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We develop a theory of Selmer groups for analytic families of Galois representa-
tions, which are only assumed “ordinary” on the level of their underlying (ϕ, 0)-
modules. Our approach brings the finite-slope nonordinary case of Iwasawa
theory onto an equal footing with ordinary cases in which p is inverted.

Introduction

This paper provides new foundations for the algebraic side of Iwasawa theory. We
develop a theory of Galois representations and Galois cohomology over p-adic
analytic spaces. In the classical case, where one works over a complete Noetherian
local ring, this amounts to passing to the generic fiber of the associated formal
scheme (or, what amounts to the same here, inverting p). Moreover, we develop
a parallel theory for (ϕ, 0)-modules varying in families of the same type. The
upshot is that we may mimic Greenberg’s “ordinary” Iwasawa theory for Galois
representations that look ordinary only on the level of their associated (ϕ, 0)-
module. Although our work was originally motivated by examples coming from
eigenvarieties, we have more recently found significant applications even to the
classical case of cyclotomic deformations, to be explained in [Pottharst 2012].

This article is rather technical by nature, so we must remain imprecise in the
following outline of our results. First, we develop a theory of group cohomology of
a profinite group G with coefficients in families of representations over a p-adic
analytic space X over Qp. By a family of G-representations over X , we mean
a locally finitely generated, flat OX -module M , equipped with a continuous map
G→ Autcont

OX
(M). In Section 1, we prove the following results:

Theorem. Assume G has finite cohomology on all discrete G-modules of finite, p-
power order, vanishing in degrees greater than e. Then the continuous cohomology
with values in 0(Y,M), where Y ⊆ X ranges over affinoid subdomains, gives
rise to a perfect complex of coherent OX -modules, vanishing in degrees greater
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than e. If f : X ′ → X is a morphism, then there is a canonical isomorphism
L f ∗R0cont(G,M) ∼→ R0cont(G, f ∗M).

In the case where X is quasi-Stein, we show that 0(X,R0cont(G,M)) is com-
puted by R0cont(G, 0(X,M)). In the case where X is the generic fiber of the formal
scheme Spf(A, I ) and M is the analytification of the I -adic G-representation M,
we show that R0cont(G,M)⊗L

A OX
∼
→ R0cont(G,M), thus providing the link with

the classical case.
With these tools in hand, it is straightforward to translate into our context the

theory of Selmer complexes (and hence Selmer groups) and show that our theory
receives the analytification of the classical theory as in the preceding paragraph.

In Section 2, we turn to the case where G = G K is the absolute Galois group of
a finite extension K of Qp. We formulate a notion of families of (ϕ, 0)-modules
over X as above, define their Galois cohomology, and give their basic functorial
properties. One important ingredient was conspicuously lacking in a prior version
of this paper: we did not know that the Hi (G K , D) are finitely generated. This
has recently been proven; see [Kedlaya et al. 2012]. As for the relation to the
cohomology of Galois representations, we prove the following result:

Theorem. There is a functorial isomorphism R0cont(G K ,M) ∼→ R0(G K ,D(M)),
where D(M) is the family of (ϕ, 0K )-modules associated to M.

The essential image of the functor D is poorly understood at present (see [Hell-
mann 2012a] for an example of the nontrivial complications that arise), so we note:

Corollary. Let 0→ D′ → E → D → 0 be a short exact sequence of families
of (ϕ, 0K )-modules over X as in the preceding theorem. If D and D′ arise from
families of Galois representations, then so does E.

In Section 3, we study the p-adic Hodge theory of (ϕ, 0K )-modules, extending to
them well-known notions and results for Galois representations. We define ordinary
(ϕ, 0K )-modules and formulate the (strict) ordinary local condition in their Galois
cohomology and then compare the latter to the Bloch–Kato local conditions. We
note that our notion of ordinariness is extremely broad; for example, in the case of
modular forms, it includes all cases “of finite slope” (that is, having nonzero Up-
eigenvalue up to p-stabilization and twisting) or, on the automorphic side, having
local Weil–Deligne representation at p that is nonsupercuspidal and of nonscalar
Frobenius (the latter condition being conjecturally automatic).

We conclude with a semicontinuity result on the ranks of Selmer groups in an
ordinary (in our sense) family, which was also observed by Bellaïche [2012]. Various
recent works [Hellmann 2012b; Kedlaya et al. 2012; Liu 2012] show that ordinary
families are abundant: in particular, any family that is refined in the sense of Bel-
laïche and Chenevier [2009], such as an eigenvariety, is automatically ordinary away
from a proper Zariski-closed subset. Thus, our hypotheses are not very restrictive.
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Background. The practice of p-adically interpolating Selmer groups goes back to
the seminal work of Mazur [1972], where abelian varieties at good ordinary primes
are treated; it is suggested there that “the situation is remarkably different” for nonor-
dinary primes. That one definitively cannot integrally interpolate the usual Selmer
groups in a naïve way was confirmed by work of Schneider [1987]. For motives
satisfying an “ordinary” hypothesis, Greenberg [1989; 1994a] found a purely Galois-
cohomological replacement for the p-adic Hodge-theoretic local conditions that is
amenable to interpolation. The latter approach was axiomatized by Nekovář [2006].

The above left open the question of what happens in the nonordinary setting.
Work of Amice and Vélu [1975] and Višik [1976] showed that the analytic p-adic
L-functions of modular forms belong to OX , and not to 3[1/p] as in the ordinary
case, where3 is the Iwasawa algebra and X is the generic fiber of Spf(3,m). Then,
heavily using Fontaine’s tools of p-adic Hodge theory, Perrin-Riou [1994b; 2000]
constructed algebraic p-adic L-functions (i.e., would-be characteristic ideals), also
belonging to 3∞. Somewhat surprisingly, her construction eschewed the Selmer
groups with finer local conditions although it recovered their characteristic ideals in
the ordinary case. Using her language, in the case of modular forms, Kato [2004]
used his Euler system to prove a divisibility in an Iwasawa main conjecture and in
the ordinary case deduced a statement about Selmer groups.

The next advance came when Kisin [2003] made a Galois-theoretic study of the
eigencurve, identifying the relevant two-dimensional p-adic Galois representations
as those admitting a crystalline period after twist. Colmez [2005; 2008; 2010] fol-
lowed the analogy between these representations and principal series, reformulated
Kisin’s condition in terms of (ϕ, 0)-modules (terming it “trianguline”), and made a
rigorous p-adic local Langlands correspondence for them. These two works have
influenced, e.g., Bellaïche and Chenevier [2009], who refine the methods to make
a detailed study of Selmer groups in the infinitesimal neighborhoods of classical
points on eigenvarieties.

We briefly mention that somewhat recently there has been progress in nonor-
dinary cyclotomic Iwasawa theory employing similar tools to ours but resulting
in mysteriously different outputs. The theory was initiated by R. Pollack and
S. Kobayashi (building on work of M. Kurihara) and generalized by F. Sprung,
A. Lei, D. Loeffler, and S. Zerbes. See [Pottharst 2012] for references and more
commentary on this direction.

Future directions. Our theory is incomplete in that we have direct access to no
integral information, having chosen to exchange it for major simplifications in p-
adic Hodge theory when working only up-to-isogeny. The remedy for this is likely
to be the use of Euler–Poincaré formulas to construct integral isogeny invariants,
following [Bloch and Kato 1990; Fontaine and Perrin-Riou 1994; Perrin-Riou 2000].
Still, the theory has several applications. It essentially subsumes Perrin-Riou’s
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cyclotomic Iwasawa theory, as explained in [Pottharst 2012]. Nekovář’s work on
the parity of Selmer groups in families, as well as the parity conjecture for ordinary
Hilbert modular forms of parallel weight, readily generalizes to our setting. In joint
work with K. S. Kedlaya, L. Xiao, and the author [Kedlaya et al. 2012], a perfectness
and duality result for the Galois cohomology of families of (ϕ, 0K )-modules is
applied to give a general construction of triangulations of eigenvarieties as well as
a classification of rank-one families of (ϕ, 0K )-modules; for other recent progress
on triangulations, see [Chenevier 2010; Hellmann 2012b; Kedlaya et al. 2012;
Liu 2012]. Bellaïche has also used our Selmer groups to prove an Iwasawa main
conjecture for Eisenstein series using their nonordinary choice of p-stabilization
(personal communication). Finally, Benois [2011; 2009] has used methods similar
to ours to study L-invariants of Perrin-Riou’s Iwasawa L-functions.

This paper is intended as the first step of an Iwasawa theory within the p-adic
Langlands program. Namely, Galois-theoretic eigenvarieties for reductive groups H
over Q should be moduli of ordinary filtrations on the (ϕ, 0)-modules of universal
Galois deformations with values in L H . For each ι : L H → GLd preserving the
ordinariness of the filtration, the Galois-theoretic eigenvariety will then have a
natural Selmer module. First steps in this direction have been made by Chenevier
[2010] and Hellmann [2010; 2012b]. The automorphic (i.e., usual) eigenvariety
associated to H will map to the Galois-theoretic one by virtue of its family of Galois
representations. A generalization à la Kisin of the ordinary “R = T ” conjectures
would predict this map to be an isomorphism, and Iwasawa theory would relate the ι-
Selmer module to the p-adic L-function interpolating the ι-L-values of automorphic
representations on H .

Notation. Throughout, we fix a prime p and a finite extension E of Qp with ring
of integers OE .

Let a ≤ b be integers. For ∗ ∈ {[a, b], b,+,−,∅}, we say that a complex or
graded module is ∗-bounded if it is, respectively, concentrated in degrees [a, b],
bounded, bounded above, bounded below, or is arbitrary.

If (Z ,OZ ) denotes a ringed topos and ?∈{∅, ft}, we write K∗?(Z) for the category
of complexes of OZ -modules, each of whose cohomologies is ∗-bounded and, if
?= ft, satisfies a finiteness condition to be made precise as it arises. We write D∗?(Z)
for its derived category, and we write Gr∗?(Z) for the category of ∗-bounded graded
OZ -modules, each of whose components satisfies ?. Denote by [ · ] :K∗?(Z)→D∗?(Z)
and H∗ :D∗?(Z)→Gr∗?(Z) the obvious functors. Denote also D[a,b]perf (Z)⊆D[a,b]ft (Z)
the strictly full subcategory consisting of objects X quasi-isomorphic to complexes
C• concentrated in degrees [a, b] consisting of ft and flat modules. On the latter
category, X 7→ X∗ = R HomOZ (X,OZ ) is in each case under consideration an
anti-involution, and for X ∼= [C•] as above, X∗ is represented by HomOZ (C

•,OZ ).
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1. Group cohomology

1A. Continuous cochains: local calculations. We will say that an OE -module M
is linearly topologized if it is equipped with a topology with basis around the
identity consisting of a decreasing sequence Mn of OE -submodules. We will say
that an OE -algebra R is linearly topologized (as an algebra) if the system of
submodules Rn can be chosen so that Rn · Rn ⊆ Rn . For such R, we will say
that an R-module M is linearly topologized compatibly with R if the systems Rn

and Mn of open submodules can be chosen so that Rn ·Mn ⊆ Mn; in particular, the
multiplication map R×M→ M is bicontinuous.

Let G be a profinite group. A continuous G-module is a linearly topologized OE -
module M endowed with a continuous map G→ Autcont

OE
(M), the latter equipped

with the compact-open topology. Given a linearly topologized OE -algebra R, a
continuous R[G]-module is an R-module M that is linearly topologized compatibly
with R endowed with a continuous map G→Autcont

R (M), the latter again equipped
with the compact-open topology. We define the complex C•cont(G,M) ∈K+(R) of
continuous cochains on G with values in M to be Ci

cont(G,M)=Mapcont(Gi ,M)
with the usual differential (see, e.g., [Nekovář 2006, 3.4.1.2]). We denote its image
in D+(R) by R0cont(G,M) and its cohomology by H∗cont(G,M) ∈ Gr+(R). The
latter defines a functor that, of course, turns short exact sequences into long exact
sequences provided the usual existence of continuous (though not necessarily group-
theoretic) sections. The reader may check that, under our hypotheses below, one
always has the necessary continuous sections for turning short exact sequences into
long exact sequences.

In order to get reasonable behavior, we will need to impose some hypotheses.
The following are sufficient for our applications:

Hypotheses A. (1) G is a profinite group having finite p-cohomological dimen-
sion e, and #Hi

cont(G, T ) <∞ for all finite discrete Fp[G]-modules T and all
i ≥ 0.

(2) A is a Noetherian OE -algebra, separated and complete with respect to a proper
ideal I containing a power of p and equipped with the I -adic topology.

(3) M is a finite-type A-module, considered with its I -adic topology and equipped
with a continuous A[G]-module structure.

(4) The A-module M is flat.

We say that an A-module satisfies the condition “ft” if it is of finite type.
Note that, under Hypotheses A(1)–(3), since A/I N has the discrete topology for

N > 0, the stabilizer of any element of M/I N is open in G; since M is finitely
generated, we see that G acts on M/I N through a finite quotient.

The following is the main result of this section:
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Theorem 1.1. Assume Hypotheses A.

(1) The complexes C•cont(G,M/I N ) and C•cont(G,M) consist of flat A/I N -modules
and A-modules, respectively.

