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The variety of principal minors of n × n symmetric matrices, denoted Zn , is
invariant under the action of a group G ⊂ GL(2n) isomorphic to SL(2)×n n Sn .
We describe an irreducible G-module of degree-four polynomials constructed
from Cayley’s 2 × 2 × 2 hyperdeterminant and show that it cuts out Zn set-
theoretically. This solves the set-theoretic version of a conjecture of Holtz and
Sturmfels. Standard techniques from representation theory and geometry are
explored and developed for the proof of the conjecture and may be of use for
studying similar G-varieties.

1. Introduction

The problem of finding the relations among principal minors of a matrix of indeter-
minates goes back at least to [Nanson 1897], where relations among the principal
minors of an arbitrary 4×4 matrix are given. An expression for the determinant of
a matrix in terms of a subset of its principal minors is given in [Stouffer 1928], but
the number of independent principal minors was essentially known to that author
even earlier [1924], as pointed out in [Griffin and Tsatsomeros 2006]. (In fact, in
his 1928 paper Stouffer says that the result was already known to MacMahon in
1893 and later to Muir.)

Subsequently, interest in the subject seems to have diminished, but much more
recently, there has been renewed interest in the relations among principal minors
and their application to matrix theory, probability, statistical physics and spectral
graph theory.
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In response to questions about principal minors of symmetric matrices, Holtz and
Sturmfels [2007] introduced the algebraic variety of principal minors of symmetric
n × n matrices (denoted Zn herein — see Section 3B for the precise definition)
and asked for generators of its ideal. In the first nontrivial case, those authors
showed that Z3 is an irreducible hypersurface in P7 cut out by a special degree-
four polynomial, namely Cayley’s hyperdeterminant of format 2× 2× 2. In the
next case they showed (with the aid of a computer calculation) that the ideal of Z4

is minimally generated by 20 degree-four polynomials, but only 8 of these poly-
nomials are copies of the hyperdeterminant constructed by natural substitutions.
The other 12 polynomials were separated into classes based on their multidegrees.
This was done in a first draft of [Holtz and Sturmfels 2007], and at that point,
the geometric meaning of the remaining polynomials and their connection to the
hyperdeterminant was still somewhat mysterious. Because of the symmetry of the
hyperdeterminant, Landsberg suggested to Holtz and Sturmfels the following:

Theorem 1.1 [Holtz and Sturmfels 2007, Theorem 12]. The variety Zn is invariant
under the action of

SL(2)×n n Sn.

It should be noted that Borodin and Rains [2005] had found a similar result for
two other cases: when the matrix is not necessarily symmetric and for a Pfaffian
analog. In [Oeding 2009], we showed that Zn is a linear projection of the well-
known Lagrangian Grassmannian, which can also be interpreted as the variety of
all minors of a symmetric matrix. We used this projection to prove Theorem 1.1
geometrically.

In [Holtz and Sturmfels 2007], the span of the (SL(2)×n n Sn)-orbit of the
2×2×2 hyperdeterminant is named the hyperdeterminantal module (denoted HD
herein — see Section 3). It was then understood — and included in the final version
of the paper — that the 20 degree-four polynomials are a basis of the hyperdeter-
minantal module when n = 4. This interpretation led to the following:

Conjecture 1.2 [Holtz and Sturmfels 2007, Conjecture 14]. The prime ideal of the
variety of principal minors of symmetric matrices is generated in degree 4 by the
hyperdeterminantal module for all n ≥ 3.

While the first two cases of the conjecture (n = 3, 4) were proved using a com-
puter, the dimension of the hyperdeterminantal module and the number of vari-
ables both grow exponentially with n, making computational methods ineffective
already in the case n = 5, for which the hyperdeterminantal module has a basis
of 250 degree-four polynomials in 32 variables. Our point of departure is the use
of the symmetry of Zn via tools from representation theory and the geometry of
G-varieties.
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Our main purpose is to solve the set-theoretic version of the Holtz–Sturmfels
conjecture (see Example 3.3 for the representation-theoretic description of the
hyperdeterminantal module in terms of Schur modules used in this statement):

Theorem 1.3 (Main Theorem). The variety of principal minors of symmetric n×n
matrices, Zn , is cut out set-theoretically by the hyperdeterminantal module, which
is the irreducible (SL(2)×n n Sn)-module of degree-four polynomials

HD = S(2,2)S(2,2)S(2,2)S(4) . . . S(4).

The set-theoretic result is sufficient for many applications related to principal
minors of symmetric matrices. In particular, set-theoretic defining equations of
Zn are necessary and sufficient conditions for a given vector of length 2n to be
expressed as the principal minors of a symmetric matrix. We state this practical
membership test as follows:

Corollary 1.4. Suppose w = [w[i1,...,in]] ∈ C2n
with i j ∈ {0, 1}. Then w represents

the principal minors of a symmetric n × n matrix if and only if w and all images
under changes of coordinates by SL(2)×n n Sn are zeros of Cayley’s 2× 2× 2
hyperdeterminant

(wI[0,0,0])
2(wI[1,1,1])

2
+ (wI[1,0,0])

2(wI[0,1,1])
2
+ (wI[0,1,0])

2(wI[1,0,1])
2

+(wI[0,0,1])
2(wI[1,1,0])

2
−2wI[0,0,0]wI[1,0,0]wI[0,1,1]wI[1,1,1]−2wI[0,0,0]wI[0,1,0]wI[1,0,1]wI[1,1,1]

− 2wI[0,0,0]wI[0,0,1]wI[1,1,0]wI[1,1,1] − 2wI[1,0,0]wI[0,1,0]wI[0,1,1]wI[1,0,1]

− 2wI[1,0,0]wI[0,0,1]wI[0,1,1]wI[1,1,0] − 2wI[0,1,0]wI[0,0,1]wI[1,0,1]wI[1,1,0]

+ 4wI[0,0,0]wI[0,1,1]wI[1,0,1]wI[1,1,0]+ 4wI[0,0,1]wI[0,1,0]wI[1,0,0]wI[1,1,1],

where I[i1,i2,i3] = [i1, i2, i3, 0, . . . , 0] for i j ∈ {0, 1}.

A second, unifying purpose of this work is to study Zn as a prototypical (non-
homogeneous) G-variety. We aim to show the usefulness of standard constructions
in representation theory and geometry, and to further develop general tools for
studying geometric and algebraic properties of such varieties. We anticipate these
techniques will be applicable to other G-varieties in spaces of tensors, such as those
that arise naturally in computational complexity [Landsberg 2008; Bürgisser et al.
1997], signal processing [Comon et al. 2008; Comon and Rajih 2006; de Lathauwer
and de Baynast 2008], and algebraic statistics [Pachter and Sturmfels 2005; Allman
and Rhodes 2008] (see also [Landsberg ≥ 2011] for a unified presentation of the
use of geometry and representation theory in these areas), and especially to the
case of principal minors of arbitrary matrices studied by Lin and Sturmfels [2009]
and Borodin and Rains [2005]. In fact, we use techniques similar to those found
here as well as Theorem 1.3 in the sequel [Oeding 2011], which investigates a con-
nection between principal minors of symmetric matrices and the tangential variety
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to the Segre product of projective spaces, and solves the set-theoretic version of a
conjecture of Landsberg and Weyman [2007].

1A. Outline. This paper is organized as follows. Section 2 discusses applications
of Theorem 1.3 to statistics, physics and graph theory. In Section 3 we recall basic
notions concerning tensors, representations and G-varieties. We point out many
standard facts from representation theory that we will use to study the ideal of
Zn and the hyperdeterminantal module. In particular, we recall a method used by
Landsberg and Manivel to study G-modules of polynomials via Schur modules.
We also show how to use weights and lowering operators to describe and identify
Schur modules. We use these concepts to prove Lemma 7.2, a stepping-stone to
Proposition 7.1; the latter, in turn, is crucial to our proof of Theorem 1.3.

Sections 3B, 4, 5, and 6 deal with geometric aspects of the variety of principal
minors of symmetric matrices and the zero set of the hyperdeterminantal module.
In Section 3B we set up notation and give a precise definition of the variety. We
also recall two useful facts; a symmetric matrix is determined up to the signs of
its off-diagonal terms by its 1× 1 and 2× 2 principal minors, and the dimension
of Zn is

(n+1
2

)
. In Section 4 we describe the nested structure of Zn . In particular,

in Proposition 4.2 we show that Zn contains all possible Segre products of Z p and
Zq where p+ q = n. We use this interpretation in Proposition 7.1.

In Section 5 we study properties of the hyperdeterminantal module. In particular,
we point out that it has dimension

(n
3

)
5n−3. In Proposition 5.2 we show that it

actually is an irreducible (SL(2)×n nSn)-module of polynomials that occurs with
multiplicity 1 in the space of degree-four homogeneous polynomials. This is a
consequence of a more general fact about modules with structure similar to that of
the hyperdeterminantal module, which we record in Lemma 5.4. In Proposition 5.5
we record the fact (originally proved in [Holtz and Sturmfels 2007]) that the hyper-
determinantal module is in the ideal of Zn . Then in Proposition 5.6 we generalize
the idea to other varieties that have similar structure.

In Section 6 we extract a general property of the hyperdeterminantal module
that we call augmentation. We explore properties of augmented modules by means
of polarization of tensors, a technique from classical invariant theory used, for
example, in the study of secant varieties. Of particular interest is the augmentation
lemma (Lemma 6.4), in which we give a geometric description of the zero set of
a general augmented module. We apply that lemma to obtain a geometric charac-
terization of the zero set of the hyperdeterminantal module in Lemma 6.6. We use
Lemma 6.6 in the proof of Theorem 1.3. Proposition 6.8 is another application of
the Augmentation Lemma to polynomials that define Segre products of projective
spaces. We use a slightly more complicated version of Proposition 6.8 in the proof
of Lemma 7.2.
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In Sections 7 and 8 we pull together all of the ideas from the previous parts
to prove Theorem 1.3. In particular, we show that any point in the zero set of
the hyperdeterminantal module has a symmetric matrix that maps to it under the
principal minor map.

In Section 7 we work to understand the case when all principal minors of a
symmetric matrix agree with a given vector except possibly the determinant. Of
particular importance is Proposition 7.1, which essentially says that for n ≥ 4, if z
is a vector in the zero set of the hyperdeterminantal module, then a specific subset
of the coordinates of z determine the rest of its coordinates.

In order to prove Proposition 7.1, we use practically all of the tools from repre-
sentation theory that we have introduced and developed earlier in the paper. With
the aid of Proposition 7.1, we prove Theorem 1.3 in Section 8.

2. Applications of Theorem 1.3

We conclude this introduction by describing how Theorem 1.3 answers questions
in other areas via three examples: in statistics and the study of negatively correlated
random variables, in physics and the study of determinantal point processes, and in
spectral graph theory and the study of graph invariants [Holtz and Schneider 2002;
Holtz and Sturmfels 2007; Griffin and Tsatsomeros 2006; Borcea et al. 2009; Holtz
1999; Wagner 2008; Mikkonen 2007].

2A. Application to covariance of random variables. Consider a nonsingular real
symmetric n × n matrix A. The principal minors of A can be interpreted as val-
ues of a function ω : P({1, . . . , n}) → [0,∞), where P is the power set. This
function ω, under various restrictions, is of interest to statisticians. In this setting,
the off-diagonal entries of the matrix A−1 are associated to covariances of random
variables. Wagner [2008] asked:

Question 2.1. When is it possible to prescribe the principal minors of the matrix
A as well as the off-diagonal entries of A−1?

