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Minimality of the well-rounded retract

ALEXANDRA PETTET

JUAN SOUTO

We prove that the well-rounded retract of SOnnSLnR is a minimal SLnZ–invariant
spine.

20F65; 12G10, 53C35, 11F75

1 Introduction

In this note we are interested in a certain SLn Z–invariant deformation retract of the
symmetric space Sn D SOn nSLn R. To every element A 2 SLn R one can associate
the lattice AZn in Rn . The element A is well-rounded if the set of shortest nonzero
vectors of the lattice AZn generate Rn as a real vector space. This property is invariant
under the left action of SOn and hence there is no ambiguity in saying that an element
in Sn is well-rounded. The subset X of Sn consisting of well-rounded elements is
homeomorphic to an .n.n� 1/=2/–dimensional CW-complex and the right action of
SLn Z on Sn induces a cocompact action on X . Observe that if nD 2 then X is the
dual to the Farey tesselation of S2 DH2 and hence homeomorphic to the Bass–Serre
tree of SL2 Z. For larger n, the set X does not have such a simple description, but
Lannes and Soulé proved that X is a deformation retract of Sn and hence contractible
(see Soulé [8] for the case of nD 3, and Ash [3] for all n, treated in a more general
setting). This is why the subset X is known as the well-rounded retract of Sn . Our
goal is to show that X is a minimal SLn Z–invariant spine of Sn .

Definition 1.1 Let � be a group acting discretely on a contractible space S . We
say that a closed subset X of S is a minimal � –invariant spine if it is � –invariant,
contractible and does not properly contain any closed set with these properties.

We prove:

Theorem 1.2 The well-rounded retract X is a minimal SLn Z–invariant spine of the
symmetric space Sn D SOn nSLn R.
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It has long been known that the well-rounded retract does not contain any smaller
dimensional SLn Z–invariant spines. This follows namely from the fact due to Borel–
Serre [5] that the group SLn Z has virtual cohomological dimension

vcdim.SLn Z/D
n.n� 1/

2
D dimX :

In order to appreciate the difference between this statement and the claim of Theorem 1.2
it should be observed that the well-rounded retract contains interesting SLn Z–invariant
subsets of dimension n.n� 1/=2. For instance, recall that an element A 2 SLn R is
well-rounded if the set of shortest nonzero vectors of the lattice AZn generate Rn

as a vector space; equivalently, they generate, as a group, a finite index lattice of
AZn . We will say that A 2 SLn R is extremely well-rounded if the shortest nonzero
vectors of AZn generate the whole lattice AZn . The subset X 0 of Sn consisting of
extremely well-rounded elements is SLn Z–invariant and has dimension n.n� 1/=2.
While X 0 D X for nD 2; 3 and 4, the set X 0 is a proper subset of the well-rounded
retract for n � 5. In [7] we proved that X 0 is not contractible for n � 5. This result
follows now directly from Theorem 1.2:

Corollary 1.3 [7] The subset X 0 � Sn of extremely well-rounded elements is not
contractible.

In order to prove Theorem 1.2 it suffices to show that whenever Y is a closed proper
SLn Z–invariant subset of X , there is a torsion-free, finite index subgroup � � SLn Z
such that the inclusion Y=� ,! X=� is not a homotopy equivalence. We proceed
as follows: First we show that there is A 2 X n Y with the property that there is
a torsion-free, finite index subgroup � of SLn Z and a nontrivial homology class
Œ˛� 2 Hn�1. xM� ; @ xM�/ represented by a cycle ˛ which intersects the well-rounded
retract exactly at A. Here xM� is the Borel–Serre compactification of the locally
symmetric space M� DSn=� and the homology is with coefficients in the ring Z=2Z.
The class Œ˛� is dual to some class Œˇ� 2 Hn.n�1/=2.M�/. The fact that the cycle ˛
does not intersect Y implies that Œˇ� is not in the image of H�.Y=�/ in H�.X=�/.
This shows that the inclusion Y=� in X=� is not a homotopy equivalence.

