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A combination theorem for strong relative hyperbolicity

MAHAN MJ

LAWRENCE REEVES

We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces
and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric
extension of Bestvina and Feighn’s Combination Theorem for hyperbolic groups and
answers a question of Swarup. We also prove a converse to the main Combination
Theorem.

20F67; 57M50

1 Introduction

In [4], Bestvina and Feighn proved a combination theorem for hyperbolic groups.
Motivated by this, Swarup asked the analogous question [3] for relatively hyperbolic
groups. Dahmani [9] and Alibegović [1] have proven combination theorems motivated
by applications to convergence groups and limit groups (cf Sela [28]).

In this paper, we prove a geometric combination theorem (as opposed to a dynamical
one) for trees of (strong) relatively hyperbolic metric spaces. We use Bestvina and
Feighn’s Combination Theorem [4] directly in deducing the relevant combination
theorem. The conditions we impose are quite different from those of [9] and [1]. Our
main Theorems 4.5 and 4.7 are stated below:

Strong Combination Theorem and converse: Theorem 4.5 and Theorem 4.7 Let
X be a tree (T ) of strongly relatively hyperbolic spaces satisfying:

(1) the q(uasi)-i(sometrically)-embedded condition

(2) the strictly type-preserving condition

(3) the qi-preserving electrocution condition

(4) the induced tree of coned-off spaces satisfies the hallways flare condition

(5) the cone-bounded hallways strictly flare condition.
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Then X is strongly hyperbolic relative to the family C of maximal cone-subtrees of
horosphere-like spaces.

Conversely, if X be a tree (T ) of strongly relatively hyperbolic spaces satisfying
conditions (1)–(3) such that X is strongly hyperbolic relative to the family C of
maximal cone-subtrees of horosphere-like spaces, then the tree of spaces satisfies
conditions (4)–(5).

Of the conditions given in the above Theorem, Condition (1) is taken directly from
Bestvina and Feighn [4]. Condition (2) roughly says that the preimage of a horosphere-
like subset (thought of as parabolic) in a vertex space (under the edge-space to vertex-
space map) is either empty or a horosphere-like subset in the corresponding edge-
space. This condition may be likened to the restriction to strictly type-preserving
maps in the theory of Kleinian groups. Condition (2) ensures an induced tree of
electrocuted spaces. Condition (3) says that the induced tree of spaces also satisfies the
qi-embedded condition. Condition (4) is again taken directly from [4]. Condition (5) is
the one essential new condition. It says roughly that a pair of geodesics whose vertices
consist only of cone-points cannot lie close to each other for long. The notion of fully
quasiconvex subgroups introduced by Dahmani [9] is related to Condition (3), the
qi-preserving electrocution condition.

Note In this paper we adopt the convention that the are horosphere-like subsets are
coarsely proper, ie no finite neighborhood of a horosphere-like subset is the whole
space (cf Behrstock, Drutu and Mosher [2] which follows a similar convention). This
excludes the trivial case that X is strongly hyperbolic relative to itself, or a net in
X . This assumption translates into the context of groups. Hence we assume that
if a group G is strongly hyperbolic relative to a collection of subgroups, then no
subgroup H in the collection is of finite index in G .

As an immediate consequence of Theorem 4.5, we have:

Strong Combination Theorem for graphs of groups: Theorem 4.6 Let G be a
finite graph (� ) of strongly relatively hyperbolic groups satisfying:

(1) the qi-embedded condition

(2) the strictly type-preserving condition

(3) the qi-preserving electrocution condition

(4) the induced tree of coned-off spaces satisfies the hallways flare condition

(5) the cone-bounded hallways strictly flare condition.
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Then G is strongly hyperbolic relative to the family C of maximal parabolic subgroups.

All these conditions are satisfied in the classical case of a 3–manifold fibering over
the circle with fiber a punctured surface. The one condition that needs checking is the
hallways flare condition for the induced tree (in fact line) of coned-off spaces. This
fact is due to Bowditch [7, Section 6]. The verification involves using the associated
singular structure coming from stable and unstable foliations. We shall give a slightly
modified version, using an idea of Mosher [26] to show this. (See Section 4.3). In fact
we prove the stronger Theorem:

Theorem 4.9 Let ˆ1 � � �ˆm be m pseudo-Anosov diffeomorphisms of † with differ-
ent sets of stable and unstable foliations. Let H D �1.†/. Then there is an n� 1 such
that the diffeomorphisms ˆn

1
; � � �ˆn

m generate a free group F and the group G given
by the exact sequence

1!H !G! F ! 1

is (strongly) hyperbolic relative to the maximal parabolic subgroups of the form Z�F .

We remark here that in Dahmani’s combination theorem [9] an essential condition is
acylindricity. Again, in Alibegović’s combination theorem [1], an essential assumption
is the compact intersection property. Both acylindricity and the compact intersection
property prevent infinite (or even arbitrarily long chains of parabolics from occurring).
To us, this seemed a bit unsatisfactory, as the original motivation for the Bestvina–
Feighn result came from Thurston’s monster theorem (see Kapovich [16]), and we
wanted a generalization of the Bestvina–Feighn theorem that would cover the case
of hyperbolic 3–manifolds with parabolics, particularly hyperbolic 3–manifolds of
finite volume fibering over the circle. The hypotheses in the present paper do allow for
infinite chains of parabolics and covers the above case. Our emphasis here is geometric
and so the main theorem is stated in terms of spaces rather than groups.

