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THE LICHNEROWICZ THEOREM ON CR MANIFOLDS

By

Elisabetta Barletta1

Abstract. For any compact strictly pseudoconvex CR manifold M

endowed with a contact form y we obtain the Bochner type for-

mula 1
2Dbðj‘Hf j2Þ ¼ jpH‘2f j2 þ ð‘Hf ÞðDb f Þ þ rð‘Hf ;‘Hf Þ þ 2Lf

(involving the sublaplacian Db and the pseudohermitian Ricci

curvature r). When M is compact of CR dimension n and

rðX ;X Þ þ 2AðX ; JXÞb kGyðX ;XÞ, X A HðMÞ, we derive the esti-

mate �lb 2nk=ð2n� 1Þ on each nonzero eigenvalue l of Db sat-

isfying EigenðDb; lÞVKerðTÞ0 ð0Þ where T is the characteristic

direction of dy.

1. Introduction

By a well known result by A. Lichnerowicz, [18], and M. Obata, [21], on

any m-dimensional compact Riemannian manifold ðM; gÞ with Ricb kg the first

eigenvalue of the Laplacian satisfies the estimate

l1 bmk=ðm� 1Þ;ð1Þ

with equality if and only if M is isometric to the standard sphere Sm. The proof

of (1) relies on the Bochner formula (cf. e.g. [3], p. 131)

� 1

2
Dðjdf j2Þ ¼ jHessð f Þj2 � ðdf ; dDf Þ þ Ricððdf Þa; ðdf ÞaÞ;ð2Þ

for any f A CyðMÞ. On the other hand, given a compact strictly pseudoconvex

CR manifold M, with any fixed contact form y one may associate a natural

second order di¤erential operator Db (the sublaplacian) which is similar in many
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respects to the Laplacian of a Riemannian manifold. Indeed, Db is hypoelliptic

and (by a result of [20]) has a discrete spectrum

0 < �l1 < �l2 < � � � < �lk < � � � " þy:

Also ðM; yÞ carries a natural linear connection ‘ (the Tanaka-Webster connection,

cf. [24]–[25]) preserving the Levi form and the maximally complex distribution,

and resembling to both the Levi-Civita connection and the Chern connection (in

Hermitian geometry). Moreover the Ricci tensor r of ‘ is likely to play the role

of the Ricci curvature in Riemannian geometry. To give an example, by a result

of J. M. Lee, [15], if rðZ;ZÞ > 0 for any Z A T1;0ðMÞ, Z0 0, then the first

Kohn-Rossi cohomology group H 0;1ðM; qbÞ vanishes (as a CR counterpart of

the classical result in [5]). It is a natural question whether we may estimate the

spectrum of Db from below, under appropriate geometric assumptions (on r). The

first attempt to bring (1) to CR geometry belongs to A. Greenleaf, [12]. His result

is that on any compact strictly pseudoconvex CR manifold M, of CR dimension

nb 3, one has

�l1 b nC=ðnþ 1Þð3Þ

provided that

R
ab
Z aZ b þ iðA

ab
Z aZ b � AabZ

aZ bÞb 2Cg
ab
Z aZ b;ð4Þ

for some constant C > 0. Here R
ab

¼ rðTa;Tb
Þ is the pseudohermitian Ricci tensor

while Aab is the pseudohermitian torsion (cf. e.g. [7], p. 102) and fTa : 1a aa ng
is a local frame of the CR structure. The proof of (3) relies on the rather involved

Bochner like formula

Dbðj‘1;0f j2Þ ¼ 2
X
a;b

ð f
ab
fab þ fab fabÞ þ 4i

X
a

ð fa f0a � fa f0aÞð5Þ

þ 2
X
a;b

R
ab
fa fb þ 2in

X
a;b

ðAab fa fb � A
ab
fa fbÞ

þ
X
a

f faðDb f Þa þ faðDb f Þag

where ‘1;0f ¼ f aTa. Cf. also Chapter 9 in [11]. Recently, a large number of

results were obtained within CR and pseudohermitian geometry, mainly by

analogy to similar findings in Riemannian geometry (cf. e.g. S. Dragomir et al.,

[8]–[10]). On this line of thought, one scope of this paper is to establish the

Bochner like formula1

1Under the conventions in the present paper the sublaplacian of [12] is �Db.
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1

2
Dbðj‘Hf j2Þ ¼ jpH‘2f j2 þ ð‘Hf ÞðDb f Þ þ rð‘Hf ;‘Hf Þ þ 2Lf ;ð6Þ

for any f A CyðMÞ, where the di¤erential operator L given by

Lf 1 ðJ‘Hf ÞðTf Þ � ðJ‘T‘
Hf Þð f Þ:ð7Þ

As an application we shall prove

Theorem 1. Let M be a compact strictly pseudoconvex CR manifold, of CR

dimension n. Let y be a contact form on M such that the Levi form Gy is positive

definite. Let l be a nonzero eigenvalue of the sublaplacian Db. Suppose that there is

a constant k > 0 such that i)

rðX ;XÞ þ 2AðX ; JXÞb kGyðX ;XÞ; X A HðMÞ;ð8Þ

and ii) there is an eigenfunction f A EigenðDb; lÞ such that Tð f Þ ¼ 0. Then l

satisfies the estimate

�lb 2nk=ð2n� 1Þ:ð9Þ

Another lower bound on �l1 (in terms of the diameter of ðM; gyÞ, where gy is the

Webster metric) was found in [1] (by using estimates of the horizontal gradient

at a point, rather than L2 methods) as an extension of the work by Z. Jiaqing &

Y. Hongcang, [13], in Riemannian geometry. Although under more restrictive

assumptions our estimate (9) is sharper than (3). When ðM; yÞ is Sasakian (i.e.

Aab ¼ 0) A. Greenleaf ’s assumption (4) coincides with our (8).

The Bochner type formula (6) (as compared to Greenleaf ’s (5)) presents a

closer resemblance to (2) in Riemannian geometry, perhaps enabling one to look

for an analogue to the result by M. Obata, [21], as well. Restated in the CR

category, the problem is whether equality in (9) implies that M is CR iso-

morphic to the sphere S2nþ1. As it turns out when M ¼ S2nþ1 the assumptions

in our Theorem 2 (see below) are satisfied if and only if n ¼ 1. We conjecture

that any strictly pseudoconvex CR manifold M carrying a contact form y

satisfying (8) for some k > 0 and such that i) �2nk=ð2n� 1Þ A SpecðDbÞ, and ii)

EigenðDb;�2nk=ð2n� 1ÞÞVKerðTÞ0 ð0Þ, is CR isomorphic to S3.
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2. A Reminder of CR Geometry

Let ðM;T1;0ðMÞÞ be an oriented CR manifold, of CR dimension n. For a

review of the main notions of CR and pseudohermitian geometry one may see [7].

