/.
If M 0 is the manifold obtained by surgery on M along (any framing of) ˛ , then M 0 is
R–coefficient .h/–solvable.

Proof Suppose h is an integer. Let W 0 be the manifold obtained from W by attaching
a 2–handle along ˛ in M . Then @W 0 DM 0 and

H1.W
0
IR/ŠH1.W IR/=h˛i ŠH1.M IR/=h˛i;

H1.M IR/ŠH1.M �˛IR/=h�˛i ŠH1.M �˛IR/;

H1.M
0
IR/ŠH1.M �˛IR/=h�˛i ŠH1.M IR/=h˛i;
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where �˛ is the longitude for ˛ . Therefore H1.M
0IR/!H1.W

0IR/ is an isomor-
phism. By Mayer–Vietoris, we have the exact sequence

0!H2.W IR/!H2.W
0
IR/!H1.S

1
IR/

i�
�!H1.W IR/:

Since Œ˛� generates H1.S
1IR/ and it is of infinite order in H1.M IR/ŠH1.W IR/,

the map i� is injective. It follows that H2.W IR/ŠH2.W
0IR/. Therefore the images

of the .h/–Lagrangian and its .h/–dual for W are an .h/–Lagrangian and its .h/–dual
for W 0 . Hence W 0 is an R–coefficient .h/–solution for M 0 . When h is a nonintegral
half-integer, the theorem is similarly proved.

Corollary 6.9 Suppose L is an R–coefficient .h/–solvable link in an R–homology
3–sphere such that each component of L has vanishing R=Z–valued self linking
number and any two distinct components have vanishing R–valued linking number.
Then, any sublink of L is R–coefficient .h/–solvable.

Proof It suffices to prove the theorem for the sublink L0 D L�K where K is a
component of L. Let ML and ML0 be the zero surgeries on L and L0 , respectively.
Let ˛ be the meridian for K . Then ML0 is homeomorphic to the manifold obtained
from ML by surgery along ˛ .

Let �˛ be the meridian for ˛ . From the self-linking number condition, it follows that
there is a properly embedded oriented surface F in the exterior of K such that @F is c

parallel copies of a preferred longitude of K , where c is an integer such that 1=c 2R,
due to [6; 5, Theorem 2.6(2)]. (In [6; 5], such a surface F is called a generalized
Seifert surface for K with complexity c .) Since the mutual linking number is zero,
we may assume that F is disjoint from L�K . It follows that c�˛ is homologous to
c � .preferred longitude for K/, which is null-homologous in ML�˛ . Thus Œ�˛ �D 0

in H1.ML�˛IR/. Since H1.MLIR/ is freely generated by meridians for L, Œ˛� is
of infinite order in H1.MLIR/. Applying Theorem 6.8, the corollary follows.

Corollary 6.10 Let p be a prime and h a nonnegative half-integer. Let r be a
nonnegative integer such that r � h. Suppose L is a Z.p/–coefficient .h/–solvable
link in a Z.p/–homology 3–sphere and the linking number conditions in Corollary
6.9 are satisfied (here R D Z.p/ ). Then any p–covering link of L of height r is
Z.p/–coefficient .h�r/–solvable.

Proof It easily follows from Corollaries 6.7 and 6.9.

Using Corollary 6.10 we can prove the following theorem which strengthens Theorem
1.5. We remark that Cochran, Harvey, and Leidy first proved (a more refined version
of) the following theorem in [10] using a different method and examples.
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Theorem 6.11 For any positive integers h and r , there exists an .h/–solvable knot
K such that BDr .K/ is not .hC2r�0:5/–solvable.

Proof Let K be the knot Ki �Kj considered in the proof of Theorem 1.5. Then
K is .h/–solvable. Suppose that BDr .K/ is .hC2r�0:5/–solvable. Then it is Z.p/–
coefficient .hC2r�0:5/–solvable. By Proposition 3.1, BD2.K/ is a p–covering link
of BDr .K/ of height 2r � 4. Then by Proposition 3.2 BD.K# Kr / is a p–covering
link of BDr .K/ of height 2r � 2. Recall that Lemma 2.3 (1) can be used to show that
J # J r is a p–covering link of BD.J / of height 1. Therefore it follows that 2K# 2Kr

is a p–covering link of BDr .K/ of height 2r � 1. By Corollary 6.10 it follows that
2K# 2Kr is Z.p/–coefficient .h:5/–solvable. Since Q is flat over Z.p/ , it follows
that 2K# 2Kr is rationally .h:5/–solvable. But then as was shown in the proof of
Theorem 1.5, it leads us to a contradiction.

