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ON T-COERCIVE INTERIOR TRANSMISSION
EIGENVALUE PROBLEMS ON COMPACT MANIFOLDS
WITH SMOOTH BOUNDARY

By

Naotaka SHoI

Abstract. We consider an interior transmission eigenvalue problem
on two compact Riemannian manifolds with common smooth
boundary. We assume that this problem is locally anisotropic type.
Then we prove that the set of interior transmission eigenvalues forms
a discrete subset of complex plane. Moreover, we also mention the
interior transmission eigenvalue free region. In order to prove our
results, we employ the so-called T-coercivity method.

1. Introduction

In the present paper, we study the interior transmission eigenvalue problem
on two compact Riemannian manifolds with common smooth boundary. As we
explain in §2 and §4, the interior transmission eigenvalue problem (the ITE
problem for short) is a boundary value problem for a system of Helmholtz
equations on the support of the scattering media. The ITE problem arises
from scattering theory, in particular, from non-scattering phenomena (see e.g.,
Vesalainen [14], [15] for quantum and acoustic scattering). As is pointed out in
[14], [15], the ITE problem is closely related to the problem of non-scattering
energy or non-scattering wave number. The ITE problem was first studied by
Colton and Monk [8], in which they dealt with the case of isotropic media. Since
[8], the ITE problem in the isotropic case has been studied by a lot of people.
(For more details, see the survey of Cakoni and Haddar [6].) On the other hand,
a similar ITE problem with anisotropic media was studied by Bonnet-Ben Dhia,
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Chesnel and Haddar [4]. Currently, there are only a few results in the anisotropic
case. In addition, it should be also noted that all of those papers deal with the
ITE problems on Euclidean spaces. In recent years, scattering theory in non-
compact manifolds with ends, in particular hyperbolic manifolds, has been widely
studied. Therefore, it is natural to consider an ITE problem on Riemannian
manifolds.

Our main purpose in this article is to study the distribution of these
eigenvalues.

2. Background

Let us recall some basic notions of scattering theory in Euclidean case.
We now consider the case of time harmonic acoustic scattering problem on
d-dimensional Euclidean space RY for d >2 with compactly supported and
bounded inhomogeneity n. We assume that there exists a bounded domain
D c R? with smooth boundary 0D such that n(x) =1 outside D.

We deal with a stationary acoustic total wave u satisfying the perturbed
Helmholtz equation

(2.1) (~A—k*n)u=0 in R k>0

where A is the Laplacian on RY. Then we find that a solution to (2.1) is written
in the form

u=u+u’.
Here, u’ is an incident wave satisfying the free Helmholtz equation
(~A—k*u'=0 in R?

and u* is the corresponding scattered wave satisfying some asymptotic behavior
near infinity. Now let u/ = u/(x) be a plane wave ¢*** with an incident direction
o satisfying |w| =1 and a fixed positive wave number k (or a fixed positive
energy k2). If u® satisfies

1 (x) = C(k) x|~ P eMa(k; 0, %) + o(|x] V) as |x] — o0

for some positive constant C(k) depending on k, there exists a unique solution
u=u'+u* of (2.1) (see e.g., [7]). Here, X = x/|x| is the scattered direction of
u® and the function a(k;w,x) is called the scattering amplitude. Let F(k) be
the integral operator on the space of square integrable functions on the (d — 1)-
dimensional sphere with integral kernel a(k;w, X). Then the S-matrix is given by
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S(k) = 1 — 27iF (k). If one is an eigenvalue of S(k) for k > 0, then k is called
a non-scattering wave number (or k? is called a non-scattering energy). We denote
the set of all non-scattering wave numbers by oy. For k € gy, the corresponding
scattered wave u® = u®(k; x) vanishes outside D from the Rellich type uniqueness
theorem (see e.g., [12], [13]). Hence, if k is in oy, there exists a non-trivial
solution of the boundary value problem for a system of Helmholtz equations for
u' and u of the form

(2.2) (~A—k*u'=0 in R
(2.3) (~A—K’n)u=0 in D;

(2.4) u'—u=0 on oD;
(2.5) o' —ou=0 on dD;

where 0, is the outward normal derivative on dD. Conversely, we suppose that
(2.2)—(2.5) depending on a positive constant k£ has a non-trivial solution. Putting
u=u' outside D, we can extend u as a solution of (2.1). Letting u* = u — u', we
can show that the scattering amplitude corresponding to u* identically vanishes.
Hence, k is in gy. Therefore, k is in oy if and only if there exists a nontrivial
solution of the boundary value problem (2.2)—(2.5).