(2) The inverse system {H∗cont(G,M/I N )}N satisfies Mittag-Leffler.

(3) The natural map H∗cont(G,M)→ lim
←−N

H∗cont(G,M/I N ) is an isomorphism.

(4) The Hi
cont(G,M) are finitely generated A-modules and vanish for i > e.

The above theorem shows that C•cont(G,M) ∈ K[0,e]ft (A). In fact, copying the
proof of [Nekovář 2006, 4.2.9] verbatim (in the case a = b = 0, S = {1}), one
obtains the following strengthening:

Corollary 1.2. Assume Hypotheses A. Then R0cont(G,M) ∈ D[0,e]perf (A).

Lemma 1.3. Assume Hypotheses A(1)–(3).

(1) For any compact topological space X , the natural maps

Mapcont(X,M)/I N
→Mapcont(X,M/I N )

are isomorphisms.

(2) The natural maps

C•cont(G,M)/I N
→ C•cont(G,M/I N )

are isomorphisms of complexes.

(3) One has Hi
cont(G,M)= 0 for i > e.

(4) If M is annihilated by a power of I , then H∗cont(G,M) is a finitely generated
A-module.

(5) If Hypothesis (4) holds too, then for each N >0 the complexes C•cont(G,M/I N )

and C•cont(G,M) consist of flat A/I N -modules and A-modules, respectively.

Proof. For (1), the main fact we will use is that the continuous maps from a compact
topological space to a discrete topological space are precisely the locally constant
ones.

The map of the claim is surjective by the discreteness of M/I N ; that it is injective
amounts to the claim that the natural map I N

·Mapcont(X,M)→Mapcont(X, I N M)
is surjective. As the source of this map is complete and I N M ∼

→ lim
←−k

I N M/I N+k M ,
it suffices to show that the maps I N

·Mapcont(X,M)→Mapcont(X, I N M/I N+k M)
for k ≥ 0 are surjective. But the I N M/I N+k M are discrete, so the latter claim is
obvious.

For (2), the maps are clearly compatible with differentials, so we must check
that they are isomorphisms term-by-term. For the i-th term, this results from (1)
with X = Gi .
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To prove (3), observe that by the universal property of the inverse limit one has
C•cont(G,M) = lim

←−N
C•cont(G,M/I N ) with surjective transition maps; hence, for

each i , we have short exact sequences

0→ R1 lim
←−

N

Hi−1
cont(G,M/I N )→ Hi

cont(G,M)→ lim
←−

N

Hi
cont(G,M/I N )→ 0.

Since each M/I N is a discrete p-primary G-module, the claim for i > e+1 follows.
For i = e+ 1, the inverse system {Hi−1

cont(G,M/I N )}N has surjective maps because
each Hi

cont(G, I N M/I N+k M) = 0. This implies that the R1 lim
←−N

-term vanishes,
giving the claim in this case too.

Next we treat (4). We may perform a dévissage to reduce to the case where
(I, p)M = 0, and then we choose an open normal subgroup H ⊆G with M H

= M .
Since M is Fp-flat, the natural map H∗cont(H,Fp)⊗Fp M→ H∗cont(H,M) is an iso-
morphism. By Hypothesis (1), the term H∗cont(H,Fp) is finite; hence, H∗cont(H,M)
is finitely generated over A. Now consider the spectral sequence

Hi
cont(G/H,H j

cont(H,M))H⇒ Hi+ j
cont(G,M).

The terms on the left are finitely generated over A because G/H is finite. This
forces H∗cont(G,M) to be finitely generated.

Finally, for (5), it follows from (2) that for any ideal J of A one has

J ⊗A C•cont(G,M) ∼→ J ⊗A lim
←−

N

C•cont(G,M)/I N .

But A is Noetherian, so J is finitely presented, and ⊗A J commutes with taking
inverse limits of surjective systems. Therefore, one has

J ⊗A C•cont(G,M) ∼→ lim
←−

N

(J ⊗A C•cont(G,M))/I N ,

and the right-hand side is clearly I -adically separated. This verifies that C•cont(G,M)
is “I -adically ideal separated”. Hence, by the well-known local criterion for flatness,
e.g., [Matsumura 1989, Theorem 22.3(1, 5)], this complex consists of flat A-modules
if and only if each of its respective reductions modulo I N is A/I N -flat. But since
M is A-flat, it follows that the M/I N are A/I N -flat, and indeed so are the complexes
C•cont(G,M/I N )= lim

−→H EG open
(M/I N )⊕(G/H)•. We conclude by again using (2).�

Proof of Theorem 1.1. The claim (1) follows immediately from Lemma 1.3(5), and
the last part of the claim (4) is Lemma 1.3(3).

The remaining claims follow from the results of [Berthelot and Ogus 1978,
Appendix B], whose conventions for handling inverse limits in the derived category
we now recall. Namely, we consider the poset N of nonnegative integers as a
Grothendieck site with the discrete topology: only identity maps are coverings. A
sheaf on N is merely an inverse system, and the condition that a sheaf be flasque
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simply amounts to the Mittag-Leffler condition. We equip N with the sheaf A· of
rings given by N 7→ AN = A/I N+1 and work in the derived category D(N, A·) of
A·-modules on N.

Write MN = M ⊗A AN ; the Ci
cont(G,MN ) determine a complex C•

·
of sheaves

of A·-modules. Lemma 1.3(3) shows that [C•
·
] ∈ D−(N, A·), and Lemma 1.3(5)

implies that [C•N+1] ⊗
L
AN+1

AN is represented by the complex C•N+1 ⊗AN+1 AN ,
which by Lemma 1.3(2) is isomorphic to C•N . The latter two claims mean that
C•
·

is what in [Berthelot and Ogus 1978] is called a quasiconsistent complex.
Lemma 1.3(4) shows (in particular) that [C•0 ] ∈ D−ft (A0), and hence, the main
finiteness result [Berthelot and Ogus 1978, Proposition B.7]1 applies to C•

·
and

R lim
←−N
[C•
·
]. Finally, Lemma 1.3(2) shows that C•

·
is a complex of flasque sheaves,

and therefore, R lim
←−N
[C•
·
] = [lim
←−N

C•N ] = [C
•
cont(G,M)], allowing us to rephrase

the finiteness result as claims (2)–(4). �

We turn to base-changing properties. We say that B is an I -adic A-algebra if it is
a Noetherian A-algebra that is (I B)-adically separated and complete and equipped
with the (I B)-adic topology; when no confusion may arise, we abusively denote
by I the ideal I B of B.

Theorem 1.4. Assume Hypotheses A hold, and let B be an I -adic A-algebra.

(1) The natural map

R0cont(G,M)⊗L
A B→ R0cont(G,M ⊗A B)

is an isomorphism in D[0,e]perf (B).

(2) There is a canonical spectral sequence

Ei j
2 = TorA

−i (H
j
cont(G,M), B)H⇒ Hi+ j

cont(G,M ⊗A B).

(3) If B is flat over A or becomes flat after inverting p, then the natural map

H∗cont(G,M)⊗A B→ H∗cont(G,M ⊗A B)

is an isomorphism or becomes an isomorphism after inverting p, respectively.

Lemma 1.5. Assume Hypotheses A hold, and let B be an I -adic A-algebra.

(1) For any compact topological space X , the natural map

Mapcont(X,M) ⊗̂A B→Mapcont(X,M ⊗̂A B)

is an isomorphism.

1In the statement of this result, the hypothesis “D0 ∈ D−ft (N, A·)” should read “D0 ∈ D−ft (A0)”.
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(2) The natural map

C•cont(G,M) ⊗̂A B→ C•cont(G,M ⊗A B)

is an isomorphism of complexes.

(3) The natural map

C•cont(G,M)⊗A B→ C•cont(G,M) ⊗̂A B

is a quasi-isomorphism.

Proof. We treat (1). One has natural maps

Mapcont(X,M)⊗A B/I N
=Mapcont(X,M)/I N

⊗A B/I N

α
−→Mapcont(X,M/I N )⊗A B/I N

β
−→Mapcont(X,M ⊗A B/I N ).

The map α is an isomorphism by Lemma 1.3(2). One easily deduces that β is an
isomorphism from the fact that all of M/I N , B/I N , and M ⊗A B/I N are discrete.
Thus, we deduce the claim by passing to the inverse limit over N .

For (2), the map is clearly compatible with differentials, so we must check that
it is an isomorphism term-by-term. For the i-th term, this results from applying (1)
with X = Gi and noting that M ⊗̂A B = M ⊗A B because M is finitely generated
over A.

We now show (3). Choose a quasi-isomorphism D•→ C•cont(G,M)⊗A B with
D• a bounded-above complex of finitely generated, flat B-modules. Because both
D• and C•cont(G,M)⊗A B are B-flat, the induced maps

D•⊗B B/I N
→ C•cont(G,M)⊗A B/I N

are quasi-isomorphisms. On the other hand, both systems satisfy Mittag-Leffler
so that, applying lim

←−N
, the induced map D̂•→ C•cont(G,M) ⊗̂A B is also a quasi-

isomorphism. We conclude by tracing around the commutative diagram

D• ∼
//

∼

��

D̂•

∼

��

C•cont(G,M)⊗A B // C•cont(G,M) ⊗̂A B

where the top horizontal isomorphism is because the Di are finitely generated. �

Proof of Theorem 1.4. The claim (1) follows from Lemmas 1.3(5) and 1.5(2)–(3),
and (2) follows from (1) formally. To see (3), consider the spectral sequence of (2).
After inverting p if necessary, all terms with i 6= 0 vanish, yielding degeneracy
at E2, whence the desired isomorphism. �

Often, we are only given a finitely generated A[1/p]-module M equipped with
the structure of a continuous A[1/p][G]-module. If there exists a finitely generated,
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flat, G-stable A-submodule M0 ⊆ M such that M0[1/p] = M , then M0⊗A B plays
the same role inside M⊗A[1/p]B[1/p], and the preceding finiteness, perfectness, and
base-change results apply with A[1/p], B[1/p], and M in place of A, B, and M0,
respectively, and all objects occurring in it are independent of the choice of M0.

For any strictly E-affinoid space Y , we write AY for the set of unit balls of
Banach algebra norms on 0(Y,OY ). Any A ∈AY , equipped with I = (p), satisfies
Hypothesis (2). If M is a finitely generated, flat 0(Y,OY )-module equipped with the
structure of a continuous 0(Y,OY )[G]-module, then by [Chenevier 2009, Lemme
3.18] one has M=M0[1/p] for M0 a finitely generated, flat, G-stable A-submodule,
for some A ∈AY , and R0(G,M)=R0(G,M0)[1/p] belongs to D[0,e]perf (0(Y,OY )).
If f : Y ′→ Y is a morphism of affinoid spaces, then the image of A in 0(Y ′,OY ′)

is contained in some B ∈ AY ′ , and any such B is a p-adic A-algebra. Thus, by
the preceding paragraph, we may apply Theorem 1.4 with A and B replaced by
0(Y,OY ) and 0(Y ′,OY ′). In particular, if Y ′ is an affinoid subdomain of Y , then
B[1/p] = 0(Y ′,OY ′) is flat over A[1/p] = 0(Y,OY ), so Theorem 1.4(3) applies.

1B. General p-adic analytic spaces. Let X be a p-adic analytic space over E ,
and let U be an admissible affinoid covering that is quasiclosed under intersection,
meaning that whenever Y, Y ′ ∈U then Y ∩Y ′ has an admissible cover consisting
of elements of U. We consider U as a poset category and equip it with the discrete
Grothendieck topology: only identity maps are coverings, and all presheaves are
sheaves. Thus, homological algebra of sheaves on U is essentially carried out
independently over each affinoid. It is a ringed site via the rule 0(Y,OU)=0(Y,OY ),
and an OU-module M consists of the data of a 0(Y,OY )-module 0(Y,M) for each
Y ∈U together with a morphism 0(Y,M)→ 0(Y ′,M) of 0(Y,OY )-modules for
each Y, Y ′ ∈U with Y ′ contained in Y , satisfying the obvious compatibility law for
Y ′′ ⊆ Y ′ ⊆ Y . Similarly to the situation in [Berthelot and Ogus 1978, Appendix B],
we say that a complex C• of OU-modules is quasiconsistent if each induced map

0(Y,C•)⊗0(Y,OY ) 0(Y
′,OY ′)→ 0(Y ′,C•)

is a quasi-isomorphism. Since 0(Y ′,OY ′) is 0(Y,OY )-flat, we in fact have an
isomorphism

[0(Y,C•)]⊗L
0(Y,OY )

0(Y ′,OY ′)
∼
→ [0(Y ′,C•)]

in D(0(Y ′,OY ′)). We say that a quasiconsistent complex of OU-modules C• is of
finite type, or satisfies the condition “ft”, or is flat if, for all i ∈ Z and for all Y ∈U,
the 0(Y,OY )-module 0(Y,C i ) is of finite type or flat, respectively. Quasiconsistent
OU-modules form an abelian subcategory of all OU-modules that is closed under
extensions. Note that a complex of quasiconsistent OU-modules is a quasiconsistent
complex of OU-modules but not in general conversely.
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From now on, by a complex of OU-modules, we implicitly mean quasiconsistent
complex of OU-modules unless said otherwise. Especially, for ∗ ∈ {+,−, b,∅},
the notations K∗ft(U), D∗ft(U), D[a,b]perf (U), and Gr∗ft(U) denote categories of quasi-
consistent complexes or graded modules of finite type. We have the obvious
commutative diagram, where the vertical arrows denote taking sections over Y ∈U:

K∗ft(U)
[ · ]

//

��

D∗ft(U)
H∗

//

��

Gr∗ft(U)

��

K∗ft(0(Y,O))
[ · ]
// D∗ft(0(Y,O))

H∗
// Gr∗ft(0(Y,O))

(1-1)

By a family of G-representations over X , we mean a locally finitely generated, flat
OX -module M , equipped with a continuous map G→ Autcont

OX
(M). Then M deter-

mines by restriction a finitely generated, flat OU-module, which we also denote by M ,
whose group of sections over each Y ∈U is a continuous 0(Y,O)[G]-module. By the
discussion at the end of Section 1A, it follows from Theorem 1.4 that the OU-module
determined by the rule Y 7→ C•cont(G, 0(Y,M)) is quasiconsistent; combined with
Theorem 1.1(4), this rule hence determines an object of K[0,e]ft (U), which we denote
by C•cont(G,M). Its class R0cont(G,M) in the derived category belongs to D[0,e]perf (U),
and its cohomology H∗cont(G,M) belongs to Gr[0,e]ft (U). For any Y ∈U, we have

0(Y,C•cont(G,M))= C•cont(G, 0(Y,M)), (1-2)

and it follows from the commutativity of the diagram (1-1) that also

0(Y,R0cont(G,M))= R0cont(G, 0(Y,M)),

0(Y,H∗cont(G,M))= H∗cont(G, 0(Y,M)),

so all we really have is a compatible family of cohomology data over the affinoids
in question. Using Kiehl’s theorem, we may identify H∗cont(G,M) to an object
of Gr[0,e]coh (X), in which the subscript denotes coherent OX -modules. Since the latter
is invariant under passing between U and a refinement, we canonically associate
to M a coherent analytic sheaf on X whose sections over any affinoid domain Y
give the continuous cohomology of G with coefficients in the sections of M over Y .

We now state a general base-change theorem for group cohomology. Suppose
we are given a morphism f : X ′→ X of p-adic analytic spaces over E , and let
U′ be an admissible affinoid covering of X ′ that is quasiclosed under intersection
with the property that for each Y ′ ∈ U′ there exists Y ∈ U with f (Y ′) ⊆ Y . Any
object C• of K−ft (U) gives rise to an object L f ∗C• of D−ft (U

′) by the usual recipe.

Theorem 1.6. (1) The natural map

L f ∗R0cont(G,M)→ R0cont(G, f ∗M)
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is an isomorphism in D[0,e]perf (U
′).

(2) There exists a spectral sequence in coherent OX ′-modules

Ei j
2 = Tor f −1OX

−i ( f −1H j
cont(G,M),OX ′)H⇒ Hi+ j

cont(G, f ∗M).

(3) If f is flat, then the natural map

f ∗H∗cont(G,M)→ H∗cont(G, f ∗M)

is an isomorphism in Gr[0,e]coh (X
′).

Proof. After clearing away the abstract nonsense using (1-2), this is just an applica-
tion of Theorem 1.4 to A[1/p] = 0(Y,OY ) and B[1/p] = 0(Y ′,OY ′) for each pair
of affinoids Y ∈ U and Y ′ ∈ U′ with f (Y ′) ⊆ Y , using Kiehl’s theorem to patch
back up. �

1C. Quasi-Stein spaces. Continuing with X and M as in Section 1B, assume that
X is quasi-Stein: it admits an admissible covering U by an increasing union of
strictly E-affinoid subdomains Y1 ⊆ Y2 ⊆ · · · , each of whose restriction maps
0(Yn+1,OYn+1)→ 0(Yn,OYn ) has dense image.

Let Mn be the 0(Yn,OYn )-module 0(Yn,M). The ring A∞ = lim
←−n

0(Yn,OYn )=

0(X,OX ) is a commutative Fréchet–Stein algebra, and M∞ = lim
←−n

Mn =0(X,M)
is a coadmissible A∞-module in the sense of [Schneider and Teitelbaum 2003, §3].
“Theorem A” for such modules states that the natural maps M∞→ Mn have dense
image; they induce isomorphisms M∞⊗A∞0(Yn,OYn )

∼
→Mn . Also, this denseness

suffices for Mittag-Leffler considerations, whence “Theorem B” states that for all
i > 0 one has Ri lim

←−n
Mn = 0. We obtain an exact equivalence between coherent

sheaves on X and coadmissible modules over A∞. In particular, the subcategory of
all A∞-modules consisting of the coadmissible ones forms an abelian subcategory
that is closed under extensions. We say that an A∞-module satisfies condition “ft”
if its coadmissible.

Turning to cohomology, each of the maps C•cont(G,Mn+1) → C•cont(G,Mn)

has dense image, and C•cont(G,M∞)= lim
←−n

C•cont(G,Mn) by the definition of the
inverse limit, so Mittag-Leffler gives H∗cont(G,M∞)= lim

←−n
H∗cont(G,Mn). Hence,

C∗cont(G,M∞) is an object of K[0,e]ft (A∞), where the subscript means that the coho-
mology modules are required to be coadmissible.

The following theorem follows easily from the preceding discussion:

Theorem 1.7. The natural maps

R0cont(G,M∞)→ R lim
←−

n
[C•cont(G,Mn)],

H∗cont(G,M∞)→ lim
←−

n
H∗cont(G,Mn),

H∗cont(G,M∞)⊗A∞ 0(Yn,O)→ H∗cont(G,Mn)
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are isomorphisms.

Remark 1.8. The usual explicit construction shows that, for any M and M ′ and
n ≤ ∞, the group cohomology H1

cont(G,Hom0(Yn,O)(Mn,M ′n)) is in canonical
bijection with the Yoneda group Ext10(Yn,O)[G]-cont(Mn,M ′n) of extensions of M ′n
by Mn in the category of continuous 0(Yn,O)[G]-modules.

1D. Generic fibers of formal spectra. In this section, we let A and M satisfy
Hypotheses A. Assume for this discussion that A/I is a finitely generated OE -
algebra and that A is p-torsion-free. We now compare the group cohomology of M
to that of its generic fiber.

Let A0
n = A[I n/p], the A-subalgebra of A[1/p] generated by all i/p with i ∈ I n ,

and let An be its p-adic completion. Each An[1/p] is a strictly E-affinoid algebra,
and maps An+1[1/p]→ An[1/p] arising from the inclusions A0

n+1⊆ A0
n correspond

to inclusions Yn⊆Yn+1 of affinoid subdomains. The increasing system Y1⊆Y2⊆· · ·

forms an admissible affinoid covering of its union X . (See [de Jong 1995, §7.1]
for details.) It is clear that X is a quasi-Stein space so that Section 1C applies.

The powers of the ideals p A0
n, I A0

n ⊆ A0
n are cofinal so that An is also the I -adic

completion of A0
n . In particular, each An is an I -adic A-algebra. Each An[1/p] is

flat over A[1/p]. The following base-changing theorem now follows easily from
the preceding work:

Theorem 1.9. For n ≤∞, the natural maps

R0cont(G,M)⊗L
A An→ R0cont(G,M ⊗A An),

H∗cont(G,M)⊗A An[1/p] → H∗cont(G,M ⊗A An[1/p])

are isomorphisms.

Remark 1.10. By Remark 1.8 and Theorem 1.9, for n ≤∞, the map on Yoneda
groups Ext1A[G]-cont(M,M ′)→ ExtAn[1/p][G]-cont(M ⊗A An[1/p],M ′⊗A An[1/p])
determined by applying ⊗A An[1/p] to an extension class 0→ M ′→ E→ M→ 0
induces an isomorphism

Ext1A[G]-cont(M,M ′)⊗A An
∼
→ ExtAn[1/p][G]-cont(M⊗A An[1/p],M ′⊗A An[1/p]).

Morally, A[1/p]⊆ A∞ consists of the p-adically bounded functions on X , so calling
the image of Ext1A[G]-cont(M,M ′)[1/p] in Ext1A∞[G]-cont(M⊗A A∞,M ′⊗A A∞) the
bounded extension classes is reasonable.

1E. Selmer complexes. We now copy ideas of Nekovář [2006] into the context of
the preceding sections.

In the preceding sections, we describe a variety of situations all of the following
sort: one is given a profinite group G satisfying Hypothesis (1), a ringed topos Z
built from p-adic rings, and a locally finitely generated flat OZ -module M with
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continuous OZ [G]-module structure. In each situation, we show that the continuous
cohomology objects satisfy C•cont(G,M) ∈ K[0,e]ft (Z), R0cont(G,M) ∈ D[0,e]perf (Z),
and H∗cont(G,M) ∈ Gr[0,e]ft (Z) and that their formation commutes with (derived)
pullback along appropriate morphisms of topoi f : Z ′→ Z and in a certain case
pushforward as well. Specifically, we treat the following cases, using a tilde to
denote the associated ringed topos:

(1) (A, I ) and M satisfy Hypotheses A(2)–(4), and B is an I -adic A-algebra. We
define Z = (Spec A)∼ and Z ′= (Spec B)∼, and let f be the induced morphism.

(2) M = M0[1/p] where (A, I ) and M0 satisfy Hypotheses A (2)–(4), and B is an
I -adic A-algebra. We define Z = (Spec A[1/p])∼ and Z ′ = (Spec B[1/p])∼,
and let f be the induced morphism.

(3) X is a p-adic analytic space over E , M is a family of G-representations over X ,
U is an admissible affinoid covering of X that is quasiclosed under intersection,
f0 : X ′→ X is a morphism of p-adic analytic spaces over E , and U′ is an
admissible affinoid covering of X ′ that is quasiclosed under intersection with
the property that for each Y ′ ∈ U′ there exists Y ∈ U with f0(Y ′) ⊆ Y . We
define Z = (U,OU)

∼ and Z ′ = (U′,OU′)
∼, and let f = f̃0.

(4) X is a quasi-Stein p-adic analytic space over E , M is a family of G-represen-
tations over X , and U= {Yn}n≥1 is an increasing admissible affinoid covering
as in Section 1C. We define Z = (Spec0(X,OX ))

∼ and Z ′ = (U,OU)
∼, and

let f be the induced morphism, interpreting “finite type” over Z to mean
“coadmissible”. In this case, the formation of cohomology also commutes with
(derived) pushforward along f .

(5) (A, I ) and M satisfy Hypotheses A(2)–(4), and moreover, A is p-torsion-free
and A/I is a finitely generated OE -algebra. We define Z = (Spec A)∼, the
rings An for n ≤∞ as in Section 1D, and Z ′ = (Spec An[1/p])∼, and let f
be the induced morphism, in the case n =∞ interpreting “finite type” over Z ′

to mean “coadmissible”.

In this section, we specialize to the case of the group G = G K ,S defined in the
next paragraph and give analogous results in each of these scenarios where the
continuous cohomology objects have been replaced by Selmer complexes relative to
appropriate local conditions. We also give variants of Tate’s local and Poitou–Tate’s
global arithmetic duality theorems for these objects.

We let K be a finite extension of Q, and we let S be a finite set of finite places
of K containing all v dividing p. We choose a maximal algebraic extension KS

of K unramified outside S∪{∞}, and put G K ,S =Gal(KS/K ). We also choose, for
each v ∈ S, an algebraic closure K alg

v of Kv together with a K -algebra embedding
KS ↪→ K alg

v , and put Gv =Gal(K alg
v /Kv). Denote by Iv ⊂ Gv the inertia subgroup.
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We write resv for the map Gv → G K ,S given by restriction along our chosen
embedding as well as for the map C•cont(G K ,S,M)→ C•cont(Gv,M) it induces, via
pullback, on cocycles. Assume for simplicity that p 6= 2 or K is totally complex. By
arithmetic duality theory, the groups G K ,S and Gv for v ∈ S satisfy Hypothesis (1)
with e = 2 (see [Neukirch et al. 2008, 8.3.10, 8.3.17–19, and 7.1.8]). In the
exceptional case where p = 2 and K is not totally complex, one can get a similar
theory working with a little more care; see [Nekovář 2006, 5.7], and note that the
complication is annihilated by inverting 2 anyway.

We place ourselves in one of the scenarios (1)–(5) above, where the hypotheses are
made relative to the group G=G K ,S . By a (∗-bounded) local condition1v at v ∈ S,
we mean the data of an object U •v ∈K∗ft(Z) and a morphism iv :U •v→C•cont(Gv,M).
Assume we are given the data 1= {1v}v∈S of a local condition 1v for each v ∈ S.
We define the Selmer complex C̃•f (G K ,S,M;1) of M with respect to 1 to be the
complex

Cone
[

C•cont(G K ,S,M)⊕
⊕
v∈S

U •v

⊕
v∈S(resv −iv)
−−−−−−−−→

⊕
v∈S

C•cont(Gv,M)
]
[−1].