Acknowledgements The authors are grateful to G A Swarup, who was instrumental
in bringing about this collaborative effort. The work was completed during a visit of
the second author to RKM Vivekananda University in February 2006. We are also
grateful to the referee for helpful comments and corrections. 1

1After the submission of this paper, we learnt of the paper [11] by Gautero, which gives a different
proof of a result equivalent to Theorem 4.6. A couple of points of difference between our work and [11]:
We use Bestvina–Feighn’s result [4] directly, whereas an alternate proof of the Combination Theorem of
[4] is provided in [11]. However, in this paper, we provide in addition, a converse (Theorem 4.7) to the
main Combination Theorem.
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2 Relative hyperbolicity

In this section, we shall first recall certain notions of relative hyperbolicity due to
Farb [10] and Gromov [14].

2.1 Electric geometry

Let X be a path metric space. A collection of closed subsets HD fH˛g of X will be
said to be uniformly separated if there exists � > 0 such that d.H1;H2/ � � for all
distinct H1;H2 2H .

Definition 2.1 (Farb [10]) The electric space (or coned-off space) �X corresponding
to the pair .X;H/ is a metric space which consists of X and a collection of vertices
v˛ (one for each H˛ 2H) such that each point of H˛ is joined to (coned off at) v˛
by an edge of length 1=2. The sets H˛ shall be referred to as horosphere-like sets.

A geodesic (resp. quasigeodesic) in �X will be referred to as an electric geodesic (resp.
quasigeodesic).

Definition 2.2 A path  W I !X in a path metric space X is an ambient K–quasi-
geodesic if we have

L.ˇ/�KL.A/CK

for any subsegment ˇ D  jŒa; b� and any rectifiable path AW Œa; b�! Y with the same
endpoints. (Here L denotes length of path.)

NR.Z/ will denote the R–neighborhood about the subset Z in X . N e
R
.Z/ will

denote the R–neighborhood about the subset Z in the electric metric.

Much of what Farb proved in [10] goes through under considerably weaker assumptions
than those of [10]. In [10] the theorems were proven in the particular context of a
pair .X;H/, where X is a Hadamard space of pinched negative curvature with the
interiors of a family of horoballs H removed. Then H can be regarded as a collection
of horospheres in X separated by a minimum distance from each other. In this situation,
X is not a hyperbolic metric space itself, but is hyperbolic relative to a collection
of separated horospheres. Alternately let Hh be the horoball corresponding to the
horosphere H 2 H . Let Xh D X

S
H2HHh be the entire Hadamard manifold of

pinched negative curvature. Then the coned-off space �X obtained by coning off the
horospheres of X is essentially equivalent to coned-off space cXh obtained by coning
off the horoballs of Xh .

Geometry & Topology, Volume 12 (2008)
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We consider therefore a hyperbolic metric space X and a collection H of (uniformly)
C –quasiconvex uniformly separated subsets, ie there exists D > 0 such that for
H1;H2 2H , dX .H1;H2/�D . In this situation X is weakly hyperbolic relative to
the collection H in the sense that the coned-off space �X is hyperbolic. The result
in this form is due to Klarreich [17]. However, the property of Bounded Horosphere
Penetration (BHP) or Bounded Coset Penetration (BCP) used by Farb [10] was not
abstracted out in Klarreich’s proof as it was not necessary. What is essential for BCP
(or BHP) to go through has been abstracted out by Bowditch [7; 6] in the case that
the collection H is a collection of geodesics or horocycles in a Farey graph. (See also
Bumagin [8].) But though these things are available at the level of folklore, an explicit
statement seems to be lacking.

The crucial condition can be isolated as per the following definition [23]:

Definition 2.3 A collection H of uniformly C –quasiconvex sets in a ı–hyperbolic
metric space X is said to be mutually D–cobounded if for all Hi ;Hj 2H , �i.Hj /

has diameter less than D , where �i denotes a nearest point projection of X onto Hi .
A collection is mutually cobounded if it is mutually D–cobounded for some D .

Mutual coboundedness was proven for horoballs by Farb in Lemma 4.7 of [10] and
by Bowditch in stating that the projection of the link of a vertex onto another [6] has
bounded diameter in the link. However, the comparability of intersection patterns in
this context needs to be stated a bit more carefully. We give the general version of
Farb’s theorem below and refer to [10] and Klarreich [17] for proofs.

Lemma 2.4 (See Lemma 4.5 and Proposition 4.6 of Farb [10] and Mj [23].) Given
ı;C;D there exists � such that if X is a ı–hyperbolic metric space with a collection
H of C –quasiconvex D–separated sets. then we have the following:

(1) Electric quasigeodesics electrically track hyperbolic geodesics: Given P > 0,
there exists K > 0 with the property that if ˇ is any electric P –quasigeodesic
from x to y , and  is the hyperbolic geodesic from x to y , then ˇ �N e

K
. /.

(2)  lies in a hyperbolic K–neighborhood of N0.ˇ/, where N0.ˇ/ denotes the
zero neighborhood of ˇ in the electric metric.

(3) Hyperbolicity: The electric space �X is �–hyperbolic.

Item (2) in the above Lemma is due to Klarreich [17], where the proof is given for
ˇ an electric geodesic, but the same proof goes through for electric quasigeodesics
without backtracking.

Geometry & Topology, Volume 12 (2008)
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The above Lemma motivates:

Definition 2.5 [10; 6] Let X be a geodesic metric space and H be a collection of
mutually disjoint uniformly separated subsets. Then X is said to be weakly hyperbolic
relative to the collection H , if the electric space �X is hyperbolic.

We shall need to give a general definition of geodesics and quasigeodesics without
backtracking.