In [Holtz and Sturmfels 2007, Theorem 6] this question is answered using the
hyperdeterminantal equations in degree 4, another set of degree-10 equations, and
the strict Hadamard–Fischer inequalities.

Our main result provides an answer to the first part of the question: it is possible
to prescribe the principal minors of a symmetric matrix if and only if the candidate
principal minors satisfy all the relations given by the hyperdeterminantal module.

For the second part of the question we can give a partial answer. It is not hard
to see that the off-diagonal entries of A−1 are determined up to sign by the 0× 0,
1×1 and 2×2 principal minors, and the rest of the principal minors further restrict
the freedom in the choices of signs.
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Another useful fact is that if A is invertible, then

A−1
=

adj(A)
det(A)

,

where adj(A)i, j = ((−1)i+ j det(A j
i )) is the adjugate matrix. So up to scale, the

vector of principal minors of A−1 is the vector of principal minors of A in reverse
order. Therefore the determinant and the (n− 1)× (n− 1) and (n− 2)× (n− 2)
principal minors of A determine the off-diagonal entries of A−1 up to

(n
2

)
choices

in combinations of signs, and the rest of the principal minors further restrict the
choices of combinations of signs.

2B. Application to determinantal point processes. Determinantal point processes
were introduced by Macchi in 1975, and subsequently have received significant
attention in many areas. A nonzero point pS ∈ C2n

is called determinantal if there
is an integer m and an (n+m)× (n+m) matrix K such that for S ⊂ {1, 2, . . . , n},

pS = det
S∪{n+1,...,n+m}

(K ).

Borodin and Rains [2005, Theorem 4.6] were able to completely classify all such
points for the case n = 4 by giving a nice geometric characterization. Lin and
Sturmfels [2009] studied the geometric and algebraic properties of the algebraic
variety of determinantal points and independently arrived at the same result as
Borodin and Rains. Moreover, Lin and Sturmfels gave a complete proof of the
claim of [Borodin and Rains 2005] that the ideal of the variety is generated in
degree 12 by 718 polynomials.

Consider the case where we impose the restrictions that the matrix K to be
symmetric and the integer m equals 0; we call these restricted determinantal points
symmetric determinantal points.

Restatement. The variety of all symmetric determinantal points is cut out set-
theoretically by the hyperdeterminantal module.

This restatement is useful because it provides a complete list of necessary and
sufficient conditions for determining which symmetric determinantal points can
possibly exist.

2C. Application to spectral graph theory. A standard construction in graph the-
ory is the following. To a weighted directed graph 0 one can assign an adjacency
matrix 1(0).

The eigenvalues of 1(0) are invariants of the graph. The first example involves
the standard graph Laplacian. Kirchoff’s well-known matrix-tree theorem states
that any (n−1)× (n−1) principal minor of 1(0) counts the number of spanning
trees of 0.
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There are many generalizations of the Matrix-Tree Theorem, such as the Matrix-
Forest Theorem, which states that 1(0)S

S , the principal minor of the graph Lapla-
cian formed by omitting rows and columns indexed by the set S ⊂ {1, . . . , n},
computes the number of spanning forests of 0 rooted at vertices indexed by S.

The principal minors of the graph Laplacian are graph invariants. The relations
among principal minors are then also relations among graph invariants. Relations
among graph invariants are central in the study of the theory of unlabeled graphs. In
fact, Mikkonen [2007, p. 1] holds that “the most important problem in graph theory
of unlabeled graphs is the problem of determining graphic values of arbitrary sets
of graph invariants.”

Theorem 1.3 gives relations among the graph invariants that come from principal
minors, and in particular, since a graph can be reconstructed from a symmetric
matrix, Theorem 1.3 implies the following:

Restatement. There exists an undirected weighted graph 0 with invariants [v] ∈
P2n
−1 specified by the principal minors of a symmetric matrix 1(0) if and only if

[v] is a zero of all the polynomials in the hyperdeterminantal module.

3. Background on G-varieties in spaces of tensors
and their ideals as G-modules

An n×n matrix has 2n principal minors (determinants of submatrices centered on
the main diagonal, including the trivial 0×0 minor), so vectors of principal minors
may be considered in the space C2n

. However, the natural ambient space for vectors
of principal minors from the point of view of symmetry (Theorem 1.1) is the n-fold
tensor product C2

⊗ · · · ⊗C2. With this in mind, in this section we study tensor
products of several vector spaces, natural group actions on tensors, representation
theory for tensor products, and classical subvarieties in spaces of tensors.

For the sake of the reader not familiar with representation theory, we have chosen
to include many definitions and basic concepts that we might have skipped other-
wise. For more background, one may consult [Fulton and Harris 1991; Landsberg
≥ 2011; Goodman and Wallach 1998; Weyl 1997; Harris 1992; Cox et al. 2007].

If V is a vector space and G ⊂ GL(V ), a variety X ⊂ PV is said to be a G-
variety or G-invariant if it is preserved by the action of G, specifically g.x ∈ X
for every x ∈ X and g ∈ G. In this article our vector spaces are always assumed to
be finite-dimensional. Our study fits into the more general context of arbitrary
G-varieties for a linearly reductive group G, and we sometimes allude to this
setting, but for the sake of efficiency and clarity we often present the necessary
representation-theoretic concepts only in the case of tensors. The expert reader
might try to envision the basic techniques we use in their more general context.
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3A. Examples of classical G-varieties in spaces of tensors. Let V1, . . . , Vn be
complex vector spaces and let V1⊗ · · ·⊗ Vn denote their tensor product. We give
two classic examples of G-varieties in the space of tensors P(V1⊗ · · · ⊗ Vn) that
happen to show up in our study of the variety of principal minors of symmetric
matrices. These definitions can be found in many texts on algebraic geometry,
such as [Harris 1992].

The space of all rank-1 tensors (also called decomposable tensors) is the Segre
variety, defined by the embedding

Seg : PV1× · · ·×PVn −→ P(V1⊗ · · ·⊗ Vn),

([v1], . . . , [vn]) 7−→ [v1⊗ · · ·⊗ vn].

Seg(PV1 × · · · × PVn) is a G-variety for G = GL(V1) × · · · × GL(Vn), and it
is homogeneous (the G-orbit of a single point) since Seg(PV1 × · · · × PVn) =

G.[v1⊗· · ·⊗vn]. If X1⊂PV1, . . . , Xn ⊂PVn are varieties, let Seg(X1×· · ·×Xn)

denote their Segre product.
The r th secant variety to a variety X⊂PV , denoted σr (X), is the Zariski closure

of all embedded secant Pr−1’s to X, that is,

σr (X)=
⋃

x1,...,xr∈X

P(span{x1, . . . , xr })⊂ PV .

Secant varieties inherit the symmetry of the underlying variety. In particular,

σr (Seg(PV1× · · ·×PVn))

is a G-variety for G = GL(V1) × · · · × GL(Vn). However, homogeneity is not
preserved in general.

3B. The variety of principal minors of symmetric matrices. Let I = [i1, . . . in]

be a binary multi-index, with ik ∈ {0, 1} for k = 1, . . . , n, and let |I | =
∑n

k=1 ik .
A natural basis of (C2)⊗n is the set of tensors X I

:= x i1
1 ⊗ x i2

2 ⊗ · · · ⊗ x in
n for

all length-n binary indices I . We use this basis to introduce coordinates; if P =
[C I X I

] ∈ P(C2)⊗n , the coefficients C I are the homogeneous coordinates of the
point P . (We use the summation convention that the implied summation is over
the index I , which appears as a superscript and a subscript.)

Let S2Cn denote the space of symmetric n × n matrices. If A ∈ S2Cn , then
let 1I (A) denote the principal minor of A formed by taking the determinant of
the principal submatrix of A indexed by I in the sense that the submatrix of A is
formed by including the kth row and column of A whenever ik = 1 and striking
the kth row and column whenever ik = 0.
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The projective variety of principal minors of n× n symmetric matrices, Zn , is
defined by

ϕ : P(S2Cn
⊕C) 99K P(C2)⊗n, [A, t] 7→ [tn−|I |1I (A) X I

].

The map ϕ is defined on the open set where t 6= 0. Moreover, ϕ is homogeneous
of degree n, so it is a well-defined rational map on projective space. The 1× 1
principal minors of a matrix A are the diagonal entries of A = (ai, j ), and if A is a
symmetric matrix, the 1×1 and 2×2 principal minors determine the off-diagonal
entries of A up to sign in light of the equation

ai,i a j, j − a2
i, j =1[0,...,0,1,0,...,0,1,...,0](A),

where the 1’s in [0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0] occur in positions i and j . So ϕ
is generically finite-to-one and Zn is a

(n+1
2

)
-dimensional variety. The affine map

(on the set {t = 1}) defines a closed subset of C2n
[Holtz and Sturmfels 2007].

3C. Ideals of G-varieties in spaces of tensors. Let V be a finite-dimensional vec-
tor space over C. Let V ∗ denote the dual vector space of linear maps V → C.
Let Sd V ∗ denote the space of homogeneous degree-d polynomials on V , and let
Sym(V ∗)=

⊕
d Sd V ∗ denote the polynomial ring.

If X ⊂ PV is a projective algebraic variety, let I(X) ⊂ Sym(V ∗) denote the
ideal of polynomials vanishing on X , and let X̂ ⊂ V denote the cone over X . If M
is a set of polynomials, let V(M) denote its zero set. Often algebraic varieties are
given via an explicit parameterization by a rational map, but the vanishing ideal
may be unknown. A basic question in algebraic geometry is to find generators for
the ideal of a given variety. Though there are many known theoretical techniques,
this remains a difficult practical problem.

Fact. X is a G-variety if and only if I(X) is a G-module.

This observation, which comes directly from the definitions, is key because it
allows us to use the representation theory of G-modules to study I(X).

By definition, all projective varieties are preserved by the action of C \ {0} by
rescaling. It is well-known that this action induces a grading by degree on the
ideal I(X)=

⊕
d Id(X), where Id X := Sd(V ∗)∩I(X). In parallel, when a larger,

linearly reductive group G acts on X , we get a finer decomposition of each module
Id(X) into a direct sum of irreducible G-modules. The irreducible modules in
Id(X) are a subset of those in Sd V ∗. This simple observation leads to a useful ideal
membership test, which is developed and discussed in [Landsberg and Manivel
2004; Landsberg ≥ 2011].

The group GL(V1)×· · ·×GL(Vn) acts on V1⊗· · ·⊗Vn by change of coordinates
in each factor. When Vi are all isomorphic, there is also a natural action of the sym-
metric group Sn on V1⊗· · ·⊗Vn by permuting the factors. With this convention,
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one can define a left action of the semidirect product GL(V )n Sn on V⊗n .
If V is a vector space and G ⊂ GL(V ), we say that V is a G-module or a

representation of G if it is preserved by the action of G ⊂GL(V ). A G-module is
said to be irreducible if it has no nontrivial G-invariant subspaces.

The general linear group GL(V ) has well-understood representation theory. In
particular, [Fulton and Harris 1991, Proposition 15.47] says that every GL(V )-
module is isomorphic to a Schur module of the form SπV , where π is a partition
of an integer d. We refer the reader to the book just cited or to [Landsberg ≥ 2011]
for general background on Schur modules.

Two common representations (in this language) are the space of symmetric ten-
sors Sd V = S(d)V and the space of skew-symmetric tensors

∧d V = S(1d )V , where
1d denotes the partition (1, . . . , 1) with 1 repeated d times.