In [7], we used this strategy to prove Corollary 1.3. In that particular case we faced
much simpler technical problems since it was possible to explicitly find a rational
maximal flat intersecting X exactly once, at a point outside of X 0 . Even in the case
n D 2, it is easy to see that for a generic point A 2 X , every maximal flat through
A intersects X many times. To bypass this problem we give an elementary, though
somewhat involved, construction of the cycle ˛ .
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The paper is organized as follows: In Section 2 we review some facts about the
symmetric space Sn D SOn nSLn R and its quotients. In Section 3 we discuss some
properties of the well-rounded retract, proving that a generic well-rounded element
in Sn has exactly 2n shortest vectors. In Section 4 we show that certain homology
classes are nontrivial; all the results in this section are surely well known. In Section 5
we derive Theorem 1.2 from a result, Proposition 5.1, proved in Section 6. Proposition
5.1, the key point of this paper, yields nontrivial cycles in Cn�1. xM� ; @ xM�/ which
intersect the well-rounded retract at a single point.

We are grateful to Mladen Bestvina for enduring us while we were working on this
project and for suggesting the strategy behind the proof of Theorem 1.2. We thank the
referee and Christophe Soulé for telling us about some of the history of the well-rounded
retract. The first author is indebted to the University of Southampton and to Juan’s
mama for their hospitality during the realization of this paper. The second author thanks
the Stanford University Department of Mathematics. The results of this paper were
obtained while the second author was a member of the Department of Mathematics
of the University of Chicago. Finally, both authors thank the scientific organizers of
the Fall 2007 programs Geometric group theory and Teichmüller theory and Kleinian
groups at MSRI.

Notation We denote by fe1; : : : ; eng and j � j the standard basis and Euclidean norm
of Rn . Sometimes we will write elements in Rn as columns and sometimes as rows;
we hope that this does not cause any confusion. If U is a linear subspace of Rn , denote
by U? its orthogonal complement with respect to the standard Euclidean product. We
will use the same symbol to denote both an equivalence class and a representative of
the equivalence class. For example, we use the same notation for an element in SLn R
and for the corresponding element in the symmetric space Sn D SOn nSLn R, or in
even smaller quotients such as Sn=SLn Z. We will however consistently denote the
homology class corresponding to a cycle ˛ by Œ˛�. All the homology groups considered
below have coefficients in the field Z=2Z of two elements, although everything remains
true with respect to any other commutative ring with unit.

2 The symmetric space Sn D SOn n SLn R

Up to scaling, the manifold Sn D SOn nSLn R admits a unique symmetric metric
invariant under the right action of SLn R; we shall always assume Sn to be endowed
with such a metric. The restriction of the right action of SLn R on Sn to SLn Z is
discrete. Moreover, any torsion-free subgroup � of SLn Z acts freely and hence the
quotient M� D Sn=� is a smooth locally symmetric manifold. It is well known that

Geometry & Topology, Volume 12 (2008)



1546 Alexandra Pettet and Juan Souto

SLn Z contains torsion-free finite index subgroups. If � � SLn Z is any such subgroup,
then the manifold M� is not compact, but is homeomorphic to the interior of a compact
manifold xM� , the so-called Borel–Serre compactification of M� [5].

For every v 2Rn , the length function

lvW Sn!R; lv.A/D jAvj

is well-defined, analytic and convex. In particular we have

(2–1) lv.A
00/�maxflv.A/; lv.A0/g

for all A;A0 2 Sn and every A00 in the unique geodesic segment ŒA;A0� joining A and
A0 in Sn . It should be observed that for every B 2 SLn R we have lv.AB/D lBv.A/.
Since SLn Z acts on the set Zn n f0g, this implies that the function

(2–2) syst1W Sn! .0;1/; syst1.A/D min
v2Zn;v¤0

lv.A/

is SLn Z–invariant. The quantity syst1.A/ is said to be the systole, or first minimum,
of A 2 Sn . The elements of the set

(2–3) S1.A/D fv 2 Zn
j lv.A/D syst1.A/g

are said to be the systoles or shortest vectors of A.

Ash proved in [2] that the systole function is a topological Morse function (see also
Bavard [4] and Akrout [1]). Moreover, the induced function on Sn=SLn Z is proper
by the following theorem:

Mahler’s compactness theorem A closed subset K � Sn=SLn Z is compact if and
only if there is � > 0 with syst1.A/� � for all A 2K .

