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CONSTANT NEGATIVE GAUSSIAN CURVATURE TORI
AND THEIR SINGULARITIES

By

Tatsumasa URrA

Abstract. We construct constant negative Gaussian curvature tori
with one family of planar curvature lines in Euclidean 3-space. We
show that these tori are wave fronts. The singularities of these tori
are studied.

1 Introduction

In this paper we construct constant negative Gaussian curvature tori with
singularities in Euclidean 3-space R?.

In contrast, in 1986, Wente [14] discovered constant mean curvature tori. A
constant mean curvature surface, away from its umbilics, possesses an isothermic
coordinate system, that is, a conformal curvature line coordinate system (x, y).
Using such coordinates, the Gauss-Codazzi equation satisfies the sinh-Gordon
equation

Py + ¢, +sinh ¢ =0, (1.1)

where ¢ is derived from the conformal factor of the first fundamental form I =
(e?/4)(dx? + dy?). Wente showed the existence of constant mean curvature tori
by analyzing the doubly periodic solutions of (1.1). After Wente’s discovery,
Abresch [1] found that if one assumes one family of curvature lines to be planar,
then ¢ in (1.1) satisfies

b 2 )

tanh === = f(x) - (), (1.2)

which induces a separation of variables in (1.1). Then he obtained the doubly
periodic solutions of (1.1) explicitly by using Jacobi’s theta functions. In the same
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way, Walter [13] gave an explicit parametrization of constant mean curvature
tori which have one family of planar curvature lines. Furthermore, Spruck [11]
showed that the surfaces obtained by Abresch and Walter are indeed the same as
the ones obtained by Wente.

For a constant mean curvature surface p: M — R® where M is a
2-manifold, the parallel surface

p/:pfiv:MﬂR3 (1.3)
gives a constant positive Gaussian curvature surface which possibly has singu-
larities, where H and v are the mean curvature and the unit normal vector field of p,
respectively. Kimura [7] studied the singularities of constant positive Gaussian
curvature tori that are the parallel surfaces of constant mean curvature tori
obtained by Abresch [1] and Walter [13].

On the other hand, for surfaces with constant negative Gaussian curvature,
there exist curvature line coordinate systems (x, y), and taking these coordinate
systems, the Gauss-Codazzi equation satisfies the sine-Gordon equation

Prx — Py — sin ¢ =0, (1.4)

where ¢ is the angle between the asymptotic directions. Surfaces with constant
negative Gaussian curvature have been studied in Enneper [4], Inoguchi [6],
Brander [2], Dorfmeister and Sterling [3], Goulart and Tenenblat [5], and others.
In particular, Melko and Sterling [9] exhibits many such examples, including tori,
by applying soliton theory.

In this paper, as an analogy to the works of Abresch and Walter, we con-
struct constant negative Gaussian curvature tori with singularities which have
one family of planar curvature lines. Even though (1.4) is a hyperbolic partial
differential equation, while (1.1) is an elliptic partial differential equation, the
argument and calculations parallel to [13] do work well for constant nega-
tive Gaussian curvature tori. We also apply the work of Saji, Umehara, and
Yamada [10] to investigate the shape of the singularities for the tori we have
constructed.

This paper is organized as follows. In Section 2, the local theory of constant
negative Gaussian curvature surfaces is given. In Section 3, we study the prop-
erties of ¢ when x-curve is planar. When one family of curvature lines are plane
curves, the other are spherical curves in general. In Section 4, we study the prop-
erties of the planes and spheres in which the curvature lines lie on. In Section 5,
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we give the parametrizations of the surfaces. For surfaces with singularities, a
notion of (wave) fronts has been well-investigated in Saji, Umehara, and Yamada
[10] and elsewhere. In Section 6, we show that the surfaces we construct here are
indeed fronts. In Sections 7 and 8, we give the necessary and sufficient conditions
for the surfaces to be tori. In Section 9, we give the explicit parametrizations of
these tori in terms of trigonometric functions. In Section 10, we study the singu-
larities of these tori.

2 Preliminaries

Here, we recall the local theory of constant negative Gaussian curvature
surfaces. Let D be a domain in Rz(x, y), and p: D — R} a K surface, that is,
an immersion with constant negative Gaussian curvature —1. It is known that a
surface with negative Gaussian curvature always has a curvature line coordinate
system. So throughout this paper, we assume (x, y) is a curvature line coordinate.
Let v: D — S? be a unit normal vector field along p, then the first, second, and
third fundamental forms I = {dp,dp), Il = —{dp,dv), IIIl = {dv,dv) are given
by

2?2 29 0
I =cos de + sin 2dy , (2.1)
1= % sin ¢(dx? — dy?), (2.2)
III = sin? 5 dx? + cos? 5 dy?, (2.3)

where ¢: D — R is the angle between asymptotic directions and <,) is the
standard metric of R®. The Gauss-Weingarten formulas are

Pyx = —% tan gpx +% cot gpy +% sin ¢v, (2.4)

Dxy = —% tan %px —I—% cot ng” (2.5)

Dy = —% tan gpx +% cot %ﬁp}, —% sin ¢v, (2.6)

ve=—tan ¥ p, 27)
¢

v, = cot 5Py (2.8)
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Under this setting, the Codazzi equation is trivial and the Gauss equation is the
sine-Gordon equation

Prx — @y = sin . (2.9)

For later use, we give the following equations which can be verified by direct
computations from the Gauss-Weingarten formulas

1

det(P,n Pxxs pxxx) = +1C760S¢ {_2¢xy sin ¢ + (1 + cos ¢)¢x¢)}a (210)
1 —

Qet(py. v pow) = 2P (2, sin g (1 - cos g} (211)

Therefore
x-curve is a plane curve if and only if —2¢,, sin ¢+ (1 +cos ¢)¢.¢, =0,
y-curve is a plane curve if and only if 24, sin ¢+ (1 —cos ¢)¢. 4, = 0.
Throughout this paper, we assume that none of ¢,, ¢, vanishes identically,

6 £0. ¢, #0. (2.12)

ReMARK 2.1. It is well-known that if ¢ : D — R in (2.9) depends only on x
or y, then K surface p: D — R? is a surface of revolution.