We denote by R0̃f(G K ,S,M;1) the image of the Selmer complex in the derived
category, and we denote its cohomology groups, which we call the (extended) Selmer
groups, by H̃∗f (G K ,S,M;1). For brevity, we usually suppress the dependence on1
from the notation. By the definition of the extended Selmer groups in terms of a
mapping cone, one has an exact triangle

R0̃f(G K ,S,M;1)→ R0cont(G K ,S,M)→
⊕
v∈S

Ev, (1-3)

where the objects Ev = Cone(iv) sit in exact triangles

Uv
iv
−→ R0cont(Gv,M)

jv
−→ Ev. (1-4)

Thus, the image of the extended Selmer group in Hi
cont(G K ,S,M) consists of those

classes that everywhere locally live in the image of the Hi (iv); this image is what
one more traditionally encounters in the literature, so we call it the nonextended
Selmer group Hi

f(G K ,S,M;1).
The following finiteness theorem is just an application to each of G = G K ,S and

G = Gv of the finiteness theorems of the preceding sections in light of the exact
triangles (1-3) and (1-4):

Theorem 1.11. The complex C̃•f (G K ,S,M;1) belongs to K∗ft(Z). In particular,
R0̃f(G K ,S,M;1) ∈D∗ft(Z) and H̃∗f (G K ,S,M;1) ∈Gr∗ft(Z). If for each v ∈ S one
has [Uv] ∈ D[0,2]perf (Z), then R0̃f(G K ,S,M;1) belongs to D[0,3]perf (Z).
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We turn to treat base change. If the local conditions are bounded above (up to
quasi-isomorphism), on the one hand we may form L f ∗C̃•f (G K ,S,M;1). On the
other hand, for v ∈ S, we may form the local condition f ∗1v for f ∗M by choosing
a representative in K−ft (Z

′) of the morphism

L f ∗Uv

L f ∗iv
−−−→ L f ∗R0cont(Gv,M) ∼→ R0cont(Gv, f ∗M),

and we write f ∗1= { f ∗1v}v∈S . The following theorem is similarly deduced from
the finiteness and base-changing theorems of the preceding sections:

Theorem 1.12. In the situations (1)–(5) above, assume the local conditions 1 are
bounded above. Then the natural map

L f ∗R0̃f(G K ,S,M;1)→ R0̃f(G K ,S, f ∗M; f ∗1)

is an isomorphism in D−ft (Z
′).

If for each v ∈ S one has [Uv] ∈ D[0,2]perf (Z), then the isomorphism takes place in
D[0,3]perf (Z

′).

In the case (4) above, so X is quasi-Stein with increasing admissible affinoid
covering U = {Yn}n≥1, there is also a pushforward result. Assume we are given,
instead of local conditions on the global sections 0(X,M) as in the preceding
theorem, local conditions on 1′ on M considered as a sheaf on U. Thus, we
have a quasiconsistent family of morphisms 0(Yn,U ′•v )→ 0(Yn,C•cont(G,M)) for
varying n. Assume that the maps 0(Yn+1,U ′•v )→ 0(Yn,U ′•v ) have dense image.
We form local conditions 1 for 0(X,M) using the morphisms

i•v :U
•

v = lim
←−

n
0(Yn,U ′•v )→ lim

←−
n
0(Yn,C•cont(Gv,M))= C•cont(Gv, 0(X,M))

for v ∈ S. Then H∗(U •v )= lim
←−n

H∗0(Yn,U ′•v ) by our dense image assumption and
Mittag-Leffler, and it follows that the 0(X,OX )-modules on the left-hand side are
coadmissible. The following theorem is again a consequence of the finiteness and
pushforward results of Section 1C:

Theorem 1.13. In the situation (4) above, assume the local conditions 1′ are
bounded above with transition maps having dense image. Then the natural map

R0̃f(G K ,S, 0(X,M);1)→ R f∗R0̃f(G K ,S,M;1′)

is an isomorphism in D−coadm(Z).
If for each v ∈ S one has [Uv] ∈ D[0,2]perf (Z

′), then the isomorphism takes place in
D[0,3]perf (Z).

Next we treat arithmetic duality. Recall the anti-involution on perfect complexes
X 7→ X∗ = R HomOZ (X,OZ ) = HomOZ (X,OZ ). What follows is the basic local
result, a variant in families of Tate’s local duality theorem.
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Theorem 1.14. (1) For any v ∈ S, there is a canonical isomorphism

τ≥2R0cont(Gv,OZ (1)) ∼→ OZ [−2]

given by base change of the local trace map.

(2) For any v ∈ S, the duality morphism

R0cont(Gv,M∗(1))→ R0cont(Gv,M)∗[−2]

adjoint to the pairing

R0cont(Gv,M∗(1))⊗L
OZ

R0cont(Gv,M)
∪
−→R0cont(Gv,M∗(1)⊗OZ M)

→ τ≥2R0cont(Gv,OZ (1)) ∼→OZ [−2],

given by cup product, evaluation and truncation, and (1) above, is an isomor-
phism in D[0,2]perf (Z).

Proof. To see (1), we note that, because Gv satisfies e= 2, the Tor-spectral sequence
shows that the rule M 7→ H2

cont(Gv,M) commutes with arbitrary base change in Z .
Thus, it suffices to take the composition

τ≥2R0cont(Gv,OZ (1))∼= H2
cont(Gv,OZ (1))[−2]

∼= (H2
cont(Gv,Zp(1))⊗Zp OZ )[−2]

∼= (Zp⊗Zp OZ )[−2] = OZ [−2],

the last identification coming from the trace isomorphism of local class field theory.
To treat (2), we observe that the formation of the duality morphism commutes

with arbitrary derived base change in Z , and all cases under consideration can be
reduced to local scenarios that are pullbacks of the situation (1) on page 1584; hence,
it suffices to assume we are in that specific case with (A, I ) the ring in question. A
morphism of perfect complexes is a quasi-isomorphism if and only if it becomes a
quasi-isomorphism after applying⊗L

A A/m for any maximal ideal m of A. By execut-
ing this base change and noting by [Matsumura 1989, Theorem 8.2(i)] that I ⊆m, we
are reduced to the case where A is a field of characteristic p with the discrete topol-
ogy. But then Gv acts on M via a finite quotient, and the situation arises as the base
change of a situation with coefficients in a finite field, where the result is known. �

The global result is more complicated to state. As a first approximation, we
introduce compactly supported cochains C•cont,c(G K ,S,M) as the complex

Cone
[

C•cont(G K ,S,M)
⊕

v∈S resv
−−−−−→

⊕
v∈S

C•cont(Gv,M)
]
[−1],
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denoting its image in the derived category by R0cont,c(G K ,S,M)∈D[1,3]perf (Z) and its
cohomology by H∗cont,c(G K ,S,M) ∈K[1,3]ft (Z). Following Nekovář [2006, 5.3.3.3],
one constructs cup product pairings

R0cont(G K ,S,M)⊗L
OZ

R0cont,c(G K ,S,M ′)→ R0cont,c(G K ,S,M ⊗OZ M ′),

and the following theorem is proved in the exact same way as the preceding one:

Theorem 1.15. (1) There is a canonical isomorphism

τ≥3R0cont,c(G K ,S,OZ (1)) ∼→ OZ [−3]

given by base change of the global trace map.

(2) For any v ∈ S, the duality morphism

R0cont(G K ,S,M∗(1))→ R0cont,c(G K ,S,M)∗[−3]

adjoint to the pairing

R0cont(G K ,S,M∗(1))⊗L
OZ

R0cont,c(G K ,S,M)
∪
−→ R0cont,c(G K ,S,M∗(1)⊗OZ M)

→ τ≥3R0cont,c(G K ,S,OZ (1)) ∼→ OZ [−3],

given by cup product, evaluation and truncation, and (1) above, is an isomor-
phism in D[0,2]perf (Z).

To treat duality of Selmer complexes, assume the local conditions 1 satisfy
[Uv] ∈ D[0,2]perf (Z) for all v ∈ S, and equip M∗(1) with local conditions 1∗(1) given
for v ∈ S by choosing a representative in K[0,2]perf (Z) of the morphism

E∗v [−2]
j∗v [−2]
−−−→ R0cont(Gv,M)∗[−2] ∼= R0cont(Gv,M∗(1)).

Then as in [Nekovář 2006, 6.3], one constructs cup product pairings

R0̃f(G K ,S,M∗(1);1∗(1))⊗L
OZ

R0̃f(G K ,S,M;1)

→ R0cont,c(G K ,S,M∗(1)⊗OZ M),

which, followed by evaluation and truncation, followed by the global trace map,
gives rise via adjoint to a duality morphism

R0̃f(G K ,S,M∗(1);1∗(1))→ R0̃f(G K ,S,M;1)∗[−3].

The general global result is as follows, with the same proof.

Theorem 1.16. Assume, for all v ∈ S, the local conditions satisfy [Uv] ∈ D[0,2]perf (Z).
Then the duality morphism above is an isomorphism in D[0,3]perf (Z).
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Remark 1.17. The preceding base-changing and duality theorems are cheating
because we have taken a narrow definition of “local condition”. Rather than a
particular morphism iv, the phrase usually means a rule that associates such a
morphism to a given M (perhaps equipped with additional data) as in the examples
below. The true base-changing and duality theorems are reduced by the above
theorems to the claim that the formation of the local conditions, as determined by
the rule, commutes with base change and duality, respectively.

Example 1.18. We give some examples of useful local conditions. Let v ∈ S.
The empty local condition means taking iv to be the identity map and results in

no modification being made to the cohomology. The full local condition, taking iv
to be the map from the zero object, results in cohomology that is “compactly
supported” at v. The formation of these conditions clearly commutes with arbitrary
base change. Excepting these two, a local condition often has the property that
H0(iv) is an isomorphism, H1(iv) is an injection, and Hn(Uv)= 0 for n 6= 0, 1. In
fact, given a subspace L⊆ H1

cont(Gv,M), there is a standard construction of such
a local condition with img H1(iv)= L, called the local condition associated to L,
namely by setting U 0

v = C0
cont(Gv,M),

U 1
v = {c ∈ C1

cont(Gv,M) | dc = 0, [c] ∈ L},

and U n
v = 0 for n 6= 0, 1 (and taking iv to be the inclusion map of complexes). On

the other hand, when H1(iv) fails to be injective, its kernel is considered a local
contribution to an “exceptional zero” of the related p-adic L-function.

For v ∈ S not dividing p, the unramified local condition is given by inflation

iv :U •v = C•cont(Gv/Iv,M Iv )→ C•cont(Gv,M).

(Note that Gv/Iv ≈ Ẑ satisfies Hypothesis (1) with e = 1.) It is isomorphic in
the derived category to the local condition associated to the image of inflation
H1

cont(Gv/Iv,M Iv ) ↪→ H1
cont(Gv,M). Whenever M Iv is flat over OZ , it obeys the

necessary hypotheses as a continuous OZ [Gv/Iv]-module. If f ∗(M Iv ) ∼→ ( f ∗M)Iv ,
then the formation of the unramified local condition commutes with (derived) base
change. When both M Iv and M∗(1)Iv are flat over OZ , it makes sense to ask whether
the unramified local conditions for M and M∗(1) are self-dual, and this seems to
be the case only generically: see, for example, [Nekovář 2006, 7.6 and 7.6.7(iii)]
for closely related statements in the situation (1) on page 1584 with I a maximal
ideal (where our ∗-operation has been replaced by Grothendieck duality, which is
not a change when A is Gorenstein).

We warn the reader that in general M Iv need not be flat, in which case its
finiteness and base-changing properties become much more subtle. There is no
problem for families of twists of a fixed global Galois representation; for example,
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in Example 1.19(1) below, one has M Iv = T Iv ⊗Zp A. But the complication does
arise in Hida theory, say in Example 1.19(2) below, when a p-ordinary eigenform
admits level lowering modulo p at a prime v = ` 6= p. Then there are `-old and
`-new branches of the Hida family, over which M Iv has generic rank, respectively,
two and strictly less than two. Since geometrically these branches meet in the
special fiber of Spec hord

∞
, the module M Iv cannot be locally free. This phenomenon

is related to the appearance of p in the Tamagawa number at ` because the latter
occurrence can be used to detect level-lowering.

For v dividing p, most local conditions are rather complicated; even the determi-
nation of a meaningful subspace L to which to associate them is rather delicate.
The best-behaved notion is the (strict) ordinary one: one assumes given a Gv-stable
locally direct summand M+v ⊆ M and takes 1v to be the data of the natural map

iv :U •v = C•cont(Gv,M+v )→ C•cont(Gv,M).

This local condition appears in work of Nekovář [2006, 6.7] as a derived variant
of the subspace L given by the image of H1

cont(Gv,M+v )→ H1
cont(Gv,M) used

by Greenberg [1989; 1994a; 1994b]; they are frequently isomorphic in the de-
rived category for example as in Proposition 3.7(3) below. The formation of the
ordinary local condition commutes with base change and is dual to the ordinary
local condition formed with the annihilator of M+v in M∗(1). The abstract base
change and duality theorems recover Greenberg’s control and duality theorems in
the situation (1), with A local with finite residue field, and gives analogues of it in
all cases. All this presupposes the existence of a useful choice of M+v to begin with;
the key observation of this article is that, after replacing the Gv-module M by its
associated (ϕ, 0Kv

)-module, one can still form an ordinary local condition, and one
gains access to subobjects of Dpst(M) that are not necessarily weakly admissible.