Let HðMÞ ¼ RefT1;0ðMÞlT0;1ðMÞg be the maximally complex distribution and

JðZ þ ZÞ ¼ iðZ � ZÞ, Z A T1;0ðMÞ, its complex structure. Let y be a pseudo-

hermitian structure on M, i.e. y is a di¤erential 1-form such that KerðyÞ ¼ HðMÞ.
The Levi form is given by GyðX ;YÞ ¼ ðdyÞðX ; JYÞ, X ;Y A HðMÞ. The given

CR manifold is nondegenerate (respectively strictly pseudoconvex) if Gy is non-

degenerate (respectively positive definite). From now on, let us assume that M is

nondegenerate. Then each pseudohermitian structure y is a contact form i.e.

C ¼ y5ðdyÞn is a volume form on M. Let T be the characteristic direction of

dy i.e. the unique globally defined nowhere zero tangent vector field T on M

determined by yðTÞ ¼ 1 and T c dy ¼ 0. Let gy be the Webster metric i.e.

gyðX ;YÞ ¼ GyðX ;YÞ; gyðX ;TÞ ¼ 0; gyðT ;TÞ ¼ 1;

for any X ;Y A HðMÞ. ðM; gyÞ is a semi-Riemannian manifold. If M is strictly

pseudoconvex and y is chosen such that Gy is positive definite (note that G�y

is negative definite) then ðM; gyÞ is a Riemannian manifold (whose canonical

Riemannian volume form is cnC, where cn ¼ 2�n=n!).

Let M be a strictly pseudoconvex CR manifold and y a contact form on M

such that the Levi form Gy is positive definite. The sublaplacian is

Db f ¼ divð‘Hf Þ; f A C2ðMÞ;

where divðXÞ is the divergence of the vector field X (with respect to the

Riemannian metric gy) and ‘Hf ¼ pH‘f is the horizontal gradient. Precisely

‘f is the ordinary gradient (i.e. gyð‘f ;XÞ ¼ X ð f Þ for any X A TðMÞ) and

pH : TðMÞ ! HðMÞ is the projection associated to the direct sum decomposition

TðMÞ ¼ HðMÞlRT . Let ‘ be the Tanaka-Webster connection of ðM; yÞ i.e. the

unique linear connection on M obeying to i) HðMÞ is ‘-parallel, ii) ‘gy ¼ 0,

‘J ¼ 0, iii) the torsion T‘ of ‘ satisfies

T‘ðZ;WÞ ¼ 0; T‘ðZ;WÞ ¼ 2iGyðZ;WÞT ; Z;W A T1;0ðMÞ;

t � J þ J � t ¼ 0;

where tðXÞ ¼ T‘ðT ;XÞ, X A TðMÞ. A strictly pseudoconvex CR manifold M

is a Sasakian manifold (in the sense of [4], p. 73) if and only if t ¼ 0. Given

two CR manifolds M and N a CR map is a Cy map f : M ! N such that

ðdx f ÞT1;0ðMÞx JT1;0ðNÞf ðxÞ for any x A M. A CR isomorphism is a Cy dif-
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feomorphism and a CR map. By a recent result of G. Marinescu et al., [19], any

Sasakian manifold is CR isomorphic to a real submanifold of C N , for some

Nb 2, carrying the induced CR structure.

3. The Bochner Formula

Let fX1; . . . ;X2ng be a local orthonormal (i.e. GyðXj;XkÞ ¼ djk) frame of

HðMÞ, defined on the open subset U JM. Then

Db f ¼
X2n
j¼1

fX 2
j f � ð‘Xj

XjÞ f gð10Þ

on U . Let x0 A M be an arbitrary point. As well known HðMÞ and gy are parallel

with respect to ‘. Therefore, by parallel displacement of a given orthonormal

frame fv1; . . . ; v2ngHHðMÞx0
with vaþn ¼ Jxva, 1a aa n, along the geodesics of

‘ issuing at x0 we may build a local orthonormal frame fXjg of HðMÞ, defined

on an open neighborhood of x0, such that

ð‘Xj
XkÞðx0Þ ¼ 0; 1a j; ka 2n:ð11Þ

Also Xaþn ¼ JXa (as a consequence of ‘J ¼ 0). Then (by (10) and ‘gy ¼ 0)

Dbðj‘Hf j2Þðx0Þ ¼
X
j

X 2
j ðj‘Hf j2Þðx0Þ

¼ 2
X
j

Xjðgyð‘Xj
‘Hf ;‘Hf ÞÞx0

¼ 2
X
j

fgyð‘Xj
‘Xj

‘Hf ;‘Hf Þ þ gyð‘Xj
‘Hf ;‘Xj

‘Hf Þgx0
:

As fXjg is orthonormal, the first term in the above sum is

X
j;k

gyð‘Xj
‘Xj

‘Hf ;XkÞXkð f Þ:

Moreover (by (11))

gyð‘Xj
‘Xj

‘Hf ;XkÞx0
¼ fXjðgyð‘Xj

‘Hf ;XkÞÞ � gyð‘Xj
‘Hf ;‘Xj

XkÞgx0

¼ XjðXjðgyð‘Hf ;XkÞÞ � gyð‘Hf ;‘Xj
XkÞÞx0

¼ XjðXjXk f � ð‘Xj
XkÞ f Þx0

¼ Xjðð‘2f ÞðXj;XkÞÞx0

where the Hessian is defined with respect to the Tanaka-Webster connection
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ð‘2f ÞðX ;YÞ ¼ ð‘X df ÞY ¼ X ðY ð f ÞÞ � ð‘XYÞ f ; X ;Y A TðMÞ:

Unlike the Hessian in Riemannian geometry ‘2f is never symmetric

ð‘2f ÞðX ;Y Þ ¼ ð‘2f ÞðY ;X Þ � T‘ðX ;YÞð f Þ;ð12Þ

where T‘ is the torsion of ‘. On the other hand T‘ is pure (cf. [7], p. 102) hence