We will be interested in representations of SL(V ). In light of the isomorphism
SL(V )∼=GL(V )/Z(GL(V )), where the center Z(GL(V ))=C\ {0} is isomorphic
to scalar multiples of the identity, the representation theory of GL(V ) is essentially
the same at that of SL(V ). Specifically, if V is m-dimensional, two representations
SπV and SλV of GL(V ) are isomorphic as SL(V )modules if π =λ+km , for some
k ∈ Z, where km is the partition (k, . . . , k) with k repeated m times. However,
since we care about how the modules we are studying are embedded in the space
of polynomials, we will not reduce partitions via this equivalence.

We are interested in the case when X ⊂P(V1⊗· · ·⊗Vn) is a variety in a space
of tensors, and X is invariant under the action of G =GL(V1)×· · ·×GL(Vn). To
study Id(X) as a G-module, we need to understand how to decompose the space
of homogeneous degree-d polynomials Sd(V ∗1 ⊗ · · · ⊗ V ∗n ) into a direct sum of
irreducible G-modules. This is a standard computation in representation theory,
made explicit, for example, in this result:

Proposition 3.1 [Landsberg and Manivel 2004, Proposition 4.1]. Let V1, . . . , Vn

be vector spaces and let G = GL(V1)× · · · ×GL(Vn). Then Sd(V ∗1 ⊗ · · · ⊗ V ∗n )
can be decomposed into a direct sum of irreducible G-modules as

Sd(V ∗1 ⊗ · · ·⊗ V ∗n )=
⊕

|π1|=···=|πn |=d

([π1]⊗ · · ·⊗ [πn])
Sd ⊗ Sπ1 V ∗1 ⊗ · · ·⊗ Sπn V ∗n ,

where the [πi ] are representations of the symmetric group Sd indexed by partitions
πi of d , and ([π1] ⊗ · · · ⊗ [πn])

Sd denotes the space of Sd -invariants (that is,
instances of the trivial representation) in the tensor product.

When the vector spaces V ∗i are all isomorphic to the same vector space V ∗, this
decomposition specializes to give the equality of GL(V )× · · ·×GL(V )-modules

Sd(V ∗⊗ · · ·⊗ V ∗)=
⊕

|π1|=···=|πn |=d

(Sπ1 V ∗⊗ · · ·⊗ Sπn V ∗)⊕Nπ1,...,πk , (1)
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(found in [Landsberg and Manivel 2004]), where the multiplicity Nπ1,...,πk can be
computed via characters. The modules (Sπ1 V ∗⊗ · · · ⊗ Sπn V ∗)⊕Nπ1,...,πk are called
isotypic components.

The irreducible SL(V )×n nSn-modules are constructed by taking an irreducible
SL(2)×n module Sπ1 V ⊗· · ·⊗Sπn V and summing over all permutations in Sn that
yield nonredundant modules. When the vector space is understood, we denote this
compactly as

Sπ1 Sπ2 . . . Sπn :=

∑
σ∈Sn

Sπσ(1)V
∗
⊗ · · ·⊗ Sπσ(n)V

∗.

The decomposition formula (1) is essential for understanding the structure of the
ideals of G-varieties. There is an implementation of (1) in the computer program
LiE, and we wrote an implementation in Maple.

The combinatorial description of Schur modules in terms of collections of parti-
tions can be used to construct polynomials in spaces of tensors. We refer the reader
to [Landsberg and Manivel 2004; Landsberg ≥ 2011] for a complete explanation.
A copy of our implementation of these algorithms may be obtained by contacting
the author.

3D. Weights, raising operators, and highest weight vectors. The ideas of weights,
weight vectors, highest weight vectors, and raising/lowering operators are well-
known practical tools for studying representations and polynomials in spaces of
tensors. Here we recall definitions and concepts that can be found in standard
textbooks on representation theory in order to define the terms we use in this paper
and to explain our use of these representation-theoretic tools. Many of the concepts
in this section are practical reinterpretations of concepts in the previous section.

Choose a basis {x0
i , x1

i } for each Vi and assign the integer weight −1 to x0
i and

the weight+1 to x1
i . Weights of tensors in the algebra (V1⊗· · ·⊗Vn)

⊗ are length-n
integer vectors defined first on monomials and extended by linearity. Specifically,

(x0
1)
⊗p1 ⊗ (x1

1)
⊗q1 ⊗ (x0

2)
⊗p2 ⊗ (x1

2)
⊗q2 ⊗ · · ·⊗ (x0

n)
⊗pn ⊗ (x1

n)
⊗qn

has weight
(q1− p1, q2− p2, . . . , qn − pn).

A tensor is called a weight vector if all of its monomials have the same weight,
and this is the only time it makes sense to assign a weight to a tensor. This is
the standard assignment of weights for the connected component containing the
identity in SL(2)×n n Sn , and is also known as grading by multidegree.

The Lie algebra of SL(2) is sl(2), the algebra of traceless 2× 2 matrices acting
as derivations. The raising (respectively lowering) operators can be thought of
as upper (respectively lower) triangular matrices when, for example, the lowering
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operator in sl2 acts on V = {x0, x1} by sending x0 to a scalar multiple of x1 and
sending x1 to 0.

The Lie algebra of SL(2)×n is sl⊕n
2 , where each sl2 acts on a single factor of

the tensor product V1⊗ · · ·⊗ Vn . This action is extended to Sd(V1⊗ · · ·⊗ Vn) by
noting that the differential operators obey the Leibnitz rule. The raising (lowering)
operators fix the degree of a polynomial.

A weight vector in a G-module is called a highest weight vector (respectively
lowest weight vector) if it is in the kernel of all of the raising (respectively lowering)
operators. Consider the irreducible module Sπ1 V1 ⊗ · · · ⊗ Sπn Vn , with each πi

a partition of d . Since Vi ' C2 for every 1 ≤ i ≤ n, each πi is of the form
(π1

i , π
2
i ) with π1

i + π
2
i = d. A highest weight vector in Sπ1 V1⊗ · · · ⊗ Sπn Vn has

weight (π2
1 − π

1
1 , π

2
2 − π

1
2 , . . . , π

2
n − π

1
n ). If w is the weight of a nonzero vector

in Sπ1 V1⊗ · · · ⊗ Sπn Vn , then −w is also the weight of a nonzero vector, and if w
is the weight of a highest weight vector in a module then −w is the weight of a
lowest weight vector.

Fact. Assume G is a linearly reductive connected algebraic group. Each finite-
dimensional irreducible G-module is the span of the G-orbit of a highest (or low-
est) weight vector.

Remark 3.2. If T is a nonzero homogeneous polynomial on V1⊗· · ·⊗Vn , and T is
a highest (or lowest) weight vector, then the degree d and weight (w1, w2, . . . , wn)

of T are sufficient information to determine (up to isomorphism) a module of the
form Sπ1 V1⊗· · ·⊗Sπn Vn in which it occurs. We say that we know in which isotypic
component the module lives. Specifically, we have d =π1

i +π
2
i and wi =π

2
i −π

1
i ,

so πi =
1
2(d −wi , d +wi ).

In general, the degree and weight of a highest weight polynomial are not enough
to find how the module Sπ1 V ∗1 ⊗ · · · ⊗ Sπn V ∗n is embedded in Sd(V ∗1 ⊗ · · · ⊗ V ∗n )
(that is, how it is embedded in the isotypic component). On the other hand, if the
found module occurs with multiplicity one in Sd(V ∗1 ⊗ · · ·⊗ V ∗n ), then the degree
and weight of a highest weight vector are sufficient information to identify the
module.

Example 3.3. The hyperdeterminant of format 2×2×2 is invariant under the action
of SL(2)×SL(2)×SL(2), and therefore it must have weight (0, 0, 0). This, together
with the knowledge that it is a degree-4 polynomial annihilated by each raising
operator, immediately tells us that it must be in the module S(2,2)C2

⊗ S(2,2)C2
⊗

S(2,2)C2, which occurs with multiplicity one in S4(C2
⊗C2

⊗C2). Moreover, one
can write the 2×2×2 hyperdeterminant on the variables X [i1,i2,i3,0,...,0]. The weight
of this polynomial is (0, 0, 0,−4, . . . ,−4) and it is a highest weight vector, and
therefore the span of its (SL(2)×n n Sn)-orbit is the hyperdeterminantal module

HD := S(2,2)S(2,2)S(2,2)S(4) . . . S(4).
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3E. An algorithm to produce a G-module from a polynomial. Suppose we can
write down a polynomial h in some (unknown) G-module M . (Again we are
assuming that our modules are finite-dimensional and the group G is a linearly
reductive connected algebraic group, and we are specifically thinking of the ex-
ample G = SL(V )×n .) Since M is a G-module, it is also a g-module, where g

is the Lie algebra associated to the Lie group G. The following algorithm is a
standard idea in representation theory and can be used to find more polynomials
in M , and in fact we will find submodules of M . In particular, this procedure is
essential in the proof of Lemma 7.2 below.

By successively applying lowering operators, we determine the lowest weight
space in which a summand of h can live. The lowest weight vector that we construct
will generate a submodule of M .

Input: h ∈M .
Step 0. Choose an ordered basis of lowering operators g−={α1, . . . , αn}.
Step 1. Find the largest integer k1≥ 0 such that αk1

1 .h 6= 0, and let h(1)=αk1
1 .h.

Step 2. Find the largest integer k2≥0 such that αk2
2 .h

(1)
6=0, and let h(2)=αk2

2 .h
(1).

Step n. Find the largest integer kn ≥ 0 such that αkn
n .h(n−1)

6= 0, and let h(n)=

α
kn
n .h(n−1).

Output: The vector h(n) is a lowest weight vector in M and span{G.h(n)} is a sub-
module of M containing h(n).

In the case g= sl(2)⊕n , the natural ordered basis of (sl(2)⊕n)− is {α1, . . . , αn},
where αi is the lowering operator acting on the V ∗i factor in Sd(V ∗1 ⊗ · · ·⊗ V ∗n ).

Remark 3.4. In the case that M is irreducible, by the same procedure of applying
lowering operators to (this time) a highest weight vector h, we can construct a
weight basis M , namely a basis of M consisting of weight vectors in M of every
possible weight.

4. The nested structure of Zn via Segre products

Proposition 4.1. The variety Seg(Z(n−1)×PVn) is a subvariety of Zn . In particu-
lar, any point of Seg(Z(n−1)×PVn) is, after a possible change of coordinates, the
principal minors of an (n− 1)× (n− 1) block of an n× n matrix.

Proof. We prove the second claim first. Let [η⊗v] be a point in Seg(Z(n−1)×PVn).
Then change coordinates in Vn to send [η ⊗ v] to [η ⊗ x0

n ]. Now [η ⊗ x0
n ] is in

Seg(Z(n−1)×P{x0
n}), which is the image under φ of matrices of the form[(P 0

0 0

)
, t
]
,

where P is a symmetric (n−1)× (n−1) submatrix of an n×n symmetric matrix.
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The first claim then follows from the (SL(2)×n n Sn)-invariance of Zn and the
fact that the SL(Vn)-orbit of Seg(Z(n−1)×P{x0

n}) is Seg(Z(n−1)×PVn). �

In fact, Proposition 4.1 generalizes as follows.

Proposition 4.2. Let p+ q = n and Z p ⊂ P(V1⊗ · · ·⊗ Vp) and

Zq ⊂ P(Vp+1⊗ · · ·⊗ Vn).

