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LEVI-PARALLEL HYPERSURFACES IN A COMPLEX

SPACE FORM

By

Jong Taek Cho

Abstract. In this paper, we classify a Hopf hypersurface in a non-

flat complex space form whose Levi-form is parallel with respect to

the generalized Tanaka-Webster connection.

1. Introduction

Let ~MM ¼ ð ~MM n; J; ~ggÞ be a complex n-dimensional Kählerian manifold with

complex structure J and Kählerian metric ~gg. Let M be an oriented real

hypersurface in ~MM, g be the induced metric and h be the 1-form defined by

hðX Þ ¼ gðX ; xÞ where x ¼ �JN and N is a unit normal vector field on M. Then

M has an (integrable) CR-structure associated with the complex structure of the

ambient space. Let TM be the tangent bundle of M and D be the subbundle of

TM (or the ð2n � 2Þ-dimensional distribution) which is defined by h ¼ 0. We

denote by CD ¼ DnC its complexification. Then we see that D is holomorphic

(or maximally invariant by J) and

H ¼ fX � iJX : X A Dg

defines an CR-structure on M. That is, H satisfies the following properties:

(i) each fiber Hx ðx A MÞ is of complex dimension n � 1,

(ii) HVH ¼ f0g,

(iii) ½H;H�HH (integrability).

Furthermore, we have CD ¼ HlH. We call fD; Jg the real representation of

H. Then for fD; Jg we define the Levi form by

L : D � D ! FðMÞ; LðX ;YÞ ¼ dhðX ; JY Þ
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where FðMÞ denotes the algebra of di¤erentiable functions on M. If the Levi

form is hermitian, then the CR-structure is called pseudo-hermitian, in addition, in

the case that the Levi form is non-degenerate (positive or negative definite, resp.),

then the CR structure is called a non-degenerate (strongly pseudo-convex, resp.)

pseudo-hermitian CR structure. Recently, Y. T. Siu [14] proved the nonexistence

of compact smooth Levi-flat hypersurfaces in complex projective spaces of

dimensionb 3. Here, it is remarkable that the assumption of compactness in Siu’s

theorem has a crucial role. Actually, there are non-complete examples which are

Levi-flat in a complex projective space (see section 2). Anyway, the examples of

Levi-flat hypersurfaces which are known so far are not Hopf. In this situation, we

prove that there does not exist a Levi-flat Hopf hypersurface (Theorem 3).

On the other hand, the Tanaka-Webster connection ([19], [20]) is defined as a

canonical a‰ne connection on a pseudo-hermitian, non-degenerate, integrable CR

manifold. For contact metric manifolds, their associated almost CR structures

are pseudo-hermitian and strongly pseudo-convex, but they are not in general

integrable. For a non-zero real number k, the author [7] defined the generalized

Tanaka-Webster connection (in short, the g.-Tanaka-Webster connection) ‘̂‘ for

real hypersurfaces in Kählerian manifolds. The g.-Tanaka-Webster connection

‘̂‘ coincides with the Tanaka-Webster connection if real hypersurfaces satisfy

fA þ Af ¼ 2kf (Proposition 2). The covariant di¤erentiation of the Levi form L

with respect to the g.-Tanaka-Webster connection ‘̂‘ is well-defined:

ð‘̂‘X LÞðY ;ZÞ ¼ XLðY ;ZÞ � Lð‘̂‘X Y ;ZÞ � LðY ; ‘̂‘X ZÞ

for any X ;Y ;Z A D. Then we say that M is Levi-parallel with respect to the

g.-Tanaka-Webster connection or shortly Levi-parallel if M satisfies

gðð‘̂‘X LÞðY ;ZÞÞ ¼ 0

for any vector fields X ;Y ;Z A D. We note that a Levi-flat hypersurface is Levi-

parallel (see (2) in Remark 1).