T‘ðX ;YÞ ¼ �2WðX ;YÞT ; X ;Y A HðMÞ:ð13Þ

Here WðX ;Y Þ ¼ gyðX ; JY Þ (so that W ¼ �dy). Then (by (12)–(13))

gyð‘Xj
‘Xj

‘Hf ;XkÞx0
¼ Xjðð‘2f ÞðXj ;XkÞÞx0

¼ Xjðð‘2f ÞðXk;XjÞ þ 2WðXj;XkÞTf Þx0

¼ gyð‘Xj
‘Xk

‘Hf ;XjÞx0
þ 2WðXj;XkÞx0

XjðTf Þx0

so that

1

2
Dbðj‘Hf j2Þðx0Þ ¼

X
j

j‘Xj
‘Hf j2x0

þ
X
j;k

fgyð‘Xj
‘Xk

‘Hf ;XjÞð14Þ

þ 2WðXj;XkÞXjðTf Þgx0
Xkð f Þx0

:

If B is a bilinear form on TðMÞ we denote by pHB its restriction to HðMÞ. The

norm of pHB is given by jpHBj2 ¼
P

j;k BðXj;XkÞ2. Then

jpH‘2f j2 ¼
X
j;k

ð‘2f ÞðXj;XkÞ2 ¼
X
j;k

ðXjXk f � ð‘Xj
XkÞ f Þ2

¼
X
j;k

gyð‘Xj
‘Hf ;XkÞ2 ¼

X
j

gyð‘Xj
‘Hf ;‘Xj

‘Hf Þ

so that

jpH‘2f j2 ¼
X
j

j‘Xj
‘Hf j2:ð15Þ

Next ½Xj ;Xk� ¼ ‘Xj
Xk � ‘Xk

Xj � T‘ðXj;XkÞ hence (by applying (11) and (13))

½Xj;Xk�x0
¼ 2WðXj;XkÞx0

Tx0

and taking into account

‘X‘Y ¼ ‘Y‘X þ RðX ;YÞ þ ‘½X ;Y �

(where R is the curvature tensor field of ‘) we obtain
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‘Xj
‘Xk

‘Hf ¼ ‘Xk
‘Xj

‘Hf þ RðXj;XkÞ‘Hf þ 2WðXj;XkÞ‘T‘
Hfð16Þ

at x0. Moreover

gyð‘Xk
‘Xj

‘Hf ;XjÞx0
¼ fXkðgyð‘Xj

‘Hf ;XjÞÞ � gyð‘Xj
‘Hf ;‘Xk

XjÞgx0

¼ XkðX 2
j f � ð‘Xj

XjÞ f Þx0

that is

X
j

gyð‘Xk
‘Xj

‘Hf ;XjÞx0
¼ XkðDb f Þx0

:ð17Þ

Therefore (by (16)–(17))X
j;k

gyð‘Xj
‘Xk

‘Hf ;XjÞx0
Xkð f Þx0

¼
X
k

fXkðDb f ÞXk f gx0
þ
X
j;k

fgyðRðXj;XkÞ‘Hf ;XjÞXk f

þ 2WðXj;XkÞgyð‘T‘
Hf ;XjÞXk f gx0

¼ ð‘Hf ÞðDb f Þx0
þ
X
j

fgyðRðXj;‘
Hf Þ‘Hf ;XjÞ

þ 2gyðXj; J‘
Hf Þgyð‘T‘

Hf ;XjÞgx0

¼ ð‘Hf ÞðDb f Þx0
þ rð‘Hf ;‘Hf Þx0

þ 2gyð‘T‘
Hf ; J‘Hf Þx0

where rðX ;YÞ ¼ tracefZ 7! RðZ;YÞXg. Then (by (15)) the identity (14) becomes

1

2
Dbðj‘Hf j2Þ ¼ jpH‘2f j2 þ ð‘Hf ÞðDb f Þ þ rð‘Hf ;‘Hf Þ

þ 2gyð‘T‘
Hf ; J‘Hf Þ þ 2gyð‘HTf ; J‘Hf Þ

which yields (6).

4. A Lower Bound on �l for l A SpecðDbÞ with

EigenðDb; lÞVKerðTÞ0 ð0Þ

Let M be a compact strictly pseudoconvex CR manifold and y a contact

form on M with Gy positive definite. Let ðu; vÞ ¼
Ð
M
uvC be the L2 inner product

on M and kuk ¼ ðu; uÞ1=2 the L2 norm. For any f A CyðMÞ let f0 ¼ Tð f Þ. We

shall need the following two lemmas.
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Lemma 1.

divðJ‘Hf Þ ¼ 2nf0:ð18Þ

Proof. Let fTa : 1a aa ng be a local frame of T1;0ðMÞ, defined on

U JM. Then ‘Hf ¼ f aTa þ f aTa on U , where f a ¼ gabf
b
, f

b
¼ T

b
ð f Þ and

T
b
¼ Tb, hence

J‘Hf ¼ ið f aTa � f aTaÞ:ð19Þ

We wish to compute the divergence of the vector field (19). As C is parallel with

respect to ‘

divðJ‘Hf Þ ¼ tracefTA 7! ‘TA
J‘Hf g

where A A f0; 1; . . . ; n; 1; . . . ; ng (with the convention T0 ¼ T). We set fAB ¼
ð‘2f ÞðTA;TBÞ. Then

‘Tb
J‘Hf ¼ ið fb aTa � fb

aTaÞ

where f a
b ¼ gagfbg, etc., so that

divðJ‘Hf Þ ¼ ið fa a � fa
aÞ:ð20Þ

The identities (12)–(13) furnish the commutation formula f
ab

¼ f
ba
� 2ig

ab
f0. In

particular

fa
a ¼ fa

a þ 2inf0ð21Þ

hence (20) yields (18). Q.e.d.

Lemma 2. ð
M

LfC ¼ �4nk f0k2 þ
ð
M

Að‘Hf ; J‘Hf ÞC;ð22Þ

Here AðX ;Y Þ ¼ gyðtX ;YÞ is the pseudohermitian torsion of ðM; yÞ and L is given

by (7).