Then Seg(Z p× Zq) is a subvariety of Zn .
Let U0 = {[z] ∈P(V1⊗· · ·⊗Vn) | z = z I X I

∈ V1⊗· · ·⊗Vn, z[0,...,0] 6= 0}. Then
ϕ([A, t]) ∈ Seg(Z p× Zq)∩U0 if and only if A is of the form(P 0

0 Q

)
,

where P ∈ S2Cp and Q ∈ S2Cq .

Proof. Let ϕi denote the principal minor map on i × i matrices and let J and
K be multi-indices of length p and q. Let [x ⊗ y] ∈ Seg(Z p × Zq) be such that
[x] = ϕ p([P, r ])= [r p−|J |1J (P)X J

] and [y] = ϕq([Q, s])= [sq−|K |1K (Q)X K
],

with P ∈ S2Cp and Q ∈ S2Cq .
Notice that if r = 0, then [x] = [0, . . . , 0, det(P)] ∈ Seg(PV1×· · ·×PVp), and

similarly if s = 0, then [y] = [0, . . . , 0, det(Q)] ∈ Seg(PVp+1×· · ·×PVp+q). So
the cases where r = 0 or s = 0 are covered by iterations of Proposition 4.1.

Now assume r 6= 0, s 6= 0 so we can set r = s = 1. Consider a blocked matrix
of the form

A =
(P 0

0 Q

)
, (2)

where P ∈ S2Cp and Q ∈ S2Cq . We claim that ϕ p+q([A, 1])= [x⊗ y]. The deter-
minant of a block diagonal matrix is the product of the determinants of the blocks,
and principal submatrices of block diagonal matrices are still block diagonal, so

ϕn([A, 1])= [1J (P)1K (Q) X J,K
],

where X J,K
= X J

⊗ X K . But we can reorder the terms in the product to find

[1J (P)1K (Q)X J,K
] = [(1J (P)X J )⊗ (1K (Q)X K )] = [x ⊗ y].

For the second part of the proposition, notice that for [x⊗y]∈Seg(Z p×Zq)∩U0,
we have exhibited a matrix A as in (2) such that ϕn([A, 1])=[x⊗y]. But symmetric
matrices are determined up to sign by their 1× 1 and 2× 2 principal minors. Any
other matrix must have the same blocked form as the one in (2). �
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Remark 4.3. Proposition 4.2 gives a useful tool in finding candidate modules for
I (Zn): we are forced to consider

I (Zn)⊂
⋂

p+q=n
p,q≥1

I (Seg(Z p× Zq)).

5. Properties of the hyperdeterminantal module

Because of Theorem 1.1, the defining ideal of Zn , I(Zn)⊂ Sym(V ∗1 ⊗ · · ·⊗ V ∗n ),
is a (SL(2)×n n Sn)-module. We consider the (SL(2)×n n Sn)-module HD =
S(2,2)S(2,2)S(2,2)S(4) . . . S(4) (called the hyperdeterminantal module in [Holtz and
Sturmfels 2007]). In this section we compute the dimension of the hyperdetermi-
nantal module and show that it occurs with multiplicity one in S4(V ∗1 ⊗· · ·⊗V ∗n ).
Also, in the course of our observations, we arrive at a practical ideal membership
test for a class of varieties that includes the variety of principal minors.

Observation 5.1. The module S(2,2)C2 is 1-dimensional and the module S(4)C2 is
5-dimensional and therefore the dimension of the hyperdeterminantal module is

dim(S(2,2)S(2,2)S(2,2)S(4) . . . S(4))=
(

n
3

)
5n−3.

Proposition 5.2. The module HD = S(2,2)S(2,2)S(2,2)S(4) . . . S(4) occurs with mul-
tiplicity 1 in S4(V ∗1 ⊗· · ·⊗V ∗n ). Moreover, HD is an irreducible (SL(2)×n nSn)-
module.

Remark 5.3. The fact that HD occurs with multiplicity 1 saves us a lot of work
because we do not have to worry about which isomorphic copy of the module
occurs in the ideal.

Proof of Proposition 5.2. For the “moreover” part, recognize that by definition,
HD = S(2,2)S(2,2)S(2,2)S(4) . . . S(4) is a direct sum over permutations yielding dis-
tinct SL(2)×n-modules. It is a standard fact that each summand is an irreducible
SL(2)×n-module, and this makes HD an irreducible (SL(2)×n n Sn)-module.

We need to examine the SL(2)×n-module decomposition of S4(V ∗1 ⊗· · ·⊗V ∗n ).
It suffices to prove for any fixed permutation σ that S(2,2)V ∗σ(1) ⊗ S(2,2)V ∗σ(2) ⊗
S(2,2)V ∗σ(3) ⊗ S(4)V ∗σ(4) ⊗ · · · ⊗ S(4)V ∗σ(n) is an SL(2)×n-module that occurs with
multiplicity 1 in the decomposition of S4(V ∗1 ⊗ · · ·⊗ V ∗n ).

We follow notation and calculations similar to [Landsberg and Manivel 2004].
For a representation [π ] of the symmetric group Sd , let χπ denote its character.
The number of occurrences of Sπ1 V ∗1 ⊗ · · ·⊗ Sπn V ∗n in the decomposition of

Sd(V ∗1 ⊗ · · ·⊗ V ∗n )



90 Luke Oeding

is computed by dim(([π1] ⊗ · · · ⊗ [πn])
Sd ), the dimension of the space of Sd

invariants. This may be computed by the formula

dim(([π1]⊗ · · ·⊗ [πn])
Sd )=

1
d!

∑
σ∈Sd

χπ1(σ ) . . . χπn (σ ).

In our case, we need to compute

dim
(
([(2, 2)]⊗ [(2, 2)]⊗ [(2, 2)]⊗ [(4)]⊗ · · ·⊗ [(4)])S4

)
=

1
4!

∑
σ∈S4

χ(2,2)(σ )χ(2,2)(σ )χ(2,2)(σ )χ(4)(σ ) . . . χ(4)(σ ).

But χ(4)(σ )= 1 for every σ ∈S4. So our computation reduces to

dim
(
([(2, 2)]⊗ [(2, 2)]⊗ [(2, 2)]⊗ [(4)]⊗ · · ·⊗ [(4)])Sn

)
=

1
4!

∑
σ∈S4

χ(2,2)(σ )χ(2,2)(σ )χ(2,2)(σ )= 1,

where the last equality is found by direct computation. The module S(2,2)V ∗1 ⊗
S(2,2)V ∗2 ⊗ S(2,2)V ∗3 occurs with multiplicity 1 in S4(V ∗1 ⊗V ∗2 ⊗V ∗3 ). (The full de-
composition of S4(V ∗1 ⊗V ∗2 ⊗V ∗3 ) was computed in [Landsberg and Manivel 2004,
Proposition 4.3].) Therefore the module S(2,2)V ∗σ(1) ⊗ S(2,2)V ∗σ(2) ⊗ S(2,2)V ∗σ(3) ⊗
S(4)V ∗σ(4)⊗ · · ·⊗ S(4)V ∗σ(n) occurs with multiplicity 1 in S4(V ∗1 ⊗ · · ·⊗ V ∗n ).

We have seen that each summand of HD is an irreducible SL(2)×n-module that
occurs with multiplicity 1 in S4(V ∗1 ⊗ · · · ⊗ V ∗n ). Therefore HD is an irreducible
(SL(2)×n nSn)-module, and it occurs with multiplicity 1 in S4(V ∗1 ⊗· · ·⊗V ∗n ). �

This argument generalizes:

Lemma 5.4. For every collection π1, . . . , πn of partitions of d,

dim(([π1]⊗ · · ·⊗ [πn])
Sd )= dim(([π1]⊗ · · ·⊗ [πn]⊗ [(d)])Sd ).

In particular, if M is any irreducible SL(V1)× · · · × SL(Vn)-module that occurs
with multiplicity m in Sd(V ∗1 ⊗ · · · ⊗ V ∗n ), then M ⊗ Sd V ∗n+1 is an irreducible(

SL(V1)× · · · × SL(Vn)× SL(Vn+1)
)
-module that occurs with multiplicity m in

Sd(V ∗1 ⊗ · · ·⊗ V ∗n ⊗ V ∗n+1).

Proof. Use

dim(([π1]⊗ · · ·⊗ [πn])
Sd )=

1
d!

∑
σ∈Sd

χπ1(σ ) . . . χπn (σ )

and note that χ(d)(σ )= 1 for every σ ∈Sd . �
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Proposition 5.5. The hyperdeterminantal module is contained in the ideal of the
variety of principal minors of symmetric matrices, that is,

HD = S(2,2)S(2,2)S(2,2)S(4) . . . S(4) ⊆ I(Zn),

and in particular, Zn ⊆ V(HD).

Proof. This statement is proved in [Holtz and Sturmfels 2007]. What follows is
a slightly different proof that uses representation theory. Both HD and I(Zn) are
(SL(2)×n nSn)-modules and HD is an irreducible (SL(2)×n nSn)-module, so we
only need to show that the highest weight vector of HD vanishes on all points of
Zn . The highest weight vector of HD is the hyperdeterminant of format 2× 2× 2
on the variables X [i1,i2,i3,0,...,0]. The set

Zn ∩ span{X [i1,i2,i3,0,...,0] | i1, i2, i3 ∈ {0, 1}}

is the set of principal minors of the upper-left 3× 3 block of n× n matrices. The
highest weight vector of HD vanishes on these principal minors because of the
case n = 3, so there is nothing more to show. �

Proposition 5.6. Let V and W be complex vector spaces with dim(V ) ≥ 2. Sup-
pose Y ⊂ PW and X ⊂ P(V ⊗ W ) are varieties such that Seg(Y × PW ) ⊂ X.
Suppose M ⊂ Sd V ∗ is a space of polynomials. Then M ⊗ Sd W ∗ ⊂ Id(X) only if
M ⊂ Id(Y ).

Proof. By Lemma 5.4, it makes sense to think of M⊗ Sd W ∗ ⊂ Sd(V ∗⊗W ∗) as a
space of polynomials.

There exists a basis of Sd W ∗ of vectors of the form αd . So M ⊗ Sd W ∗ has a
basis of vectors of the form f ⊗ αd with f ∈ M and α ∈ W ∗. It suffices to prove
the proposition on this basis.

Suppose f ⊗αd is a basis vector in M⊗Sd(W ∗)⊂Id(X). Then Seg(Y×PW )⊂

X implies that f ⊗ αd
∈ Id(Seg(Y × PW )) ⊂ Sd(V ∗ ⊗ W ∗). This means that

f ⊗αd(y⊗w)= 0 for all y ∈ Y and for all w ∈W . It is a fact that αd(w)= α(w)d

(this can be deduced from Lemma 6.3 below, for instance), so we can evaluate

f ⊗αd(y⊗w)= f (y)αd(w)= f (y)α(w)d .

Since dim(V ) ≥ 2, V(α) is a hyperplane. It is no problem to choose a point that
misses a hyperplane, so we can choose a particular w ∈W so that α(w) 6= 0.

So we have f (y)α(w)d = 0 for all y ∈Y and α(w) 6= 0, so f (y)= 0 for all y ∈Y
and hence f ∈ Id(Y ). We can repeat the argument for any f ∈ M we choose, so
we are done. �

Proposition 5.6 fails to be an if and only if statement. Explicitly, we cannot say
that every module in the space Id(X) occurs as M⊗Sd V ∗ for a subset M ⊂ Id(Y ).
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In Section 6 we study the zero sets of modules of the form Id(Y )⊗ Sd V ∗, and this
sheds light on the failure of the converse of Proposition 5.6.