We deduce from (2–1) and Mahler’s compactness theorem the following important
observation:

Lemma 2.1 Let � be a torsion-free subgroup of SLn Z, N a manifold, and f;gW N!
Sn two continuous maps such that for all � > 0 there is a compact set K� �N with
the following property:

(�) For all x …K� there is v 2 Zn
n f0g with lv.f .x//; lv.g.x// < � .

Then the compositions of f and g with the projection � W Sn ! M� are properly
homotopic.
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Proof Let H W N � Œ0; 1�!Sn be the geodesic homotopy from f to g , ie t!Ht .x/

traverses with constant velocity the geodesic segment Œf .x/;g.x/�. We claim that
h D � ıH is proper. Let C be a compact subset of M� D Sn=� . By Mahler’s
compactness theorem there is some � positive with syst1.A/� � for all A 2 C . For
such an � , let K� � N be the compact subset provided by (�). Then for x … K�

there is some vx 2Z, vx ¤ 0, with lvx
.f .x//; lvx

.g.x// < � . By (2–1) we have then
lvx
.Ht .x// < � for all t 2 Œ0; 1�. This implies that h�1.C /�K� � Œ0; 1�, proving that

it is proper.

We will use Lemma 2.1 several times in the following situation.

Corollary 2.2 Assume that � is a finite index subgroup of SLn Z, and that N �SLn R
projects properly to M� D SOn nSLn R=� . Then for every B 2 SLn R the projections
of N and of BN D fBx;x 2N g to M� are properly homotopic.

3 The well-rounded retract

In this section we discuss briefly some of the properties of the well-rounded retract.
Recall the definition of the systole (2–2) and of the set of systoles (2–3) of a point
A 2 Sn . Let also

(3–1) ƒ1.A/D SpanR.S1.A//

be the linear subspace of Rn generated by the set of systoles of A.

Definition 3.1 An element A 2 Sn is well-rounded if ƒ1.A/D Rn . The subset X
of Sn consisting of all well-rounded elements is called the well-rounded retract.

As mentioned in the introduction, Soulé [8] and Ash [3] proved that X is an SLn Z–
invariant deformation retract. The idea behind this result is simple and beautiful, and
so we explain it briefly here:

Theorem 3.2 (Soulé, Ash) The well-rounded retract X is a deformation retract of Sn.

For kD 1; : : : ; n let Xk be the set of those A2Sn for which we have dimƒ1.A/� k .
We have the following chain of nested SLn Z–invariant subspaces:

X D Xn � Xn�1 � � � � � X1 D Sn

Geometry & Topology, Volume 12 (2008)
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In order to prove Theorem 3.2 it suffices to show that for k D 1; : : : ; n� 1 the space
XkC1 is an SLn Z–equivariant spine of Xk ; we construct a retraction. Given A 2 Xk

and � 2R, consider the one-parameter family of linear maps:

T �
A 2 SLn R; T �

A .v/D

�
e.n�k/�v for v 2Aƒ1.A/

e�k�v for v 2 .Aƒ1.A//
?

In other words, for positive � the map T �
A expands the subspace generated by the image

of the shortest vectors of A, while contracting the orthogonal complement. Observe
that for U 2 SOn we have T �

UAUA D U T �
A A; hence the point T �

A A 2 Sn depends
only on A and not on the choice of representative.

Now T 0
A ADA, and if A 2 Xk nXkC1 , there is some � positive with T �

A A 2 XkC1 .
For A 2 Xk , let �.A/� 0 be maximal such that

T �
A A 2 Xk nXkC1 for all � 2 Œ0; �.A//:

By definition �.A/D 0 for A 2 XkC1 . The function A 7! �.A/ is continuous on Xk ,
which implies that

Œ0; 1��Xk ! Xk ; .t;A/ 7! T t�.A/
A A

is continuous as well. By definition, this homotopy is SLn Z–equivariant, starts with
the identity, and ends with a projection of Xk to XkC1 . This proves that XkC1 is
an SLn Z–equivariant spine of Xk for k D 1; : : : ; n� 1, concluding the sketch of the
proof of Theorem 3.2.

It is not difficult to prove that Xk is a codimension k � 1 semi-algebraic set, ie,
that it is given by a locally finite collection of inequalities and (quadratic) algebraic
equations. Hence X is homeomorphic to a CW-complex of dimension dim.X / D
dim Sn� .n� 1/D n.n� 1/=2. It is also easy to see that X=� is compact. We prove
now that a generic point in X has exactly 2n shortest vectors:

Proposition 3.3 The set of those A 2 X for which there are v1; : : : ; vn 2 Zn linearly
independent with S1.A/D f˙v1; : : : ;˙vng is dense in X .