7 Rational concordance and von Neumann �–invariants

The purpose of this section is twofold: we extend results on integral concordance and
solvability obtained by using the von Neumann �–invariants in [17; 13] to the rational
case, and give a proof of Lemma 6.5 which was needed in the previous section. If the
reader is more interested in the latter, we would recommend to read the last subsection
first, assuming Theorem 7.6.

Essentially we follow the strategy of [13], focusing on what differs from the integral
case. Details will be omitted when arguments are almost identical to those of the
integral case.

7.1 Homology of rational cylinders with PTFA coefficients

To investigate rational .n/–cylinders more systematically, we need the following notion
of multiplicity given in [13, Definition 2.1]. (It is often called the “complexity”; eg,
see Cochran and Orr [14] or Cha [6; 5].)

Definition 7.1 Let h be a nonnegative half-integer. A boundary component M of
a rational .h/–cylinder W with H1.W IQ/ŠQ is said to be of multiplicity m if a
generator in H1.M /=torsionŠ Z is sent to m 2H1.W /=torsionŠ Z.

We consider homology modules of 3–manifolds and rational cylinders with coefficients
in a certain Laurent polynomial ring KŒt˙1� over a skew field K, following the idea
of [15] and subsequent works. Details are as follows. Let � be a poly-torsion-free-
abelian (henceforth PTFA) group such that �=�.1/r ŠZ, where �.n/r denotes the n–th
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rational derived group of � . (�.0/r D � and �.n/r is inductively defined to be the
minimal normal subgroup of �.n�1/

r such that �.n�1/
r =�

.n/
r is abelian and torsion free;

for more details, see [19, Section 3].) Let t be the generator of Z. Then � Š�.1/r Ìhti.
Let K� be the (skew) quotient field of Z� . The subgroup �.1/r is also PTFA, and
hence Z�.1/r embeds in its (skew) quotient field, say K. Therefore Z� DZŒ�.1/r Ìhti�
embeds in Q�.Q�.1/r � f0g/�1 , which is a Laurent polynomial ring KŒt˙1�. Note
Z� �KŒt˙1��K� and KŒt˙1� is a PID.

Suppose K is a knot with zero surgery M and W is a rational .n/–cylinder which
has M as a boundary component of multiplicity c . Suppose  is a homomorphism of
�1.W / into our � described above, which induces an isomorphism

�1.W /=�1.W /.1/r ! �=�.1/r D hti:

Then H�.W IKŒt˙1�/ is defined. On the other hand, the composition

�1.M /! �1.W /
 
�! � D �.1/r Ì hti

factors through �.1/r Ì hsi, where s D tc . As we did for �.1/r Ì hti, ZŒ�.1/r Ì hsi�
embeds into KŒs˙1�, and the homology module H�.M IKŒs˙1�/ is defined. Viewing
KŒs˙1� as a subring of KŒt˙1�, there is a natural map

j�W H�.M IKŒs
˙1�/!H�.M IKŒt

˙1�/:

The following is a rational cylinder analogue of [13, Theorem 3.8].
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Theorem 7.2 Suppose K , M , W , and � are as above, and � is .n�1/–solvable.
Let d denote the degree of the Alexander polynomial of K . Then for the inclusion
i W M ,!W we have

rankK Im
˚
i�W H1.M IKŒt

˙1�/!H1.W IKŒt
˙1�/

	
�

�
jcj.d � 2/=2 if n> 1;

jcjd=2 if nD 1:

Proof Let P D Ker.i�/ and Q D Im.i�/. Let A0 D H1.M IKŒt
˙1�/ and A D

H1.M IKŒs
˙1�/. It is known that the Blanchfield linking form

A0! HomKŒt˙1�.A
0;K�=KŒt˙1�/

is nonsingular, and with respect to the Blanchfield linking form, P �P? [15, Theorem
2.13] [13, Proposition 3.6]. Using these, one can show that

rankK Q�
1

2
rankKA0;

as done in the proof of [13, Theorem 3.8].

Since KŒs˙1� is a (noncommutative) PID, we have a KŒs˙1�–module isomorphism

A0 ŠA ˝

KŒs˙1�

KŒt˙1�Š

jcjM
A

as in [5, Theorem 5.16(1)]. Thus rankKA0 D jcj � rankKA, and it suffices to show that

rankKA�
�

d � 2 if n> 1;

d if nD 1:

Suppose n > 1 and let X D S3 �K . Since �1.X / ! hsi is surjective, we have
H1.X IKŒs

˙1�/ŠH1.X1IK/, where X1 denotes the connected infinite cyclic cover
of X . Therefore rankK H1.X IKŒs

˙1�/ � d � 1 by [9, Corollary 4.7]. Since the
longitude for K in H1.X IKŒs

˙1�/ is annihilated by s� 1 2KŒs˙1� and generates a
KŒs˙1�–submodule which is isomorphic to K, we have rankKA� d � 2.