Proof. By the very definition of Lfð
M

LfC ¼ J1 � J2

where

J1 ¼
ð
M

ðJ‘Hf Þð f0ÞC; J2 ¼
ð
M

ðJ‘T‘
Hf Þð f ÞC:
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By Green’s lemma and (18)

J1 ¼
ð
M

fdivð f0J‘Hf Þ � f0 divðJ‘Hf ÞgC

¼ �
ð
M

f0 divðJ‘Hf ÞC ¼ �2nk f0k2;

J2 ¼
ð
M

divð fJ‘T‘
Hf ÞC�

ð
M

f divðJ‘T‘
Hf ÞC

¼ �
ð
M

f divðJ‘T‘
Hf ÞC:

Let us compute in local coordinates divðJ‘T‘
Hf Þ. According to the notations

used in the proof of lemma 1, set fABC ¼ ð‘3f ÞðTA;TB;TCÞ where

ð‘3f ÞðX ;Y ;ZÞ ¼ ð‘X‘
2f ÞðY ;ZÞ

¼ Xðð‘2f ÞðY ;ZÞÞ � ð‘2f Þð‘XY ;ZÞ � ð‘2f ÞðY ;‘XZÞ;

for any X ;Y ;Z A TðMÞ. Then

J‘T‘
Hf ¼ ið f0

aTa � f0
aTaÞ

yields

‘Ta
ðJ‘T‘

Hf Þ ¼ ið fa0
bTb � fa0

bT
b
Þ

so that (by ‘T ¼ 0)

divðJ‘T‘
Hf Þ ¼ tracefTA 7! ‘TA

J‘T‘
Hf g ¼ ið fa0

a � fa0
aÞ;ð23Þ

where fa0
b ¼ gbgfa0g, etc. We need the third order commutation formula

f
b0a

¼ f
a0b

þ 2ig
ab
f00 þ A

g

b
fag � Ag

a fbg þ A
g

b;a
fg � A

g

a;b
fgð24Þ

where f00 ¼ ð‘2f ÞðT ;TÞ ¼ T 2ð f Þ. This follows from

ð‘3f ÞðX ;T ;Y Þ � ð‘3f ÞðY ;T ;X Þ

¼ 2WðX ;YÞ f00 � X ðtðY Þ f Þ þ Y ðtðXÞ f Þ þ tð½X ;Y �Þ f

i.e.

ð‘3f ÞðX ;T ;YÞ ¼ ð‘3f ÞðY ;T ;XÞ þ 2WðX ;YÞ f00

þ ð‘2f ÞðY ; tðXÞÞ � ð‘2f ÞðX ; tðYÞÞ � SðX ;YÞ f ;
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for any X ;Y A HðMÞ, where SðX ;YÞ ¼ ð‘XtÞY � ð‘Y tÞX . Indeed we may set

X ¼ Ta and Y ¼ T
b

in the previous identity and observe that SðTa;Tb
Þ ¼

A
g

b;a
Tg � A

g

a;b
Tg where tðTaÞ ¼ Ab

aTb
and the covariant derivatives A

g

b;a
are given

by ð‘Ta
tÞT

b
¼ A

g

b;a
Tg. The identity (24) leads to

fa0
a ¼ fa0

a þ 2inf00 þ Aabfab � Aabf
ab
þ Aab

;a fb � Aab
;a fb

hence (23) becomes

divðJ‘T‘
Hf Þ ¼ 2nf00 � iðAabfab � Aabf

ab
þ Aab

;a fb � Aab
;a fbÞ:

Therefore

J2 ¼ �2n

ð
ff00Cþ i

ð
f ðAabfab � Aabf

ab
þ Aab

;a fb � Aab
;a fbÞC

where ð
M

ff00 ¼
ð
M

fTð f0ÞC ¼
ð
M

fTð ff0Þ � f 2
0 gC

¼
ð
M

fdivð ff0TÞ � ff0 divðTÞgC� k f0k2

hence (by divðTÞ ¼ 0) ð
M

ff00C ¼ �k f0k2:

On the other hand divðZ aTaÞ ¼ Z a
;a hence (by Green’s lemma)ð

M

fAab
;afb ¼

ð
M

fð ffbAabÞ;a � Aabfa fb � fAabfb;agC

¼ �
ð
M

ðAabfa fb þ fAabfb;aÞC

where fb;a ¼ ð‘Ta
df ÞTb ¼ fab. Hence

J2 ¼ 2nk f0k2 þ i

ð
M

ðAabfa fb � Aabfa fbÞC

and then (by Að‘Hf ; J‘Hf Þ ¼ iðAab f
af b � A

ab
f af bÞ) we may conclude that

J2 ¼ 2nk f0k2 �
ð
M

Að‘Hf ; J‘Hf ÞC

so Lemma 2 is proved.
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Let us prove Theorem 1. Note that ð‘Hf Þð f Þ ¼ j‘Hf j2. Let l be an

eigenvalue of Db and f an eigenfunction corresponding to l such that Tð f Þ ¼ 0.

Then (6) becomes

1

2
Dbðj‘Hf j2Þ ¼ jpH‘2f j2 þ lj‘Hf j2 þ rð‘Hf ;‘Hf Þ þ 2Lf :

Let us integrate over M and use Green’s lemma, Lemma 2 and the assumptions

(i)–(ii) in Theorem 1 to get

0 ¼ kpH‘2f k2 þ lk‘Hf k2 þ
ð
M

frð‘Hf ;‘Hf Þ þ 2Að‘Hf ; J‘Hf ÞgC

b kpH‘2f k2 þ ðlþ kÞk‘Hf k2

that is

0b kpH‘2f k2 þ ðlþ kÞk‘Hf k2:ð25Þ

Once again, as f is an eigenfunction

kDb f k2 ¼
ð
M

jDb f j2C ¼ l

ð
M

fDb fC ¼ l

ð
M

f divð‘Hf ÞC

¼ l

ð
M

fdivð f‘Hf Þ � ð‘Hf Þð f ÞgC

that is

kDb f k2 ¼ �lk‘Hf k2:ð26Þ

Next (with the notations in Section 2) we set

vj ¼ ðð‘2f ÞðXj;X1Þ; . . . ; ð‘2f ÞðXj;X2nÞÞ; 1a ja 2n;

so that

jpH‘2f j2 ¼
X
j;k

ð‘2f ÞðXj;XkÞ2 ¼
X
j

jvjj2 ¼ jwj2

where w ¼ ðjv1j; . . . ; jv2njÞ (and jvjj, jwj are the Euclidean norm of vj, w). By the

Cauchy-Schwarz inequality

jpH‘2f j2 ¼ jwj2 b 1

2n
jw � ð1; . . . ; 1Þj2

¼ 1

2n

X
j

jvjj
 !2

b
1

2n

X
j

jð‘2f ÞðXj;XjÞj
 !2
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hence

jpH‘2f j2 b 1

2n
ðDb f Þ2:ð27Þ

Finally, by (26)–(27) the inequality (25) becomes (whenever kDb f k0 0, that is

l0 0)

0b
1

2n
� lþ k

l

� �
kDb f k2

to conclude that �lb 2nk=ð2n� 1Þ. Q.e.d.