For the global theory of constant negative Gaussian curvature surfaces, the
following theorem is well-known.

THEOREM 2.2 (Hilbert). There is no isometric immersion from a 2 dimensional
complete constant negative Gaussian curvature Riemannian manifold M into R>.

By this theorem, it is natural to consider the class of surfaces for which
certain kinds of singularities occur, and to study global properties of constant
negative Gaussian curvature surfaces within that class.

DEFINITION 2.3.  Let M be a smooth 2-manifold and p : M — R> a smooth
map. p is called a (wave) front if there exists v: M — S* such that

{v,v(g)y =0
for any ge M and ve T,M, and

{dp,dp) + {dv,dv) (2.13)
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gives a positive definite metric on M. When p: M — R? is a front, we say p is
complete if (2.13) is complete.

DEFINITION 2.4.  Let M be a smooth 2-manifold and p : M — R* a front. p is
called a K front if there exists an open dense subset W of M such that p|,, : W —
R® is an immersion with constant negative Gaussian curvature —1.

3 K Surfaces for Which x Curves are Planar

In this section, as an analogue of Section 2 in [13], we consider a K surface
with one family of planar curvature lines. Let D be a domain in Rz(x7 y) and
p: D — R? a K surface with curvature line coordinates (x,y). From now on, we
assume that the x curves are planar. Then by (2.10), we have the following
lemma.

Lemma 3.1. If the x curves are planar, namely det(py, pxx, Pxxx) = 0, then

¢xy:@ cotg. (3.1

LemmA 3.2.  The integral of (3.1) is

tan % = /() - g(0). (32)

where [ and g are functions of x and y alone, respectively.

/o

Here and 7 denote the derivatives with respect to x and y on D,

respectively. Taking derivatives of (3.2), we have

_ 4y _ 49
¢x _szgza ¢y - 1 +fzgzv (33)
o Y 8 I T

1+f2927(1—|—f292)2’ }’y*1_|_f2g2 (1+f2g2)2'

Furthermore, we get

(i _ 2?)
4tan4<l tan 1 :4fg(1—f2g2) o)

(1 + tan’ %)2 (1+/%)°
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Thus, substituting (3.4) and (3.5) into (2.9) yields

1 f'l/
FA—FFB:C—#D, (3.6)
where
g 1 1
A= 1—, B=——,
g 9 9
7f// f/2 1 g g2 1
C7f72f2+2, D=—-=+2 7 t5
Two further differentiations of (3.6) with respect to x yield
1 !/ AU
(f_z) At (%) B=c (3.)
" N
(%) A+ (5:—3) B=1C". (3.8)

Consider (3.7), (3.8) as a system of linear equations for 4, B. If its determinant
would not vanish, then 4, B would be functions of x, in particular g = const,
contradicting (2.12). Hence,

GGG e

Integration by quadrature leads to f'2 = csf* + c2f? + co with constant coef-
ficients. The same procedure applies to g and leads to ¢ = dyg* + dhg® + dp.
Entering these in (2.9) yields relations between the constants which are expressed
in

C4=—d0, d4=—C0, Cz—dz— 1=0.

Thus we have proved the following theorem.

THEOREM 3.3. A function ¢ of the form (3.2) satisfies the Gauss equation (2.9)
if and only if f and g satisfy elliptic differential equations of the form

2f"F = —pft+ 2017+, (3.10)
2§° = —ag* + 2ug” + B, (3.11)
with real constants o, 5, A, and u, where

A—pu—1=0. (3.12)
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Observe that (3.10) and (3.11) imply

" .
L:—ﬁferi, A (3.13)
f g

From (3.2), we can change f and g to ¢f and g/c, respectively, for any
c € R\{0}. Taking a suitable choice of ¢ (¢ = {/a/f), we may assume that o = f§

in (3.10) and (3.11). That is, f and g satisfy
2177 = —af* +2)f? + 0, (3.14)
26% = —ag* +2(4 — 1)g? + 2, (3.15)

with real constants o« and .

4 The Generating Planes

In this section, as an analogue of Section 3 in [13], we study the properties
of the planes of the x-curves. We call these planes the ‘“‘generating planes”. Let
€2:R — R’ be normal vector fields of generating planes.

ProrosiTioN  4.1. The family of generating planes has a common
1-dimensional subspace.

PROOF. p, X p.y 1s a normal vector of the generating plane. It would be
better to use the multiple of this by 1/{py, px).