In order to study the spectral properties of non-scattering wave numbers, we
consider the boundary value problem for a system of Helmholtz equations for
unknown functions v and w of the form

(2.6) (~A—k*)v=0 in D;
(2.7) (=A—k’n)w=0 in D;
(2.8) v—w=0 on 0D
(2.9) ov—0w=0 on 0D.

The above boundary value problem is called an interior transmission eigenvalue
problem. If there exists a non-trivial solution of the ITE problem (2.6)—(2.9) for
some k € C, we call such a complex number k an interior transmission eigenvalue.
We denote the set of all interior transmission eigenvalues by ;. We note that the
ITE problem (2.6)—(2.9) is an eigenvalue problem for a non-selfadjoint operator.
Therefore, interior transmission eigenvalues do not necessarily belong to R. Also
note that from the definition of oy and oy, the inclusion relation oy C o; holds.
Hence, as the first step to study detailed properties of the non-scattering wave
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numbers, in this paper, we will focus on the distribution of the interior trans-
mission eigenvalues.

3. Notation

For d =2, let M be a d-dimensional connected and compact oriented
Riemannian manifold endowed with a smooth Riemannian metric g and with a
smooth boundary dM. We fix local coordinates x = (xy,...,x,) of M. We regard
g = g(x) as a positive-definite symmetric matrix valued function and we write
g(x) = (gy(x )),/ .. We denote the inverse matrix of g(x) by g(x) ' = (g["(x))szl.
The determinant of g(x) and the volume element on M are denoted by G(x)
and dV, := VG dx = /G dx| A--- Adxy, respectively. Here, dxi,...,dx, are the
I-forms providing an oriented basis for the cotangent bundle of M and the symbol
A means the wedge product, respectively. A symbol dS denotes the surface
element on dM induced by dx. For xe M, T,M and TM denote the tangent
space of M at x € M and the tangent bundle of M, respectively. We write tangent
vectors X, Y, on T'"M as X, = Z,-d:l Xi(x)(0i)y, Yy= Zf’;l Yi(x)(0i), € TxM,
respectively. Here, X; and Y; are smooth functions on M and {(6,»)x}id: | 1s a basis

of T.M. We denote the inner product and the norm on 7, M by

Xw Yx Z gz] Y]( )7 |X’c|q = (/Yx; Xr)w

respectively. The space of all smooth vector fields on M is denoted by I'(TM).
Let Ay: C*(M) — C*(M) and V,: C*(M) — I'(TM) be the Laplace-Beltrami
operator and the gradient operator on M, respectively. In local coordinates on
M, those operators are written in the form

d d
Agu= G2 0i(g"G o), (Vou), = g7(0)(0),
i,j=1

i,j=1

for all u e C*(M), respectively. Here, (V,u), denotes the corresponding tangent
vector in T, M.
For measurable functions # on M and f on dM, we define

ull = (pry = If{Cr 2 O] |u(x)| < Cy ae., xe M},
/1o oar) = Inf{C2 2 0 | f(x)| < G5 ace., xe M},

respectively. Next, we define L* (M) and L*(0M) by the space of all measurable
functions u on M such that |[[ul|;..y) < oo and the space of all measurable
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functions /* on M such that |f|l,-u) < o0, respectively. We denote the
L?*(M)-inner product and the L?*(M)-norm on C¥(M) and the L*(0M)-inner
product and the L?>(6M)-norm on C*(0M) by

oy = [ wwdV, lully = flwy, woe C (o),

oo = [ STdS. Ul =/ frg € (000)
respectively. Then the completion of C*(M) by | -||,, and the completion of
C*(0M) by || - ||, are denoted by L?(M) and L?(0M), respectively. We denote
the L?*(TM)-inner product and the L*(TM)-norm on I'(TM) by