Definition 2.6 Given a collection H of C –quasiconvex, D–separated sets and a
number � we shall say that a geodesic (resp. quasigeodesic)  is a geodesic (resp.
quasigeodesic) without backtracking with respect to � neighborhoods if  does not
return to N�.H / after leaving it, for any H 2 H . A geodesic (resp. quasigeodesic)
 is a geodesic (resp. quasigeodesic) without backtracking if it is a geodesic (resp.
quasigeodesic) without backtracking with respect to � neighborhoods for some � � 0.

Note For the above Lemma, the hypothesis is that H consists of uniformly quasi-
convex, mutually separated sets. Mutual coboundedness has not yet been used. We
introduce it in the next Lemma.

Lemma 2.7 [23] Suppose X is a ı–hyperbolic metric space with a collection H
of C –quasiconvex K–separated D–mutually cobounded subsets. There exists �0 D

�0.C;K;D; ı/ such that the following holds:

Let ˇ be an electric P –quasigeodesic without backtracking and  a hyperbolic ge-
odesic, both joining x;y . Then, given � � �0 there is D D D.P; �/ such that we
have:

(1) Similar intersection patterns 1: If precisely one of fˇ;  g meets an �–neigh-
borhood N�.H1/ of an electrocuted quasiconvex set H1 2H , then the length
(measured in the intrinsic path-metric on N�.H1/ ) from the entry point to the
exit point is at most D .

(2) Similar intersection patterns 2: If both fˇ;  g meet some N�.H1/ then the
length (measured in the intrinsic path-metric on N�.H1/ ) from the entry point
of ˇ to that of  is at most D ; similarly for exit points.

Lemma 2.7 is essentially a paraphrasing of the BCP property [10] in terms of mutual
coboundedness. The above Lemma motivates the following definition:

Geometry & Topology, Volume 12 (2008)
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Definition 2.8 [10; 6] Let X be a geodesic metric space and H be a collection of
mutually disjoint uniformly separated subsets such that X is weakly hyperbolic relative
to the collection H . If any pair of electric quasigeodesics without backtracking starting
and ending at the same point have similar intersection patterns with horosphere-like
sets (elements of H) then quasigeodesics are said to satisfy Bounded Penetration and
X is said to be strongly hyperbolic relative to the collection H .

We summarize the Lemma 2.4 and Lemma 2.7 as follows:

� If X is a hyperbolic metric space and H a collection of uniformly quasiconvex
separated subsets, then X is hyperbolic relative to the collection H .

� If X is a hyperbolic metric space and H a collection of uniformly quasiconvex
mutually cobounded separated subsets, then X is hyperbolic relative to the col-
lection H and satisfies Bounded Penetration, ie hyperbolic geodesics and electric
quasigeodesics have similar intersection patterns in the sense of Lemma 2.7.

2.2 Partial electrocution

In this subsection, we indicate, following [22], a modification of Farb’s [10] notion
of strong relative hyperbolicity and his construction of an electric metric, described
earlier. The modification we shall discuss is called partial electrocution and will be
used in proving the converse to the Strong Combination Theorem (Theorem 4.5). Most
of this discussion is taken from [22].

We start with a few motivating examples:

Partial electrocution of a horosphere H D Rn�1 �R will be defined as putting the
zero metric in the Rn�1 direction, and retaining the usual Euclidean metric in the other
R direction.

In the partially electrocuted case, instead of coning all of a horosphere down to a point
we cone only horocyclic leaves of a foliation of the horosphere. Effectively, therefore,
we have a cone-line rather a cone-point.

Let Y be a convex simply connected hyperbolic n–manifold. Let B denote a collection
of horoballs. Let X denote Y minus the interior of the horoballs in B . Let H denote
the collection of boundary horospheres.Then each H 2H with the induced metric is
isometric to a Euclidean product En�2�L for an interval L�R. Partially electrocute
each H by giving it the product of the zero metric with the Euclidean metric, ie on
En�2 give the zero metric and on L give the Euclidean metric. The resulting space is
exactly what one would get by gluing to each H the mapping cylinder of the projection
of H onto the L–factor.

Geometry & Topology, Volume 12 (2008)
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This motivates the following scenario:

Definition 2.9 Let .X;H;G;L/ be an ordered quadruple such that the following
holds:

(1) X is (strongly) hyperbolic relative to a collection of subsets H˛ , thought of as
horospheres (and not horoballs).

(2) For each H˛ there is a uniform large-scale retraction g˛W H˛ ! L˛ to some
(uniformly) ı–hyperbolic metric space L˛ , ie there exist ı;K; � > 0 such that
for all H˛ there exists a ı–hyperbolic L˛ and a map g˛W H˛ ! L˛ with
dL˛

.g˛.x/;g˛.y// � KdH˛
.x;y/C � for all x;y 2 H˛ . Further, we denote

the collection of such g˛ ’s as G .

The partially electrocuted space or partially coned-off space corresponding to the
quadruple .X;H;G;L/ is obtained from X by gluing in the (metric) mapping cylinders
for the maps g˛W H˛!L˛ .

In Farb’s construction L˛ is just a single point. However, the notions and arguments of
Farb [10] or Klarreich [17] go through even in this setting. The metric, and geodesics
and quasigeodesics in the partially electrocuted space will be referred to as the par-
tially electrocuted metric dpel , and partially electrocuted geodesics and quasigeodesics
respectively. In this situation, we conclude as in Lemma 2.4:

Lemma 2.10 .X; dpel/ is a hyperbolic metric space and the sets L˛ are uniformly
quasiconvex.

Note 1 When K˛ is a point, the last statement is a triviality.