In order to prove Proposition 3.3 we will use the following not very surprising but also
not completely obvious geometric lemma.

Lemma 3.4 Assume that S is a finite subset of the sphere Sn�1 in Rn with the
property that RnD SpanR S and assume that if v 2 S then �v 2 S as well. Then there
is basis B of Rn contained in S and a linear map F W Rn! Rn close to the identity
such that for v 2 S we have jFvj D jvj if ˙v 2 B and jFvj> jvj otherwise.
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Assuming Lemma 3.4, we prove Proposition 3.3. Given A 2X choose a representative
in SLn R, again denoted by A. By definition, the image AS1.A/ of the set of systoles
of A generates Rn and is contained in the round sphere Sn�1

syst1.A/
of radius syst1.A/.

Let B�AS1.A/ and F W Rn!Rn be the basis and the linear map provided by Lemma
3.4. We set A�1B D fv1; : : : ; vng and A0 D .1= n

p
det.F //FA. Since we may assume

that F is very close to the identity, we have that A0 is very close to A, and hence
S1.A

0/ � S1.A/. It follows now from Lemma 3.4 that S1.A
0/ D f˙v1; : : : ;˙vng.

This concludes the proof of Proposition 3.3.

We prove now Lemma 3.4:

Proof of Lemma 3.4 We use induction on the number of elements in S . There is
nothing to show if S has 2n elements, so assume that we have proved the lemma for
all sets with at most 2k � 2n elements, and that S has 2.kC 1/ elements. Observe
that there is a codimension one linear subspace U �Rn generated by U \S such that
there are at least four elements in S which don’t belong to U (recalling that if v 2 S ,
then �v 2 S as well). We first describe a map F1W R

n!Rn which will allow us to
apply our inductive hypothesis.

We choose v 2 S , v … U with minimal angle †.U; v/D � 2 .0; �=2/. Let V be the
codimension one linear subspace containing v and the intersection .Rv/?\U of the
orthogonal complement of Rv and U . The planes U and V have angle � and divide
Rn into two open sectors, C1 and C2 with angle � , and two also open sectors, C3

and C4 with angle � � � . By the minimality of � , any vector in S which is not in
U [ f˙vg has angle at least � with U and so is not contained in V . Moreover, for
the same reason, we have S \ .C1[C2/D∅, but S \ .C3[C4/¤∅.

For � > � with �� � small we can consider the linear map F1W R
n! Rn which is

the identity on U , an isometry when restricted to V , and which opens C1 and C2 to
angle �. The map F1 preserves the length of vectors in U [V , reduces the length of
vectors in C1[C2 and increases the length of vectors in C3[C4 . In particular, F1

maps .S \U /[f˙vg to the subset .S \U /[f˙F1.v/g of Sn which still generates
Rn , and increases the length of the (at least two) remaining vectors in S .

The induction hypothesis now applies to the set .S \U /[ f˙F1.v/g of cardinality
at most 2k : there is a basis B1 of Rn contained in .S \U /[f˙F1.v/g, and a map
F2W R

n!Rn which preserves the lengths of the elements of B1 (and their negatives)
and increases the lengths of all other vectors in .S \ U / [ f˙F1.v/g. We require
that F2 be close enough to the identity that the vectors in F1.S/ of length greater
than one remain so after applying F2 . Now the basis B D F�1

1
.B1/ and the map

F D F2 ıF1W R
n!Rn satisfy the requirements of the lemma for the set S .
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4 A bit of homology

In this section we give elementary proofs of some homological results which are
probably well known to experts and nonexperts alike.

As mentioned above, SLn Z contains torsion-free subgroups of finite index, and any
such subgroup acts freely and discretely on Sn ; as always, we denote the quotient
manifold by M� D Sn=� and its Borel–Serre compactification by xM� . If U �
xM� is a regular neighborhood of @ xM� , we have H�. xM� ;U /'H�. xM� ; @ xM�/. In

particular, we can consider every properly immersed submanifold of M� as a cycle in
C�. xM� ; @ xM�/. Recall that we always consider homology with coefficients in Z=2Z.