(X» Y)TM = JM(XY; Yx)g dl/g,

”XHTM =V (Xv X)TMa

respectively. Then the completion of T'(TM) by | - |74, is denoted by L*(TM).
We denote the H'(M)-inner product and the H'(M)-norm on C*(M) by

X, Y eT(TM),

(,0) g1 ary = (Vout, Vg0) g + (1, 0)
u,ve C*(M),
||”||H'(M): (uvu)Hl(M)7

respectively. Then the completion of C*(M) by ||/, is denoted by
H'(M).

4. Main Theorem

To begin with, let us explain our setting. For d > 2, let M; and M, be
d-dimensional connected and compact smooth oriented Riemannian manifolds
endowed with Riemannian metrics g; and g, and with smooth boundaries dM;
and 0M,, respectively. Throughout the paper, we assume that

- My and M, have a common boundary I := M| = dM,.

- I' is a disjoint union of a finite number of connected and closed
components I'y,..., Ty, namely I' =TIY,T;.

- Let X:= M; N M,. Then there exist connected neighborhoods X;
of I'; (1 <j<N) such that X is written as the disjoint union of
2i,...,2y, namely, X = H_/ZIEJ- (see Figure 1).

(A-1)
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Figure 1

Here, we note that we do not necessarily assume that AM; and M, are diffeo-
morphic.

Now, for functions n; e L*(M;) (I=1,2) and (e L*(I') and for ke C,
we consider a boundary value problem for a system of Helmholtz equations for
unknown functions u; and u, of the form

(4.1) (=Ay, — K*n))uy =0 in M;;
(4.2) (=Ay, — K2m)uy =0 in Mo;
(4.3) up—up =0 on I}

(4.4) \/G_lév,]ul — \/Ezéuuz =Cu; onT.

Here, in the above, 0, | and J, , denote the outward normal derivatives on I with
respect to g; and g,, respectively. Similarly as in (2.6)—(2.9), we also call the
above boundary value problem an interior transmission eigenvalue problem.

REMARK 4.1. In scattering theory, the above functions n; (/ =1,2) and (
are called a refractive index and a conductive boundary parameter, respectively.
Usually, we assume that n; and n, are real valued functions and that { is a purely
imaginary valued function. For the details, see [3]. However, in this article, we
allow ny, n, and { to be complex valued functions.

We put
H:= H' (M) x H'(M>).

Then H is a Hilbert space equipped with the inner product (-, )y :== () g1 ar,) +

(“5*)m1(ay) and the norm || - [|yy == (-, -)11{/2. Now let us go into the definition of an

interior transmission eigenvalue.
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DeriNITION 4.2, If there exists a non-trivial solution (u;,u) € H of the ITE
problem (4.1)—(4.4) for some k € C, we call such a complex number k an interior
transmission eigenvalue.

DEFINITION 4.3.

- We denote the set of interior transmission eigenvalues by .

- A pair of functions (u;,u;) e H is called an interior transmission eigen-
function associated with k € oy, if (u;,u,) satisfies the ITE problem (4.1)—
(4.4) corresponding to k.

- The dimension of the space spanned by all interior transmission eigen-
functions (u;,u,) associated with k € g; is called the multiplicity of k.

Our first main result is stated as follows.

THEOREM 4.4. Let nje L*(M;) (I=1,2) and { € L* (") be complex valued
Sunctions. We assume that g2/\/Gy < cg1//Gi on T for some constant 0 < ¢ < 1.
Then there exists a constant {y > 0 such that for { with Re { > —(,, the set a1 of
interior transmission eigenvalues is a discrete subset of C. The point at infinity is
the only possible accumulation point of ;. Furthermore, the multiplicity of each
interior transmission eigenvalue is finite.