Note 2 .X; dpel/ is strongly hyperbolic relative to the sets fL˛g. In fact the space
obtained by electrocuting the sets L˛ in .X; dpel/ is just the space .X; de/ obtained
by (completely) electrocuting the sets fH˛g in X .

Note 3 The proof of Lemma 2.10 and other such results below follow Farb’s [10]
constructions. For instance, consider a hyperbolic geodesic � in a convex complete
simply connected n–manifold X with pinched negative curvature. Let Hi , i D 1 � � � k

be the partially electrocuted horoballs it meets. Let N.�/ denote the union of � and
Hi ’s. Let Y denote X minus the interiors of the Hi ’s. The first step is to show
that N.�/ \ Y is quasiconvex in .Y; dpel/. To do this one takes a hyperbolic R–
neighborhood of N.�/ and projects .Y; dpel/ onto it, using the hyperbolic projection. It
was shown by Farb in [10] that the projections of all horoballs are uniformly bounded
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in hyperbolic diameter. (This is essentially mutual coboundedness). Hence, given K ,
choosing R large enough, any path that goes out of an R–neighborhood of N.�/

cannot be a K–partially electrocuted quasigeodesic. This is the one crucial step that
allows the results of [10], in particular, Lemma 2.10 to go through in the context of
partially electrocuted spaces.

As in Lemma 2.7, partially electrocuted quasigeodesics and geodesics without back-
tracking have the same intersection patterns with horospheres and boundaries of lifts of
tubes as electric geodesics without backtracking. Further, since electric geodesics and
hyperbolic quasigeodesics have similar intersection patterns with horoballs and lifts of
tubes it follows that partially electrocuted quasigeodesics and hyperbolic quasigeodesics
have similar intersection patterns with horospheres and boundaries of lifts of tubes. We
state this formally below:

Lemma 2.11 Given K; � � 0, there exists C > 0 such that the following holds:

Let pel and  denote respectively a .K; �/ partially electrocuted quasigeodesic in
.X; dpel/ and a hyperbolic .K; �/–quasigeodesic in .Y; d/ joining a; b . Then  \X

lies in a (hyperbolic) C –neighborhood of (any representative of) pel . Further, outside
of a C –neighborhood of the horoballs that  meets,  and pel track each other.

3 Trees of hyperbolic metric spaces

3.1 Trees of spaces: hyperbolic and relatively hyperbolic

We start with a notion closely related to one introduced in [4].

Definition 3.1 A tree (T) of hyperbolic (resp. strongly relatively hyperbolic) metric
spaces satisfying the q(uasi) i(sometrically) embedded condition is a metric space
.X; d/ admitting a map P W X ! T onto a simplicial tree T , such that there exist ı;�
and K > 0 satisfying the following:

(1) For all vertices v 2 T , Xv D P�1.v/�X with the induced path metric dv is a
ı–hyperbolic metric space (resp. a geodesic metric space Xv strongly hyperbolic
relative to a collection Hv˛ ). Further, the inclusions ivW Xv!X are uniformly
proper, ie for all M > 0, v 2 T and x;y 2 Xv , there exists N > 0 such that
d.iv.x/; iv.y//�M implies dv.x;y/�N .

(2) Let e be an edge of T with initial and final vertices v1 and v2 respectively.
Let Xe be the preimage under P of the midpoint of e . Then Xe with the
induced path metric is ı–hyperbolic (resp. a geodesic metric space Xe strongly
hyperbolic relative to a collection He˛ ).
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(3) There exist maps feW Xe�Œ0; 1�!X , such that fejXe�.0;1/ is an isometry onto
the preimage of the interior of e equipped with the path metric.

(4) fejXe�f0g and fejXe�f1g are .K; �/–quasi-isometric embeddings into Xv1
and

Xv2
respectively. fejXe�f0g and fejXe�f1g will occasionally be referred to as

fv1
and fv2

respectively.

(5) For a tree of strongly relatively hyperbolic spaces, we demand in addition, that the
maps fvi

above (i D 1; 2) are strictly type-preserving, ie f �1
vi
.Hvi˛/, i D 1; 2

(for any Hvi˛ 2Hvi˛ ) is either empty or some He˛ 2He˛ .

(6) For a tree of strongly relatively hyperbolic spaces, we demand that the coned-off
spaces are uniformly ı–hyperbolic.

Denote by dv and de path metrics on Xv and Xe respectively. iv , ie will denote
inclusion of Xv , Xe respectively into X .

For a tree of relatively hyperbolic spaces, the sets Hv˛ and He˛ will be referred to as
horosphere-like vertex sets and edge sets respectively.

When .X; d/ is a tree (T) of strongly relatively hyperbolic metric spaces, the strictly
type-preserving condition (Condition 5 above) ensures that we obtain an induced tree
(T) (the same tree T) of coned-off, or electric spaces. We demand further:

Qi-preserving electrocution condition The induced maps of the electric edge spaces
into the electric vertex spaces �fvi

W cXe !
cXvi

(i D 1; 2) are uniform quasi-isometries.

The resulting tree of coned-off spaces will be called the induced tree of coned-off spaces.
The resulting space will be denoted as �X .

Definition 3.2 A finite graph of (strongly) relatively hyperbolic groups is said to satisfy
Condition C , if the associated tree of relatively hyperbolic Cayley graphs satisfies
Condition C . Here C will be one of the following:

(1) the qi-embedded condition

(2) the strictly type-preserving condition

(3) the qi-preserving electrocution condition

(4) the induced tree of coned-off spaces satisfies the hallways flare condition (see
Definition 3.5)

(5) the cone-bounded hallways strictly flare condition (see Definition 3.6).
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Remark Strictly speaking, this induced tree exists for any collection of vertex and
edge spaces satisfying the strictly type-preserving condition. Hyperbolicity is not
essential for the existence of the induced tree of spaces.