A complex n-dimensional complete and simply connected Kählerian manifold

of constant holomorphic sectional curvature c is called a complex space form,

which is denoted by ~MMnðcÞ. A complex space form consists of a complex pro-

jective space PnC, a complex Euclidean space EnC or a complex hyperbolic space

HnC, according as c > 0, c ¼ 0 or c < 0. R. Takagi [16, 17] classified the ho-

mogeneous real hypersurfaces of PnC into six types. T. E. Cecil and P. J. Ryan

[6] extensively studied a real hypersurface whose structure vector x is a principal

curvature vector, which is realized as tubes over certain submanifolds in PnC,

by using its focal map. A real hypersurface of a complex space form is said to
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be a Hopf hypersurface if its structure vector is a principal curvature vector. By

making use of those results and the mentioned work of R. Takagi, M. Kimura [9]

proved the local classification theorem for Hopf hypersurfaces of PnC whose all

principal curvatures are constant. For the case HnC, J. Berndt [3] proved the

classification theorem for Hopf hypersurfaces whose all principal curvatures are

constant.

The main purpose of the present paper is to classify real hypersurfaces of
~MMnðcÞ, c0 0 whose Levi form is parallel with respect to the generalized Tanaka-

Webster connection. More specifically, in section 4, we prove

Main Theorem. Let M be a Hopf hypersurface of a complex space form
~MMnðcÞ, c0 0. Suppose that M is Levi-parallel with respect to the g.-Tanaka-

Webster connection. Then we have the following.

(I) If ~MMnðcÞ ¼ PnC, then M is locally congruent to one of:

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p
2 ,

ðA2Þ a tube of radius r over a totally geodesic PkC ð1a k a n � 2Þ, where

0 < r < p
2 ,

ðBÞ a tube of radius r over a complex quadric Qn�1, where 0 < r < p
4 .

(II) If ~MMnðcÞ ¼ HnC, then M is locally congruent to one of:

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn�1C,

ðA2Þ a tube over a totally geodesic HkC ð1a k a n � 2Þ,
ðBÞ a tube over a totally real hyperbolic space HnR.

2. The Generalized Tanaka-Webster Connection for Real Hypersurfaces

In this paper, all manifolds are assumed to be connected and of class Cy and

the real hypersurfaces are supposed to be oriented. First, we give a brief review of

several fundamental concepts and formulas on almost contact structure. An odd-

dimensional smooth manifold M 2nþ1 has an almost contact structure if it admits

a vector x, a 1-form h and a (1,1)-tensor field j satisfying

hðxÞ ¼ 1 and j2X ¼ �X þ hðXÞx:

Then there exists a compatible Riemannian metric g:

gðjX ; jY Þ ¼ gðX ;YÞ � hðXÞhðY Þ

for all vector fields X and Y on M. We call ðh; x; j; gÞ an almost contact metric

structure of M and M ¼ ðM; h; x; j; gÞ an almost contact metric manifold. For
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an almost contact metric manifold M we define its fundamental 2-form F by

FðX ;Y Þ ¼ gðjX ;YÞ. If

F ¼ dh;ð1:1Þ

M is called a contact metric manifold. We refer to [4] on contact metric geometry

for more detail.

For an almost contact metric manifold M, the tangent space TpM of M

at each point p A M is decomposed as TpM ¼ Dp l fxgp (direct sum), where

we denote Dp ¼ fv A TpM j hðvÞ ¼ 0g. Then D : p ! Dp defines a distribution

orthogonal to x. The restriction j ¼ jjD of j to D defines an almost complex

structure to D. If the associated Levi form L, defined by

LðX ;YÞ ¼ dhðX ; jYÞ;

X ;Y A D, is hermitian, then ðh; jÞ is called a pseudo-hermitian CR structure and

in addition, if its Levi form is non-degenerate (positive or negative definite, resp.),

then ðh; jÞ is called a non-degenerate (strongly pseudo-convex, resp.) pseudo-

hermitian CR structure. Moreover, if the following conditions are satisfied:

½jX ; jY � � ½X ;Y � A Dð1:2Þ

and

½j; j�ðX ;Y Þ ¼ 0ð1:3Þ

for all X ;Y A D, where ½j; j� is the Nijenhuis torsion of j, then the pair ðh; jÞ
is called a pseudo-hermitian, non-degenerate, (strongly pseudo-convex, resp.)

integrable CR structure associated with the almost contact metric structure

ðh; x; j; gÞ. In particular, for a contact metric manifold its associated CR structure

is pseudo-hermitian, strongly pseudo-convex but is not in general integrable. For

further details about CR structures, we refer for example to [2], [5], [18].