, 1 ¢
‘Q:(pxxpxx)W:_py"i_?yv' (41)
Cos~ 5

Let xo € R be a point satisfying f(x) # 0. The direction of £ is independent of x.
We differentiate (4.1), and use (2.6), (2.8), (2.5), to obtain

g, = % tan gpx + ¢“2“ v, (4.2)

1 2 h 1
e, = 1 <2¢xy tan §+ ¢x¢y>px + <% + % cot g) Py + §¢xxyv- (4.3)

Moreover, the cross product of £ and £, is

¢ I MY )
P T an 2 ) Px ?
Lx L, 5 a3 py+ == py + 55 sin® o (4.4)
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Also, when we multiply ¢, to (3.1) and differentiate, we get

3
¢xxy¢x - ¢xx¢xy + ¢);'_¢y =0. (45)

Thus, we get det(2,£,,2,,) =0.

Now, if g(yo) # 0, then, from (3.2), tan(¢(xo, y)/4) # 0 in a neighborhood
of yo, so, from (4.1), (4.2), L(xo,y) and £,(xo, y) are linearly independent. By
det(L, £,,2,,) =0, the span of £(xo, ), £,(xo,») is independent of y. Hence,
for all y, there is a fixed vector e e R*\{0} with unique direction such that
{L(xp, y),ey = 0. This direction spanned by e is the l-dimensional subspace.

0

REMARK 4.2. Proposition 4.1 is an analogue of Proposition 3.A of [13], but
for a constant mean curvature surface, the generating planes are just parallel to a
fixed 1-dimensional subspace, so they have no common 1-dimensional subspace as
claimed in Proposition 4.1.

PrOPOSITION 4.3.  The y-curves are spherical curves where the centers are on
the 1-dimensional subspace of Proposition 4.1. We call these spheres the “gen-
erating spheres”, and the 1-dimensional subspace of Proposition 4.1 the “axis” of
surface.

ProOF. We look for a point | common to the normal planes of a fixed
y-curve. We set 1(x) = p+ B(x, y)px + C(x, y)v. From [, =0,

Bp, ¢ By, ¢ ¢
I, = (—T) tan §+ By>px + (1 + 2' cot §+ C cot E)py +Cyv=0. (4.6)
Hence, we get B = X;(x)/cos(¢/2), C = X>(x) with suitable functions X; and X,
of one variable. Substituting them into the second terms of the right hand side of
(4.6), we have

AN ¢ _
sin 5+ X1+ X cosz—O. (4.7

From (3.3), we obtain

(4.7) ez +f7X] + X5 COt%ZO.
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On the other hand, if ¢ depends on y, then X, =0, and X, = —f/f’. Hence,
S

[=p———Ds 4.8
f'cos %5 48
For the function 7:= || — p||>, we deduce 7, =0. So every y-curve lies on a

sphere with center I(x) and radius R(x), where

f? 29 S
R =|l—-p||*=—"—— cos 5= (4.9)
f2cos? ! 2.
Moreover, from (4.1), (4.2),
Iy, ) =<1, 8,) =0, (4.10)

so, | is on the straight line that is parallel to £ x £,. We can easily verify
A= p, 8> =0, so, [ — p is included in the generating plane when we fix y. The
generating plane of x-curve depends only on y, and [ depends only on Xx, so, [ is
included in the 1-dimensional subspace of Proposition 4.1. O

From now on, we set this 1-dimensional subspace to be the x3-axis in R?.

5 Parametrization of the Surface

In this section, as an analogue of Section 4 in [13], we give a parametrization
of the position vector p.

PropoOSITION 5.1.  The unit normal vector field v satisfies

Vyx — Vyy = COS @V. (5.1)

Proor. By direct calculations from (2.7), (2.8), we have

¢ 9, L2 ¢ 9, 9, ¢
Viy = —Txpx — %py —sin® v, vy = —fpx —%py — cos? 7V
This completes the proof. O

We set p= (pl,pz,p3), V= (V],Vz,V3), L= (Ll,LQ,L3). Then, by L5 =
(L e3> =0 and (4.1), we have

9, ¢ ¢y
0=<9,€3>=—p3y+7)113 = —tan 51}3},4—?}\)3. (5.2)
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Observe that v3 cannot vanish identically, otherwise, by (2.7) and (2.8), we would
have p3 = const. Combining (5.2) with (3.1) yields vs,/v3 = ¢,,/¢,, and this can
be integrated to

v3 = B(x)¢, (53)

with B depending only on x. Also, we can easily calculate v3,, = B¢ .+ 2B'¢,. +
Bf,ys v3yy = Bé,,,. Substituting these into (5.1), we have

B”¢x + 2B,¢xx + B(¢xxx - ¢xyy) = B¢‘c cos ¢ (54)
By the sine-Gordon equation (2.9), we get ¢, — ¢,,, = §, cos ¢, so,
B"$. +2B'$.. =0, (5.5)

which integrates to B' = C(y)/¢>. If B'(x)#0, i.e. B is not constant, then
C(y) #0 and ¢2 = C(»)/B'(x), hence
C(y)

2¢x¢xy = mv

thus 2¢,,/¢, = C(y)/C(y). From this follows, by (3.1), 2¢.,/ b = ¢, cot(¢/2),
¢) (2¢xy) C(»)
cot=| = =|="=] =0,
(#eet) =(57). = (e
hence,
¢ ¢y ¢x _
$,, cot > sin2§ > =0, (5.6)
and using (3.1) again,
99, =0,
contradicting (2.12). Thus
B =By #0:const, vi=Bp,. (5.7)

With this, (2.7) and (2.8) imply

P3x = _Bo¢xx cot gv (58)

p3y = B0¢xy tan ¢ (59)

5.
The right-hand sides can be explicitly expressed, using (3.2) and its second
derivatives. In addition, it is useful to write the last quotient in (5.8) using
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(¢ cot ¢/2) .. This results in:

(] — 242 2
42 1
Sl )G e
D3y = 830(15;7%22)2~ (5.12)

Note that (5.10) and (5.11) are equivalent by (f//f)" = f"/f — f'*/f*. Hence, we
get

) 1.2 X ogn
= 230{%]}2“;2+J f7 dx}. (5.13)

In Section 7, we will see that f is elliptic. So, there exists a zero xo of f’/ where
the sign of f may be arranged such that fo = f(x) > 0.