Before stating the main result of this section, we recall that by Lefschetz duality there
is a nondegenerate pairing

�W Hn�1. xM� ; @ xM�/�Hn.n�1/=2.M�/! Z=2Z

which can be computed as follows. Given homology classes Œ˛� 2Hn�1. xM� ; @ xM�/

and Œˇ�2Hn.n�1/=2.M�/, represent them by cycles ˛ and ˇ in general position. Then
�.Œ˛�; Œˇ�/ is just the parity of the cardinality of the set ˛ \ˇ . Observe that in order
to prove that a cycle ˇ 2 Cn.n�1/=2.M�/ represents a nontrivial homology class, it
suffices to find a cycle ˛ 2 Cn�1. xM� ; @ xM�/ which intersects ˇ transversally at a
single point; if this is the case we will say that the two classes Œ˛� and Œˇ� are dual to
each other. This is the argument used in [7] to prove:

Proposition 4.1 Let � be a finite index torsion-free subgroup of SLn Z, � the con-
nected component of the identity in the diagonal subgroup of SLn R and Nil the
subgroup of SLn R consisting of upper triangular matrices with units in the diagonal.
Then the projection of � and Nil to M� represent dual, and hence nontrivial, homology
classes in Hn�1. xM� ; @ xM�/ and Hn.n�1/=2.M�/, respectively.

Proposition 4.1 is surely well known, as is the following slightly more general version.

Corollary 4.2 Given B 2GLn Q assume that � � SLn Z is a finite index torsion-free
subgroup with B�1�B � SLn Z, and that � and Nil are as in Proposition 4.1. Then
the projections of B�B�1 and B Nil B�1 to M� represent dual, and hence nontrivial,
homology classes in Hn�1. xM� ; @ xM�/ and Hn.n�1/=2.M�/, respectively.

Proof The map �W Sn ! Sn given by �.X / D XB�1 induces a diffeomorphism
ˆW MB�1�B ! M� . By Proposition 4.1 the projections of � and Nil represent
dual homology classes in MB�1�B . Pushing forward with ˆ, we obtain dual cycles
�B�1 and Nil B�1 . By Corollary 2.2, these cycles are properly homotopic, and hence
homologous, to the cycles B�B�1 and B Nil B�1 . The claim follows.
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5 Proof of Theorem 1.2

In the next section we will show:

Proposition 5.1 Assume that A 2 X is such that there are v1; : : : ; vn 2 Zn linearly
independent with S1.A/ D f˙v1; : : : ;˙vng. Let B 2 GLn Q be the matrix with
columns v1; : : : ; vn , and let � be a finite index torsion-free subgroup of SLn Z \
B SLn ZB�1 . Then the nontrivial homology class ŒB�B�1� is represented by a cycle
˛ 2 Cn�1. xM� ; @ xM�/ whose support intersects the well-rounded retract X only in A.

Assuming Proposition 5.1, we prove the main theorem:

Theorem 1.2 The well-rounded retract X is a minimal SLn Z–invariant spine of the
symmetric space Sn D SOn nSLn R.

Proof Assume that Y � X is a proper, closed, SLn Z–invariant subset of X . As
mentioned in the introduction, in order to show that Y is not contractible, it suffices
to prove that for some � � SLn Z the induced map Y=�! X=� is not a homotopy
equivalence.

By Proposition 3.3 there is A2X nY and a linearly independent subset fv1; : : : ; vng�

Z with S1.A/ D f˙v1; : : : ;˙vng. Let B 2 GLn Q be the matrix with columns
v1; : : : ; vn . The subgroups SLn Z and B SLn ZB�1 are commensurable and hence
there is a torsion-free finite index subgroup � � SLn Z\B SLn ZB�1 . By Proposition
5.1, the homology class ŒB�B�1� 2 Hn�1. xM� ; @ xM�/ is represented by a cycle ˛
with ˛ \ X D fAg. On the other hand, the class ŒB�B�1� is dual to some class
Œˇ� 2Hn.n�1/=2.M�/ by Corollary 4.2. Since ˛ represents ŒB�B�1� and intersects
X only at A, we deduce that every cycle contained in X=� and representing Œˇ� has
to contain A in its support. In particular, the map

Hn.n�1/=2.Y=�/!Hn.n�1/=2.X=�/

is not surjective. This implies that the map Y=�! X=� is not a homotopy equiva-
lence.