REMARK 4.5. The ITE problem (4.1)—(4.4) is said to be locally anisotropic
type on X, if gi(x) # g2(x) for some xeX. The condition on g; and ¢» in
Theorem 4.4 implies that the ITE problem (4.1)—(4.4) is locally anisotropic type
on 2.

For r,0 > 0, we put
N(r,0) :={keC||k| >r and |Im k| > (tan 6)|Re k|}

(see Figure 2). Then our second main result is given by the following.
THEOREM 4.6. Let nje L*(M;) (I =1,2) and { € L™ (") be complex valued
functions. We assume that Re ny and Re ny are strictly positive functions. We also

assume that ny, nmy, g\ and g satisfy

on X

(4.5) sup(v/G1(Re ny)) < ir%f(\/Gwz(Re n)),

i

s
3



222 Naotaka SHoI

Figure 2: An example of N(r,0) (r=1,0=mn/3).

for some constant 0 < ¢ < 1. Then there exist positive constants r, 0, & and {y such
that there are no interior transmission eigenvalues in the region N(r,0) for ny with
Im ny| <& in T and for { with Re{ > —{, on T.

In [4], by using analytic Fredholm theorem (see e.g., [2, Theorem 1]), Bonnet-
Ben Dhia, Chesnel and Haddar proved the discreteness of o;. In our setting,
instead of analytic Fredholm theorem, we use the theory of compact operators to
simplify their argument. As a result, we are able to remove their assumption
which is essential to use analytic Fredholm theorem. Furthermore, we note that
in this paper, we introduce a new function { called a boundary conductive
parameter in the ITE problem (4.1)—(4.4). This parameter { plays an important
role in scattering problem with conductive transmission condition. In this sense,
we can say that our problem is a slightly more generalized version of the original
ITE problem.

5. T-coercivity Method

In order to prove the discreteness of g7, we employ the T-coercivity method
(see for example [4], [5]). Let

Hy := {(u1,u2) e H|u; =uy on T}.

Let V,, and V,, be the gradient operators on (M,g;) and on (M, ¢>), respec-
tively. We define a sesquilinear form Ag[-,-] on Hy x Hy by

Ak[(“l»“Z)v (Uh UZ)} = (V!}]u17 Vylvl)TM1 - (ngub V{/zv2)TM2

- kz((”l“l,vl)Ml - (nzuz,vz)Mz) - (C”lvvl)r
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for all (u;,uz), (v1,v2) € Hy. We can easily show that the ITE problem (4.1)-(4.4)
has a non-trivial solution (u,u>) € H if and only if the variational problem of the
form

Ak[(ul,uz), (U],l)z)} =0 fOI‘ all (01,1)2) € H()
has a non-trivial solution (u;,u) € Hy. We define an operator 7 on Hy by
(5.1) T(uy,up) = (uy — 2yua, —u2)

for (u,u,) € Hy. Here, y is a smooth cut-off function on M, such that y =1
in a small neighborhood of T with support in XN M, and 0 < y(x) <1 for all
xeM,. Let Iy be the identity operator on H. Since 72 =1Iy, T is an iso-
morphism on Hy. By using this isomorphism, we define a sesquilinear form
AF[-,-] on Hp x Hy by

Al (w1, u2), (v1,02)] := Ag[(ur,12), T (01, 0)]

for all (u1,us), (v1,v2) € Hy. We can easily show that the above sesquilinear form
Al[-,"] is non-degenerate and bounded on Hy x Hy. Hence, applying the first
representation theorem (see e.g., [9, Page 322, Theorem 2.1]) or the Riesz repre-
sentation theorem to the sesquilinear form A][-,], we find that there exists a
bounded linear operator .7 (k) on Hy such that

AkT[(ulaMZ)a (v1,02)] = (&/T(k)(ul,uz)a (UlaUZ))H

for all (uj,us),(v1,v2) € Hy. Summarizing the above argument, we obtain the
following proposition.