From (4.9), the y-curve will be planar where f’' = 0. First, we consider the
plane y-curve corresponding x = xy and take its plane as the (xj, x;)-plane of the
coordinate system in R®. The restrictions of p,v,... onto x = x; will be marked
subsequently by a bar (i.e. p, ¥, and so on). We orient this plane by ¥, p, and find
the norm w of the tangent vector p, and plane curvature x = det(p,, p,,)/ w3 of
the y-curve via

- T S B
det(p,, p,,) = det (py,zj cot %ﬁp}, —5 sin PV

P
) sin ¢ det(p,, V),

p,/w and v are unit vectors and orthogonal each other, so, det(p,/w,V) = —1.
Hence,
. ¢ Lo (P ¢
w:||py||:s1n§, K="3 det 27 :cotz. (5.14)

Let s be an arc length parameter of the planar curve p. There exists a function
o = w(s) so that dp/ds = (cos w(s),sin w(s)), ¥ = (—sin o(s),cos w(s)). So, kK =
det(dp/ds,d*p/ds?) = dw/ds. Also, since ds/dy = |2yl = w, the angle change
rate of v is given by

do do ds o
= kw = z. 5.15
& ds dy KW = C0S 7 (5.15)
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By (3.2),
| _f(')2g2
= | —==dy. 5.16
¢ Jo 1+ fig? Y (-16)

We set €0 := 2/||2||, then there exists a function # = 7(y) such that it can
be expressed as 20 = (cos 5(y),sin 7(»),0). Also, we denote by 1 = 1(p) the angle
between ¥ and £°. By definition,

1=1n— . (5.17)
From (4.1) and cos 1= {¥, 2/| €[],
g : g
— 9 sini—g——I (5.18)
[+ &2 [+ &2

where ¢ = +1. The three angles, w, 7, and 5 are completely determined by (5.16),

COS 1 =

(5.18), (5.17), and an initial condition for w. The coordinate representations of ¥
and the unit normal vectors 2°, 20 positively proportional to £, 2%, are

cos cos 7 —sin
v=|sinw |, =]|sinyg |, 2% =| cosy |, (5.19)
0 0 0

where the operator | meaning rotation in the positive sense by 7/2. We also
determine the constant By in (5.7). From (5.11),

. fo// Zﬁ)]ro//g2
D3 = 230{% e (5.20)
Also, p, = (0,0,p3), so by [|p ]| =p32 and (5.20),
. o o 2
1= 1ig? :4Bz{i—72ﬁ’f°,g2}. (5.21)
1+ f¢g? N 1+ f3g2

Since g # 0, this is an identity in ¢, and setting g =0 gives the following
equation, using (3.14),
B (5.22)
O 422+ 02)

We determine the first and second components p; and p,. We denote the
plane II(c) by

II(c) = {(x1,x2,¢) e R*| x;,x2 e R}. (5.23)
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We fix the generating plane and the generating sphere, and set the intersection
between I1(p3;) and generating plane as

z=27% 4 pies, ZeR.

The point z is on the generating sphere, so z satisfies ||z—IH2 = R?

(0,0,73),

,and [ =
Z* —R*+ (ps—13)* = 0. (5.24)

Z=+\R—(ps—13)". (5.25)

The calculation for the part inside the root is, from (4.8), (4.9), (3.2), and
(5.10),

Hence

f? /? 2
Rz*(psza)zzf,z*im
3 $ 3x

S f2cos? g

_ 4 SHo+ 2497 — ag*)
P (L4 )

So, (5.25) takes the form
Z=eW, (5.26)

where ¢ = 41 and

— 2 f o+ 24g% — ag?
’ //12+052 l+f2g2 .

We thus have the following theorem:

(5.27)

THEOREM 5.2. If there is a zero xo of f' with f(xo) >0, then the position
vector function p:R> — R® with planar x-curves can be brought to the explicit
form

p= VAR p3es, (5.28)

where Z, 2% py are given by (5.19), (5.26), (5.27), and (5.13).

By (5.26) and (5.28), we may set & = —1.
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REMARK 5.3. The turning angle # of the generating planes is determined
by (5.16), (5.18), (5.17). We have also proven a direct formula for » which is
generally available from (4.1), (4.2). In the setting for f’(xo) =0, fo:= f(x0),

Jo" = f"(xo), described above, the result is

U
S—Z: —fi sin? 1.
0
In fact, by (4.1), we have
T S
2= 2sin§py sin 5 V.

Also, we have
dg oy oL
dy - <(Q )y? ’8 >
Hence, we get (5.29) from (5.19).

6 Fronts

(5.29)

(5.30)

(5.31)

Now we extend the domain D to the entire (x, y)-plane R2. The purpose
of this section is to show that this extension p : R> — R? in (5.28) gives a front.