6 Flags of systoles

In this section we prove Proposition 5.1. The first step is to construct a certain continuous
map

(6–1) ˆW Sn � Œ0;1/! Sn
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which essentially pushes points in Sn nX away from X .

To begin with, recall the definition of the systole syst1.A/ of A 2 Sn . We can extend
this definition as follows: for i D 1; : : : ; n, the i –th systole of A is given by

(6–2) systi.A/D inffr j dimR.SpanRfv 2 Z with jAvj< rg/� ig:

In other words, systi.A/ is the infimum of those r for which the set of vectors v in Zn

whose image Av has length less than r generates a subspace of Rn with dimension at
least i . Equivalently,

(6–3) systi.A/D supfr j dimR.SpanRfv 2 Z with jAvj< rg/ < ig:

The i –th systole coincides with Minkowski’s i –th successive minimum of the lattice
AZn with respect to the ball B1 of radius 1 in Rn . See Martinet [6] for more about
successive minima.

For i D 1; : : : ; n, the i –th systole function

systi W Sn! .0;1/

is well-defined and SLn Z–equivariant. We claim that it is continuous. In fact, if
.Ak/ is a sequence in Sn converging to some A 2 Sn then for all r the finite sets
fv 2 Zn; jAkvj< rg converge in the Gromov-Hausdorff topology to the (again finite)
set fv 2 Zn; jAvj< rg. Since Zn is discrete, we have that for all sufficiently large k

fv 2 Zn; jAkvj< rg D fv 2 Zn; jAvj< rg:

Together with (6–2), this implies that systi is lower semi-continuous. Likewise (6–3)
and the same argument yield upper semi-continuity.

Lemma 6.1 The function systi W Sn! .0;1/ is continuous and SLn Z–equivariant
for i D 1; : : : ; n.

Recall now the definition of ƒ1.A/ given in (3–1). We extend this definition, setting
for i D 1; : : : ; n

ƒi.A/D SpanR.fv 2 Zn; jAvj � systi.A/g/:

In order to avoid treating special cases we set ƒ0.A/D 0 for all A 2 Sn . By definition

(6–4) 0 ¨ƒ1.A/� � � � �ƒn DRn

and dimR.ƒi.A//� i . Observe that for i < n this last inequality is strict if A is well-
rounded. In particular, we cannot expect that the subspaces ƒi.A/ depend continuously
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on A. However we have the following weak continuity, which can be proved with
essentially the same argument as Lemma 6.1:

Lemma 6.2 Assume that .Ak/ is a sequence in Sn converging to some A2Sn . Then
there is k0 such that for all k � k0 and i 2 f1; : : : ; ng there is a unique �.k; i/ 2
f1; : : : ; ng with

� ƒ�.k;i/.Ak/Dƒi.A/, and

� if �.k; i/¤ n then ƒ�.k;i/C1.Ak/¤ƒi.A/.

If moreover i 0 is minimal with systi0.A/D systi.A/ then

lim
k!1

systjk
.Ak/D systi.A/

for all choices of jk with �.k; i 0� 1/ < jk � �.k; i/.

We use the flag (6–4) to construct the continuous map (6–1). To begin with we consider
for i D 1; : : : ; n the subspace

‚i.A/D .Aƒi�1.A//
?
\ .Aƒi.A//:

In more plain language, ‚i.A/ is the orthogonal complement of the image of ƒi�1.A/

under A within the image of ƒi.A/. We have thus the orthogonal decomposition

Rn
D‚1.A/˚ � � �˚‚n.A/

together with the associated orthogonal projections

�‚i .A/W R
n
!‚i.A/:

We define now for x 2Rn

(6–5) ˆt .A/x D
1

n

qQn
iD1 systi.A/t dimR‚i .A/

nX
iD1

systi.A/
t�‚i .A/.Ax/:

The multiplicative factor in (6–5) ensures that ˆt .A/ 2 SLn R for all A 2 SLn R.
Moreover, for all U 2 SOn we have ˆt .UA/ D Uˆt .A/. In particular, we have a
well-defined map