PROPOSITION 5.1. A point k e C is in o; if and only if the operator /7 (k)
on Hy has a non-trivial kernel. In this case, each element of the kernel of <77 (k) is
interior transmission eigenfunction associated with k € ay. The multiplicity of k € a;
coincides with the dimension of the kernel of /T (k).

Now, let us introduce the notion of strictly coercive.

DeFNITION 5.2. Let H be a Hilbert space equipped with inner product
(-,-)y and norm || - ||; = +/(-,-)y- A bounded linear operator B: H — H is said
to be strictly coercive if there exists a constant C > 0 such that

Re(Bp, 9); = Cliglly

for all pe H.
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The following theorem is well-known as the Lax-Milgram theorem.

THEOREM 5.3 (see e.g., [10, Page 201, Theorem 13.23]). In a Hilbert space H,
a strictly coercive bounded linear operator B: H — H has a bounded inverse.

Let x e R\{0} and ¢,J > 0 be constants such that

e i=sup(v/Gp)e < irzlf(\/Gz)é =: J,.

)
We define a sesquilinear form Ay . s[-,:] on Hy x Hy by
Aih’,e,é[(”l’uz)v (v1, 02)] = (Vmul ) Vglvl)TM] - (nguz, V!]zvz)TMz
+ 17 ((eur, v1) yy, — (Ouz,02) ) — (G, 01)p

for all (uj,us), (v1,v2) € Hp. In addition, we define a bounded operator .%. s, on
Ho by

(F,e,5(ur, u2), (v1,02)) gy = Aixe,6[(u1,u2), T (01, 02)]

for all (u;,un), (v1,v2) € Hp.
Now in order to reduce the ITE problem (4.1)-(4.4) to the eigenvalue
problem for a certain compact operator, we state the following key lemma.

LemmA 54. Let mye L*(M;) (I=1,2) and { € L* (') be complex valued
Sunctions. We assume

g2 g1
52 ——— <¢c— on x
5-2) VG VG

for some constant 0 < ¢ < 1. Then there exist a point {, > 0 and a constant C > 0
such that for { with Re { > —{,, the inequality

(5.3) Re( Sy oo, ), (u1,12) )y = Cl(ur, )|, (1, u2) € Ho

holds.

ProOF. We have the equality

(54)  Re(Sypour,uz), (ur,u2))y

2 2
_ J V2, dV,, +J Vil dV,,
M]\E >

2
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2 2 2 2
el g+ ol n) + Va0, 4%,

[ Wl v 2 (e[l v+ [ ol av;, )
b b b

— 2 Re(Vy,u1, Vg, (x12)) 1, — 2i%e Re(ur, yua) yy, + Re(lur, ur)
for all (u;,uy) € Hy. Using Young’s inequality and (5.2), we have

(5.5) 2 Re(vglul’v!]] (X“Z))TM;

<@+ |

2 — 2
s ‘V{hu] |gl de + o ! le |V91u2‘g1 dVgl

— 2 2
iy J V22 o] Y,

< p) | Wyl}, avy + et | (Vnl, av,

_ G
+p7! sup(IVglx;\/—Gl)J | av,
> 2 >

and
1
(5.6)  2x% Re(uy, yuz)yy, < Kzeyj ME dvy + KZJ —— 1/ Gre|us|? dvy,
> VG2
for all «,f,y > 0. Plugging (5.5) and (5.6) into (5.4), we obtain
Re( I eo(ur, ), (ur,u2))g

2
= J |Vylul‘g1 dV;Jl +J
M\E

M,

Vel 4V, e s+ ol )
U= p) [ 1Vl v+ (=) | Fnl] av,

1
el y>j | av, +K2j L6 el av,
>

RVAC)

_ G
= sup (Wl ) | el v, alhal
2 2 T

Taking y such that ¢*/J, <y < 1, we have
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Re( Sy z6(ur, u2), (ur,u2))y