By (5.26), (5.27),

/
Z, :ZfT cosg,
jU .
Z,=Z g sm¢

fla+22g2 —agt) ~ 2’
where
U=U(x,y) =2 2*g* —af? — ag*.
Also, by (5.17), (5.18),

2.2 77
zi = 20U+ S07) gU

¢
o 0+ +e) 2

Hence, by (5.10), (5.12), (5.28),

2 1
P pxy =23 +pay = ZZf—2+B§¢f-x 7
f S 2
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{pyi vy =27 + 2217 + 3}

_ (22(1 +/%9°)’ g*U?
7 P+ )’
22772
g'u 20 1 .29
+ 272 + B sin” . 6.5
(o4 22g% — ogh)? o cos? ﬁ) 2 (63)

From (3.4), we see |¢,,/sin(¢/2)| < oo, and also [¢,,/cos(¢/2)| < oo as well.
Hence, we set

o= o=l (6.6)
COS§ smi

and then e, e, are smooth vector fields which are defined on R?, and {ej,ejy =
0;. Thus, we establish

v=e] X ey, (6.7)

and then v is defined on R?, and <(w,v> =0 for all tangent vectors w.
Since

) ¢
Vy = —sin Eel’ Vv, = cos Eez, (6.8)
we have
Px=0=v,#0, p,=0=v,#0, (6.9)

therefore p is a front.

By the above arguments, hereafter we consider the domain of p to be the
entire (x, y)-plane R? and p:R?> — R? to be a front. Note that sin v with v
in (6.7) coincides with sin ¢v defined in the beginning of Section 2 whenever p is
an immersion. Hence, using this v in (6.7), the Gauss-Weingarten formulas (2.4)—
(2.8) can be extended to the entire R

7 Necessary Conditions for Double Periodicity of the
Position Vector Function

As analogues of Section 5 in [13], we give here necessary conditions for the
position vector p to become doubly periodic. The symbols cn; and sn; denote the
cosine and sine amplitude of Jacobi with modulus k € (0, 1).
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PropoSITION 7.1. If p: R*> = R? in (5.28) is doubly periodic with respect to
some fundamental parallelogram % C R?, then:
(1) p:R?> = R® is in fact doubly periodic with respect to x and y (so f and g
are both periodic).
(2) f has at least one zero.
(3) o in (3.14) is positive.

Proor. (1) Let # denote the canonical projection from R? to the torus
7 =R*/% and p: 7 — R? the induced immersion from 7, so p = p o 7.
First, we show that p is periodic in x. In fact, any mapping x — 7(x, o)
has either a dense image in 7 or is periodic with a common period for
all yoeR. If it is dense, by (R X yy) = .7,

p(T) = p(@R x o)) C p(@(R x o)) = p(R X yo).

Since p(R x yp) is assumed to be contained in a generating plane Ej, we
would have p(7) C Eyp. But this is not possible because the Gaussian
curvature of Ey is 0. Thus, p is periodic in x. The same argument applies
with respect to y. From the periodicity of p in x and y, we obtain the
periodicity of f and g using (3.2).

(2) Assume f has no zero. Then the function

L =)
28,777 f(1+ 297

is C and periodic in x and, by (5.10), has nonnegative derivative f'?/f?
for x. This is only possible if f’ =0, which contradicts (2.12).

(3) Evaluation of (3.14) at a zero x; of f gives o > 0, and if we have « =0
then f(x;) = f’(x;) =0, hence /' =0. Thus a > 0. O

From periodicity of f and g, we obtain o > 0. This follows from the next
proposition.

PROPOSITION 7.2.  The set of solutions of (3.14) and (3.15) with o> 0 can be
described by
f(x) =y en(ax), g(y) =7 eng(ay), (7.1)

where 0 <k <1, 0 <k <1, and constants y, 3, a, a, k, k satisfy
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Ve A—1 . —1)*

Y ="+1\5+1, 7= + * 2) +1, (7.2)
o o o o

s ol , 1) 5 oc(_z 1)

d=3(r+=), @=5(7"+5) 7.3
2( » 2 72 (7-3)

4 —4

=1 [ 7.4

T T (7.4)

Moreover, if we set k =sin 0, k = sin 0, then

= T
0—0<= 7.5
<3 (7.5)
y?=tan 0, 7° =tan0, (7.6)
) sin 20 5, sin20 (7.7)

a :.777 a —.77.
sin 2(60 — 0) sin 2(60 — 0)

PrOOF. Since f and ¢ satisfy (3.14) and (3.15) with o > 0 (see Proposition
7.1), it is known that /" and ¢ can be described by (7.1) for some constants y, 7,
a, a, k, k. In fact, f and g in (7.1) satisfy

a*k?
f/2 — yz f4 +(12(2k2 o l)f2 _|_a2y2’

g >k 5o 2, 22
g == +a (2k=—1)g~+ay".