Let M be a real hypersurface of a Kählerian manifold ~MM ¼ ð ~MM; J; ~ggÞ and N

a global unit normal vector on M. By ~‘‘, A we denote the Levi-Civita connection

in ~MM and the shape operator with respect to N, respectively. Then the Gauss and

Weingarten formulas are given respectively by

~‘‘X Y ¼ ‘X Y þ gðAX ;Y ÞN; ~‘‘X N ¼ �AX

for any vector fields X and Y tangent to M, where g denotes the Riemannian

metric of M induced from ~gg. An eigenvector (resp. eigenvalue) of the shape

operator A is called a principal curvature vector (resp. principal curvature). For

any vector field X tangent to M, we put
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JX ¼ jX þ hðX ÞN; JN ¼ �x:ð2:1Þ

We easily see that the structure ðh; x; j; gÞ is an almost contact metric structure

on M. From the condition ~‘‘J ¼ 0, the relations (2.1) and by making use of the

Gauss and Weingarten formulas, we have

ð‘XjÞY ¼ hðYÞAX � gðAX ;YÞx;ð2:2Þ

‘Xx ¼ jAX :ð2:3Þ

By using (2.2) and (2.3), we see that a real hypersurface in a Kählerian

manifold always satisfies (1.2) and (1.3), the integrability condition of the asso-

ciated almost CR structure. From (1.1) and (2.3) we have

Proposition 1. Let M ¼ ðM; h; x; j; gÞ be a real hypersurface of a Kählerian

manifold. The almost contact metric structure of M is contact metric if and only if

jA þ Aj ¼G2j, where G is determined by the orientation.

The Tanaka-Webster connection ([19], [20]) is the canonical a‰ne connection

defined in a non-degenerate integrable CR manifold. Tanno ([18]) defined the

generalized Tanaka-Webster connection for contact metric manifolds by the ca-

nonical connection which coincides with the Tanaka-Webster connection if the

associated almost CR structure is integrable. We define the generalized Tanaka-

Webster connection (in short, the g.-Tanaka-Webster connection) for real hyper-

surfaces of Kählerian manifolds by the naturally extended one of Tanno’s gen-

eralized Tanaka-Webster connection for contact metric manifolds.

We recall Tanno’s generalized Tanaka-Webster connection ‘̂‘ for contact

metric manifolds:

‘̂‘X Y ¼ ‘X Y þ ð‘XhÞðY Þx� hðY Þ‘Xx� hðXÞjY

for all vector fields X and Y .

Taking account of (2.3), the g.-Tanaka-Webster connection for real hyper-

surfaces of Kählerian manifolds, which is denoted by the same symbol ‘̂‘ as the

one for contact metric manifolds, is naturally defined by (cf. [7])

‘̂‘X Y ¼ ‘X Y þ gðjAX ;YÞx� hðYÞjAX � khðXÞjY ;ð2:4Þ

where k is a non-zero real number. We put FX Y ¼ gðjAX ;YÞx� hðYÞjAX �
khðX ÞjY . Then the torsion tensor T̂T is given by T̂TðX ;YÞ ¼ FX Y � FY X . Also,

by using (1.2), (1.3), (2.2), (2.3) and (2.4) we can see that

‘̂‘h ¼ 0; ‘̂‘x ¼ 0; ‘̂‘g ¼ 0; ‘̂‘j ¼ 0:ð2:5Þ
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and

T̂TðX ;Y Þ ¼ 2 dhðX ;Y Þx; X ;Y A D:

We note that the associated Levi form is

LðX ;YÞ ¼ 1

2
gððjA þ AjÞX ; jYÞ;

where we denote by A the restriction A to D. If M satisfies jA þ Aj ¼ 2kj, then

we see that the associated CR structure is pseudo-hermitian, strongly pseudo-

convex and further satisfies T̂Tðx; jY Þ ¼ �jT̂Tðx;Y Þ, and hence the generalized

Tanaka-Webster connection ‘̂‘ coincides with the Tanaka-Webster connection.