2 2
= J |Vy|”l|g1 dVyl +J ‘ngu2|gz deJz
Ml\Z MZ\Z

2 2 2 2

el s+ Ol 2s) + (1 — 2~ ) j Yyl dv,
-1 2 2 2
(- >J Vil dngJrKE(l—V)J v,
> >

2@~ ye) = ap ™) | el vy, — ol
b
for some cy,c; > 0. Using the trace theorem, we obtain
(5.7) lrllr < esllrll o,
for some ¢3 > 0. By taking o, f such that
c<a<]l, 0<pf<l—u

and using (5.7), letting |k| >0 large enough and {, >0 small enough, more
precisely taking

-1
¢ IR
K2>m7 0 <& <e3!min{l —a— B k(1 —yp)},

we can easily show that there exists a constant C > 0 such that the inequality
(5.3) holds. N

ReEmARK 5.5. For example, we take

c+1 1—c¢ 0, +¢&* 1-c¢
o= B ) ﬁ_ ’ Y= ) Co_gcg

and

2 — max 20, l O, +¢* " 4dc¢y
N &0 —&*) 737 10.(0, — &¥) l—¢c) |’

Then the constant C > 0 appeared in (5.3) is equal to (I —¢)/8.

REMARK 5.6. As stated above, using the isomorphism 7 given by (5.1), we
can avoid the difficulty arising from the non-ellipticity of the sesquilinear form
Agl-,+]. Such a method is called the T-coercivity method.



On T-coercive ITE problems on compact manifolds 227

Using the above lemma, we can write .o/ 7 (k) as the sum of an isomorphism
and a compact operator as follows.

ProposITION 5.7. Let mpe L*(M;) (I=1,2) and (e L*(I') be complex
valued functions. We assume (5.2) for some constant 0 < ¢ < 1. Then there exists a
point {y > 0 such that for { with Re { > —{, and for all k € C, the operator </ (k)
is written in the form /T (k) = % + A4 where .J is an isomorphism on Hy and A’
is a compact operator on Hy. As a result, /7 (k) is a Fredholm operator on Hy for

all keC.

Proor. By Lemma 5.4, the inequality (5.3) holds. Applying Theorem 5.3 to
the bounded linear operator .%, . s, we find that .% . s is an isomorphism on Hy.
Recall that .o/ (k) and Jxe0 are written as

(T (k) (w1, w2), (01, 02)) g
= (Vg ui, VQIUI)TMl + (ngUZ:ngUZ)TMZ = 2(Vyu1, Vg, ()(Uz))TM1
— I ((mur, 01) g, + (i, 02)y, = 2(mn, x02) 5y,) = (G, 01)p
and
(Jieo(ur, u2), (v1,02))g
= (Vgui, V.Ll]Ul)TMl + (V.leu2’v!lzvz)TM2 —2(Vgu1,Vy, (sz))TM]
+ 1 ((aur, 01) py, + (Ou, 02) 5, — 2(ew1, x02) ) — (Gn, 01

for (uj,uz), (v1,v2) € Hy, respectively. We put %::MT(k) — Jees- Then the
operator #~ satisfies

(A (w1, u2), (01, 02) )y
= —kz((nlul,vl)Ml + (nzuz,vz)M2 — 2(n1u1,)(vz)M1)
— Kz((aul, U])Ml + (Ouy, vz)M2 — 2(81/!1,)(1.72)M1)
for all (u,u), (vi,v2) € Hy. Therefore, the inequality

(A, u2), (01, 02) )l < ClIGrs 12) | 22001,y 22 01) 1 (01, 02) 11

holds for some constant C > 0 depending on k. Here, |- || 12(3,)xz2(p,) IS @ nOrm
of the Hilbert space L?>(M;) x L?*(M;) and denotes

2 2 1/2
et ) |2 aayy w20ty = Ul g, + 2l )Y
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for (uj,uy) € L*>(M,) x L*>(M,). The above inequality is equivalent to

(5.8) [ (ur w2) lix < Cll (uns u2)l| 22001,y 22(01,)

for all (u;,uy) € Hy. By the Rellich—Kondrashov theorem (see e.g., [1, Page 168,
Theorem 6.3]), a bounded sequence in Hy, has a Cauchy subsequence in
L*(My) x L*(My). Let {(u1,,u2,)},~, be such a subsequence. Using the inequality
(5.8), we have

[ A (rn, tizn) = A (i, vam) lg < C|| (10, 120) — (ulm»”Zm)HLZ(Ml)xLZ(Ml)'

This means that {# (ui,, u2,)},—; is a Cauchy sequence in Hy. Thus, 7 is a
compact operator on Hy. If we take .# = . . 5, then we have .o/ T(k) =I5+ A,
which proves the assertion. [

6. Proof of the Main Theorems

First, we prove Theorem 4.4.