Then by (3.14), we have the evaluations in the left-hand sides of (7.2)—(7.4).
Inversely, given (a,y,k) with (7.2), (7.3), (7.4), there exists (x,41) with o >0,
namely
4 1 2 2.2
l=d* Y , o= a7y .
1 y+1

(7.8)
Similar equations are available for @, 7, k. Since o is common to both equations,
and by observing (3.12), we have two further couplings.
a’kk' = a*kk’, (7.9)
a*(k*> — k') —a* (k> = k') —1=0, (7.10)

where, as usual,

K =v1-k? k:=V1-k (7.11)
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The system (7.9), (7.10) can be uniquely solved for ¢, @*, which produces (7.6),
(7.7). The positiveness of a?, @ is just expressed by (7.5). ]

Together with the corresponding equations for @ 7, k we obtain in
addition

cos 20 sin 20 sin 20 cos 20

_ . ity 7.12
sn20-0) "7 sin20-0) (7-12)
_ Sl'l’l 20 sin %9' (7.13)
sin 2(0 — 6)
ProposiTiON 7.3. If o> 0, then & = —1.

Proor. By (4.1), €° is a negative multiple of p, so /(v,8)=—n/2
(mod 27), hence from the continuity of 1, & = —1. ]

To verify the necessary condition that p3 is periodic, from (5.13) we see that
only f”/f has to be handled. We use following equation:

)
l4 pp—
an,%vdv:i (1—E>v—Li

= (7.14)

where K, E are the first and second complete elliptic integrals with modulus

k,

n/2 n/2

K(k)zj b E(k):J J1—ksin? pdg,  (1.15)
0 \/1—k2sin? ¢ 0

and 94 is one of the elliptic ¢ functions,

00
34(v) = qo H(l —2¢°"! cos 2nw + 24172,

n=1

o0

ao0=[[0-¢", g=e/% (7.16)

n=1
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See [12, p. 257]. Inserting this into (5.13) gives

;[ ax
LAY RS AV (ﬁ>
p3:230 sznga 172E X+ —=— +COIlSt. (717)

8 Necessary and Sufficient Conditions for Double Periodicity
of the Position Vector Function

In this section, as an analogue of Section 6 in [13], we consider the closedness
conditions for the position vector p. In Proposition 7.1, we saw that the condition
o > 0 is necessary for the double periodicity of the position vector function p.
In Proposition 7.2, we saw that the condition o > 0 is sufficient for the periodicity
of the first fundamental form. In order to establish the necessary and sufficient
conditions for the double periodicity of p, it only remains to discuss the pe-
riodicity behavior of the functions p; and w. This will be done here, assuming of
course o > 0.

In the case of p3, the periodicity is fulfilled if and only if

==2. 8.1
. (8.1)
Since K(k)/E(k) € (1,00) is strictly increasing, there is exactly one modulus k
satisfying (8.1). Numeric computation gives

0 ~ 65.354 955 354° ~ 1.140 659 153, (8.2)
k = sin 6 ~ 0.908 908 557 55. (8.3)

As for w, p will become periodic in the parameter y when a repeated period
increment of @ is a multiple of 2z. The reason is that only cos w, sin w,
cos(w + 1), sin(w + 1) enter into the representation of p in (5.28), and cos 1, sin ¢
are expressed by ¢ in (5.18). The period increment wy of w can be calculated
from (5.16).

R/a 1 — 3% en(ay)
=4 SRR S |
o L T4 752 en2(ay)
B iJn/Z 1— yZ?Z COSZ ) d§0
a

252 cd? = )
o 14y%p*cos w\/l—kzsinz(p
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where K = K(k). For  to be increased after n periods of y to 2zn-/ (/, n are
integers), we must have —n-wy =/ -2z, which is equivalent to

J”/zl tan 0 tan 0 cos® ¢ sin 20

o 1+tan 0 tan 0 cos? ¢ _ sin? @ sin? 0 sm29 0

In equation (8.4), ¢ is known by (8.2) and we have, for given //n, to solve it
for 0. We set

J(0) = J"/zl tan 0 tan 0 cos® ¢ —_— sin 20
o 1+ tan @ tan 0 cos? ¢ _sin? 0 sin? ¢ sin 2(0 — 0)
and we consider the quotient
£(0) = J(0)/S(0), (8.5)
which is C® on 0 < 0 < 0. Clearly, (0) = z/2, and an elementary calculation
shows
£'(0) = — g (tan 0 + cot 20) < 0. (8.6)

LemMA 8.1. For any //ne (0,1), there is exactly one solution 0 ¢ (0,0) of
(8.4), and for any //n ¢ (0,1), there is no solution 0 € (0,0) of (8.4).

Proor. From (5.17) and (5.18),

1 K/a K/a K/a K/a
—wO:J d)dy:J ﬁdy—J idy:J ndy—— (8.7)
4 0 0 0 0 2

Note that i = di/dy, not the ninth Latin alphabet. By —n-wy=/¢"2x,

K/a . / .
Jo ndy(—ﬁ+1>§. (8.8)

Also, from (5.29) and (5.18), we get

2 2 :
: 2 2 2 9 a )
= = = T:—. 8.9
f=a"sin" 1 ag'z—i-gz e g (8.9)

Obviously, 7' is elliptic, so it must satisfy a corresponding differential equation

T2 = T* —2uT? + a*. (8.10)
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Moreover, T is strictly decreasing on [0,K/a] from 0 to —co, and thus can
replace y as parameter on this interval.
From this and (8.9),

K/a — o0 1 d7
N L 811
[, ro=-] Vet = 2w/t + (@fa)* T

By (7.7) and (7.12), the integrand of the right hand side depends only on 0. It is
easy to verify that

V(1/a) T = 2ufa¥) T2 + (a)a)*

has limits oo when 6 — 0, and 1 when 6 — 6 respectively, and is monotonically
decreasing in 0 € (0,0). Thus