Example 1.19. Take K =Q for simplicity. The present results, notably situation (5),
apply to the following settings. Each A is local, we take I to be its maximal ideal,
and A/I is a finite field. We write X for the generic fiber of X= Spf(A, I ).

(1) A is the Iwasawa algebra Zp[[0]], where 0 =Gal(Q∞/Q) is the Galois group
of the cyclotomic Zp-extension Q∞/Q, and M = T ⊗Zp A with diagonal
GQ,S-action, where T is a continuous Zp[GQ,S]-module that is free over Zp.
Thus, M is the cyclotomic deformation of T , and the parameter space X is
commonly called the weight space.

(2) A is a Hida–Hecke algebra hord
∞

, and M is Hida’s 3-adic Galois representation
(with A assumed Gorenstein so that M is flat). Thus, X is commonly called
the ordinary locus of the Coleman–Mazur eigencurve.
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(3) A is any Zp-flat quotient of a Galois deformation ring Runiv(ρ), where ρ is an
absolutely irreducible mod p representation of GQ,S , and M is deduced from
the universal deformation of ρ.

Traditionally, the algebraic part of Iwasawa theory concerns the study of Selmer
groups over A in the above examples. Theorem 1.9 translates this study to X , with
the loss of only p-torsion information, as 0(X,OX ) is faithfully flat over A[1/p].
Since (ϕ, 0)-modules over the Robba ring (which we use to generalize Greenberg’s
“ordinary” theory) form families over X and not over X, this change of view makes
it now possible to treat nonordinary situations.

2. (ϕ, 0)-modules and Galois cohomology

In this section, we fix a finite extension K of Qp with ring of integers OK and residue
field k. We choose an algebraic closure K alg of K and set G =G K =Gal(K alg/K ).
(Several of the techniques discussed below will be valid if K is replaced by a
general complete, discretely valued field of mixed characteristic (0, p) and perfect
residue field, but beware that the group G satisfies Hypothesis (1) only when K is
finite over Qp, which gets in the way of certain base-change arguments.)

We let A′ be a Noetherian commutative E-Banach algebra, having A as its unit
ball, so that A′ = A[1/p] and A satisfies Hypothesis (2) when equipped with the
ideal I = (p). Finally, we let M satisfy Hypotheses A(3)–(4).

2A. Recall of ϕ- and (ϕ, 0)-modules. There are several variants of (ϕ, 0K )-mod-
ules, so we must recall several base rings. We only do this minimally since they
are defined in many places now (see, e.g., [Berger 2002]). For any field F , write
Fn = F(µpn ) for n ≤∞.

Let F =Frac W(k). If k ′ denotes the residue field of K∞, define F ′=Frac W(k ′)
and K ′=K .F ′. We set H =HK =Gal(K alg/K∞) and 0=0K =Gal(K∞/K ). The
group 0 is either procyclic or of the form {±1}× (procyclic); we let 1=1K ⊂ 0

be trivial in the first case and {±1} in the second case.
There is an increasing system of p-torsion-free, p-adically separated, and com-

plete W(kalg)-algebras Ã†,s equipped with a compatible action of G, indexed by
real numbers s > 0. This family is also equipped with an automorphism ϕ that
commutes with G and takes Ã†,s onto Ã†,ps . Each of the p-adic Banach algebras
B̃†,s
= Ã†,s

[1/p] admits a certain Fréchet completion B̃†,s
rig , to which both actions

extend uniquely by continuity, and these latter rings also fit into an increasing system.
One defines the systems Ã†,s

K = (Ã
†,s)H , B̃†,s

K = (B̃
†,s)H , and B̃†,s

rig,K = (B̃
†,s
rig )

H with
the induced topologies and actions of ϕ and 0.

The theory of the field of norms allows one to make a choice of a sort of
indeterminate πK belonging to all the Ã†,s

K and associates to K a constant eK > 0.
When K = F , there is an almost canonical choice that is written π , and one can
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calculate that eF = p/(p− 1). For s > 0, one has subrings

B†,s
K =

{
f (πK )=

∑
n∈Z

anπ
n
K

∣∣∣∣ an ∈ F ′, {|an|} bounded,
f (X) convergent for 0< ordp(X) < 1/eK s

}
,

B†,s
rig,K =

{
f (πK )=

∑
n∈Z

anπ
n
K

∣∣∣∣ an ∈ F ′,
f (X) convergent for 0< ordp(X) < 1/eK s

}
of B̃†,s

K and B̃†,s
rig,K , respectively, that do not depend on the choice of πK for s� 0.

They inherit topologies, and for s� 0, they are stable under 0, and ϕ sends B†,s
K

into B†,ps
K and B†,s

rig,K into B†,ps
rig,K . One knows that ϕ acts by Witt functoriality

on an ∈ F ′, and 0 acts on an through its quotient 0K /0K ′ = Gal(F ′/F). The
action on πK is generally not explicitly given (especially since there is some choice
in πK ) except when K = F , in which case ϕ(π)= (1+π)p

− 1 and γ ∈ 0 obeys
γ (π)= (1+π)χcycl(γ )−1. In any case, ϕ now induces a finite free algebra extension
of degree p for s � 0 instead of being an isomorphism. For such s, we obtain a
left inverse ψ : B†,ps

(rig,)K → B†,s
(rig,)K to ϕ by the formula p−1ϕ−1

◦TrB†,ps
(rig,)K /ϕB†,s

(rig,)K
.

For any of the above families of rings, we denote the result of applying lim
−→s

by
omitting the index s, e.g., B†

rig,K = lim
−→s

B†,s
rig,K . The result inherits the direct limit

topology, an action of G, a ring endomorphism ϕ, and a left inverse ψ . The ring B†
K

is the fraction field of a Henselian, mixed-characteristic discrete valuation ring
with imperfect residue field (although we never make use of the topology it would
provide). Although the rings B†(,s)

rig,K are non-Noetherian, they are Bézout domains.
For brevity, we will often denote an unspecified one of the rings A′ ⊗̂Qp B†(,s)

K ,
A′ ⊗̂Qp B̃†(,s)

K , or A′ ⊗̂Qp B†(,s)
rig,K simply by B(s), and when we must emphasize its

dependence on K , we will write B(s)K .
If L/K is a finite Galois extension inside K alg, then one can arrange for πL to

satisfy an Eisenstein polynomial over a subring of B†
K ⊗F ′ F ′L with respect to a suit-

able πK -adic valuation. (The term F ′L is the maximal absolutely unramified subfield
of L∞ analogous to F ′.) The constants eK and eL are normalized so that the growth
conditions on power series coincide. For s � 0, one gets functorial embeddings
B(s)K ↪→ B(s)L , which are finite free ring extensions (for s� 0) compatible with the
actions of ϕ and 0L , and thus an action of HK /HL on B(s)L with (B(s)L )

HK = B(s)K .
The series log(1+π)=

∑
n≥1

(−1)n−1

n πn converges in B†,s
rig,F for every s > 0, and

we call its limit t . By means of the above embedding process, t is an element of
every B†,s

rig,K . One has ϕ(t)= pt and γ (t)= χcycl(γ )t for all γ ∈ 0.
Given a Bs-module Ds , write D(s′)

= D⊗Bs B(s
′) for s ′≥ s. A ϕ-module over B(s)

is a finitely presented, projective B(s)-module D(s) equipped with a semilinear map
ϕ : D(s)

→ D(ps) such that the associated linear map ϕ′ : B(ps)
ϕ⊗B(s) D(s)

→ D(ps)

is an isomorphism. We write M(ϕ)/B(s) or M(ϕ) for the exact category of ϕ-modules
over B(s). A (ϕ, 0)-module over B(s) is a ϕ-module D(s) over B(s) equipped with
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a semilinear action of 0 that commutes with ϕ and is continuous for varying
γ ∈ 0. We write M(ϕ, 0)/B(s) or M(ϕ, 0) for the exact category of (ϕ, 0)-modules
over B(s); it has tensor products and internal homs. Ultimately, we are concerned
with (ϕ, 0)-modules over A′ ⊗̂Qp B†

rig,K because it is over this ring that the link
to p-adic Hodge theory is direct, and a finiteness theorem is known for Galois
cohomology in complete generality. But for technical reasons, we must make
use of the other variants at times; especially, the construction of the functor from
Galois representations to (ϕ, 0)-modules is documented in the literature in terms
of A′ ⊗̂Qp B†

K , and our proof of this functor’s compatibility of Galois cohomology
makes use of A′ ⊗̂Qp B̃†,s

K .
Suppose that s � 0 so that ψ : B†,ps

(rig,)K → B†,s
(rig,)K is defined and hence also a

left inverse 1 ⊗̂ψ : Bps
→ Bs to 1 ⊗̂ϕ : Bs

→ Bps , and let Ds be a ϕ-module over
A′ ⊗̂Qp B†,s

(rig,)Qp
. Then we obtain a left inverse to ϕ on Ds by the rule

D ps ∼
← Bps

⊗ϕ,Bs Ds (1⊗̂ψ)⊗1
−−−−−→ Bs

⊗Bs Ds
= Ds .

Upon taking lim
−→s

, one gets a map ψ : D→ D that is also left inverse to ϕ.
We will make use of the slope theory for ϕ-modules as in the following:

Theorem 2.1 [Kedlaya 2008]. There is a homomorphism deg : (B†
rig,K )

×
→ Q

extending ordp with the property that the rule deg(D)= deg(ϕ | det D) gives rise
to a theory of Harder–Narasimhan filtrations on M(ϕ)/B†

rig,K
.

One calls a ϕ-module over B†
rig,K étale if its only slope is 0. The full subcat-

egory of étale ϕ-modules is denoted by Mét(ϕ) ⊂M(ϕ). A (ϕ, 0)-module D is
called étale if its underlying ϕ-module is; the full subcategory of these is written
Mét(ϕ, 0)⊂M(ϕ, 0). Since the slope filtration is unique, it is 0-stable.

We write RepA(G) and RepA′(G) for the category of finitely generated, flat
A-modules and A′-modules, respectively, equipped with a continuous, linear action
of G.

Theorem 2.2. Let M ∈ RepA′(G). For s � 0, there exists a canonical ϕ- and
G-stable A ⊗̂Zp B†,s

K -submodule

D†,s(M)⊆ (M ⊗A′ (A′ ⊗̂Qp B̃†,s))H

that is projective of the same rank as M such that the natural map

(A′ ⊗̂Qp B̃†,s)⊗
(A′⊗̂Qp B†,s

K )
D†,s(M)→ M ⊗A′ (A′ ⊗̂Qp B̃†,s) (2-1)

is an isomorphism; D†,s(M) is a (ϕ, 0)-module over A′ ⊗̂Qp B†,s
K . (By “ϕ-stable”,

we mean that ϕD†,s(M)⊆ (A′ ⊗̂Qp B†,ps
K ) ·D†,s(M).) If M is of the form M0[1/p]

where M0 ∈ RepA(G) is free and such that G acts trivially on M0/12p, then
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D†,s(M) is in fact free over B†,s
K . If B is a p-adic A-algebra and B ′ = B[1/p], then

the natural maps
D(s)(M) ⊗̂A′ B ′→ D(s)(M ⊗A′ B ′)

are isomorphisms, provided s� 0 so that both sides exist.

Proof. Except for the final claim of compatibility with base change along A′→ B ′,
this follows from [Berger and Colmez 2008, Proposition 4.2.8 and Théorème 4.2.9]
when M is free and from [Kedlaya and Liu 2010, Theorem 3.11 and Definition
3.12] in general. The final claim follows directly from the constructions although
this is never explicitly stated in either reference. �

For M as in the theorem, we define

D̃†(,s)(M)= D†,s(M)⊗
(A⊗̂Zp B†,s

K )
(A ⊗̂Zp B̃†(,s)

K ),

D†(,s)
rig (M)= D†,s(M)⊗

(A⊗̂Zp B†,s
K )
(A ⊗̂Zp B†(,s)

rig,K ).

For brevity, we will often denote the above associated module corresponding to the
ring B(s) by D(s)(M) and a general B(s)-module by D(s).

Theorem 2.3. For each ring B(s), the rule M 7→D(M) determines an exact functor
RepA′(G)→M(ϕ, 0)/B respecting tensor and internal hom structures. Assuming
additionally that A′ is an affinoid algebra, this functor is fully faithful. When A is
finite over OE , the essential image of D†

rig is Mét(ϕ, 0)/B.