PrOOF OF THEOREM 4.4. Let us define two operators # and %, ,.s on Hy
by

(F (u1,u2), (v1,02))yg = (mur,v1)yy, + (mau2,v2) y, — 2(m1ur, x02)

and
(Ye.e.6(u1,u2), (v1,02) )y = Kz((ﬁul,vl)Ml + (5M2,02)M2 - 2(8u17){1)2)M1)

for all (u,uz), (v1,v2) € Hy, respectively. By the same argument as in the proof
of Proposition 5.7, we can show that & and %, ,; are also compact operators on
Hy. Using these operators, we rewrite .7 (k) as

jx.s‘é - kz? - g}c,s,é'

Let us take &0 >0 such that supy(v/Gy)e < infy(1/Gy)d. Next, we choose &
and 0 small enough such that fo_,;, 5%¢.eolln,—m, < 1. Here, || ||y, g, denotes
the operator norm for bounded linear operators on Hy. Then we can easily show
that Iy —f,;i 590 1s a bijection on Hy and has a bounded inverse. There-

fore, an interior transmission eigenfunction (u;,u;) € Hy associated with k € gy
satisfies

(6.1) 0=t 5o T (k) (ur 1)

= (IH - Jflb‘glc,a,é)(“l,uﬁ - k2j71 ‘97(”17“2)'

K, &, K,8,0
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Put 4= (-7, ’1(5%75,5)71] ~1 .. Obviously, % is a bounded operator on Hj

K, &, K,8,0°
and is independent of k. Thus, 4% is also a compact operator on Hy. Moreover,

it follows easily from (6.1) that
@f(ul , uz) = kiz(m , uz)

for all (u;,u2) € Ho\{(0,0)}. As a conclusion, (u;,u;) € Hy is an interior trans-
mission eigenfunction associated with k € a;\{0} if and only if k=2 € C is an
eigenvalue of the compact operator #% on Hy and (u;,uz) € Hy is the corre-
sponding eigenfunction associated with k2. As is well-known in the theory of
compact operators, 0 is the only possible accumulation point of eigenvalues of a
compact operator. Therefore, we obtain the assertion of Theorem 4.4. O

Next, we prove Theorem 4.6.

PrOOF OF THEOREM 4.6. It is sufficient to prove that there exist constants
r> 0 and 6 € (0,7/2] such that for all k € N(r,0) and for some constant C > 0,
the inequality

(6.2) Re (o T (k) (ur,u2), (ur,u2)) = C||(ur,u2) gy, (w1, u2) € Hp

holds. Indeed, applying Theorem 5.3 to the bounded linear operator .o/ (k), we
find that for k € N(r,0), /7 (k) is an isomorphism on Hy and has a trivial kernel.
Hence, such a complex number k is not in g;.

We put

ni :=sup(v/Gi(Reny)), ny, := i%f(\/G_z(Re m)).

z
We assume that n; satisfies

Imn|<g inZX
for some constant g > 0. Then we derive the estimate

(6.3) 2 Re(muy, yuz),,

1
<y| R 2 dv, J—*l G R >av,
| Remppn v, + | 7 (VG Rem)ef” a,

/G
—l—soJ |”1|2 dVy, + ¢ sup( é) J |u2|2 dvy,,
p) b 2/ Js

for all y > 0. Let p e R\{0}. Using (4.5), (5.5) and (6.3), we obtain
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Re (oo T (ip) (w1, ua), (u1, 1))y