We close the section with the following remark on assumption (ii) in

Theorem 1. The problem whether EigenðDb; lÞVKerðTÞ0q is in general

open. Nevertheless if M ¼ S2nþ1 is the standard sphere then eigenfunctions

f A EigenðDb;�4ðnþ 1ÞÞ with Tð f Þ ¼ 0 may be easily produced (here �4ðnþ 1Þ
is the second nonzero eigenvalue of the ordinary Laplacian on S2nþ1). Indeed let

D be the Laplace-Beltrami operator of ðS2nþ1; gy0
Þ. As well known (cf. e.g. [3])

Dv ¼ �lðlþ 2nÞv, where v is the restriction to S2nþ1 of a harmonic polynomial

H A Hl (here Hl is the space of harmonic, i.e. DR2nþ2H ¼ 0, polynomials

H : R2nþ2 ! R which are homogeneous of degree l) and the whole spectrum

of D on S2nþ1 may be obtained this way. Note that H2 consists of all H ¼P
i; jðaijxix j þ bijx

iy j þ cij y
iy jÞ with

P
iðaii þ ciiÞ ¼ 0. For the sphere ðdiÞT ¼ T0

where i : S2nþ1 ! C nþ1 is the inclusion while T0 ¼ x jq=qy j � y jq=qx j and

ðx j; y jÞ are the natural coordinates on C nþ1AR2nþ2, hence

H2 VKerðT0Þ ¼ H ¼
X
i; j

aijðxix j þ yiy jÞ :
X
i

aii ¼ 0

( )
:ð28Þ

Finally, by a formula of A. Greenleaf (cf. op. cit.)

Db ¼ D� T 2ð29Þ

hence �4ðnþ 1Þ A SpecðDbÞ and ð0Þ0EigenðD;�4ðnþ 1ÞÞVKerðTÞJEigenðDb;

�4ðnþ 1ÞÞ. On the other hand note that H1 VKerðT0Þ ¼ ð0Þ. So the eigen-

functions of Db we consider (cf. (28) above) are spherical harmonics of degree 2.

However 4ðnþ 1Þ is greater equal than minus the third eigenvalue of Db (cf.

Proposition 3 below). See also our Appendix A for a short proof of (29).

5. Consequences of �2nk=ð2n� 1Þ A SpecðDbÞ

Let M be a strictly pseudoconvex CR manifold and y a contact form on M

such that Gy is positive definite. We recall a few concepts from sub-Riemannian
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geometry (cf. e.g. R. S. Strichartz, [23]) on a strictly pseudoconvex CR manifold.

Let x A M and gðxÞ : T �
x ðMÞ ! HðMÞx determined by

Gy;xðv; gðxÞxÞ ¼ xðvÞ; v A HðMÞx; x A T �
x ðMÞ:

Note that the kernel of g is precisely the conormal bundle

HðMÞ?x ¼ fo A T �
x ðMÞ : KerðoÞKHðMÞxg; x A M:

That is Gy is a sub-Riemannian metric on HðMÞ and g its alternative description

(cf. (2.1) in [23], p. 225).

Let g : I ! M be a piecewise C1 curve (where I JR is an interval). Then g

is a lengthy curve if _ggðtÞ A HðMÞgðtÞ for every t A I such that _ggðtÞ is defined. A

piecewise C1 curve x : I ! T �ðMÞ is a cotangent lift of g if xðtÞ A T �
gðtÞðMÞ and

gðgðtÞÞxðtÞ ¼ _ggðtÞ for every t (where defined). The length of a lengthy curve

g : I ! M in sub-Riemannian geometry

LðgÞ ¼
ð
I

fxðtÞ½gðgðtÞÞxðtÞ�g1=2
dt ¼

ð
I

Gy; gðtÞð _ggðtÞ; _ggðtÞÞ1=2

coincides with the Riemannian length of g as a curve in ðM; gyÞ. The Carnot-

Carathéodory distance rðx; yÞ among x; y A M is the infimum of the lengths of all

lengthy curves joining x and y. By a well known theorem of W. L. Chow, [6],

any two points x; y A M may be joined by a lengthy curve (and one may easily

check that r is a distance function on M).

Let gy be the Webster metric of ðM; yÞ. Then gy is a contraction of the sub-

Riemannian metric Gy (Gy is an expansion of gy) i.e.

dðx; yÞa rðx; yÞ; x; y A M:ð30Þ

(cf. [23], p. 230) where d is the distance function corresponding to the Webster

metric. Although r and d are inequivalent distance functions, they determine the

same topology. A first step towards recovering M. Obata’s arguments (cf. [21]) is

the following

Theorem 2. Let ðM; yÞ be a compact strictly pseudoconvex CR manifold

of CR dimension n, such that rðX ;XÞ þ 2AðX ; JXÞb kGyðX ;XÞ for some

k > 0 and any X A HðMÞ. Assume that l1�2nk=ð2n� 1Þ A SpecðDbÞ and

H1EigenðDb; lÞVKerðTÞ0 ð0Þ. Then any eigenfunction f A H is given by

f ðgðsÞÞ ¼ a cosðs
ffiffiffi
c

p
Þ; s A R; c ¼ k=ð2n� 1Þ;ð31Þ
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along each lengthy geodesic g : R ! M of the Tanaka-Webster connection ‘

such that j _ggðsÞj ¼ 1 and gð0Þ ¼ x0, where x0 A M is a point such that f ðx0Þ ¼
supx AM f ðxÞ1 a.

Assume additionally that ðM; yÞ is Sasakian ðt ¼ 0Þ. If any two points of M

can be joined by a Carnot-Carathéodory minimizing lengthy geodesic then f ðxÞ ¼
a cosðrðxÞ

ffiffiffi
c

p
Þ, x A M, where rðxÞ ¼ rðx0; xÞ is the Carnot-Carathéodory distance

from x0. If y0 A M is a point such that f ðy0Þ ¼ infx AM f ðxÞ then f ðy0Þ ¼ �a.