Remark 5.7. Proposition 4.1 says that Seg(Zn×PVn+1)⊂ Zn+1. We can use this
proposition to study the variety of principal minors in two ways. First, if M is a
module in Id(Zn), then M ⊗ Sd Vn+1 is a module in Id(Zn+1). The second use is
the contrapositive version. It gives an easy test for ideal membership for modules
that have at least one S(d)V ∗i factor. Suppose we know Id(Zn) for some n. If we
want to test whether M = Sπ1 V ∗1 ⊗ · · · ⊗ Sπn+1 V ∗n+1 is in Id(Zn+1) and we know
that M has at least one πi = (d), then we can remove Sπi V

∗

i and check whether
the module we have left is in Id(Zn).

6. A geometric characterization of the zero set
of the hyperdeterminantal module via augmentation

The hyperdeterminantal module has a useful inductive description that we would
like to be able to exploit. In particular, for n ≥ 3, the module is always of the form

S(2,2)S(2,2)S(2,2)S(4) . . . S(4),

where the number of S(4) factors is n − 3. Then for n ≥ 3, to construct the
(SL(2)×n nSn)-module HD in the case n = k+1 from HD in the case n = k, we
simply append another S4.

More generally, if M is an SL(V )-module, we will call a (SL(V )× SL(W ))-
module of the form M ⊗ Sd W ∗ an augmentation or augmented module. So for
n ≥ 4, HD can be considered as the sum of augmented modules.

In this section, we study augmented modules and their zero sets in order to arrive
at a geometric description of the zero set of an augmented module (Lemma 6.4).
By applying this geometric description to the hyperdeterminantal module, we get
a geometric description of its zero set (Lemma 6.6). This description is essential
in our proof of Theorem 1.3.

6A. Polarization and its application to augmented modules. Augmentation is
similar to prolongation, a concept found in the study of the ideals of secant varieties.
A difference between the two is that augmentation does not change the degree of
the polynomials, whereas prolongation increases the degree.

It is not a surprise that we can get inspiration from the techniques used to study
secant varieties when studying augmented modules. In particular, polarization is
a tool from classical invariant theory [Weyl 1997, pp. 5–6], and is useful in the
study of ideals of secant varieties (see [Landsberg and Manivel 2003; Sidman and
Sullivant 2009] for recent examples). In what follows, we use polarization to better
understand the polynomials in an augmented module.
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Polarization allows for the passage from a homogeneous polynomial to a sym-
metric multilinear form. Let x1, . . . , xn be a basis of V , and let vi = vi,1x1 +

· · · + vi,nxn for 1 ≤ i ≤ d . Given a homogeneous degree-d polynomial f in the
polynomial ring C[x1, . . . , xn], the polarization of f is a symmetric multilinear
form Ef ∈ Sd V ∗, where we define Ef (v1, . . . , vd) to be the coefficient of t1t2 . . . td
in the expansion of

f (t1v1+ · · ·+ tdvd)

considered as a polynomial in t1, . . . , td . For example if f (x1, x2)= (x1)
2x2, one

calculates that Ef (v1, v2, v3)= 2(v1,1v2,1v3,2+ v1,1v3,1v2,2+ v2,1v3,1v1,2).
The following useful characterization is straightforward from the definition, and

while it is a consequence of classical facts [Weyl 1997], we found it stated in
[Sidman and Sullivant 2009, Lemma 2.5(1)].

Lemma 6.1. If F is a homogeneous degree-d polynomial in x1, . . . , xn , let EF be
its polarization. Let v = t1x1+ · · ·+ tk xk . Then

F(v)= EF(v, . . . , v)=
∑
β

1
β!

tβ EF(xβ), (3)

where β = (β1, . . . , βk) is a (nonnegative) partition of d, β! = β1! . . . βk !, tβ =
tβ1
1 . . . tβk

k , and EF(xβ)= EF(xβ1
1 , . . . , xβk

k ), and xβi
i is to be interpreted as xi repeated

i times.

Here is an example of the utility of this lemma that we will need later.

Lemma 6.2. A linear space L = span{x1, . . . , xk} is a subset of V( f ) if and only
if Ef (xβ)= 0 for every partition β of d.

Proof. A linear space L = span{x1, . . . , xk} is in the zero set of f if and only if
f (t1x1+ · · ·+ tk xk)= 0 for all choices of ti ∈ C. Formula (3) says that

f (t1x1+ · · ·+ tk xk)=
∑
β

1
β!

tβ Ef (xβ), (4)

and thus implies that if Ef (xβ) = 0 for all β, then f (t1x1+ · · · + tk xk) = 0 for all
ti ∈ C.

For the other direction, suppose f (t1x1+· · ·+ tk xk)= 0 for all ti ∈C. Consider
a fixed partition β ′ and take the derivative ∂/∂ tβ ′ of (4) to get

0= Ef (xβ
′

)+
∑
β>β ′

1
(β−β ′)!

tβ−β
′
Ef (xβ).

Then take limits as ti → 0 to find that 0 = Ef (xβ ′). We do this for each β ′ to
conclude. �
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In general, the polarization of the tensor product of two polynomials is not likely
to be the product of the polarized polynomials; however, there is something we can
say in the following special case:

Lemma 6.3. Let F ∈ Sd(W ∗) and let EF denote its polarization. Then for γ ∈ V ∗

we have
−−−−−→
F ⊗ (γ )d = EF ⊗

−→
(γ )d = EF ⊗ (γ )d .

Proof. A standard fact about the polarization is that EF is a symmetric multilinear
form. It is obvious that −→

(γ )d = (γ )d ,

because (γ )d is already symmetric and multilinear.
So it remains to prove the first equality in the lemma, which we do by induction

on the number of terms in F . Suppose F is a monomial, F =wα
=w

α1
1 ◦· · ·◦w

αn
n .

Then use the isomorphism W⊗d
⊗ V⊗d

' (W ⊗ V )⊗d , and write wα
⊗ γ d

=

(w
α1
1 ⊗ γ

α1) ◦ · · · ◦ (w
αn
n ⊗ γ

αn )= (w1⊗ γ )
α1 ◦ · · · ◦ (wn ⊗ γ )

αn = (w⊗ γ )α.
If F is not a monomial, suppose F = F1+ F2 with Fi nonzero polynomials for

i = 1, 2, each having strictly fewer monomials than F . It is clear that
−−−−→
F1+ F2 = EF1+ EF2.

Also, the operation ⊗γ d is distributive. So
−−−−−→
F ⊗ (γ )d =

−−−−→
F1⊗ γ

d
+
−−−−→
F2⊗ γ

d . By
the induction hypothesis, we know that

−−−−→
Fi ⊗ γ

d
= EFi ⊗ γ

d

for i =1, 2. We conclude that
−−−−→
F1⊗ γ

d
+
−−−−→
F2⊗ γ

d
= ( EF1+ EF2)⊗ γ

d
= EF ⊗ γ d . �

The following lemma was inspired by methods found in [Landsberg and Manivel
2003]. It is a geometric description of the zero set of an augmented module.

Lemma 6.4 (augmentation lemma). Let W and V be complex vector spaces with
dim(V )≥ 2. Let X ⊂PW be a variety and let Id(X)=I(X)∩Sd W ∗ be the vector
space of degree-d polynomials in the ideal I(X). Then

V(Id(X)⊗ Sd V ∗)= Seg(V(Id(X))×PV )∪
⋃

L⊂V(Id (X))

P(L ⊗ V ), (5)

where L ⊂ V(Id(X)) are linear subspaces.

Since the linear spaces L can be one-dimensional, we do have

Seg(V(Id(X))×PV )⊂
⋃

L⊂V(Id (X))

P(L ⊗ V ),

and we use Lemma 6.4 with the two terms on the right side of (5) combined, but
we keep the two parts separate for emphasis here.
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Remark 6.5. Note that if I(X) is generated in degree no larger than d, then one
can replace V(Id(X)) with X in the statement of Lemma 6.4. We use the re-
sult of Lemma 6.4 with the induction hypothesis that V(HD) = Zn and obtain a
description of the zero set V(HD⊗ S4Vn+1) in terms of the geometry of Zn .

Proof of Lemma 6.4. First we prove “⊇”. Suppose dim(V ) = n ≥ 2. Recall
that we can choose a basis of Sd V ∗ consisting of dth powers of linear forms,
{(γ1)

d , . . . , (γr )
d
}, where r =

(n+d−1
d

)
and the γi are in general linear position. It

suffices to work on a basis of the vector space Id(X)⊗ Sd V ∗. We choose a basis
consisting of polynomials of the form f ⊗ γ d , with f ∈ Id(X) and γ ∈ V ∗.

Suppose [x ⊗ a] ∈ Seg(V(Id(X)) × PV ) and evaluate ( f ⊗ γ d)(x ⊗ a) =
f (x)γ d(a). But x ∈V(Id(X)), so f (x)= 0 for every f ∈Id(X), and in particular,
[x ⊗ a] ∈ V(Id(X)⊗ Sd V ∗). So we have established that V(Id(X)⊗ Sd V ∗) ⊃
Seg(V(Id(X))×PV ).

Now suppose [v] ∈P(L⊗V ) for some linear subspace L = span{x1, . . . , xl} ⊂

V(Id(X)). By expanding an expression of [v] in bases and collecting the co-
efficients of the xi , we can write [v] = [x1⊗ a1+ · · · + xl ⊗ al] for ai ∈ V not all
zero. Consider f ⊗ γ d

∈ Id(X)⊗ Sd V . By Lemma 6.3,
−−−→
f ⊗ γ d

= Ef ⊗ γ d ,

and using the polarization formula (3), we write

( f ⊗ γ d)(v)= ( Ef ⊗ γ d)(v, . . . , v)=
∑
β

1
β!
Ef (xβ)γ d(aβ).

The choice of L ⊂V(Id(X)) means that L ⊂V( f ), so by Lemma 6.2, Ef (xβ)= 0
for all β. Every term of ( f ⊗ γ d)(v) vanishes, so ( f ⊗ γ d)(v) = 0, and hence
[v]∈V(Id(X)⊗Sd V ∗). So we have established that V(Id(X)⊗Sd V ∗)⊃P(L⊗V )
for all linear subspaces L ⊂ V(Id(X)).

Now we prove “⊆”. Consider any [v] ∈P(W⊗V ). Choose a basis {a1, . . . , ak}

of V (by assumption k ≥ 2). Then expand the expression of v in bases and collect
the coefficients of each ai to find [v]= [x1⊗a1+· · ·+xk⊗ak] with x1, . . . , xk ∈W
and not all xi zero.

We need to show that [v] ∈ P(L ⊗ V ) for a linear space L ⊂ V(Id(X)). The
natural linear space to consider is L = span{x1, . . . , xk}. Since we already have an
expression [v]=[x1⊗a1+· · ·+xk⊗ak], if we can show that L= span{x1, . . . , xk}⊂

V(Id(X)), we will be done.
For any f ⊗ γ d

∈ Id(X)⊗ Sd V ∗ we can write

0= ( f ⊗ γ d)(v)=
∑
β

1
β!
Ef (xβ)γ d(aβ). (6)

Let {ǎ1, . . . , ǎk} be a basis of V ∗ dual to {a1, . . . , ak}. Then let γ vary continuously
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in V ∗ by writing it as
γ = t1ǎ1+ · · ·+ tk ǎk,

where the parameters ti ∈ C vary. The polynomial γ d is simple enough that we
can expand it as follows:

γ d(aβ)= γ d(aβ1
1 , . . . , aβk

k )= γ (a1)
β1 . . . γ (ak)

βk .