> J |Vglul|51 dVgl +J |ngu2|§2 dng
M\Z M>\Z
2 2 . 2
2 int (Rem)lln By + it (Re )l
== ) Vyal} @V (1= o) | Fyl}, a,

+sz (1 - »)(Re m)lu|* dV, —pzeoj w|? dv,
> >

1 |G

2 -1 % 2 2 1 2

P — x av,, — u - dv
+ JZ GZ (nz Y ny )lle‘ 92 P &o Szp< 2) J; |u2| 9

_ G
5 sup (Ve[ | ol v = ol
) 2 )

for all o,f,y > 0. Taking y such that n{/m. <y <1, we have
Re (o T (ip)(ur,u2), (u1,u2)) gy

2 2
> | Wl v | Wl v,
M\X \Z

M,

2( 2 : 2
02 nt (Re mlln By + it (Re el
F =) [ [Vonl} ¥+ (1) | Wpel?, a,
z z
(= intRem) — ) [ al? v,
z

+ (per(ma — y~'n}) — cae0) — ™) L ua|* dV,, — Collun|f

for some ¢j, ¢y, ¢4 > 0. Using the same argument as in the proof of Lemma 5.4,
for a suitable choice of constants «, f, y and a small constant & > 0 and a large
constant r > 0 and letting |p| > r, we have

(6.4)  Re( " (ip)(ur,u2), (ur,u2))yy

2 2 2 2 2
> Ci(IVguillag, + Vatiallzag,) + Cop® (lunlliag, + lleallg,) — Collean |7
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for some constants C;,C, >0. On the other hand, taking k =ipe® with
0 < ¢ < n/2, we find that there exists a constant C3 > 0 such that

(6.5) Re((# T (ip) — T (k) (ur,u2), (ur,102) )y
< Cop?1 = (i, + a3
for all (u;,uz) € Hyp. Combining (6.4) with (6.5), we obtain
Re(o/ T (k) (ur, ), (1, u2) )y
> Ci(|Vgtar| 7, + IVaati2| 7,
+(Co = Gs[L =P (g, + lezllag,) — Gollen 17

for all (u;,up) € Hy. By choosing ¢,y > 0 small enough and using (5.7), we
have

Re(/ 7 (k) (ur,u2), (ur,12))gg = Cll(ur, ) I3y

for some constant C > 0. We put 0:=n/2 —¢. Then for all ke N(r,0), the
inequality (6.2) holds. Therefore, we obtain the assertion of the Theorem 4.6.
|

7. Final Remarks

1. In this paper, we have presented spectral properties of interior transmis-
sion eigenvalues corresponding to scattering by an inhomogeneous medium on
Riemannian manifolds. In particular, we have studied the discreteness and
localization of interior transmission eigenvalues corresponding to the case of
locally anisotropic type. In this case, we used the 7-coercivity method. This
method was first introduced by Bonnet-Ben Dhia, Ciarlet and Zwolf [5]. Using
the idea of T-coercivity, they proved that the electromagnetic wave transmission
problem is well-posed when dielectric constant changes its sign. In [4], Bonnet-
Ben Dhia, Chesnel and Haddar first applied 7T-coercivity method to the study of
the discreteness of interior transmission eigenvalues. They considered the ani-
sotropic ITE problem in a bounded domain of R?. Making use of T-coercivity
method, they proved that the set of interior transmission eigenvalues forms a
discrete set under a certain condition on refractive index, which is crucial to use
analytic Fredholm theorem.

2. The ITE problem on Riemannian manifolds is also studied in [11]. In a
similar setting to ours, however, they deal with the case when g;(x) = g»(x) for
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all x e I'. Here, the ITE problem (4.1)—(4.4) corresponding to this case is said to
be locally isotropic type on T'. In this case, they employ the method of Dirichlet-
to-Neumann operators to prove the discreteness, existence and Weyl asymptotics
of interior transmission eigenvalues. Their Weyl asymptotics is estimated from
below by the counting functions of the corresponding Dirichlet eigenvalues on
compact Riemannian manifolds.
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