If nD 1, � is abelian and torsion free, and hence � Š Z. Therefore KDQ. Since
�1.M / surjects to hsi, H1.M IQŒs

˙1�/ is the rational Alexander module. It follows
that rankKAD d .

Corollary 7.3 Suppose that K , M , W , and � are as in Theorem 7.2. Let

j�W H1.M IKŒs
˙1�/!H1.M IKŒt

˙1�/
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be the map induced by the inclusion j W KŒs˙1�!KŒt˙1�. Then we have

rankK Im
˚
i�j�W H1.M IKŒs

˙1�/!H1.W IKŒt
˙1�/

	
�

�
.d � 2/=2 if n> 1;

d=2 if nD 1:

Proof As in the proof of Theorem 7.2,

H1.M IKŒt
˙1�/Š

jcjM
H1.M IKŒs

˙1�/

as KŒs˙1�–modules. The images of the jcj copies of H1.M IKŒs
˙1�/ under i� have

the same K–rank since multiplication by tm .m2Z/ in H1.W IKŒt
˙1�/ is an automor-

phism of H1.W IKŒt
˙1�/ permuting the images of those copies of H1.M IKŒs

˙1�/.
Now the conclusion follows from Theorem 7.2.

7.2 Rational cylinders and algebraic solutions

In [17], the notion of an algebraic .n/–solution was first introduced in order to investi-
gate the behavior of �1.M /! �1.W /! �1.W /=�1.W /

.n/
r for a (integral) solution

W of M . In [13], Cochran and the second author extended it to (integral) cylinders.
For the convenience of the reader, the definition of an algebraic .n/–solution [13] is
given below: for a group G , let Gk DG=G

.k/
r . Then Gk is a .k � 1/–solvable PTFA

group, hence ZGk embeds in its (skew) quotient field denoted by K.Gk/.

Definition 7.4 Let S be a group such that H1.S IQ/ ¤ 0. Let F be a free group
and i W F ! S a homomorphism. A homomorphism r W S !G is called an algebraic
.n/–solution (n� 0) for i W F ! S if the following hold:

(1) For each 0� k � n� 1, the image of the following composition, after tensoring
with K.Gk/, is nontrivial:

H1.S IZGk/
r�
�!H1.GIZGk/ŠG.k/

r =ŒG.k/
r ;G.k/

r �!G.k/
r =G.kC1/

r :

(2) For each 0 � k � n, the map H1.F IZGk/
i�
�! H1.S IZGk/, after tensoring

with K.Gk/, is surjective.

The following is a generalization of [13, Proposition 6.3] to the case of rational
.n/–cylinders:

Proposition 7.5 Suppose n > 0 is an integer, K is a knot with zero surgery M ,
and the Alexander polynomial of K has degree d > 2. (If n D 1, d D 2 is also
allowed.) Suppose that W is a rational .n/–cylinder with M as one of its boundary
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components (of any multiplicity). Let † be a capped-off Seifert surface for K . Suppose
F ! �1.M �†/ is a homomorphism of a free group F inducing an isomorphism
on H1.�IQ/. Let S D �1.M /.1/ , G D �1.W /

.1/
r , and i be the composition F !

�1.M �†/ ! S . Then the map j W S ! G induced by inclusion is an algebraic
.n/–solution for i W F ! S .

Proof We follow the lines in the proof of [13, Proposition 6.3]. Let KDK.Gk/ be
the (skew) quotient field of ZGk . First, we will prove that Definition 7.4 (1) holds.
The map G

.k/
r =ŒG

.k/
r ;G

.k/
r �!G

.k/
r =G

.kC1/
r becomes an isomorphism after tensoring

with K, since its kernel is Z–torsion. Since K is flat over ZGk , it suffices to show
that j�W H1.S IK/!H1.GIK/ is nontrivial.

Let c denote the multiplicity of M for W . Let � D �1.W /=�1.W /
.kC1/
r . Then as in

the previous subsection, � Š �=�.1/r Ì hti, the composition �1.M /! �1.W /! �

factors through �=�.1/r Ì hsi where sD tc , and H�.M IKŒs˙1�/ and H�.W IKŒt˙1�/

are defined. Since �1.M /=�1.M /.1/Dhsi and S D�1.M /.1/ , we have H1.S IK/Š
H1.M IKŒs

˙1�/. Similarly, H1.GIK/ŠH1.W IKŒt
˙1�/. Therefore j� is identical

to H1.M IKŒs
˙1�/!H1.W IKŒt

˙1�/. By Corollary 7.3, it is nontrivial.