But our choices have made it so that γ (ai )= ti , and therefore γ d(aβ)= tβ . So (6)
becomes

0= ( f ⊗ γ d)(v)=
∑
β

1
β!
Ef (xβ)tβ = f (t1x1+ · · ·+ tk xk),

where we have used Lemma 6.3. So f (t1x1+· · ·+ tk xk)= 0 for all ti ∈C, and this
is an equivalent condition that L = span{x1, . . . , xk} is a subspace of V( f ). Since
this was done for arbitrary f ∈ Id(X), we conclude that L ⊂ V(Id(X)). �

Now we can apply this geometric characterization of augmentation to the hyper-
determinantal module. To do this we need to set up more notation.

Assume n≥ 4. Let HDi be the image of the hyperdeterminantal module at stage
n− 1 under the reindexing isomorphism

S4(V ∗1 ⊗ · · ·⊗ V ∗n−1)−→ S4(V ∗1 ⊗ · · ·⊗ V ∗i−1⊗ V ∗i+1⊗ · · ·⊗ V ∗n ),

where we still have n − 1 vector spaces Vi ' C2, but we have shifted the index
on the last n − i terms. Then the hyperdeterminantal module at stage n can be
expressed as a sum of augmented modules as follows:

HD =
n∑

i=1

(HDi ⊗ S4V ∗i ).

Finally note that if dim(V )= k, then σs(PW ×PV )= P(W ⊗V ) for all s ≥ k.
In the case Vi ' C2, we have P(L ⊗ Vi )= σ2(PL ×PVi ). Certainly

Seg(V(Mi )×PVi )⊂
⋃

L⊂V (Mi )

P(L ⊗ Vi ),

for any modules of polynomials Mi . If L ⊂ V(Id(X)), then σs(PL × PV ) ⊆
σs(V(Id(X))×PV ). If A, B,C are vector spaces of polynomials and C = A+ B,
then V(C) = V(A) ∩V(B). Collecting these ideas, we apply the Augmentation
Lemma 6.4 to the hyperdeterminantal module to yield the following:

Lemma 6.6 (characterization lemma). Consider
n∑

i=1

HDi ⊗ Sd V ∗i ⊂ Sd(V ∗1 ⊗ · · ·⊗ V ∗n ).
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Then

V
( n∑

i=1

HDi ⊗ Sd V ∗i
)
=

n⋂
i=1

( ⋃
L⊂V (HDi )

P(L ⊗ Vi )
)
⊆

n⋂
i=1

(σ2(V(HDi )×PVi )).

Remark 6.7. A consequence of the characterization lemma is the following test for
nonmembership in the zero set of HD. Suppose [z] = [ζ 1

⊗ x1
i +ζ

2
⊗ x2

i ] ∈P2n
−1.

If either [ζ 1
] or [ζ 2

] is not a vector of principal minors of an (n − 1)× (n − 1)
symmetric matrix, then [z] is not a zero of the hyperdeterminantal module HD and
hence not a vector of principal minors of a symmetric matrix, since V(HD)⊃ Zn .
This observation can be iterated, and each iteration cuts the size of the vector in
question in half until one need only check honest hyperdeterminants of format
2× 2× 2. This test, while relatively cheap and accessible, is necessary but not
sufficient, as is pointed out in [Holtz and Sturmfels 2007].

It is well-known that the ideal of the Segre product of an arbitrary number of
projective spaces is generated in degree 2 by the 2× 2 minors of flattenings. In
essence, this is saying that all of the polynomials in the ideal come from the Segre
products of just two projective spaces. The following is a weaker, strictly set-
theoretic result in the same spirit. It is another application of the Augmentation
Lemma 6.4, and its proof is mimicked in the proof of Lemma 7.11 below.

Proposition 6.8. For 1 ≤ i ≤ n, let Vi be complex vector spaces each with dimen-
sion≥ 2 and assume n≥ 2. If for each i , Bi ⊂ Sd(V ∗1 ⊗ . . . V

∗

i−1⊗V ∗i+1⊗· · ·⊗V ∗n )
is a set of polynomials with the property

V(M i )= Seg(PV1× · · ·×PVi−1×PVi+1× · · ·×PVn),

then

V
(⊕

i

(Mi ⊗ Sd V ∗i )
)
= Seg(PV1× · · ·×PVn).

Proof. Work by induction and use Lemma 6.4. It is clear that

V
(⊕

i

(Mi ⊗ Sd V ∗i )
)
⊃ Seg(PV1× · · ·×PVn).

All the linear spaces on Seg(PV1×· · ·×PVn) are (up to permutation) of the form
V1⊗â2⊗· · ·⊗ân , where ai ∈Vi are nonzero and âi denotes the line through ai . Then
compute the intersection,

⋃
L i

⋂n
i=1 P(L i

⊗Vi ), and notice that in the intersection
of just 3 factors, all of the resulting linear spaces must live in Seg(PV1×· · ·×PVn).

�
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7. Understanding the case when two zeros of the hyperdeterminantal module
disagree in precisely one coordinate

In the proof of Theorem 1.3 below, we work to construct a matrix whose principal
minors are a given point in the zero set of the hyperdeterminantal module. The
main difficulty is the following. Suppose we have a point [z] ∈ V(HD) and a
candidate matrix A that satisfies1I (A)= z I for all I 6= [1, . . . , 1]. In other words,
all of the principal minors of A except possibly for the determinant agree with the
entries of z. What can we say about z?

To answer this question, we must study the points in V̂(HD) that have all of their
coordinates except one equal. Geometrically, we need to understand the points for
which a line in the coordinate direction X [1,...,1] above the point z intersects V̂(HD)
in at least two points. We answer this question in Lemma 7.2 below. Using that
lemma, we find the following.

Proposition 7.1. Let n ≥ 4. Let z = z I X I and w = wI X I be points in V̂(HD). If
z I = wI for all I 6= [1, . . . , 1] and z[0,...,0] 6= 0, then z = w.

For the rest of this section we use the following notation. If K = {k1, . . . , ks} ⊂

{1, . . . , n} and 1 ≤ k j ≤ n for all j , then let VK ' Vk1 ⊗ · · · ⊗ Vks for s ≤ n.
We assume Vk ' C2 for all k, so that VK ' (C

2)⊗s . Let P2({n1, . . . , nn}) denote
the collection of all partitions of {n1, . . . , nn} into mutually disjoint subsets of
cardinality 2 or less, that is, P2({1, . . . , n}) consists of the sets {K1, . . . , Km} such
that K p ⊂ {1, . . . , n} and |K p| ≤ 2 for every 1 ≤ p ≤ m, K p ∩ Kq = ∅ whenever
p 6= q , and ∪m

p=1K p = {1, . . . , n}.

Lemma 7.2. Let n ≥ 4. Let z = z I X I and w = wI X I be points in V̂(HD) . If
z I = wI for all I 6= [1, . . . , 1] but z[1,...,1] 6= w[1,...,1], then

[z], [w] ∈
⋃

{K1,...,Km}∈P2({1,...,n})

Seg(PVK1 × · · ·×PVKm )⊂ Zn.

Note that the notationally dense Segre product is just a product of P3’s and P1’s.

Proof of Proposition 7.1. Assume Lemma 7.2. Let z = z I X I and w = wI X I be
points in V̂(HD)∩{z | z[0,...,0] 6=0}. Suppose that z I =wI for all I 6= [1, . . . , 1], and
suppose for contradiction that z[1,...,1] 6= w[1,...,1]. Lemma 7.2 implies that [z], [w]
are in a Segre product of P1’s and P3’s.

Z1 ' P1 and Z2 ' P3, and Proposition 4.2 implies that a point [A, t] with
t 6= 0 mapping to Seg(PVK1 × · · · ×PVKm ) with {K1, . . . , Km} ∈ P2({1, . . . , n})
is permutation equivalent to a block diagonal matrix consisting of 1× 1 and 2× 2
blocks. Such a block diagonal matrix is a special case of a symmetric tridiagonal
matrix, and therefore none of its principal minors depends on the sign of the off-
diagonal terms. So fixing the 0× 0, 1× 1 and 2× 2 principal minors fixes the rest
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of the principal minors in such a matrix. If we take z[0,...,0] = w[0,...,0] = 1 and
assume the 1× 1 and 2× 2 principal minors agree, then the rest of the principal
minors must agree, including the determinants; thus the contradiction.

The assumption z[0,...,0] 6= 0 is necessary. If z[0,...,0] = 0, then consider the
image of any two matrices A, B with different nonzero determinants under the
principal minor map with t =0. Then ϕ([A, 0])=[0, . . . , 0, det(A)] 6=ϕ([B, 0])=
[0, . . . , 0, det(B)]. �

Remark 7.3. A key point is that we are not making the claim in Proposition 7.1
for n = 3. In this case any two zeros of the hyperdeterminant are principal minors
of 3×3 matrices that differ up to sign of the off-diagonal terms. Altering the sign
of the off-diagonal terms of a 3× 3 symmetric matrix can change the determinant
without changing the other principal minors and without forcing the matrix to be
blocked as a 2× 2 block and a 1× 1 block.

Remark 7.4. To see that the analog of Proposition 7.1 holds for Zn with n ≥ 4
and t 6= 0 requires much less work than the case of V(HD). We used Maple to
construct a generic symmetric 4 × 4 matrix and computed its principal minors.
Then we changed the signs of the off-diagonal terms in every possible combina-
tion and compared the number of principal minors that agreed with the principal
minors of the original matrix. The result was that the two vectors of principal
minors could agree in precisely 11, 13 or 16 entries, but not 15. (Though tedious,
the 4 × 4 case can also be proved without a computer by analyzing the parity
of the various products of the off-diagonal terms in the matrix.) We repeated the
experiment in the 5×5 case and found that the two vectors could agree in precisely
16, 19, 20, 21, 23, 25 or 32 positions, but never 31 positions.

The general case follows from the 4× 4 case by the following. Suppose n ≥ 4
and 2n

− 1 of the principal minors of an n × n symmetric matrix agree with the
principal minors of another n×n symmetric matrix. Then we may assume that the
0×0, 1×1 and 2×2 principal minors of both matrices agree and hence the matrices
must agree up to the signs of the off-diagonal terms. Then use the group to move
the one position where the principal minors don’t agree to be a 4× 4 determinant
and use the 4× 4 result for the contradiction.

To prove Lemma 7.2, we will show that if wI = z I for all I 6= [1, . . . , 1] and
z[1,...,1] 6= w[1,...,1], then z is a zero of an auxiliary set of polynomials denoted B.
We then show that the zero set V(B) is contained in the union of Segre varieties.
Finally, Proposition 4.2 provides the inclusion into Zn .

7A. Reduction to one variable. Let n ≥ 4. Suppose z = z I X I and w = wI X I

are points in V̂(HD) such that z I = wI for all I 6= [1, . . . , 1]. Both points are
zeros of every polynomial in HD, but the only coordinate in which they can differ
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is [1, . . . , 1]. Now consider the coordinates z I (= wI ) as fixed constants for all
I 6= [1, . . . , 1], and for f ∈ HD define fz by the substitution

f (X [0,...,0], . . . , X [1,...,1]) 7→ f (z[0,...,0], . . . , z[0,1,...,1], X [1,...,1])=: fz(X [1,...,1]).

Let HD[1,...,1](z)={ fz | f ∈HD} denote the resulting set of univariate polynomials.
Then z[1,...,1] andw[1,...,1] are two (possibly different) roots of each univariate poly-
nomial fz ∈ HD[1,...,1](z).