Namely, we have (cf. [7])

Proposition 2. Let M ¼ ðM; h; x; j; gÞ be a real hypersurface of a Kählerian

manifold. If M satisfies jA þ Aj ¼ 2kj, then the associated CR-structure is

pseudo-hermitian, strongly pseudo-convex, integrable, and further the generalized

Tanaka-Webster connection ‘̂‘ coincides with the Tanaka-Webster connection.

Since the structure vector field x is ‘̂‘-parallel, we see that ‘̂‘X Y for X ;Y A D

still belongs to D. We define the covariant di¤erentiation of the Levi form L with

respect to the g.-Tanaka-Webster connection ‘̂‘ as follows:

ð‘̂‘X LÞðY ;ZÞ ¼ XLðY ;ZÞ � Lð‘̂‘X Y ;ZÞ � LðY ; ‘̂‘X ZÞð2:6Þ

for any X ;Y ;Z A D.

3. Real Hypersurfaces of a Complex Space Form

Let ~MM ¼ ~MMnðcÞ be a non-flat complex space form of constant holomorphic

sectional curvature cð0 0Þ and let M a real hypersurface of ~MM. Then we have the

following Gauss and Codazzi equations:

RðX ;Y ÞZ ¼ c

4
fgðY ;ZÞX � gðX ;ZÞYð3:1Þ

þ gðjY ;ZÞjX � gðjX ;ZÞjY � 2gðjX ;YÞjZg

þ gðAY ;ZÞAX � gðAX ;ZÞAY ;

ð‘X AÞY � ð‘Y AÞX ¼ c

4
fhðX ÞjY � hðY ÞjX � 2gðjX ;YÞxgð3:2Þ
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for any tangent vector fields X , Y , Z on M. We now suppose that M is a Hopf

hypersurface, that is, Ax ¼ ax. Then we already know that a is constant (see [8]).

Di¤erentiating this covariantly along M, and then by using (2.3) we have

ð‘X AÞx ¼ ajAX � AjAX ;

and further by using (3.2) we obtain

ð‘xAÞX ¼ c

4
jX þ ajAX � AjAX

for any vector field X on M. From this, we have

2AjAX � c

2
jX ¼ aðjA þ AjÞX :

Here, we assume that AX ¼ lX for a unit vector field X orthogonal to x, then

ð2l� aÞAjX ¼ alþ c

2

� �
jX :ð3:3Þ

Now, we prove

Theorem 3. There does not exist a Levi-flat Hopf hypersurface in a non-flat

complex space form.

Proof. Suppose that M is Hopf and Levi-flat. Then Ax ¼ ax and we get

jAX þ AjX ¼ 0

for any X A D. We assume AX ¼ lX . Since x is a principal curvature vector by

using (3.3) we have 2l2 þ c
2 ¼ 0, which shows c < 0. Then we see that M has at

most three constant principal curvatures l, m and a, and further we see that

m ¼ �l. But, Corollary 1 in [3] states that lmþ c=4 ¼ 0. Thus, we have a

contradiction. r

We remark here that there are examples of Levi-flat hypersurfaces which are

not Hopf. We say that M is a ruled real hypersurface of ~MMnðcÞ, c0 0 if there is

a foliation of M by complex hyperplanes ~MMn�1ðcÞ. In other words, M is ruled if

and only if D is integrable and its integral manifold is a totally geodesic sub-
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manifold ~MMn�1ðcÞ. Then we easily see that a ruled real hypersurface is Levi-flat.