The cone locus of �X , the induced tree (T) of coned-off spaces, is the graph (in fact a
forest) whose vertex set V consists of the cone-points in the vertex set of �X and whose
edge-set E consists of the cone-points in the edge set of �X . The incidence relations
are dictated by the incidence relations in T .

Note that connected components of the cone-locus can be naturally identified with
subtrees of T . Each such connected component of the cone-locus will be called a
maximal cone-subtree. The collection of maximal cone-subtrees will be denoted by
T and elements of T will be denoted as T˛ . Further, each maximal cone-subtree T˛
naturally gives rise to a tree T˛ of horosphere-like subsets depending on which cone-
points arise as vertices and edges of T˛ . The metric space that T˛ gives rise to will be
denoted as C˛ and will be referred to as a maximal cone-subtree of horosphere-like
spaces. The collection of C˛ ’s will be denoted as C .

Note Each T˛ thus appears in two guises:

(1) as a subset of �X
(2) as the underlying tree of C˛

We shall have need for both these interpretations.

3.2 The Bestvina–Feighn flare condition

Next, we would like to recall the essential condition (due to Bestvina and Feighn [4])
ensuring hyperbolicity of a tree of spaces. We retain the terminology.

Definition 3.3 A disk f W Œ�m;m��I !X is a hallway of length 2m if it satisfies:

(1) f �1.[Xv W v 2 T /D f�m; � � � ;mg�I .

(2) f maps i�I to a geodesic in Xv for some vertex space.

(3) f is transverse, relative to condition (1) to [eXe .

Definition 3.4 A hallway is �–thin if d.f .i; t/; f .i C 1; t//� � for all i; t .

A hallway is �–hyperbolic if

�l.f .f0g � I//�maxfl.f .f�mg � I//; l.f .fmg � I//:

Geometry & Topology, Volume 12 (2008)
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A hallway is essential if the edge path in T resulting from projecting X onto T does
not backtrack (and is therefore a geodesic segment in the tree T ).

An essential hallway of length 2m is cone-bounded if f .i �@I/ lies in the cone-locus
for i D f�m; � � � ;mg.

Definition 3.5 (Hallways flare condition) The tree of spaces, X , is said to satisfy
the hallways flare condition if there are numbers � > 1 and m � 1 such that for all
� there is a constant H.�/ such that any �–thin essential hallway of length 2m and
girth at least H is �–hyperbolic.

Definition 3.6 (Cone-bounded hallways strictly flare condition) The tree of spaces,
X , is said to satisfy the hallways flare condition if there are numbers � > 1 and m� 1

such that any cone-bounded hallway of length 2m is �–hyperbolic.

The main theorem of Bestvina and Feighn follows (though this is stated in [4] for
groups, the proof nowhere requires uniform properness of the space). Bowditch [7]
notes the equivalence of the hallways flare condition with the hyperbolicity of the tree
of spaces.

Theorem 3.7 [4, pp 85-86; 7] Let X be a tree of hyperbolic metric spaces satisfying
the qi-embedded condition and the hallways flare condition. Then X is hyperbolic.

Conversely, if X is hyperbolic, then hallways flare.

Apart, from Theorem 3.7 above, we shall need one more simple observation.

Lemma 3.8 Suppose that �X is hyperbolic. Then maximal cone-subtrees T˛ are
uniformly quasiconvex in �X .

Proof Let P W X ! T be the natural projection map of the tree of spaces to the
underlying subtree. Then P induces P 0W �X ! T as �X may be regarded as (the same)
tree (T) of coned-off spaces. P 0 is distance nonincreasing. Further, restricted to each
T˛ , P 0 is an isometry.

Also note that any path from x 2 Hv1 to y 2 Hv2 in �X has length not less than
dT .P

0.x/;P 0.y//, where dT is the natural metric on T and v1; v2 2 T˛ .

Now suppose that x;y 2 T˛ � �X . Let  � T˛ �X be the geodesic in T˛ joining x;y .
It therefore follows that for any x;y 2 T˛ � �X and any path A joining x;y 2 �X ,

l.A/� dT .P
0.x/;P 0.y//D l. /:

Hence  is quasi-isometrically (in fact isometrically) embedded in �X and hence a
geodesic in �X . The Lemma follows.
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4 The Combination Theorem

4.1 Weak Combination Theorem

We start with the following:

Theorem 4.1 (Weak Combination Theorem) Let X be a tree (T ) of strongly rela-
tively hyperbolic spaces satisfying:

(1) the qi-embedded condition
(2) the strictly type-preserving condition
(3) the qi-preserving electrocution condition
(4) the induced tree of coned-off spaces satisfies the hallways flare condition.

Then X is weakly hyperbolic relative to the family C of maximal cone-subtrees of
horosphere-like spaces.

Proof As usual let �X denote the induced tree (T ) of coned-off spaces, T denote the
family of maximal cone-subtrees T˛ � �X . Let �X c denote �X with the family of sets
T coned off (ie vertices v˛ are introduced, one each for each T˛ , and joined to points
of the corresponding T˛ by edges of length 1=2).

Since vertex and edge-spaces are strongly relatively hyperbolic, then by item (6) in the
definition of a tree of strongly relatively hyperbolic spaces, �X is a tree of (uniformly)
hyperbolic metric spaces.