Lemma 7.5. If f ∈ HD, then the corresponding polynomial fz ∈ HD[1,...,1](z) is
either degree 0, 1, or 2 in X [1,...,1].

Proof. It suffices to prove the statement for f ∈ S(2,2)V ∗1 ⊗ S(2,2)V ∗2 ⊗ S(2,2)V ∗3 ⊗
S(4)V ∗4 ⊗ · · · ⊗ S(4)V ∗n . Suppose for contradiction that f has a monomial of the
form (X [1,...,1])3 X [i1,...,in]. Its possible weights are (2+ 2i1, . . . , 2+ 2in) with i j ∈

{0, 1}. However, the weight of every polynomial in S(2,2)V ∗1 ⊗S(2,2)V ∗2 ⊗S(2,2)V ∗3 ⊗
S(4)V ∗4 ⊗ · · · ⊗ S(4)V ∗n is of the form (0, 0, 0, w4, . . . , wn), where wi are even
integers with |wi | ≤ 4 for 4 ≤ i ≤ n, a contradiction since obviously 0 6= 2+ 2i1

for any i1 ∈ {0, 1}. Therefore the degree of f is less than 3 in X [1,...,1]. �

Now we know that w[1,...,1] and z[1,...,1] are both common zeros of univariate
polynomials, all with degree 2 or less. The fact that w[1,...,1] and z[1,...,1] are both
common zeros of more than one univariate polynomial comes from the fact that
we have required n ≥ 4; otherwise there is only one polynomial and what we are
about to do would be trivial.

A quadratic (not identically zero) in one variable has at most two solutions, and
a linear polynomial (not identically zero) has at most one solution. The only way
then for us to have w 6= z and [w], [z] ∈V(HD) is if all of the linear polynomials
were identically zero and if all of the quadratics were scalar multiples of each other.

Therefore, we need to study the points [z] ∈V(HD) for which HD[1,...,1](z) has
dimension 1 or less. Define polynomials a f , b f , and c f (which necessarily do not
depend on X [1,...,1]) for each fz ∈ HD[1,...,1](z) by

fz = a f (z)(X [1,...,1])2+ b f (z)(X [1,...,1])+ c f (z).

The requirement that HD[1,...,1](z) have dimension 1 or less implies the weaker
(but still sufficient) condition that z be a root of the polynomials

B ′ := span{a f bg − agb f | f, g ∈ HD}.

The polynomials in B ′ have the property that if h(z) 6= 0 for a nonzero h ∈ B ′,
that is, [z] 6∈ V(B ′), then there is a nontrivial pair of polynomials in HD[1,...,1](z)
that are not scalar multiples of each other, and thus the zero set of HD[1,...,1](z) is a
single point. In this case we must have w[1,...,1]= z[1,...,1]. If, however, h(z)= 0 for
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all h ∈ B ′, that is, z ∈V(B ′), then it is possible that the polynomials in HD[1,...,1](z)
have 2 common roots.

B ′ is not (SL(2)×n nSn)-invariant. Let B := span{(SL(2)×n nSn).B ′} denote
the corresponding (SL(2)×n nSn)-module. If g.[z] /∈V(B ′), then by our remarks
above, g.[z] ∈ Zn , and in particular, [z] ∈ Zn (because Zn is a G-variety). The
following lemma allows us to compare G-orbits of points and the zero sets of
arbitrary sets of polynomials (not necessarily G-modules).

Lemma 7.6. Let z ∈ PV , let G ⊂ GL(V ) be a group, and let M ⊂ Sym(V ∗) be a
collection of polynomials (M is not necessarily a G-module). Then

G.z ⊂ V(M) if and only if z ∈ V(span{G.M}).

Proof. G.z ⊂ V(M) if and only if f (g.z) = 0 for all g ∈ G and for all f ∈ M .
But from the definition of the G-action on the dual space, f (g.z) = (g−1. f )(z),
so f (g.z) = 0 for all g ∈ G and for every f ∈ M . This happens if and only
if (g. f )(z) = 0 for all g ∈ G and for all f ∈ M , but this is the condition that
z ∈ V(span{G.M}). �

We apply Lemma 7.6 to our setting; if (SL(2)×n n Sn).[z] ⊂V(B ′), then [z] ∈
V(B) (recall B := span{(SL(2)×n n Sn).B ′}). So, we need to look at the variety
V(B). We conclude that our construction satisfies the property that if [z] ∈V(HD)
but [z] 6∈ V(B), then [z] ∈ Zn .

We need to understand the types of points that can be in V(B), and the following
proposition gives sufficient information about V(B).

Proposition 7.7. Let n ≥ 4 and let B be the module of polynomials constructed
above. Let P2({1, . . . , n}) be the collection of all partitions of {1, . . . , n} into
mutually disjoint subsets of cardinality 2 or less. Then

V(B)⊂
⋃

{K1,...,Km}∈P2({1,...,n})

Seg(PVK1 × · · ·×PVKm )⊂ Zn.

Proof. Proposition 7.7 is proved in several parts. In Lemma 7.8 we find the module
S(4,1)S(4,1)S(4,1)S(5) . . . S(5) as a submodule of B using the algorithm in Section 3E.
In Lemma 7.12 we identify the zero set of this new module. In particular, we show

V(S(4,1)S(4,1)S(4,1)S(5) . . . S(5))=
⋃

{K1,...,Km}∈P2({1,...,n})

Seg(PVK1 × · · ·×PVKm ).

We prove this statement by induction on n, where we prove the base case n = 3 in
Lemma 7.9 and the induction step in Lemma 7.11. Finally, each PVKi is either a
copy of P1∼= Z1 or P3∼= Z2, so we can apply Proposition 4.2 to verify the inclusion

Seg(PVK1 × · · ·×PVKm )⊂ Zn. �
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Lemma 7.8. Suppose n ≥ 4 and let B be constructed as above. Then

S(4,1)S(4,1)S(4,1)S(5) . . . S(5) ⊂ B.

Proof. Here we have a subset of polynomials in B in an explicit form, and we
would like to identify (SL(2)×n n Sn)-modules in B from this information. To
do this we use the ideas presented in Section 3D and particularly the algorithm
presented in Section 3E. It suffices to work first with SL(2)×n-modules and later
consider the permutations.

Suppose fk1,k2,k3 ∈ S(2,2)V ∗k1
⊗ S(2,2)V ∗k2

⊗ S(2,2)V ∗k3
⊗ S(4)V ∗k4

⊗· · ·⊗ S(4)V ∗kn
is a

lowest weight vector. Define ak1,k2,k3 , bk1,k2,k3 , ck1,k2,k3 by the equation fk1,k2,k3 =

ak1,k2,k3(X
[1,...,1])2+ bk1,k2,k3(X

[1,...,1])+ ck1,k2,k3 .
For this proof, we introduce new notation. If k1, k2, k3 are fixed, let X Ip,q,r

denote the coordinate vector with k1 = p, k2 = q, k3 = r and ks = 0 for s ≥ 4.
Since fk1,k2,k3 is a hyperdeterminant of format 2× 2× 2, we find

ak1,k2,k3 = (X
I0,0,0)2.

bk1,k2,k3 =−2X I0,0,0(X I1,0,0 X I0,1,1 + X I0,1,0 X I1,0,1 + X I0,1,0 X I1,1,0)

+ 4X I1,0,0 X I0,1,0 X I0,0,1 .

The weight of ak1,k2,k3 is (up to permutation) (−2,−2,−2, 2, . . . , 2), where the
−2’s actually occur at {k1, k2, k3}. The weight of bk1,k2,k3 is (up to permutation)
(−1,−1,−1, 3, . . . , 3), where the −1’s actually occur at {k1, k2, k3}. Now con-
sider

hk1,k2,k3, j1, j2, j3 = ak1,k2,k3b j1, j2, j3 − a j1, j2, j3bk1,k2,k3 ∈ B.

We notice that hk1,k2,k3, j1, j2, j3 cannot have k1, k2, k3 and j1, j2, j3 all equal (this
is the zero polynomial). So either two, one or zero pairs of i’s and j’s match
in the indices k1, k2, k3 and j1, j2, j3. Therefore hk1,k2,k3, j1, j2, j3 can have 3 dif-
ferent weights (up to permutation), depending on how k1, k2, k3 and j1, j2, j3
match up. The three possible weights of hk1,k2,k3, j1, j2, j3 are (up to permutation):
(−3,−3, 1, 1, 5, . . . , 5), (−3, 1, 1, 1, 1, 5, . . . , 5), or (1, 1, 1, 1, 1, 1, 5, . . . , 5).

In each case, apply the algorithm in Section 3E and lower hk1,k2,k3, j1, j2, j3 to a
nonzero vector with the lowest possible weight. We did this calculation in Maple.
The output in each case is a vector of weight (up to permutation) (3, 3, 3, 5, . . . , 5).
Use Remark 3.2 to identify the module with lowest weight (3, 3, 3, 5, . . . , 5) as

S(4,1)S(4,1)S(4,1)S(5) . . . S(5),

and this must be a submodule of B. �

Lemma 7.9. As sets in P(V1⊗ V2⊗ V3),

V(S(4,1)V ∗1 ⊗ S(4,1)V ∗2 ⊗ S(4,1)V ∗3 )

= Seg(P(V1⊗ V2)×PV3)∪Seg(P(V1⊗ V3)×PV2)∪Seg(P(V1)× (V1⊗ V2).
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Proof. The space V ∗1 ⊗ V ∗2 ⊗ V ∗3 has seven orbits under the action of SL(2)×3

[Gelfand et al. 1994, Example 4.5]. This gives rise to a list of normal forms, which
we record below together with the respective (SL(2)×n n Sn)-orbit closures to
which they belong.

• The trivial orbit, ∅.

• Seg(PV1×PV2×PV3): Normal form [x] = [a⊗ b⊗ c].

• τ(Seg(PV1×PV2×PV3))sing = S3.Seg(P(V1⊗ V2)×PV3): Normal form
(up to permutation) [x] = [a⊗b⊗c+a′⊗b′⊗c]. This union of 3 irreducible
varieties is the singular set of the next orbit.

• τ(Seg(PV1×PV2×PV3)): Normal form

[x] = [a⊗ b⊗ c+ a′⊗ b⊗ c+ a⊗ b′⊗ c+ a⊗ b⊗ c′].

• σ(Seg(PV1×PV2×PV3)): Normal form [x] = [a⊗ b⊗ c+ a′⊗ b′⊗ c′].

The orbit closures are nested:

∅⊂ Seg(PV1×PV2×PV3)⊂ τ(Seg(PV1×PV2×PV3))sing

⊂ τ(Seg(PV1×PV2×PV3))⊂ σ(Seg(PV1×PV2×PV3))= P7.

The lowest weight vector for S(4,1)S(4,1)S(4,1) is

f(4,1),(4,1),(4,1) = (X [1,1,1])2
(
X [0,0,0](X [1,1,1])2+ 2X [1,0,1]X [0,1,1]X [1,1,0]

− X [1,1,1](X [0,1,1]X [1,0,0]+ X [1,0,1]X [0,1,0]+ X [1,1,0]X [0,0,1])
)
.

We took a generic point x ∈ τ(Seg(PV1×PV2×PV3))sing and evaluated

f(4,1),(4,1),(4,1)(x)= 0.