K/a -© 4T
O<J iidy<fJ
0

T

Hence, exactly for //ne (0,1), (8.8) has a solution 0 € (0,0), which is then
unique. ]
9 Expression of the Surface by Trigonometric Functions

To draw the graphics of the surfaces, as an analogue of (6.B) in [13], here
we change variables so that the surfaces are described by trigonometric functions.
We change variables as follows.

cng(ax) = cosu, sng(ax) = sin u, (9.1)
cng(ay) =cosv, sng(ay) = sin v. (9.2)

We set (/,n) to be integers which satisfy //n € (0,1). Then, we get the expression
p:R* =R

cos((v) — (1)) 0
plu,v) = Z(uwo) - | sinfo) —jw) |+| o |, 9.3)
0 p3(u,v)

where I :=yy, and

—2 ycosuy/a+ 2252 cos? v — ap* cost v

Z(u,v) = , 94
(w,0) VA2 + o2 1+ T2 cos? ucos? v O4
1(°1—T?cos’ ¢t dr
o(v) = tJ e - , (9.5)
aol+T“cos?t\/1 —k2sin?¢
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tan j(v) =atanv- V1 — k2 sin’ v, (9.6)

(1, ) 1 Hp2Cosu sin u 02052 V1 —k2sin’ u B J“ 1 — 2k? sin® 1 dre, (9.7)
a 14 I'* cos? u cos? v om

where k and 0 are given by (8.2), (8.3), respectively, and k is the solution of
(8.4), and other coefficients are given by (7.5)—(7.7), (7.12), and (7.13). Also,
Jj() = —1(v) — /2.

Figures 1-5 show the graphics of the surfaces for several values of //n. In
each figure, the left hand side is the whole surface (0 < u < 2z, 0 < v < nz), and
the right hand side is its intersection with the (xj,x;)-plane.

Figure 1: //n=1/2.

Figure 2: //n=1/3.
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Figure 3: //n=2/3.

Figure 4: //n=1/4.

10 Singularities

In this section we study the singularities of the K fronts given in (9.3).
We call a point where p is not an immersion a singularity of p. Moreover we
consider

A(u,v) := det(py, p,,v) : R = R, (10.1)

where v : R?> — S? is defined in (6.7). Then, g € R? is a singular point if and only
if A=0 at g¢.
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Figure 5: //n=3/4.

The singularity ¢ € R?> of a wave front p : R — R? is called non-degenerate
if the differential dA = A, du + A, dv of A(u,v) does not vanish at g. We see
that a connected component of the non-degenerate singular set is a regular curve

on R?

by the implicit function theorem. We call this curve a singular curve.

Furthermore, the direction of its tangent vector is called a singular direction.
In addition, the direction of ¢ e TqR2 (€ #0) with dp(&) =0 is called a null
direction.

DEerFiNITION 10.1 (cuspidal edges and swallowtails).

(1)

2 u,v) has singularities on the v-axis. We

The map p.:R*3 (u,v) — (u
call the singularity g€ D of a wave front p: D — R® a cuspidal edge if
there exist Uy C R> with 0e Ui, UyCD with qge Uy, ¢: U — U,
Q; C R? with p:(0) e Q, O C R> with p(q) € Qy and ® : Q) — Qs such
that ¢ and ® are diffeomorphisms in R* and R>, respectively, and 9(0) =g¢q
and

Do p.=pog. (10.2)

The map ps: R*3 (u,v) — (3u* + u?v,2u + uv,v) has singularities on the
set {(u,v) e R*|v = —6u>}. We call the singularity q € D of a wave front
p:D— R3 a swallowtail if there exist Uy C R? with 0 € Uy, U, C D with
ge U, ¢: U — Uy, Q C R with ps(0) ey, Q) C R? with p(q) €
and ® : Q — Q such that ¢ and ® are diffeomorphisms in R* and R?,
respectively, and ¢(0) = g and

Qop;=pog. (10.3)
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PROPOSITION 10.2. Let I CR be an interval. Let D C R* be a domain.
Suppose that y:1— D is a (non-degenerate) singular curve of a wave front
p:D— R

(1) y(to) is a cuspidal edge if and only if its singular direction and null direc-

tion are linearly independent at y(t)).

(2) y(to) is a swallowtail if and only if its singular direction p(ty) and null

direction &(ty) are linearly dependent at y(ty), and

% . det(yp(2),&(2)) # 0.

ReMARK 10.3. The singularity set of py is {(u,v) e R*|v = —6u?}. (u,v) =
(0,0) is the swallowtail, and others are cuspidal edges.

We denote the set of singularities of p by X.

LemmA 10.4.  The singular set X of the K fronts p defined by (9.3)—(9.7) is
written as follows:

Z_{(u,v)eR2

1
cosucos v =0, cosucosv= if}' (10.4)
Proor. By (6.6) and (10.1), we have

1
A(u,v) = det <pu,l’vaﬁpu X Pu)
cos 5 sin 5

2T cos u cos v(1 — I'? cos? u cos? v)

(1+ T2 cos? u cos? v)?

Hence, A =0 when I' cosucosv=0,+1. ]

We set ¢ = {(u,0) € R?|cos u cos v = ¢}, then
r=3xuz/TyzgVr (10.5)

and we have p, =0 on 2°, p, =0 on Zt/T. Also, we have 2*'/I' = &¥ if and

only if T < 1. By definition of Z*'I and (7.6), we have the following lemma.