In fact, its shape operator may be written down as following:

Ax ¼ axþ mU ðm0 0Þ;

AU ¼ mx;

AZ ¼ 0

for any Z A D, ?U , where U is unit vector orthogonal to x, a and m are functions

on M. M. Kimura [10] constructed ruled real hypersurfaces in complex projective

space. Let M be a hypersurface in S2nþ1 defined by(
ðreit cos y; reit sin y;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
z2; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p
znÞ A Cnþ1

����
Xn

j¼2

jzjj2 ¼ 1; 0 < r < 1; 0a t; y < 2p;

)
:

Then the Hopf image M of M is a minimal ruled hypersurface in CPn. We note

that the above example of a ruled real hypersurface is not complete. In a similar

way, in [1] the authors gave a minimal ruled real hypersurfaces in complex

hyperbolic space. For more details about ruled real hypersurfaces we may refer

to [13].

From Proposition 2, together with the results in [12] (in case of PnC) and [15]

(in case of HnC) we get easily

Theorem 4. Let M be a real hypersurface of ~MMnðcÞ, c0 0. Suppose that M

satisfies jA þ Aj ¼ 2kj for some non-zero constant k. Then the CR-structure is

pseudo-hermitian and strongly pseudo-convex. Furthermore we have the following:

(I) in the case ~MMnðcÞ ¼ PnC with the Fubini-Study metric of c ¼ 4, then M is

locally congruent to one of the following:

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p
2 ,

ðBÞ a tube of radius r over a complex quadric Qn�1, where 0 < r < p
4 .

(II) in the case ~MMnðcÞ ¼ HnC with the Bergman metric of c ¼ �4, then M is

locally congruent to one of the following:

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn�1C,

ðBÞ a tube over a totally real hyperbolic space HnR.
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Remark 1. (1) Together with Proposition 1, we see that the almost contact

metric structure on M which appears in the above theorem is a contact metric

structure only for the very special case determined by k ¼G1, where G depends

on the orientation. More precisely, with the help of the tables in [3] and [16],

we see that the almost contact metric structures are contact metric only for a

geodesic hypersphere of radius p
4 in PnC, for a horosphere in HnC. Hence for real

hypersurfaces appearing in Theorem 4, except those just mentioned, they do not

admit contact structure but their associated CR structures are pseudo-hermitian,

strongly pseudo-convex and further the g.-Tanaka-Webster connection ‘̂‘ defined

on them coincides with the Tanaka-Webster connection.

(2) From (2.6), it follows that Levi-flat hypersurface is Levi-parallel. Leaving

the Levi-flat case aside, we find that real hypersurfaces stated in Theorem 4 are

also Levi-parallel.

We prepare some more results which are needed to prove our Main Theorem.

Theorem 5 ([9]). Let M be a Hopf hypersurface of PnC. Then M has constant

principal curvatures if and only if M is locally congruent to one of the following:

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p
2 ,

ðA2Þ a tube of radius r over a totally geodesic PkC ð1a k a n � 2Þ, where

0 < r < p
2 ,

ðBÞ a tube of radius r over a complex quadric Qn�1, where 0 < r < p
4 ,

ðCÞ a tube of radius r over P1C � Pðn�1Þ=2C, where 0 < r < p
4 and nðb 5Þ is

odd,

ðDÞ a tube of radius r over a complex Grassmann G2;5C, where 0 < r < p
4 and

n ¼ 9,

ðEÞ a tube of radius r over a Hermitian symmetric space SOð10Þ=Uð5Þ, where

0 < r < p
4 and n ¼ 15.

Theorem 6 ([3]). Let M be a Hopf hypersurface of HnC. Then M has

constant principal curvatures if and only if M is locally congruent to one of the

following:

ðA0Þ a horosphere,

ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane

Hn�1C,

ðA2Þ a tube over a totally geodesic HkC ð1a k a n � 2Þ,
(B) a tube over a totally real hyperbolic space HnR.
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Theorem 7 ([11], [15]). Let M be a Hopf hypersurface of a non-flat complex

space form ~MMnðcÞ, c0 0. Suppose that the shape operator A is h-parallel (i.e.,

gðð‘X AÞY ;ZÞ ¼ 0Þ for any tangent vectors X, Y and Z which are orthogonal to x).

Then we have the following.

(I) In case that ~MMnðcÞ ¼ PnC, then M is locally congruent to one of real

hypersurfaces of type ðA1Þ, ðA2Þ and ðBÞ;
(II) In case that ~MMnðcÞ ¼ HnC, then M is locally congruent to one of real

hypersurfaces of type ðA0Þ, ðA1Þ, ðA2Þ and ðBÞ.