Proof. The full faithfulness of D† is given by [Kedlaya and Liu 2010, Proposition
2.7] and the comment of [ibid., Definition 3.12], and the full faithfulness of D̃†

follows by the same argument. The full faithfulness of D†
rig is given by [ibid.,

Proposition 6.5]. The remaining claims are straightforward. �

Let L/K be a finite Galois extension inside K alg. For a B(s)K -module D(s), we
use the shorthand D(s)

L = D(s)
⊗B(s)K

B(s)L . If D(s) has a ϕ-action, so does D(s)
L . If

D(s) has a 0K -action, then D(s)
L has a 0L -action. For M ∈ RepA′(G K ), one has

D(s)(M |GL )= D(s)(M)L .
The above results suggest the following (ad hoc) formalism. Let X be a p-adic an-

alytic space over E , and let U be an admissible affinoid covering that is quasiclosed
under intersections. For each choice of ring B(s) = B†(,s)

K , B̃†(,s)
K ,B†(,s)

rig,K , denote by
OU ⊗̂Qp B(s) the sheaf of rings on U (as always with the discrete Grothendieck
topology) determined by the rule

0(Y,OU ⊗̂Qp B(s))= 0(Y,OY ) ⊗̂Qp B(s),

equipped with the obvious actions of ϕ and 0. If Ds is a (OU ⊗̂Qp Bs)-module, then
D(s′), interpreted in the obvious manner, is naturally an OU ⊗̂Qp B(s

′)-module for
any s ′ > s. However, we warn that an OU ⊗̂Qp B-module need not conversely arise
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from any OU ⊗̂Qp Bs-module because the necessary s might not be bounded above
for varying Y ∈U. Similarly, the natural injection

lim
−→

s
0(U,OU ⊗̂Qp Bs)→ 0(U,OU ⊗̂Qp B)

need not be a bijection. By a family of ϕ-modules over X (of type B(s)), we mean a
quasiconsistent sheaf D(s) of finitely presented flat (OU⊗̂Qp B(s))-modules equipped
with a semilinear action of ϕ such that for each Y ∈U the associated linear map

ϕ′ : (0(Y,OY ) ⊗̂Qp B(ps))⊗1⊗̂ϕ,0(Y,OY )⊗̂Qp B(s) 0(Y, D(s))→ 0(Y, D(ps))

is an isomorphism. By a family of (ϕ, 0)-modules over X (of type B(s)), we mean a
family of ϕ-modules D(s) over X (of type B(s)) equipped with a semilinear action
of 0 that commutes with ϕ and is continuous for varying γ ∈ 0. Given a family M
of G-representations over X , the rule that associates to Y ∈U the (ϕ, 0)-module
D(0(Y,M)) determines a family D(M) of (ϕ, 0)-modules over X .

2B. Galois cohomology of (ϕ, 0)-modules. For D(s) a (ϕ, 0)-module over B(s),
we define its Herr complex [Herr 1998] or Galois cochain complex to be the object

R0(G, D(s))= R0cont
(
0,Cone

[
D(s) ϕ−1
−−→ D(ps)]

[−1]
)

∼= Cone
[
R0cont(0, D(s))

ϕ−1
−−→ R0cont(0, D(ps))

]
[−1]

of Db(A′) and its Galois cohomology H∗(G, D(s)) to be the associated graded in
Grb(A′). This object can be made explicit: 0/1 is procyclic, say topologically
generated by the image of γ ∈0, and R0cont(G, D(s)) is represented by the complex

C•ϕ,γ :
[
(D(s))1

(ϕ−1,γ−1)
−−−−−−→ (D(ps))1⊕ (D(s))1

(1−γ,ϕ−1)
−−−−−−→ (D(ps))1

]
(2-2)

in Kb(A′) concentrated in degrees 0, 1, and 2.

Remark 2.4. It is easy to check that Hi (G,HomB(s)(D(s), D′(s))) computes the
Yoneda group ExtiM(ϕ,0)/B(s)

(D(s), D′(s)), where D(s) and D′(s) are any two (ϕ, 0)-
modules over B(s), for i ≤ 1.

For two (ϕ, 0)-modules D(s) and D′(s) over B(s), we define cup products on
cochains as in [Liu 2007]. In the representation C•ϕ,γ , the map

Ci
ϕ,γ (D

(s))⊗A′ C j
ϕ,γ (D

′(s))→ Ci+ j
ϕ,γ (D

(s)
⊗B(s) D′(s))

is the obvious multiplication when i = 0 or j = 0, and otherwise, we have

C1
ϕ,γ (D

(s))⊗A′ C1
ϕ,γ (D

′(s))→ C2
ϕ,γ (D

(s)
⊗B(s) D′(s)),

(d1, d2)⊗ (d ′1, d ′2) 7→ d2⊗ γ (d ′1)− d1⊗ϕ(d ′2).
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The finite generation of the Galois cohomology of (ϕ, 0)-modules is now known
thanks to [Kedlaya et al. 2012], which appeared after the writing of this paper. We
state the result here and henceforth refer to it as the finiteness theorem when it is
invoked. We stress that K/Qp is assumed to be finite.

Theorem 2.5. For the (ϕ, 0)-module D over A′ ⊗̂Qp B†
rig,K , the Galois cohomology

R0(G, D) belongs to D[0,2]perf (A
′), and the morphism

R0(G, D∗(1))→ R0(G, D)∗[−2]

adjoint to the pairing given by cup product and evaluation, comparison (see
Theorem 2.8 below) and truncation, and the local trace map, namely

R0(G, D∗(1))⊗L
A′ R0(G, D)→ R0(G, A′ ⊗̂Qp B†

rig,K (1))
→ τ≥2R0cont(G, A′(1))∼= A′,

is an isomorphism.

The following proposition is proved without using the finiteness theorem and in
fact is an ingredient in its proof:

Proposition 2.6. Let D(s) be a (ϕ, 0)-module over B(s).

(1) D(s) is a flat A′-module.

(2) Suppose B ′ is an affinoid A′-algebra. Then the natural map in Db(B ′)

R0(G, D(s))⊗L
A′ B ′→ R0(G, D(s)

⊗̂A′ B ′)

is an isomorphism if B ′ is a finite A′ algebra or if the modules H∗(G, D(s))

and H∗(G, D(s)
⊗̂A′ B ′) are finitely generated over A′ and B ′, respectively.

Proof. Since D(s) is a projective B(s)-module and each appropriate ring B(s) is a
flat A′-algebra, (1) follows.

For (2), we use (1) to identify our map with

h : [C•ϕ,γ (D
(s))⊗A′ B ′] → [C•ϕ,γ (D

(s)) ⊗̂A′ B ′].

Under the first condition, we have ⊗A′B ′ = ⊗̂A′B ′, so the result is trivial. Under
the second condition, each Hi (h) is a map of finitely generated B ′-modules, so it
suffices to show that the induced map Hi (h)⊗B ′ B ′/mn is an isomorphism for each
maximal ideal m⊂ B and n ≥ 0. One has a morphism of spectral sequences

E i, j
2

��

TorB ′
−i (H

j (G, D⊗A′ B ′), B ′/mn) +3

��

Hi+ j (G, D⊗A′ B ′/mn)

∼

��

Ê i, j
2 TorB ′

−i (H
j (G, D ⊗̂A′ B ′), B ′/mn) +3 Hi+ j (G, D ⊗̂A′ B ′/mn)
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where the downward isomorphisms on the abutments are due to the fact that B ′/mn is
a finite A′-algebra. Using that H j

=0 for j>2 throughout, one deduces immediately
that H2(h) is an isomorphism and then proceeds by repeated application of the five
lemma to show that H1(h), and then H0(h), are isomorphisms. �

Given a finite Galois extension L/K inside K alg, for any (ϕ, 0)-module D(s),
we leave it to the reader to define restriction and corestriction maps

resL/K : R0(G K , D(s))→ R0(GL , D(s)
L ),

coresL/K : R0(GL , D(s)
L )→ R0(G K , D(s)),

whose composition coresL/K ◦ resL/K induces multiplication by [L :K ] on cohomol-
ogy. It follows that H∗(G K , D(s)) is functorially a direct summand of H∗(G K , D(s)

L )

and that, when B(s) = A′ ⊗̂Qp B†(,s)
K , this decomposition is respected by the maps

induced by D(s)
→ D̃†(,s) and D(s)

→ D†(,s)
rig .

If X is a p-adic analytic space over E and if D is a family of (ϕ, 0)-modules
over X of type B†

rig,K , then by the finiteness theorem and Proposition 2.6(2), the rule
0(Y,C•ϕ,γ (D))= C•ϕ,γ (0(Y, D)) determines an object C•ϕ,γ (D) of Kb

ft(U), whose
class R0(G, D) in the derived category belongs to D[0,2]perf (U).

2C. Galois cohomology of Galois representations. Throughout this section, let
M ∈ RepA′(G), and assume that A′ is an affinoid algebra.

Proposition 2.7. The natural maps

R0(G,D†(M))→ R0(G, D̃†(M)),

R0(G,D†(,s)(M))→ R0(G,D†(,s)
rig (M))

are isomorphisms in Db(A′).

Proof. In order to check whether the induced maps on cohomology are isomorphisms,
it suffices to check whether they become isomorphisms when restricted to the
members of an affinoid covering of A′. Thus, we reduce to the case where M is
free over A′. By replacing A by a different unit ball subalgebra of A′, we may
assume that M = M0[1/p] for a finitely generated, free A-lattice M0 that is G-
stable. Choose a finite Galois extension L/K inside K alg such that GL acts trivially
on M0/12p. Since the morphisms in question respect the direct sum decompositions
of the Galois cohomology over L coming from inflation and restriction relative
to L/K , it suffices to prove the theorem with K replaced by L , and thus, we may
assume that D†,s(M) is a free module.

Consider the first map. It suffices to show that the natural morphism

R0cont(0,D†(M))→ R0cont(0, D̃†(M))
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is an isomorphism in D(A). A standard fact in the Tate–Sen theory of (ϕ, 0)-
modules is that D̃†(M) admits a Galois-stable topological (A ⊗̂Zp B†

K )-direct sum
decomposition as D†(M)⊕ X such that γ −1 acts bijectively on X with continuous
inverse. (See [Andreatta and Iovita 2008, Theorem 7.16] for an explanation of the
method, taking d = 0 everywhere, and generalize it to A-valued M as in [Berger
and Colmez 2008, §3].) Since R0cont(0, X)∼= 0, the claim follows.

For the second map, in the case with superscripts, one copies the proof of
[Kedlaya 2008, Proposition 1.2.6] verbatim to obtain that the natural morphism of
complexes [

D†,s(M)
ϕ−1
−−→ D†,ps(M)

]
→
[
D†,s

rig (M)
ϕ−1
−−→ D†,ps

rig (M)
]

is a quasi-isomorphism; the claim follows from this and the definitions. One obtains
the case without superscripts from the former by taking lim

−→s
. �

When A is a finite Zp-algebra, the following main result is due to Liu [2007]:

Theorem 2.8. There is a functorial isomorphism

R0cont(G,M) ∼→ R0(G,D(M))

in Db(A′), which is compatible with cup products and in degrees i ≤ 1 agrees with
applying D to Yoneda extension classes.

The key to the proof is the following:

Lemma 2.9. The obvious maps

A′→ Cone
[
A′ ⊗̂Qp B̃†,s ϕ−1

−−→ A′ ⊗̂Qp B̃†,ps]
[−1],

A′ ⊗̂Qp B̃†,s
K → R0cont(H, A′ ⊗̂Qp B̃†,s)

are isomorphisms in D(A′).

Proof. In the case A′ =Qp, the lemma is well-known, so we have exact sequences

0→Qp→ B̃†,s ϕ−1
−−→ B̃†,ps

→ 0,

0→ B̃†,s
K → C0

cont(H, B̃†,s)→ C1
cont(H, B̃†,s)→ · · · .

To deduce the result, we simply note that the functor ⊗̂Qp S preserves exact se-
quences of Qp-Banach spaces whenever S is potentially orthonormalizable in the
sense of [Buzzard 2007, §2] (even though this functor does not commute with
formation of cohomology in general) and that any affinoid algebra has the latter
property. �

Proof of Theorem 2.8. By Proposition 2.7, it suffices to give a functorial isomorphism

R0cont(G,M)→ R0(G, D̃†,s(M)).
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The compatibility with cup products and operations on Yoneda extensions follows
from a routine trace through the definitions and hence is omitted.

It is easy to deduce from the preceding lemma a canonical isomorphism

R0cont(H,M)∼= Cone
[
D̃†,s(M)

ϕ−1
−−→ D̃†,ps(M)

]
[−1].

Combining this isomorphism with a standard argument involving the Hochschild–
Serre spectral sequence, the desired result follows. �

We may now shed some light on the essential image of D†
rig on families of Galois

representations, which at present is mysterious.

Corollary 2.10. Let 0 → D′ → E → D → 0 be a short exact sequence of
(ϕ, 0)-modules over A′ ⊗̂Qp B†,s

rig,K . If D and D′ arise from A′-valued Galois
representations, then so does E.

Proof. Note that D†,s
rig (HomA′(M,M ′))=HomA′⊗̂Qp B†,s

rig,K
(D, D′)with D=D†,s

rig (M)
and D′ = D†,s

rig (M
′). By Remarks 1.8 and 2.4, to see the claim, it suffices to apply

Theorem 2.8 to HomA′(M,M ′) and take H1 of the result. �

Let X be a p-adic analytic space over E , let M be a family of G-representations
over X , and let U be an admissible affinoid covering of X that is quasiclosed under
intersection. Then the functoriality of the isomorphisms in Theorem 2.8 gives rise
to a canonical isomorphism R0cont(G,M) ∼= R0(G,D(M)), which takes place
in D[0,2]perf (U) by the finiteness theorem.

3. Ordinary (ϕ, 0)-modules and Selmer groups

In this section, we put ourselves in the situation of Section 2, specializing to the
case where A′ =Qp and B(s) = B†(,s)

rig,K unless otherwise specified.