(6–6) ˆt W Sn � Œ1;1/! Sn

It is easy to check that the map (6–6) is SLn Z–equivariant, and its continuity follows
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from Lemma 6.2. Moreover, since syst1.A/ � systi.A/ for all i , we have for all
x 2Rn

(6–7) jˆt .A/xj �

 
syst1.A/

n

qQn
iD1 systi.A/dimR‚i .A/

!t

jAxj

with equality if and only if x 2ƒ1.A/. In particular we see that ƒ1.ˆt .A//Dƒ1.A/

for all t � 0. Moreover, if ƒ1.A/¤ Rn then the exponentiated quantity in (6–7) is
less than 1 and hence

lim
t!1

syst1.ˆt .A//D 0

On the other hand, if ƒ1.A/DRn then ˆt .A/DA for all t .

Summing up, we have:

Proposition 6.3 There is a continuous map ˆW Sn� Œ0;1/! Sn , ˆ.A; t/Dˆt .A/,
with the following properties:

� ˆ0.�/D Id,

� ˆt .A/ 2 X if and only if A 2 X , and

� if A … X then limt!1 jˆt .A/vj D 0 for all v 2ƒ1.A/.

We are now ready to prove Proposition 5.1:

Proposition 5.1 Assume that A 2 X is such that there are v1; : : : ; vn 2 Zn linearly
independent with S1.A/Df˙v1; : : : ;˙vng, let B2GLn Q be the matrix with columns
v1; : : : ; vn and � a finite index torsion-free subgroup in SLn Z\B SLn ZB�1 . Then
the nontrivial homology class ŒB�B�1� is represented by a cycle ˛ 2Cn�1. xM� ; @ xM�/

whose support intersects the well-rounded retract X only at A.

Recall that � is the connected component of the identity in the diagonal subgroup of
SLn R.

Proof In order to construct the cycle ˛ we start with the map

g1W �!M� ; g1.X /D BXB�1

The cycle g1.�/ represents a nontrivial homology class in Hn�1. xM� ; @ xM�/ by
Corollary 4.2. The point A may not belong to the image of g1.�/, but this can be
easily corrected by considering the map

g2W �!M� ; g2.X /DABXB�1

Geometry & Topology, Volume 12 (2008)



Minimality of the well-rounded retract 1555

Corollary 2.2 implies that g1.�/ and g2.�/ are properly homotopic and hence ho-
mologous.

Now we have g2.Id/ D A, but it is not clear at all how many other times g2.�/

may intersect X . We correct this problem by constructing a third map g3 properly
homotopic to g2 . Before going further we identify � with Rn�1 via the following
map

.a1; : : : ; an�1/ 7!

0BBBBB@
ea1 0 : : : 0 0

0 ea2 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : ean�1 0

0 0 : : : 0 e�a1�a2�����an�1

1CCCCCA
A simple computation shows:

Lemma 6.4 There is some � > 0 such that for all x 2 B� � Rn�1 D�, g2.x/ 2 X
if and only if x D 0. If moreover x 2 B� , x ¤ 0 and v 2 S1.g2.x// then we have

lim
t!1

lv.g2.tx//D 0:(6–8)

Here B� is the ball of radius � centered at 0 in Rn�1 '�.

We can now define the map g3W R
n�1!M� . With � as in Lemma 6.4 and ˆ the

map provided by Proposition 6.3, we set

g3.x/D

(
g2.x/ jxj � �

ˆjxj��.g2.�
x
jxj
// jxj � �:

In other words we extend radially, using the map ˆ and the restriction of g2 to B� .
Since g2.x/ … X for x with jxj D � , we deduce from Proposition 6.3 that g3.x/ … X
for all x with jxj � � . On the other hand, for jxj � � we have g3.x/D g2.x/. Hence

g3.R
n�1/\X D fAg:

If v 2 Zn is a systole for g2.x/ with jxj D � , then we have by (6–8)

lim
t!1

lv.g2.tx//D 0

and by Proposition 6.3

lim
t!1

lv.g3.tx//D lim
t!1

lv.ˆt�1.g2.x//D 0:

Lemma 2.1 implies now that the maps g2 and g3 are properly homotopic to each other.
Hence the cycle ˛ D g3.�/ represents the nontrivial homology class ŒB�B�1� 2

Hn�1. xM� ; @ xM�/ and ˛\X D fAg.
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