So τ(Seg(PV1 × PV2 × PV3))sing ⊂ V(S(4,1)S(4,1)S(4,1)). We could also see this
without calculation by noticing that any point of the form [a⊗b⊗ c+a′⊗b′⊗ c]
lives in P(V1⊗V2⊗ ĉ), where ĉ is the line through c. But every point in this space
is a zero of S(4,1)S(4,1)S(4,1)) because S(4,1)(̂c)∗ = 0.

Next we show that the other two varieties are not in V(S(4,1)S(4,1)S(4,1)). The
varieties are nested, so take the point [x]=

[
X [1,1,1]+X [0,1,1]+X [1,0,1]+X [1,1,0]

]
∈

τ(Seg(PV1×PV2×PV3)). But f(4,1),(4,1),(4,1)(x)=2 6=0, so the other two varieties
are not in V(S(4,1)S(4,1)S(4,1)). Since we have considered all possible normal forms,
we are done. �

Observation 7.10. All the linear spaces on Seg(PVK1 × · · · × PVKm ) are (up to
permutation) contained in one of the form VK1⊗v̂K2⊗· · ·⊗v̂Km , where v̂K denotes
the line through vk1 ⊗ · · ·⊗ vks in VK .



104 Luke Oeding

Let Pp,q({n1, . . . , n p+q}) denote the set of partitions of {n1, . . . , n p+q} into two
disjoint sets of cardinality p and q .

Consider the (SL(2)×n n Sn)-module B̃ = S(4,1)S(4,1)S(4,1)S(5) . . . S(5) that has
n− 3 copies of S(5). We write in B̃ in full detail as

B̃ =
⊕

{{k1,k2,k3},{k4,...,kn}}
∈P3,n−3({1,...,n})

S(4,1)V ∗k1
⊗ S(4,1)V ∗k2

⊗ S(4,1)V ∗k3
⊗ S(5)V ∗k4

⊗ · · ·⊗ S(5)V ∗kn
.

Let B̃k denote the SL(2)n−1 n Sn−1 module

B̃k =
⊕

{{k1,k2,k3},{k4,...,kn−1}}
∈P3,n−4({1,...,n}\{k})

S(4,1)V ∗k1
⊗ S(4,1)V ∗k2

⊗ S(4,1)V ∗k3
⊗ S(5)V ∗k4

⊗ · · ·⊗ S(5)V ∗kn−1
.

B̃
∑n

i=1 B̃i ⊗ S(5)V ∗i , that is, the (SL(2)×n n Sn)-module B̃ is constructed as the
nonredundant sum over permutations of augmented SL(2)×n−1-modules.

We want to understand the zero set of this module B̃, and we do this in the next
two lemmas by mimicking what we did for Proposition 6.8. We also point out that
while notationally more complicated, the resulting Lemma 7.12 is essentially the
same idea as Proposition 6.8.

Lemma 7.11. Suppose n ≥ 4 and let B̃ and B̃k be as above. If

V(B̃k)=
⋃

{K1,...,Km}∈P2({1,...,n}\{k})

Seg(PVK1 ×PVK2 × · · ·×PVKm ),

then

V(B̃k⊗ S(5)V ∗k )=
⋃

{K1,...,Km}∈P2({1,...,n}\{k})

Seg(PVK1∪{k}×PVK2×· · ·×PVKm ). (7)

Proof. Apply Lemma 6.4 to the left side of (7). It remains to check that⋃
L⊂V(B̃k)

P(L ⊗ Vk)=
⋃

{K1,...,Km}∈P2({1,...,n}\{k})

Seg(PVK1∪{k}×PVK2 × · · ·×PVKm ),

where L ⊂ V(B̃k) are linear spaces. Because of symmetry and our hypothesis,
there is only one type of linear space to consider, VI1 ⊗ v̂I2 ⊗ · · · ⊗ v̂Im ⊗ Vk =

VI1∪{k}⊗ v̂I2⊗· · ·⊗ v̂Im . It is clear that each of these linear spaces is on one of the
Segre varieties on the right side of (7), and moreover every point on the right side
of (7) is on one of these linear spaces. �
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Lemma 7.12. Let n ≥ 4 and let P2({n1, . . . , nn}) denote the collection of all par-
titions of {n1, . . . , nn} into mutually disjoint subsets of cardinality 2 or less. Then

V(S(4,1)S(4,1)S(4,1)S(5) . . . S(5))=
⋃

{K1,...,Km}∈P2({1,...,n})

Seg(PVK1 × · · ·×PVKm ).

Proof by induction. The base case is Lemma 7.9. For the induction step, use
Lemma 7.11. We need to show that

n⋂
k=1

( ⋃
{K1,...,Km}∈P2({1,...,n}\{k})

Seg(PVK1∪{k}×PVK2 × · · ·×PVKm )
)

=

⋃
{K1,...,Km}∈P2({1,...,n})

Seg(PVK1 × · · ·×PVKm ).

It suffices to check that

Seg(PVK1∪{k}×PVK2 ×PVK3 × · · ·×PVKm )

∩Seg(PVK1 ×PVK2∪{k}×PVK3 × · · ·×PVKm )

= Seg(PVK1 ×PVK2 ×PVk ×PVK3 × · · ·×PVKm ).

This is equivalent to checking that for any vector spaces V1, V2, V3,

Seg(P(V1⊗ V2)×PV3)∩Seg(PV1×P(V2⊗ V3))= Seg(PV1×PV2×PV3)).

In this case, let [T ]∈Seg(P(V1⊗V2)×PV3)∩Seg(PV1×P(V2⊗V3)). Then, viewed
as a map T : (V1⊗V2)

∗
→ V3, the image of T must be one-dimensional, and thus

[T ] ∈P(V1⊗V2⊗V ′3), where V ′3⊂ V3 is a one-dimensional subspace. By the same
argument using the other Segre variety in the intersection, [T ] ∈ P(V1⊗V ′2⊗V3),
where V ′2 ⊂ V2 is a one-dimensional subspace. So T ∈ P(V1⊗ V ′2 ⊗ V ′3), but this
is a linear space on Seg(PV1×PV2×PV3)), so we are done. �

We have established all of the ingredients for the proof of Lemma 7.2.

8. Proof of Theorem 1.3

The outline of the proof is the following. Proposition 5.5 says that Zn ⊆ V(HD).
To show the opposite inclusion, we work by induction. In the cases of n = 3, 4,
the (stronger) ideal-theoretic version of Theorem 1.3 was proved with the aid of
a computer in [Holtz and Sturmfels 2007]. Since the theorem is already proved
for the cases n = 3, 4 we will assume n ≥ 5. The induction hypothesis is that
V(HDi ) ' Z(n−1). We need to show that given a point [z] ∈ V(HD), we have
[z] ∈ Zn , that is, that there exists a matrix A such that ϕ([A, t]) = [z]. The key
tools we use in this proof are Proposition 7.1 and Lemma 6.6.
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We work on a preferred open set U0 = {[z] = [z I X I
] ∈ P(V1 ⊗ · · · ⊗ Vn) |

z[0,...,0] 6= 0}. Working on this open set causes no loss of generality because of the
following:

Lemma 8.1. Let U0 = {[z] = [z I X I
] ∈ P(V1 ⊗ · · · ⊗ Vn) | z[0,...,0] 6= 0}. Then

V(HD)∩U0 ⊂ Zn implies that V(HD)⊂ Zn .

Proof. The result follows from the fact that Zn and V(HD) are (SL(2)×n n Sn)-
invariant, and (SL(2)×n n Sn).U0 = P(V1⊗ · · ·⊗ Vn). �

It suffices to work on the section {z = z I Z I
∈ V1⊗· · ·⊗Vn | z[0,...,0] = 1} of the

cone over projective space, because afterwards we can rescale everything to get
the result on the whole open set U0.

Suppose we take a point in the zero set (as described by Lemma 6.6)

[z] ∈ V(HD)=
n⋂

i=1

⋃
L i⊂V(HDi )

P(L i
⊗ Vi ).

Since [z] is fixed, we can also fix a single L i for each i so that [z]∈
⋂n

i=1 P(L i
⊗Vi ).

Work in our preferred section of the cone over projective space and write n different
expressions for the point z (one for each i):

z = z I X I
= ηi
⊗ x0

i + ν
i
⊗ x1

i ,

where [ηi
], [νi
] ∈ L i

⊂ V(HDi ). (These expressions are possible because each
Vi is 2-dimensional.) Choosing z[0,...,0] = 1 also implies that ηi

[0,...,0] = 1. The
induction hypothesis says that Z(n−1)'V(HDi ) for 1≤ i ≤ n. So each ηi satisfies
ϕ([A(i), 1])= ηi for a symmetric matrix A(i) ∈ S2Cn−1. For each 0≤ j ≤ n denote
by A j the subset of matrices

A j
= {A ∈ S2Cn

|1I (A)= z I for all I = [i1, . . . , in] with i j = 0}.

Each matrix A ∈A j has the property that the principal submatrix of A formed by
deleting the j th row and column maps to η j under the principal minor map. Thus
each A ∈A j is a candidate matrix that might satisfy ϕ([A, 1])= [z], but we don’t
know if such a matrix will have a submatrix that maps to the other ηi ’s. We claim
that there is at least one matrix that satisfies all of these conditions.

Lemma 8.2.
n⋂

i=1
Ai is nonempty.

Proof. By the induction hypothesis, each Ai is nonempty. Assume
⋂n

i=2 Ai is
nonempty. We show that if A ∈

⋂n
i=2 Ai , then A ∈ A1. The same argument also

proves that if A ∈
⋂n

i=3 Ai , then A ∈A1, and so on, so it suffices to check the last,
most restrictive case. Also because of the Sn action, we don’t have to repeat the
proof for every permutation.
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If A ∈
⋂n

i=2 Ai , then 1I A = z I for all I 6= [0, i2, . . . , in] with |I | ≤ n − 2.
The only possible exception we could have is that 1[0,1,...,1] might not be equal to
z[0,1,...,1]. Let A′ denote the principal submatrix of A formed by deleting the first
row and column of A. Now since n ≥ 5, |I | ≥ 3, A′ is at least as large as 4× 4,
and we have determined that all of the principal minors of A′ except possibly the
determinant agree with a fixed point η1

∈V(HD1) (in other words1(A′)I = η
i
I for

all I 6= [1, . . . , 1]), so we can apply Proposition 7.1 to conclude that the determinant
of A′ also agrees with η1 (that is, 1[1,...,1](A′) = η1

[1,...,1]). Therefore any such A
must have 1[0,1,...,1](A)= z[0,1,...,1], and we have shown A ∈A1. �

Lemma 8.2 proves the existence of a symmetric matrix A such that 1I (A)= z I

for all I 6= [1, . . . , 1]. Then since both z I X I and 1I (A)X I are points in V(HD),
Proposition 7.1 implies that 1[1,...,1](A) = z[1,...,1], and this finishes the proof of
the main theorem.

Remark 8.3 (building a matrix). Note that when n ≥ 4, the proof we gave can be
used also to construct a symmetric matrix whose principal minors are prescribed
by a point z ∈ V̂(HD)∩ {z | z[0,...,0] 6= 0}. The entries of z corresponding to 1× 1
and 2×2 principal minors determine a large finite set A of candidate matrices that
could map to z. Restrict the set A to only those matrices whose 3× 3 principal
minors agree with the corresponding entries of z, that is, keep only the matrices
A such that 1(A)I = z I for all |I | ≤ 3. We claim that the remaining matrices all
map to z under the principal minor map. If A is such that all of the 3×3 principal
minors agree with z, then Proposition 7.1 implies that each 4× 4 principal minor
of A must agree with z also. Iterate this argument to imply that all of the principal
minors of A must agree with z.
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