By the qi-preserving electrocution condition, the induced tree of coned-off spaces
satisfies the qi-embedded condition.

By the hallways flare condition and Theorem 3.7, �X is a hyperbolic metric space.

By Lemma 3.8, the sets T˛ 2 T are uniformly quasiconvex and uniformly separated.

Hence by Lemma 2.4, �X is weakly hyperbolic relative to the sets T˛ 2 T , ie �X c is a
hyperbolic metric space.

Let cX1 denote the space obtained from X by coning off maximal cone-subtrees of
horosphere-like sets. Then cX1 is quasi-isometric to �X c . To see this, one notes that �X c

is obtained from X by first coning-off (or partially electrocuting) C˛ ’s, the maximal
cone-subtrees of horosphere-like sets, to maximal cone-subtrees T˛ . This gives rise to�X . Further coning off the T˛ ’s gives �X c . On the other hand, cX1 is obtained from X

by coning off (or completely electrocuting) the C˛ ’s to points in one step. The two
constructions clearly give quasi-isometric spaces.

Hence cX1 is hyperbolic, ie X is weakly hyperbolic relative to the collection of sets
C˛ 2 C .
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4.2 Strong Combination Theorem

Under the additional cone-bounded hallways strictly flare condition, we would now
like to prove a stronger version of the combination Theorem 4.1, ie X is strongly
hyperbolic relative to the collection of C˛ 2 C :

By Lemma 2.7 and Theorem 4.1, it suffices to show that the sets T˛ � �X are mu-
tually cobounded. Most of the rest of this subsection is devoted to proving mutual
coboundedness.

The next Lemma follows easily from stability of quasigeodesics [12] [14]. (See, for
instance Lemma 4.1.1 of [18].)

Lemma 4.2 Give ı;C , there exist D;K; � such that the following holds:

Let .X; d/ be a ı–hyperbolic metric space and Y a C –quasiconvex subset. Let � be
a nearest-point retraction of X onto Y . Let x;y 2 X such that d.�.x/; �.y// �D .
Then Œx; �.x/�[ Œ�.x/; �.y/�[ Œ�.y/;y� is a .K; �/–quasigeodesic.

We use Lemma 4.2 below:

Corollary 4.3 Given ı , C , there exist D;M such that the following holds:

Suppose that Y;Z are C –quasiconvex subsets of a ı–hyperbolic metric space .X; d/.
Let � denote nearest point projection onto Y . If �.Z/ has diameter greater than D ,
then �.Z/ lies in an M –neighborhood of Z .

Proof Let x;y 2 Z . By Lemma 4.2, there exist D0;K; � (depending on ı , C )
such that if d.�.x/; �.y// � D0 , then Œx; �.x/�[ Œ�.x/; �.y/�[ Œ�.y/;y�D  is a
.K; �/–quasigeodesic. Since Z is C –quasiconvex,  lies in an M0DM0.K; �;C; ı/–
neighborhood of Z .

Now, choose a; b in Y;Z respectively, such that d.a; b/Dd.Y;Z/. From the previous
paragraph, we deduce that if z 2Z such that d.�.z/; a/ �D0 , then �.z/ lies in an
M0 –neighborhood of Z . Taking D D 2D0 and M DM0CD0 , we are through.

The following Proposition deduces mutual coboundedness of maximal cone-subtrees
T˛ in �X (obtained by partially electrocuting maximal cone-subtrees of horosphere-like
sets) from hyperbolicity of �X (established for instance in Theorem 4.1) and cone-
bounded hallways strictly flare condition. This will be used in proving the Strong
Combination Theorem (Theorem 4.5).
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Proposition 4.4 Suppose that the tree of coned-off spaces �X is hyperbolic and that
the cone-bounded hallways strictly flare condition is satisfied. Then there exists D � 0

such that the family of maximal cone-subtrees T˛ in �X is D–cobounded.

Proof Suppose not. Then, by Corollary 4.3, there exists M � 0 such that for any
D � 0, there exist maximal cone-subtrees T1;T2 and a connected subtree T3 � T1

such that T3 has diameter greater than D and lies in an M –neighborhood of T2 .
Hence, there exist geodesic edge-paths 1 � T1 and 2 � T2 such that each i has
length greater than .D� 2M / and such that they lie in an M –neighborhood of each
other in �X .

Next, P .i/�T (where T is the tree underlying �X , the tree (T) of coned-off spaces and
P W �X ! T is the natural projection). Also, P .i/ (i D 1; 2) is abstractly isomorphic
to i as an edge-path, since P W �X ! T is an isometry restricted to each Ti . Then
P .i/ may be regarded as geodesic paths in T having lengths greater than .D� 2M /

and lying in an M –neighborhood of each other (since P does not increase distances).
This means that P .i/ (for i D 1; 2) must overlap over an interval of length at least
.D� 4M /.

Let ˛i � i be paths having length at least .D � 4M / with P .˛1/ D P .˛2/. Then
there exists M1 DM1.M / and a cone-bounded hallway �W Œ�m;m�� I ! �X with
2m� .D� 4M / such that:

(1) �.Œ�m;m�� f0g D ˛1

(2) �.Œ�m;m�� f1g D ˛2

(3) each �.j � I/ has length less than M1 .

Since D , and hence m can be arbitrarily large, while M (and hence M1 ) are fixed,it
follows that for any given � > 1, there exists a hallway �, which is not �–hyperbolic.
This violates the cone-bounded hallways strictly flare condition. Hence, by contradic-
tion, there exists D � 0 such that the family of maximal cone-subtrees T˛ in �X is
D–cobounded.