3A. p-adic Hodge theory of (ϕ, 0)-modules. This section describes the p-adic
Hodge theory of (ϕ, 0)-modules over the Robba ring. All the constructions and
results to be found here are extensions of well-known ones for p-adic Galois
representations, and many have explicitly appeared elsewhere; see, especially,
works of Benois [2011] and Bellaïche and Chenevier [2009, §2.2]. The reader may
check that every construction in this subsection holds with K replaced by a general
complete discretely valued field with the exception of the Euler–Poincaré formula.

There exists a sequence of 0-equivariant maps ιn : B†,pn

rig,K → Kn[[t]] for all
n ≥ n(K ), where t is the element of B†

rig,K defined in Section 2A, such that
ιn+1 ◦ ϕ = ιn . Given a ϕ-module D, we put D+dif = Ds

⊗B†,s
rig,K ,ιn

K∞[[t]], and
Ddif = Ds

⊗B†,s
rig,K ,ιn

K∞((t)), where Ds is uniquely determined for s > s(D) by
[Berger 2008, Théorème I.3.3] and is a model of D over B†,s

rig,K . Using the ϕ-
structure, one shows that these rules are independent of s and n satisfying s > s(D)
and pn

≥max(pn(K ), s). The rules D 7→ D(+)
dif are functorial and exact in D.
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If D is actually a (ϕ, 0)-module, then the D(+)
dif admit 0-actions (by perhaps

enlarging the s used), and we define D(+)
dR = (D

(+)
dif )

0 . These are K -vector spaces of
dimension at most rank D, and they carry a decreasing, separated, and exhaustive
filtration induced by the t-adic filtration on K∞((t)). One says that D is de Rham if
dimK DdR = rank D and denotes by MdR(ϕ, 0)⊂M(ϕ, 0) the full subcategory of
de Rham objects. For such D, we define its Hodge–Tate weights to be the h ∈Z with
Grh DdR 6= 0 with respective multiplicities dimK Grh DdR. (There is no standard
convention for the sign of the Hodge–Tate weight of the cyclotomic character; in
this paper, it is −1.)

We write for brevity

D[t−1
] = D⊗B†

rig,K
B†

rig,K [t
−1
],

D[logπ, t−1
] = D⊗B†

rig,K
B†

rig,K [logπ, t−1
],

where the element logπ is a free variable over B†
rig,K equipped with actions of ϕ

and 0 by the formulas

ϕ(logπ)= p logπ + log(ϕ(π)/π p) and γ (logπ)= logπ + log(γ (π)/π),

the series log(ϕ(π)/π p) and log(γ (π)/π) being convergent in B†
rig,Qp

. We associate
to D the modules

D+crys = D0, Dcrys = D[t−1
]
0, and Dst = D[logπ, t−1

]
0.

These three modules are semilinear ϕ-modules over F of dimension at most rank D.
The latter two are related via the so-called monodromy operator N . Namely,
consider the unique B†

rig,K -derivation N : B†
rig,K [logπ ] → B†

rig,K [logπ ] satisfying
N (logπ) = − p

p−1 . It satisfies Nϕ = pϕN and commutes with 0 and thus gives
rise to a nilpotent operator N on Dst with the property that Dcrys = DN=0

st .
We say that D is crystalline or semistable if Dcrys or Dst has the maximal F-

dimension, namely dimF Dcrys = rank D or dimF Dst = rank D, respectively. Upon
fixing a uniformizer for K , we can construct a canonical embedding Dst⊗F K ↪→DdR

so that D being semistable implies D being de Rham. We call D potentially
crystalline or potentially semistable if there exists a finite extension L/K inside
K alg such that DL is crystalline or semistable, respectively, when considered as
a (ϕ, 0L)-module. The following statement is known as Berger’s p-adic local
monodromy theorem:

Theorem 3.1 [Berger 2002]. Every de Rham (ϕ, 0)-module is potentially semistable.

Given a de Rham D, let L/K be a finite Galois extension inside K alg such that
DL is semistable. Then (DL)st is a (ϕ, N )-module over the maximal absolutely
unramified subfield FL of L , and (DL)st⊗FL L= (DL)dR is a filtered L-vector space.
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Essentially because these data arise via base change from K , they are naturally
equipped with a semilinear action of Gal(L/K ) that commutes with ϕ and N
and preserves the filtration. Such an object is called a filtered (ϕ, N ,Gal(L/K ))-
module. Given two extensions L i and filtered (ϕ, N ,Gal(L i/K ))-modules Di

(for i = 1, 2), we consider them equivalent if there exists an extension L containing
the L i such that the (Di )L are isomorphic. When we consider objects only up to
this equivalence, we call them filtered (ϕ, N ,G)-modules. We point out that if D
becomes semistable over both L1 and L2, then (DL1)st and (DL2)st are equivalent,
and we call this equivalence class Dpst. The rigid exact Qp-linear tensor category
of filtered (ϕ, N ,G)-modules is denoted MF(ϕ, N ,G).

The objects M of the category MF(ϕ, N ,G) admit a notion of degree, namely
the Newton slope minus the Hodge–Tate weight of M∧ rank(M), which gives rise to
a Harder–Narasimhan theory. One calls M (weakly) admissible if it is semistable
of slope 0 in the sense of Harder–Narasimhan theory. (See [Berger 2008, §I.1] for
details.)

Theorem 3.2 [Colmez and Fontaine 2000; Berger 2008]. The functor D 7→ Dpst is
an exact equivalence of categories

MdR(ϕ, 0) ∼→MF(ϕ, N ,G)

that matches their Harder–Narasimhan theories. In particular, a de Rham (ϕ, 0)-
module D is étale if and only if Dpst is (weakly) admissible.

Comparing notions of image and coimage, one deduces that the t-saturated (ϕ, 0)-
stable B†

rig,K -submodules of D are in a functorial, order-preserving correspondence
with subspaces of Dpst that are stable under the (ϕ, N ,G)-actions (equipped with
the filtration induced from Dpst). Furthermore, a t-saturated (ϕ, 0)-stable B†

rig,K -
submodule is actually a B†

rig,K -direct summand.
The following immediate consequence of the p-adic monodromy theorem is

usually stated for Galois representations, but the proof carries over without change
for (ϕ, 0)-modules. (As pointed out in [Berger 2002], the étale case was first proved
by O. Hyodo without use of the p-adic monodromy theorem, but the proof cited
below works for arbitrary complete discretely valued K .)

Corollary 3.3 [Berger 2002, Théorème 6.2]. Let 0→ D′→ D→ D′′→ 0 be a
short exact sequence of (ϕ, 0)-modules. If D′ and D′′ are semistable and D is de
Rham, then D is semistable.

As in Remark 2.4, the cohomology groups H1(G, D) coincide with Yoneda
groups: to every c ∈ H1(G, D), there corresponds a class of extensions

0→ D→ Ec→ 1→ 0,



1602 Jonathan Pottharst

where 1 denotes the unit (ϕ, 0)-module. The rule [Ec] 7→ [(Ec)dif] determines a
map H1(G, D)→ H1

cont(0, Ddif), and the Bloch–Kato “g” local subspace is given
by

H1
g(G, D)= ker[H1(G, D)→ H1

cont(0, Ddif)].

When D is de Rham, one has

H1
g(G, D)= {c ∈ H1(G, D) | Ec is de Rham}

= {c ∈ H1(G, D) | Ec is potentially semistable} (3-1)

= Ext1MF(ϕ,N ,G)(1, Dpst).

Similarly, a map H1(G, D) → H1
cont(0, D[1/t]) is determined by forgetting

ϕ-structures and inverting t , and we define the Bloch–Kato “f” local subspace to be

H1
f (G, D)= ker[H1(G, D)→ H1

cont(0, D[t−1
])].

When D is crystalline, one has

H1
f (G, D)= {c ∈ H1(G, D) | Ec is crystalline}.

If D is de Rham, then under the isomorphism (3-1) one can compute H1
f (G, D) as

certain extensions of filtered (ϕ, N ,G)-modules, obtaining the exact sequence

0→ H0(G, D)→ Dcrys
(1−ϕ,1)
−−−−→ Dcrys⊕ DdR/D+dR→ H1

f (G, D)→ 0.

This computation can be enhanced to show that the local condition associated to
the subspace H1

f (G, D) is isomorphic in the derived category to the complex

C•f (G, D)= Cone
[
Dcrys

(1−ϕ,1)
−−−−→ Dcrys⊕ DdR/D+dR

]
[−1],

R0f(G, D)= [C•f (G, D)],

and one obtains the “Euler–Poincaré” formula

dimQp H1
f (G, D)= dimQp H0(G, D)+ dimQp DdR/D+dR. (3-2)

The next result follows from the (elementary) computation of 0-cohomology
of tn K∞[[t]] and that K∞[[t]] is a PID.

Proposition 3.4. Let 0 → D′ → D → D′′ → 0 be a short exact sequence of
(ϕ, 0)-modules with D′ and D′′ de Rham. If all the Hodge–Tate weights of D′ are
strictly less than all the Hodge–Tate weights of D′′, then the short exact sequence of
0-modules

0→ (D′)+dif→ D+dif→ (D′′)+dif→ 0

is split. In particular, D is de Rham.
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3B. The (strict) ordinary local condition. We briefly relax our hypothesis that
A′ =Qp; instead, A′ can be any E-affinoid algebra.

Let D be a (ϕ, 0)-module over A′ ⊗̂Qp B†
rig,K , or a family of (ϕ, 0)-modules of

type B†
rig,K over a p-adic analytic space X , endowed with an admissible affinoid cov-

ering U that is quasiclosed under intersection. By a nearly ordinary filtration on D,
we mean a decreasing partial flag F∗ ⊆ D, consisting of sub-(ϕ, 0)-modules that
are module-direct summands, or subfamilies of (ϕ, 0)-modules that are direct
summands over each Y ∈U, respectively, such that each GrαF has constant rank.

If M is either an object of RepA′(G) or a family of G-representations over X ,
then a nearly ordinary filtration for M is by definition one for D†

rig(M), and we
call it classically nearly ordinary if it arises from a partial flag of M consisting of
G-stable direct summands.

Example 3.5. When A′ =Qp, being nearly ordinary with a complete flag means
being (split) trianguline.

Given a sub-(ϕ, 0)-module F+ ⊆ D that is a module-direct summand or a
subfamily of (ϕ, 0)-modules that are module-direct summands over each Y ∈U,
we recall from Example 1.18 the (strict) ordinary local condition given by the
morphism

R0str(G, D)= R0(G, F+)→ R0(G, D).

In the case D = D†
rig(M), we get the local condition for M ,

R0str(G, D)= R0(G, F+)→ R0(G, D)∼= R0cont(G,M).

By the finiteness theorem, both the domain and codomain belong to D[0,2]perf (A
′),

and the formation of this local condition commutes with arbitrary base change by
Proposition 2.6(2) as well as with duality (in the same sense as does the classical
strict ordinary local condition as in Example 1.18) again by the finiteness theorem.
The image of the local condition in cohomology is clearly

img[H1(G, F+)→ H1(G, D)] = ker[H1(G, D)→ H1(G, D/F+)],

which is a generalization of the (strict) ordinary local subspace studied by Greenberg
[1994b] in conjunction with the nonstrict ordinary local subspace (introduced earlier
in [Greenberg 1989; 1994a])

ker
[
H1(G K , D)→ H1(G K̂ unr, (D/F+)⊗B†

rig,K
B†

rig,K̂ unr

)]
.

Although the nonstrict local subspace appears more often in the literature, we will
not use it essentially because a derived analogue, like R0str(G, D) in the strict
case, would involve Galois cohomology for the group G K̂ unr , which does not satisfy
p-cohomological finiteness, rendering the derived analogue pathological.
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We now resume our assumption that A′ =Qp.
Let L/K be a finite Galois extension inside K alg. We say a (ϕ, 0)-module D over

B†
rig,K is L-ordinary if it admits a nearly ordinary flag F∗ ⊆ D with the properties

that each (GrαF )L is semistable and if α < β then all Hodge–Tate weights of GrαF
are strictly greater than all Hodge–Tate weights of GrβF . We say that D is ordinary
if there exists some L for which it is L-ordinary. If V is a Galois representation,
we say that V is (L-)ordinary if D†

rig(V ) is and classically (L-)ordinary if there
exists a partial flag of V by G-stable direct summands giving rise via D†

rig to the
desired filtration.

Example 3.6. We will see in Section 3C that Greenberg’s notion of “ordinary”
translates to our classically K -ordinary with each GrαF having only one Hodge–Tate
weight (possibly with multiplicity). Thereafter, we will see examples of ordinary but
not classically ordinary Galois representations. It is possible that D be ordinary with
respect to more than one filtration even though ordinary filtrations in Greenberg’s
sense are unique when they exist.

Here are the main properties of ordinary (ϕ, 0)-modules:

Proposition 3.7. Let L/K be a finite Galois extension inside K alg, and let D be a
(ϕ, 0)-module that is L-ordinary with filtration F∗.

(1) D becomes semistable over L and hence is potentially semistable.

Suppose moreover that there exists a filtration step F+ with the property that all the
Hodge–Tate weights of F+ are negative and all the Hodge–Tate weights of D/F+

are nonnegative.

(2) One has H0(G, D/F+)=(D/F+)ϕ=1
crys and H0(G, (F+)∗(1))=((F+)∗(1))ϕ=1

crys .