One can prove that Definition 7.4 (2) holds using the argument of the proof in [13,
Proposition 6.3]; one only needs to replace KŒt˙1� by KŒs˙1�.

We have the following theorem which generalizes [13, Theorem 5.13] to the case of
rational .n/–cylinders.

Theorem 7.6 Suppose n, K , and M are as in Proposition 7.5. For any given Seifert
surface for K , there exists an oriented trivial link f�1; �2; : : : ; �mg in S3 which is
disjoint from the Seifert surface and satisfies the following:

(1) �i 2 �1.M /.1/ for all i . Furthermore, the �i bound (smoothly embedded)
symmetric capped gropes of height n, disjointly embedded in S3�K (except
for the caps, which may intersect K ).

(2) For every rational .n/–cylinder W with M as one of its boundary components
(of any multiplicity), there is some �i such that j�.�i/ … �1.W /

.nC1/
r where

j�W �1.M /! �1.W / is induced by the inclusion. The number of such �i is at
least .d � 2/=2 if n> 1 or at least d=2 if nD 1 where d denotes the degree of
the Alexander polynomial for K .

Proof One can proceed exactly in the same way as the proof of the integral version [13,
Theorem 5.13], except that one should use �1.W /

.1/
r , H1.M IK.Gn�1/Œs

˙1�/ and
Corollary 7.3 and Proposition 7.5, instead of �1.W /.1/ , H1.M IK.Gn�1/Œt

˙1�/, and
the integral analogues used in [13]. (Here t , s are as in the proof of Proposition 7.5.)
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We remark that the �i in Theorem 7.6 are the same as those used in [13, Theorem 5.13].

7.3 Rational knot concordance and the Cochran–Orr–Teichner filtration

For a given positive integer n, we consider a family of knots Ki which was given
in [13, Theorem 5.1]. For the convenience of the reader, we briefly describe how
the Ki are constructed. Choose K and f�1; : : : ; �mg satisfying (the conclusion of)
Theorem 7.6. Then we let K0 DK and for i � 1, Ki DK.�1; : : : ; �m;J

i
1
; : : : ;J i

m/,
the knot obtained from K by infection along the �` , where the infection knots J i

`

are chosen so that (the integrals of) the Levine–Tristram signatures of the J i
`

satisfy
certain inequalities described in [13, p 1429, Proof of Theorem 5.1].

For the Ki , we prove Lemma 6.5 used in the previous section:
`

kM.Ki/ and`
kM.Kj / are not rationally .n:5/–solvequivalent.

Proof of Lemma 6.5 We follow the arguments of the proof of [13, Theorem 5.1(5)],
which shows that

`
kM.Ki/ and

`
kM.Kj / are not integrally .n:5/–solvequivalent.

All the arguments of [13] proving their integral statement work verbatim in our case
except that Theorem 7.6 should be applied instead of [13, Theorem 5.13], in order
to guarantee that whenever W is a rational .n/–cylinder with M.K/ as one of its
boundary components, j�.�`/ … �1.W /

.nC1/
r for some �` .

Consider the Cochran–Orr–Teichner filtration

0� � � � � FQ
.n:5/
� FQ

.n/
� � � � � FQ

.1/
� FQ

.0:5/
� FQ

.0/
� CQ

of the rational knot concordance group CQ [5], where FQ
.h/

is the subgroup of rationally
.h/–solvable knots.

Theorem 7.7 For the Ki , the following hold:

(1) If i ¤ j , Ki is not rationally .n:5/–solvequivalent to Kj . In particular, Ki�Kj

is not rationally .n:5/–solvable.

(2) For each i > j , Ki �Kj is of infinite order in FQ
.n/
=FQ

.n:5/
.

The corollary below, which was first proved in [10, Theorem 4.3], easily follows from
Theorem 7.7. We remark that it is further generalized to an infinite rank result in [11].

Corollary 7.8 For each positive integer n, FQ
.n/
=FQ

.n:5/
has positive rank.
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Proof of Theorem 7.7 The first part is a special case of Lemma 6.5 (when kD 1). For
the second part, suppose that for a positive integer k , the connected sum # k.Ki �Kj /

is .n:5/–solvable. Then by Proposition 6.4, M.# kKi/ and M.# kKj / are .n:5/–
solvequivalent. Let U denote an .n:5/–cylinder between M.# kKi/ and M.# kKj /.
As we did in the proof of Theorem 1.5, by attaching standard cobordisms to U we obtain
an .h:5/–cylinder between

`
kM.Ki/ and

`
kM.Kj /. This contradicts Lemma 6.5.
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