We are now in a position to prove:

Theorem 4.5 (Strong Combination Theorem) Let X be a tree (T ) of strongly
relatively hyperbolic spaces satisfying:

(1) the qi-embedded condition

(2) the strictly type-preserving condition
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(3) the qi-preserving electrocution condition

(4) the induced tree of coned-off spaces satisfies the hallways flare condition

(5) the cone-bounded hallways strictly flare condition.

Then X is strongly hyperbolic relative to the family C of maximal cone-subtrees of
horosphere-like spaces.

Proof By Theorem 4.1, we know that X is weakly hyperbolic relative to the family
C of maximal cone-subtrees of horosphere-like spaces.

This is equivalent to saying that �X is weakly hyperbolic relative to the family T of
maximal cone-subtrees T˛ � �X .

By the cone-bounded hallways strictly flare condition and Proposition 4.4, we see that
the family T is mutually cobounded.

Hence by Lemma 2.7, we conclude that �X is strongly hyperbolic relative to the family
T of maximal cone-subtrees T˛ � �X . Equivalently, X is strongly hyperbolic relative
to the family C of maximal cone-subtrees of horosphere-like spaces.

Recall that a finite graph of (strongly) relatively hyperbolic groups is said to satisfy a
Condition C , if the associated tree of relatively hyperbolic Cayley graphs also satisfies
Condition C . The resulting group will be denoted as G . A quotient of maximal
cone-subtrees of horosphere-like spaces in this case, is called a maximal cone-subgraph
of horosphere-like subgroups. Note that such a subgraph gives rise to a subgroup of G .
We shall refer to such subgroups as maximal parabolic subgroups. Recall that we are
using the convention that all parabolic subgroups are of infinite index. As an immediate
consequence of Theorem 4.5, we have the following:

Theorem 4.6 (Strong Combination Theorem for graphs of groups) Let G be a finite
graph (� ) of strongly relatively hyperbolic groups satisfying:

(1) the qi-embedded condition

(2) the strictly type-preserving condition

(3) the qi-preserving electrocution condition

(4) the induced tree of coned-off spaces satisfies the hallways flare condition

(5) the cone-bounded hallways strictly flare condition.

Then G is strongly hyperbolic relative to the family C of maximal parabolic subgroups.
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4.3 Converse to the Strong Combination Theorem

Recall that the partially electrocuted space or partially coned-off space corresponding
to a quadruple .X;H;G;L/ is obtained from X by gluing in the (metric) mapping
cylinders for the maps g˛W H˛!L˛ . Note that from Theorem 4.5, it follows that �X
is obtained from X by partially electrocuting each C˛ . Here:

(1) H˛ D C˛ and HD C

(2) L˛ D T˛ and LD T

(3) g˛ WC˛! T˛ collapses C˛ , the tree of horosphere-like spaces to the underlying
tree T˛ .

Theorem 4.7 (Converse to Strong Combination Theorem) Let X be a tree (T ) of
strongly relatively hyperbolic spaces satisfying:

(1) the qi-embedded condition

(2) the strictly type-preserving condition

(3) the qi-preserving electrocution condition

(4) X is strongly hyperbolic relative to the family C of maximal cone-subtrees of
horosphere-like spaces.

Then the induced tree of coned-off spaces satisfies the hallways flare condition and the
cone-bounded hallways strictly flare condition.

Proof As usual let C˛ denote maximal cone subtrees (T˛ ) of horosphere-like sets. By
Lemma 2.10, the induced tree of coned-off spaces �X , obtained by partially electrocuting
each C˛ to T˛ . Then by the converse part of Theorem 3.7, hallways, including cone-
bounded hallways flare.

It remains to show that cone-bounded hallways strictly flare. Suppose not. Then there
exists D0 such that for all N 2N , there exist cone-bounded hallways of length greater
than N , bounded by ”vertical” (parametrized) geodesics �1; �2 in distinct cone-subtrees
T1;T2 respectively such that d.�1.i/; �2.i//�D0 for all i D 0; � � �N . Let �0; �N

denote ”horizontal” paths in the hallway joining �1.i/; �2.i/ for i D 0;N . Hence,
there exist points aj ; bj (j D 0;N ) lying on the corresponding cones C1\�j ;C2\�j ,
respectively such that d.aj ; bj /�D0 . Then we have two paths:
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� �1 starts at a0 , moves to �1.0/ (by a cone-edge of length 1=2), proceeds to
�1.N / and exits to aN (again by a cone-edge of length 1=2).

� �2 starts at a0 , moves to b0 by a path of length � D0 , then to �2.0/ (by a
cone-edge of length 1=2), proceeds to �2.N /, exits to bN (again by a cone-edge
of length 1=2) and then goes to aN by a path of length �D0 .

The path �1 has length 1 in the electric metric on �X c and �2 has length � 2D0C 1.
Since D0 is fixed, both �1 and �2 are uniform quasigeodesics beginning and ending
at the same point, but have manifestly different intersection patterns with C1;C2 . This
contradicts Lemma 2.7 and hence X cannot be strongly hyperbolic relative to the
collection C˛ . This final contradiction proves the Theorem.

4.4 Examples

The first class of examples are hyperbolic 3–manifolds fibering over the circle with
fiber a punctured hyperbolic surface †. All the conditions of Theorem 4.6 are satisfied
in this case of a 3–manifold fibering over the circle with fiber a punctured surface. The
one condition that needs checking is the hallways flare condition for the induced tree
(in fact line) of coned-off spaces. This fact is due to Bowditch [7, Section 6]. We give
here a somewhat different argument based on work of Mosher [26].