LemMa 10.5. 3EV/T = & if and only if 0 satisfies

tan 0 < cot 0. (10.6)
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RemARK 10.6. By Lemma 10.5, (8.1), and (8.2), we can find the condition
of # for */I' = . Then we can find the condition of / and n in (8.4) for
>E/T = & since &(0) = (n/2)(//n) in (8.5) is monotonically decreasing in 0 e
(0,0). Numerically, 2*"/" = & if and only if

§> 0.509896 - - -. (10.7)

YT are non-degenerate,

Lemma 10.7. If T > 1, then the singularities on X
and when u = nn, singularities are swallowtails, and the others are cuspidal edges

(see Figure 7).

Proor. We set ((u,v) =cosucosv— 1/, and then Z!I = {(u,v)eR?|
{(u,v) = 0}. At each point on =T we have

C,du+ ¢, dv #0, (10.8)
so, we have
Ay du+ A, dv#0 (10.9)

r T

on X'/, Hence, at each point on X is a non-degenerate singularity. The

null direction is ¢ = (1,0) = /0u, and the singular direction on (u,v) e 2V is
(- 0/0u—1{,-0/dv. We set F :=det(p,&), and then

_ & Y L
F—det(_cu 0)_Cu.

If (=0 and F #0, then (u,v) is a cuspidal edge, and if { =0, F =0, and
dF # 0, then (u,v) is a swallowtail. So, since

1
(u,v) is a cuspidal edge if and only if cosu cosv =T and sin u # 0,

(u,v) is a swallowtail if and only if sinu =0,

we get the conclusion. The same argument works for £ V/T as well. O
RemMARK 10.8. By (2.1), we have
pu#0, py=0, (10.10)
on 2°, and
Pu=0, py#0 (10.11)

on TT
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We define

I(t) = ((;—Fm)n, t), 7a(t) == (t, (;—Hﬂ)n), mmeZ (10.12)

Also, we set
=m0 | 1eRY, ez, T3 = {Fa(0) | 1€ R} (10.13)
Then,
2 =3)uxl.

See Figure 6.

Lemma 10.9. The singularities degenerate on

1 1
N3 :{<<§+m>n, <§+nﬁ>n) e R? mﬂzeZ},
where XV and X3 are defined in (10.13).
Proor. For any ¢ eR,
' .
6_1)i:0’ ieN, (10.14)

on XV since {(y,(f)) =0. On the other hand, for any 7€ R,

?5:0, ieN, (10.15)

ou'’

on X, since {(j,(7)) = 0. Hence,
G=6=0 (10.16)

on X NX). Namely, the singularity degenerates on X! NXJ. O
LemMa 10.10.  The singularities are non-degenerate on X°\(XV NXY).

Proor. We have ¢, = 0 on Xj. Moreover, sin(4/2) = 0 on the singularities.
Hence, {, =0 is equivalent to ¢, = 0. This is equivalent to f(x)-g(y) =0 by
(3.2). Now, using f =ycosu, g =7 cosu,

dg dv dv_ .
= = ——7psinu.

g()’)*a'd—y* dy
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Figure 6: The singular set X of p for //n=1/4. The thick curves or the thick lines indicate T
(upper-left), »-Ur (upper-right), 2? (lower-left), 23 (lower-right).

Thus, if {, = 0 we see sin u cos v = 0, since dv/dy # 0. Since sin v = +1 on 2?, if
{, =0 we have cos u = 0. Thus, the singularities are non-degenerate on XJ\X{.
Similarly, we see that the singularities are also non-degenerate on Z?\Zg. O

ProrosiTiON 10.11.  The singularities on Zg\Z? form cuspidal edges.
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Proor. The singularities on ZS\E? are non-degenerate by Lemma 10.10.
Moreover, the singular direction is 7" = (1,0) = 0/0u by (10.12), and null direc-
tion is £(¢) = (0,1) = 0/0v by (10.10). Hence, the singular direction and null direc-
tion are linearly independent. Therefore, the singularities on 23\210 are cuspidal
edges, by Proposition 10.2. 0

ProposITION 10.12.  The image of p on X\ is a single point (see Figure 8).
Proor. By Proposition 4.3, a y-curve of p lies on the sphere with center [

and radius R = |f/f'|. Since f =y cosu,

& o du  du |
/—7:—-—:— —_
J T dx du dx Tax S

2
R = (%) . (10.17)
~dx sSin u

X

Hence,

Thus, if u= (1/2+m)r, we see that R> =0. Therefore, the image of p in
{((1/2+m)r, )|t e R} is a single point for each m e Z.

Next, we will show that this single point does not depend on m. By (9.4),
9.7),

Z(u+2m,v) = Z(u,v) = Z(—u,v), p3(u+2n,v) = p3(u,v) = ps(—u,v). (10.18)

Thus, we see that

e T S
=p(—5mv)=p(—5mv)=plymr)=p(5mv)=

Hence we get the conclusion. O

We have seen that the singularities are degenerate on =) N X in Lemma 10.9.
Therefore, we cannot apply any known criteria of singularities on 2? OZS. In
addition, the shape of the singularities on 2(1) N 23 look like cone-like singularities,
but nearby horizontal slices of the surfaces give curves that have a finite number
of cusp points (see Figure 8).
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t/n=1/3 O/n=1/4

Figure 7: —n/2 <u <m/2, n/2 <v < 3n/2

m/4<u<3r/4 r/2<u<m

Figure 8 //n=2/3, 0 <v < 6n
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