(3) Suppose that all the spaces mentioned in part (2) vanish. Then the canonical
maps in the derived category are isomorphisms:

R0(G, F+) ∼← R0f(G, F+) ∼→ R0f(G, D),

hence the local conditions

R0str(G,D)∼= R0f(G,D) and H1(G,F+) ↪→ H1(G,D).

Remark 3.8. A variant of the proposition can be formulated for general K complete
discretely valued, but we omit it for brevity. Suppose D =D†

rig(V ) with V ordinary
in the sense of Greenberg. When K/Qp is finite, the claim (1) for V is due
to Fontaine [Perrin-Riou 1994a], and for general K , it is due to Berger [2002,
Corollaire 6.3]. When K =Qp, the claim (3) for V is essentially a result of Flach
[1990, Lemma 2]. Our formulation of parts (2)–(3) closely follows that of Fukaya
and Kato [2006, Lemma 4.1.7].
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Proof. For part (1), by restriction, we immediately reduce to the case where D is K -
ordinary. The first claim now follows by induction on the length of the filtration, the
case of length 1 being trivial and the inductive step being given by Proposition 3.4
and Corollary 3.3.

Part (2) follows from noting that both D/F and F∗(1) have only nonnegative
Hodge–Tate weights and applying to them the claim that for any (ϕ, 0)-module D
one has H0(G, D)= D+,ϕ=1

crys .
We now turn to part (3). For the first arrow, we have equality of cohomology

outside degrees 1 and 2. For degree 1, we compute that

dimQp H1(G, F+)= dimQp H0(G, F+)+ dimQp H2(G, F+)+ [K :Qp] rank F+

= dimQp H0(G, F+)+ dimQp(F
+)dR/(F+)+dR

= dimQp H1
f (G, F+),

using the local Euler–Poincaré formulas of [Liu 2007] and Equation (3-2) for F+,
the computation H2(G, F+)= H0(G, (F+)∗(1))∗ = 0 by local duality for (ϕ, 0)-
modules [Liu 2007], and that F+ has only negative Hodge–Tate weights. The
same local duality computation takes care of degree 2. For the second arrow, we
have equality of cohomology outside degrees 0 and 1. The long exact cohomology
sequence and the vanishing of H0(G, D/F+) give the result in degree 0 and the
injectivity of H1(G, F+)→ H1(G, D) and hence also of H1

f (G, F+)→ H1
f (G, D).

To conclude in degree 1, it suffices to compare the Euler–Poincaré formulas for the
two dimensions, noting that (F+)dR/(F+)+dR

∼
← (F+)dR

∼
→ DdR/D+dR. �

3C. Examples of ordinary representations. When discussing examples, the fol-
lowing equivalent formulation is helpful:

Alternate definition 3.9. We remind the reader that by Proposition 3.7(1), every
ordinary (ϕ, 0)-module is de Rham, so we assume this is the case from the outset.

Given a de Rham (ϕ, 0)-module D, by the discussion of Section 3A, the ordinary
filtrations F∗ ⊆ D are in a natural correspondence with filtrations F∗ ⊆ Dpst by
(ϕ, N ,G)-stable subspaces (each equipped with its Hodge filtration induced by Dpst)
such that for α < β all the jump indices of the induced Hodge filtration on (GrαF )dR

are strictly greater than all the jump indices of the induced Hodge filtration on
(GrβF )dR. Note the reversal of order of the jump indices: this feature is independent
of one’s normalizations of Hodge–Tate weights.

Example 3.10 (Greenberg’s ordinary representations). Let us see how ordinary
representations, defined by Greenberg [1989] when K =Qp, fit into our context.
We are given a Galois representation V so that D = D†

rig(V ) is étale. Greenberg’s
ordinary hypothesis is that V admits a decreasing filtration F∗ ⊆ V by G-stable
subspaces such that for each α the representation χ−nα

cycl ⊗ GrαF V is unramified



1606 Jonathan Pottharst

for some integer nα, and the nα are strictly increasing. This means precisely
that each GrαF V is crystalline of all Hodge–Tate weights equal to −nα. Thus,
Greenberg’s ordinary hypothesis is a strengthening of our classically K -ordinary
hypothesis to require that each of the graded pieces be of a single Hodge–Tate weight.
In the language of filtered (ϕ, N ,G)-modules, a filtration F∗ ⊆ Dpst corresponds
to a Greenberg-ordinary filtration on V precisely when V is semistable, and each
GrαF Dpst is (weakly) admissibly filtered of a single Hodge–Tate weight, with the
weights strictly decreasing, which means here that each GrαF Dpst is of pure ϕ-slope
−nα and Hodge–Tate weight −nα and satisfies N = 0 and that nα > nβ for α < β.

The reader will notice in the examples below that although V admits at most one
Greenberg-ordinary filtration it may admit many different (ϕ, 0)-ordinary filtrations.
This is complementary to the existence of many p-adic L-functions.

Example 3.11 (Abelian varieties). Take an abelian variety B/K of dimension d ≥ 1
with semistable reduction over OK , and consider D = D†

rig(V ) with V = Tp B⊗Q
the p-adic Tate module up to isogeny. The Hodge filtration Hodge∗ ⊆ DdR satisfies
dimK Gr0

Hodge = dimK Gr−1
Hodge = d , and its Frobenius slopes h satisfy −1≤ h ≤ 0.

By weak admissibility, the ϕ-eigenspaces with nonzero slopes do not meet Hodge0.
A nontrivial ordinary filtration thus consists of a (ϕ, N )-stable subspace F ⊆ Dst

of rank d such that FdR is complementary to Hodge0 in DdR.

Example 3.12 (Elliptic modular eigenforms). This case is treated in detail in [Pot-
tharst 2012], the upshot being as follows. Let p>2, and let f be a normalized elliptic
modular cuspidal new eigenform of weight k ≥ 2 with associated cohomological
p-adic Galois representation V f . If necessary, extend the scalars of V f to contain
the eigenvalues of ϕ on Dpst(V f ). Then V f is ordinary in our sense, often with two
distinct ordinary filtrations, provided f has finite slope: the matrix of ϕ on Dpst(V f )

is nonscalar. For example, when ϕ on Dpst(V f ) is semisimple (as is conjecturally
always the case), this is equivalent to there being some twist f ⊗ ε by a Dirichlet
character ε that has an associated Up-eigenform with nonzero Up-eigenvalue. By
contrast, f is “ordinary” in the parlance of p-adic modular forms if this condition
is satisfied with ε = 1 and the Up-eigenvalue a p-adic unit. Proposition 3.7(3)
computes the Bloch–Kato local condition entering into the Selmer group of each
of the Tate twists V f (n) corresponding to critical L-values except perhaps where
exceptional zeroes (as in [Mazur et al. 1986]) occur.

3D. Ranks in families. We resume the assumptions of Section 1E, i.e., that K
is a finite extension of Q, that K alg is a fixed algebraic closure, and that S is a
fixed finite set of places v of K containing all v dividing p. Let M be a family of
G K ,S-representations over a p-adic analytic space X , endowed with an admissible
affinoid covering U that is quasiclosed under intersection. (For example, one can
have X affinoid with algebra A′ and M arising from a flat A′-module.) Suppose
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that, for each place v ∈ S dividing p, the restriction M |Gv
is equipped with a nearly

ordinary filtration F∗v ⊆ Dv = D†
rig(M |Gv

), and we have a distinguished index αv.
In order to get a reasonable theory, we must assume that for each v ∈ S not

dividing p the subobject M Iv is flat.
Using the strict ordinary local condition given by the Fαvv at places v ∈ S

dividing p and the unramified local condition at places v ∈ S not dividing p, we
build as in situation (3) of Section 1E the strict ordinary Selmer complex, denoted

R0̃str(G K ,M) ∈ D[0,3]perf (U).

One can check that it is invariant under enlarging S and hence is independent of S,
so we may omit it from the notation.

We wish to compare the above complex to those associated to the members of the
family. Namely, let x ∈ X (Ex) be a point with residue field Ex , and let fx denote
the inclusion of the point x . We set Mx = f ∗x M , Dv,x = f ∗x Dv, and F∗v,x = f ∗x F∗v
for v ∈ S, and we use the strict ordinary local condition determined by the Fαvv,x
at v ∈ S above p, and the unramified local condition at v ∈ S not dividing p, to
construct in the same way the Selmer complex

R0̃str(G K ,Mx) ∈ D[0,3]perf (Ex).

We study the natural specialization morphism

sx : L f ∗x R0̃str(G K ,M)→ R0̃str(G K ,Mx) (3-3)

and in particular H2(sx).
It follows from the finiteness theorem and Proposition 2.6(2) that the forma-

tion of the strict ordinary local conditions commutes with L f ∗x . We assume that
f ∗x (M

Iv ) ∼→ (Mx)
Iv so that the formation of the unramified local conditions com-

mutes with L f ∗x . Then the base-change theorem, situation (3) of Theorem 1.12,
shows the morphism (3-3) to be an isomorphism, giving rise to a short exact
sequence

0→ f ∗x H̃2
str(G K ,M)

H2(sx )
−−−→ H̃2

str(G K ,Mx)→ TorOX
1 (H̃3

str(G K ,M), Ex)→ 0.

Thus, H2(sx) is an isomorphism precisely when x avoids the support of the torsion
in H̃3

str(G K ,M).
On the other hand, we may relate H̃2

str(G K ,Mx) to an extended Selmer group
in degree 1 via duality. Namely, we equip M∗x (1) with the strict ordinary local
conditions at v ∈ S lying over p built from the (Fαvv,x)

⊥, and the unramified local con-
ditions at v ∈ S not dividing p, to construct the Selmer complex R0̃str(G K ,M∗x (1)).
The local conditions for Mx and M∗x (1) are dual to one another. At places v ∈ S
lying over p, this follows from the duality of Galois cohomology of (ϕ, 0)-modules
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contained in the finiteness theorem as previously mentioned. At places v ∈ S not
dividing p, there is a possible error in the integral self-duality of the unramified
local conditions (coming from nontrivial Tamagawa numbers), but this contribution
disappears after inverting p; see [Nekovář 2006, 7.6.7(iii)]. Thus, Theorem 1.16
gives

R0̃str(G K ,Mx)∼= R0̃str(G,M∗x (1))
∗
[−3]

in D[0,3]perf (Ex) and, in particular,

H̃2
str(G K ,Mx)∼= H̃1

str(G K ,M∗x (1))
∗.

Now we relate the H̃1
str(G K ,M∗x (1)) to Bloch–Kato Selmer groups for M∗x (1)

by computing the complexes Ev = Cone(iv) appearing in the exact triangles (1-3)
and (1-4). For v∈ S dividing p, one has Ev∼=R0(Gv, (Fαvv,x)

∗(1)), whereas for v∈ S
not dividing p one has

H0 Ev = 0 and H1 Ev ∼= H1
cont(Iv,M∗x (1))

Gv .

Thus, one has an exact sequence

· · · →

⊕
v∈S

dividing p

H0(Gv, (Fαvv,x)
∗(1))→ H̃1

str(G K ,M∗x (1))→ H1
cont(G K ,S,M∗x (1))

→

⊕
v∈S

dividing p

H1(Gv, (Fαvx,v)
∗(1))⊕

⊕
v∈S

not dividing p

H1
cont(Iv,M∗x (1))

Gv → · · · ,

and the image of H̃1
str(G K ,M∗x (1)) in H1

cont(G K ,S,M∗x (1)) is identified to a subgroup
cut out by local subspaces. For v not dividing p, these are the usual unramified
local subspaces, and for v dividing p, these are strict ordinary local spaces in
the sense of Section 3B. Therefore, assuming for each v ∈ S dividing p that the
hypotheses of Proposition 3.7(3) for M∗x (1)|Gv

hold, and in particular that each
H0(Gv, (Fαvx,v)

∗(1))= 0, we have H̃1
str(G K ,M∗x (1))

∼
→ H1

f (G K ,M∗x (1)), where the
right-hand side is Bloch–Kato’s Selmer group for M∗x (1).

Because the H̃i
str(G K ,M) are coherent sheaves on X , they have a reasonable

structure theory. It follows that for x varying over all points of X with values
in finite extensions Ex of E , the number dimEx f ∗x H̃i

str(G K ,M) is constant at its
minimum value outside of a locally (i.e., over each affinoid) Zariski-closed proper
subset. Further throwing away the support of the torsion in H̃3

str(G K ,M), which
only increases the resulting rank of H̃2

str(G K ,Mx), we thus obtain the following:

Theorem 3.13. Let M be a family of G K ,S-representations over X that is nearly
ordinary at each v ∈ S dividing p and for each v ∈ S not dividing p that M Iv is flat.

Let X0 be the set of points x with values in finite extensions Ex of E , for which
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• f ∗x (M
Iv ) ∼→ (Mx)

Iv if v does not divide p and

• the hypotheses of Proposition 3.7(3) for M∗x (1)|Gv
hold if v divides p.

Then the Bloch–Kato Selmer groups of the M∗x (1) at the x ∈ X0 have Ex -dimensions
that are equal to their minimum except possibly on a locally Zariski-closed proper
subset.

Remark 3.14. In the case where the family is over a reduced affinoid of dimension 1,
this statement is more or less equivalent to [Bellaïche 2012, Theorem 1].
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