Consequently Mp=
ffiffi
c

p consists solely of critical points of f and each x A Mp=
ffiffi
c

p is

degenerate.

Here, for a given s A R we let Ms consist of all points x A M such that there

is a lengthy geodesic g : R ! M of ‘, parametrized by arc length, such that

gð0Þ ¼ x0 and gðsÞ ¼ x. The assumptions in Theorem 2 are rather restrictive and,

among all odd dimensional spheres, are satisfied only on S3 (thus motivating the

conjecture in the Introduction). Precisely

Proposition 1. Let M ¼ S2nþ1 with the standard contact form y ¼
i
2 ðq� qÞjzj2. If i) the inequality (8) is satisfied for some k > 0, ii) �2nk=ð2n� 1Þ
A SpecðDbÞ, and iii) EigenðDb;�2nk=ð2n� 1ÞÞVKerðTÞ0 ð0Þ, then k ¼ 4 and

n ¼ 1. Conversely the statements i)–iii) hold on S3. Moreover if M ¼ S3 and

H ¼ aðx2
1 þ y2

1 � x2
2 � y2

2Þ þ 2bðx1x2 þ y1y2Þ; f ¼ HjS 3 ; b0 0;

(a spherical harmonic of degree 2 on S3 such that Tð f Þ ¼ 0) then a ¼ supx AS 3 f ðxÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and f ðgðsÞÞ ¼ a cosð2sÞ for any lengthy geodesic g : R ! S3 of ‘ (the

Tanaka-Webster connection of S3) parametrized by arc length and such that gð0Þ is
a maximum point of f . Moreover

Mp=2 ¼ l; m;� bl

a� a
;� bm

a� a

� �
: l2 þ m2 ¼ a� a

2a
; l; m A R

� �
ð32Þ

consists solely of degenerate critical points of f .

The proof of Proposition 1 is relegated to Appendix A.

Proof of Theorem 2. Assume that l ¼ �2nk=ð2n� 1Þ is an eigenvalue of

Db and let f A H be an eigenfunction of Db corresponding to l such that

Tð f Þ ¼ 0. By the Bochner type formula (6) one has

1

2
Dbðj‘Hf j2Þ ¼ jpH‘2f j2 þ lj‘Hf j2 þ rð‘Hf ;‘Hf Þ þ 2Lf :
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Once again we integrate and use Lemma 2 and the assumption (8). We get

0b kpH‘2f k2 � 1 þ k

l

� �
kDb f k2 ¼ kpH‘2f k2 � 1

2n
kDb f k2

b 0

(the last inequality is a consequence of (27)) henceð
M

jpH‘2f j2 � 1

2n
ðDb f Þ2

� �
C ¼ 0

so that (again by (27))

jpH‘2f j2 ¼ 1

2n
ðDb f Þ2:ð33Þ

The following lemma of linear algebra is well known. If A A Rm2

satisfies

mjAj2 ¼ traceðAÞ2 then A ¼ ð1=mÞ traceðAÞIm, where Im is the unit matrix of

order m. Therefore (by (33))

pH‘
2f ¼ 1

2n
ðDb f ÞGy:

In particular the identities (12)–(13) are consistent with our assumption that

f0 ¼ 0. Using again Db f ¼ l1 f we may conclude that

pH‘
2f ¼ �cfGy;ð34Þ

where c ¼ k=ð2n� 1Þ.
M. Obata’s proof (cf. op. cit.) of the fact that equality in (1) yields MmASm

(an isometry) is an indication that we should evaluate (34) along a lengthy

geodesic of the Tanaka-Webster connection, and integrate the resulting ODE.

Let us recall briefly the needed material on geodesics (as developed in [2]). Let

ðU ; x1; . . . ; x2nþ1Þ be a system of local coordinates on M and let us set

g dxi ¼ gijqj, where qi ¼ q=qxi. A sub-Riemannian geodesic is a C1 curve gðtÞ
in M satisfying the Hamilton-Jacobi equations associated to the Hamiltonian

function Hðx; xÞ ¼ 1
2 g

ijðxÞxixj that is

dxi

dt
¼ gijðgðtÞÞxjðtÞ;ð35Þ

dxk
dt

¼ � 1

2

qgij

qxk
ðgðtÞÞxiðtÞxjðtÞ;ð36Þ

for some cotangent lift xðtÞ A T �ðMÞ of gðtÞ. Let gðtÞ A M be a sub-Riemannian

geodesic and s ¼ fðtÞ a C 1 di¤eomorphism. As shown in [2], if gðtÞ ¼ gðfðtÞÞ then
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gðsÞ is a sub-Riemannian geodesic if and only if f is a‰ne, i.e. fðtÞ ¼ atþ b,

for some a; b A R. In particular, every sub-Riemannian geodesic may be re-

parametrized by arc length fðtÞ ¼
Ð t

0 j _ggðuÞj du. In [2] we introduced a canonical

cotangent lift of a given lengthy curve g : I ! M by setting

x : I ! T �ðMÞ; xðtÞTgðtÞ ¼ 1; xðtÞX ¼ gyð _gg;XÞ;

for any X A HðMÞgðtÞ, and showed that

Theorem 3. Let M be a strictly pseudoconvex CR manifold and y a contact

form on M such that Gy is positive definite. A C1 curve gðtÞ A M, jtj < e, is a sub-

Riemannian geodesic of ðM;HðMÞ;GyÞ if and only if gðtÞ is a solution to

‘ _gg _gg ¼ �2bðtÞJ _gg; b 0ðtÞ ¼ Að _gg; _ggÞ; jtj < e;ð37Þ

with _ggð0Þ A HðMÞgð0Þ, for some C1 function b : ð�e; eÞ ! R.

R. S. Strichartz’s paper [23] manifestly doesn’t involve any elements of con-

nection theory or curvature. As argued by R. S. Strichartz (cf. op. cit.) curvature

is a measurement of the deviation of the given Riemannian manifold from its

Euclidean model (and sub-Riemannian manifolds exhibit no approximate Eucli-

dean behavior). Nevertheless, in view of Theorem 2 when ðM; yÞ is a Sasakian

manifold (i.e. t ¼ 0) the lengthy geodesics of ‘ are among the sub-Riemannian

geodesics and it is likely that a variational theory of the geodesics of ‘ (as started

in [2]) is the key step towards bringing the results of [21] to CR geometry.