In [26], Mosher constructs examples of exact sequences of hyperbolic groups of the
form

1!H !G! F ! 1

where H is a closed surface group, G is hyperbolic and F is free. (This construction
is modified by Bestvina, Feighn and Handel [5] to the case where H is a free group.)

We shall modify Mosher’s argument slightly to make it work for punctured surfaces.

Let ˆ be a pseudo-Anosov diffeomorphism of a punctured hyperbolic surface †.
Taking a suitable power of ˆ if necessary, we may assume that ˆ fixes all the punctures.
The stable and unstable foliations of ˆ give rise to a piecewise Euclidean metric on †.
This metric is incomplete at the punctures. Complete it to get a surface with boundary
†B , which may be thought of as the blow-up of † at the punctures. Equip †B with a
pseudometric which is zero on all the boundary components and equal to the piecewise
Euclidean metric elsewhere. This metric is discontinuous at the boundary, but this is
not important. This is essentially the electric metric on †B .

Then any electric geodesic � in †B is the union of two types of segments:
(1) geodesics in the piecewise Euclidean metric meeting the boundary at right angles.

Let �eu denote this union.
(2) segments lying along the boundary.

Geometry & Topology, Volume 12 (2008)



A combination theorem for strong relative hyperbolicity 1795

The total length of such an electric geodesic is the sum of the lengths of the Euclidean
pieces. The projection of the union of the Euclidean pieces �eu onto the stable and
unstable foliations will be denoted by �eus and �euu respectively. Abusing notation
slightly, we assume that �eu , �eus , �euu denote the respective lengths also. Then
max.�eus; �euu/� 1=2�eu . Let ˆ.�eu/ denote the image of �eu under ˆ. If we assume
that the stable and unstable foliations meet the boundary components of †B at right
angles, then it can be easily shown that for any given k > 1, there is an n (depending
on the stretch factor of ˆ) such that

max.ˆ.�eus/; ˆ
�1.�euu//� k�eu

and hence we have the inequality

max.ˆ.�eu/; ˆ
�1.�eu//� k�eu:

This proves the one condition that needed checking, viz. the hallways flare condition
for the induced tree (in fact line) of coned-off spaces.

More generally, we may take any m (equal to two below for concreteness) pseudo-
Anosov diffeomorphisms ˆ;‰ with different stable and unstable foliations. Then
generalizing the above construction, we can prove the following generalization of an
essential Lemma of Mosher: 3 out of 4 stretch.

Lemma 4.8 For any k > 1, there exists n> 0 such that for any electric geodesic � in
†B , at least three of the four elements ˆn; ˆ�n; ‰n; ‰�n stretch � by a factor of �.

Thus we get an exact sequence of groups of the form

1!H !G! F ! 1

where H is a punctured surface group, and F is free.

The Cayley graph of G may thus be regarded as a tree T of hyperbolic spaces, where T

arises as the Cayley graph of F . Also, the maximal parabolic subgroups here correspond
exactly to the peripheral subgroups, ie the cusp groups. Maximal cone-subtrees are
each isometric to T . Then a tree T of maximal parabolics would correspond to Z�F .
Lemma 4.8 shows that the induced tree of coned-off spaces is hyperbolic.

Thus, we obtain from Theorem 4.6:
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Theorem 4.9 Let ˆ1 � � �ˆm be m (orientation-preserving) pseudo-Anosov diffeomor-
phisms of † with different sets of stable and unstable foliations. Let H D�1.†/. Then
there is an n � 1 such that the diffeomorphisms ˆn

1
; � � �ˆn

m generate a free group F

and the group G given by the exact sequence

1!H !G! F ! 1

is (strongly) hyperbolic relative to the maximal parabolic subgroups of the form Z�F .

For nD 1, we get back Bowditch’s theorem [7].

4.5 Applications, consequences and problems

Theorem 4.5 and Theorem 4.6 open up the possibility of generalizing several theorems
about hyperbolic groups to (strongly) relatively hyperbolic groups.

Cannon–Thurston maps In [19], the first author proved the existence of Cannon–
Thurston maps for trees of hyperbolic metric spaces. In [21], he generalized this
theorem to the relatively hyperbolic case under the additional assumption that the tree
of spaces gives rise to a hyperbolic 3–manifold of bounded geometry whose core
is incompressible away from cusps. In [24], Mj–Pal prove the existence of Cannon–
Thurston maps for the situation discussed in this paper, viz. trees of (strongly) relatively
hyperbolic trees of metric spaces that are (strongly) relatively hyperbolic.

Strongly relatively hyperbolic extensions of groups A Theorem of Mosher [25]
says that if an exact sequence of groups of the form

1!H !G!Q! 1

exists, where H is hyperbolic, then there exists a quasi-isometric section of �Q into
�G exists. In particular, if G is hyperbolic, so is Q. The essential technique is to
use the action of Q on the boundary @H of H .A fact (due to Gromov [14]) that is
used is that the space of triples of points on the boundary of a hyperbolic group H is
quasi-isometric to �H . An analogous result is shown by Pal in [27].

Heights of groups In [13], Gitik, Mitra, Rips and Sageev show that quasiconvex
subgroups of hyperbolic groups have finite height and finite width. A partial converse
was obtained by the first author in [20] for groups splitting over subgroups. This
converse was used by Swarup in [29] to prove a weak hyperbolization theorem. All three
theorems should have analogues in the (strongly) relatively hyperbolic world. Hruska
and Wise [15] have already shown the finiteness of height and width of quasiconvex
subgroups of relatively hyperbolic groups.
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