Our approach (based on ‘) is not in contradiction with the arguments in [23]:

indeed the curvature of ‘ is related to the pseudoconvexity properties of M (as

understood in complex analysis in several variables) rather than to its intrinsic

shape. To emphasize the impact of connection theory within our approach

we may prove the following elementary regularity result. Note that a sub-

Riemannian geodesic is required to be of class C2 (cf. [23], p. 233) and no higher

regularity is expected a priori. In turn, any C 1 geodesic of ‘ is automatically of

class Cy [as a projection on M of an integral curve of some standard horizontal

vector field (cf. Prop. 6.3 in [14], Vol. I, p. 139) having Cy coe‰cients].

Let gðtÞ A M be a lengthy geodesic of the Tanaka-Webster connection,

parametrized by arc-length ðj _ggðtÞj ¼ 1Þ. Then (by (34))

d 2ð f � gÞ
dt2

¼ �cf � g

hence f ðgðtÞÞ ¼ A cosðt
ffiffiffi
c

p
Þ þ B sinðt

ffiffiffi
c

p
Þ. As M is compact there is x0 A M such

that f ðx0Þ ¼ supx AM f ðxÞ ¼: a. Let gðtÞ be a lengthy geodesic of ‘ such that
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gð0Þ ¼ x0. Then A ¼ a and fdð f � gÞ=dtgt¼0 ¼ 0 yields B ¼ 0 so that f ðgðtÞÞ ¼
a cosðt

ffiffiffi
c

p
Þ, which is (31).

Again by compactness ðM; rÞ is a complete metric space, hence (cf. Theorem

7.1 in [23], p. 244) any sub-Riemannian geodesic can be extended indefinitely.

Since t ¼ 0 the statements about sub-Riemannian geodesics in [23] apply to the

lengthy geodesics of ‘ as well. Let g : R ! M be a lengthy geodesic of ‘ such

that j _ggðsÞj ¼ 1, gð0Þ ¼ x0 and gðsminÞ ¼ y0. By (31)

0 ¼ d

ds
f f � ggs¼smin

¼ �a
ffiffiffi
c

p
sinð

ffiffiffi
c

p
sminÞ

hence smin ¼ mp=
ffiffiffi
c

p
for some m A Z. Then a > f ðy0Þ ¼ ð�1Þma implies that m is

odd. Again by (31), Mp=
ffiffi
c

p H f �1ð�aÞ. Finally, let x A Mp=
ffiffi
c

p and ðU ; xiÞ a local

coordinate system on M such that x A U . As Tð f Þ ¼ 0

q2f

qxiqx j
ðxÞT iðxÞT jðxÞ ¼ ð‘2f ÞðT ;TÞx ¼ Tð f0Þx ¼ 0

hence x is a degenerate critical point. Therefore, the points of Mp=
ffiffi
c

p may fail to

be isolated. Nevertheless

Proposition 2. Let ðM; yÞ be a compact Sasakian manifold. If for any

x A Bðx0; p=
ffiffiffi
c

p
Þ there is a length minimizing (with respect to the Carnot-

Carathéodory distance) lengthy geodesic joining x0 and x then the exponential map

expx0
: Nðx0; p=

ffiffiffi
c

p
Þ ! Bðx0; p=

ffiffiffi
c

p
Þ (with respect to the Tanaka-Webster connec-

tion) is a surjection.

Here Bðx0;RÞ ¼ fx A M : rðx0; xÞ < Rg is the Carnot-Carathéodory ball of

center x0 and radius R > 0. Also Nðx0;RÞ ¼ fw A HðMÞx0
: jwj < Rg.

Proof of Proposition 2. To see that the restriction of expx0
to Nðx0; p=

ffiffiffi
c

p
Þ

is indeed Bðx0; p=
ffiffiffi
c

p
Þ-valued let w A Nðx0; p=

ffiffiffi
c

p
Þ, w0 0, and t ¼ jwj. Let us

set v ¼ ð1=tÞw and consider the geodesic g : R ! M of ‘ with the initial data

gð0Þ ¼ x0 and _ggð0Þ ¼ v, so that

expx0
ðwÞ ¼ expx0

ðtvÞ ¼ gðtÞ:
Then

rðx0; gðtÞÞa
ð t

0

j _ggðsÞj ds ¼ t < p=
ffiffiffi
c

p

i.e. gðtÞ A Bðx0; p=
ffiffiffi
c

p
Þ.
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To see that expx0
: Nðx0; p=

ffiffiffi
c

p
Þ ! Bðx0; p=

ffiffiffi
c

p
Þ is on-to let x A Bðx0; p=

ffiffiffi
c

p
Þ

and let g : R ! M be a length minimizing geodesic joining x0 and x and such

that _ggð0Þ ¼ v A HðMÞx0
, with jvj ¼ 1. Then gðtÞ ¼ x for some t A Rnf0g, so that

expx0
ðtvÞ ¼ x. Next

gy;x0
ðtv; tvÞ ¼ t2jvj2 ¼ rðxÞ2 < p2=c

i.e. tv A Nðx0; p=
ffiffiffi
c

p
Þ. Q.e.d.

A generalization of the Lichnerowicz-Obata theorem ([18], [21]) to the case of

Riemannian foliations was obtained by J. M. Lee & K. Richardson, [17] (see also

[16]). The leaf space of a Riemannian foliation is often an orbifold (for instance

if all leaves are compact) so that (in light of [9]) one expects analogs to Theorems

1 and 2 on a CR orbifold (see also E. Stanhope, [22]). This matter will be

addressed in a further paper.

Appendix A. On the Spectrum of the Sublaplacian on the Standard Sphere

Let M be a strictly pseudoconvex CR manifold and y a contact form on M

with Gy positive definite. Let ‘y be the Levi-Civita connection of the semi-

Riemannian manifold ðM; gyÞ. Then (cf. e.g. [11], Chapter 1)

‘y ¼ ‘þ ðW� AÞnT þ tn yþ 2yp Jð38Þ

where p is the symmetric tensor product. Then

‘y
XX ¼ ‘XX � AðX ;X ÞT ; X A HðMÞ:ð39Þ

Given a local Gy-orthonormal frame fXa : 1a aa 2ng of HðMÞ one has (by (39)

and traceðtÞ ¼ 0)

Df ¼
X2n
j¼0

fXjðXj f Þ � ð‘y
Xj
XjÞð f Þg ¼ TðTð f ÞÞ þ Db f

for any f A CyðMÞ, where X0 ¼ T , proving Greenleaf ’s formula (29). Let Pl be

the set of all homogeneous polynomials H : R2nþ2 ! R of degree degðHÞ ¼ l and

Hl ¼ Pl VKerðDR2nþ2Þ. To compute eigenvalues of Db starting from SpecðDÞ we

consider the equation

Db f þ T 2ð f Þ ¼ �lð2nþ lÞ fð40Þ

with f ¼ HjS 2nþ1 and H A Hl. For example if l ¼ 1 and H A H1 ¼ P1 then

T 2
0 ðHÞ ¼ �H hence �2n A SpecðDbÞ. In general
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Proposition 3. If there is l A R and Hl VKerðT 2
0 þ lIÞ0 ð0Þ then

l� lð2nþ lÞ A SpecðDbÞ. For instance one may produce the eigenvalues f�2n;

�4n;�6n� 8;�6ngH SpecðDbÞ and EigenðDb;�2nÞVP1 0 ð0Þ, EigenðDb;�4nÞV
P2 0 ð0Þ and EigenðDb; lÞVP3 0 ð0Þ for each l A f�6n� 8;�6ng.

If H ¼
Pnþ1

i; j¼1ðaijxix j þ bijx
iy j þ cij y

iy jÞ A P2 (with aij ; bij A R, aji ¼ aij ,

cji ¼ cij) then T 2
0 H ¼ �lH if and only if 2ðcij � aijÞ ¼ �laij , 2ðbij þ bjiÞ ¼ lbij

and 2ðcij � aijÞ ¼ lcij . Hence KerðT 2
0 þ lIÞVP2 ¼ ð0Þ for any l A Rnf4g and

KerðT 2
0 þ 4IÞVP2 ¼ faijðxix j � yiy jÞ þ bijx

iy j : aij; bij A R; aij ¼ ajigHH2:

Similarly KerðT 2
0 þ lIÞVP3 ¼ ð0Þ for any l A Rnf1; 9g and

KerðT 2
0 þ IÞVH3 ¼

�
ðaijkxi þ bijk y

iÞðx jxk þ y jykÞ : aijk; bijk A R symmetric;

X
j

aijj ¼
X
j

bijj ¼ 0; 1a ia nþ 1

�
;

KerðT 2
0 þ 9IÞVH3 ¼

�
aijkx

iðx jxk � 3y jykÞ þ bijkðyiy j � 3xix jÞyk : aijk; bijk A R

symmetric;
X
j

aijj ¼
X
j

bijj ¼ 0; 1a ia nþ 1

�
:

Proposition 3 is proved. The calculation of the full SpecðDbÞ on S2nþ1 is an open

problem.

Proof of Proposition 1. Let R be the curvature of the Tanaka-Webster

connection. Then (cf. Chapter 1 in [11])

RðX ;YÞZ ¼ GyðY ;ZÞX � GyðX ;ZÞYð41Þ

þ GyðJY ;ZÞJX � GyðJX ;ZÞJY � 2GyðJX ;Y ÞJZ

for any X ;Y ;Z A HðS2nþ1Þ. Taking the trace in (41) we obtain

rðX ;XÞ ¼ 2ðnþ 1ÞGyðX ;X Þ:ð42Þ

The assumptions i)–ii) imply that �2nk=ð2n� 1Þ is an eigenvalue of the ordinary

Laplacian on S2nþ1. On the other hand H1 VKerðT0Þ ¼ ð0Þ hence 2nk=ð2n� 1Þ is

greater equal than 4ðnþ 1Þ. Finally (by (42)) ka 2ðnþ 1Þ hence n ¼ 1 and k ¼ 4.

Let ‘y be the Levi-Civita connection of S3. As S3 is a Sasakian manifold

‘y
_gg _gg ¼ ‘ _gg _ggþ 2yð _ggÞJ _gg (by (38)) for any C1 curve gðtÞ in S3. In particular any
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lengthy geodesic g of ‘ is a geodesic of S3 as well. Moreover any geodesic g of ‘

with _ggð0Þ A HðS3Þgð0Þ is lengthy. Indeed (as ‘T ¼ 0)

d

dt
fygðtÞð _ggðtÞÞg ¼ gyð _gg;‘ _ggTÞgðtÞ ¼ 0

hence yð _ggÞgðtÞ ¼ ygð0Þð _ggð0ÞÞ ¼ 0. Let x0 A S3 such that a ¼ f ðx0Þ. Let g be a

lengthy geodesic of ‘, parametrized by arc length, such that gð0Þ ¼ x0. Then

gðsÞ ¼ x0 cos sþ x sin s, s A R, for some x A R4 such that kxk ¼ 1 and

hx0; xi ¼ 0. If U ¼ S3nfx2 ¼ y2 ¼ 0g the Levi distribution HðS3ÞjU is spanned

by

X ¼ q

qx1
� F

q

qx2
� G

q

qy2
; Y ¼ q

qy1
þ G

q

qx2
� F

q

qy2
;

F ðx; yÞ ¼ x1x2 þ y1y2

x2
2 þ y2

2

; Gðx; yÞ ¼ x1y2 � y1x2

x2
2 þ y2

2

;

hence the condition that g is lengthy reads

Q j q

qx j

����
x0

þ R j q

qy j

����
x0

¼ lXx0
þ mYx0

for some l; m A R, where Q j ¼ x jðxÞ and R j ¼ y jðxÞ, j A f1; 2g, or

Q1 ¼ l; Q2 ¼ mGðx0Þ � lFðx0Þ;ð43Þ

R1 ¼ m; R2 ¼ �mF ðx0Þ � lGðx0Þ:ð44Þ

Let us set P j ¼ x jðx0Þ and S j ¼ y jðx0Þ. The solution to the constrained extreme

value problem a ¼ supx AS3 f ðxÞ is a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
and

P1 ¼ x; S2 ¼ h; P2 ¼ Ax; S2 ¼ Ah; x2 þ h2 ¼ a� a

2a
;

where A ¼ ða� aÞ=b, hence F ðx0Þ ¼ b=ða� aÞ and Gðx0Þ ¼ 0. Finally kxk ¼ 1

may be written l2 þ m2 ¼ ða� aÞ=ð2aÞ hence (43)–(44) yield (32) in Proposition 1.
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