4. Levi-parallel Hopf Hypersurfaces in a Complex Space Form

In this section we shall prove our Main Theorem. Suppose that M is a

Levi-parallel Hopf hypersurface of a complex space form ~MMnðcÞ with respect to

g.-Tanaka-Webster connection. Then by using (2.5) and (2.6) we have

gððjð‘̂‘ZAÞ þ ð‘̂‘ZAÞjÞX ; jY Þ ¼ 0

for any vector fields X , Y , Z orthogonal to x on M. It follows easily that

gðð‘̂‘ZAÞX ;Y Þ � hðð‘̂‘ZAÞXÞhðYÞ þ gðð‘̂‘ZAÞjX ; jYÞ ¼ 0

for any X ;Y ;Z A D.

Together with (2.4), we have

gðð‘ZAÞX ;YÞ � hðAX ÞgðjAZ;Y Þ � gðjAZ;XÞhðAY Þð4:1Þ

þ gðð‘ZAÞjX ; jY Þ � hðAjX ÞgðjAZ; jYÞ � gðjAZ; jXÞhðAjYÞ ¼ 0

for any X ;Y ;Z A D. We now suppose that Ax ¼ ax. Then (4.1) reduces to

gðð‘ZAÞX ;YÞ � gðjð‘ZAÞjX ;Y Þ ¼ 0ð4:2Þ

where X ;Y ;Z A D. Assume X A Vl, that is, AX ¼ lX , where we denote by Vl

the eigenspace of A associated with a principal curvature l. Taking account of

(3.3), we divide our arguments into two cases: (i) 2l0 a and 2l ¼ a. First, we

consider the case (i). Then for any Z A D, we get

ð‘ZAÞX ¼ ‘ZðAX Þ � Að‘ZXÞ

¼ ðZlÞX þ ðlI � AÞð‘ZX Þ:

So we have

gðð‘ZAÞX ;XÞ ¼ Zlþ gððlI � AÞ‘ZX ;XÞð4:3Þ

¼ Zlþ gð‘ZX ; ðlI � AÞXÞ ¼ Zl:
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Similarly, by using (3.3), we have

gðð‘ZAÞjX ; jX Þ ¼ �ðZlÞ a2 þ c

ð2l� aÞ2
:ð4:4Þ

From (4.2), (4.3) and (4.4) we obtain

ðZlÞ l2 � al� c

4

� �
¼ 0:

Since a is constant, this shows that

Zl ¼ 0 for any Z A D:ð4:5Þ

Also, it follows from the equation of Codazzi (3.2) that

ð‘ZAÞx� ð‘xAÞZ ¼ � c

4
jZ for any Z A D:

On the other hand, from (2.3) and (3.3) we find

ð‘ZAÞx� ð‘xAÞZ ¼ ‘ZðAxÞ � A‘Zx� ‘xðAZÞ þ Að‘xZÞ

¼ ðaI � AÞjAZ � ðxlÞZ � ðlI � AÞ‘xZ

¼ l a�
alþ c

2

2l� a

� �
jZ � ðxlÞZ � ðlI � AÞ‘xZ

for any unit vector Z A Vl. From the above two equations, we obtain

xl ¼ 0ð4:6Þ

where we have used gðjZ;ZÞ ¼ 0 and gððlI � AÞ‘xZ;ZÞ ¼ 0. Hence from (4.5)

and (4.6) we see that l is constant. Next, in the case (ii) 2l ¼ a, since a1 is

constant, l must be constant.

Thus, by virtue of Theorems 5 and 6 we can see that M is locally congruent

to one of six types ðA1Þ, ðA2Þ, ðBÞ, ðCÞ, ðDÞ and ðEÞ in PnC or ðA0Þ, ðA1Þ, ðA2Þ
and ðBÞ in HnC. Conversely, by using Theorem 7, we check that real hyper-

surfaces of types ðA1Þ, ðA2Þ, ðBÞ in PnC or ðA0Þ, ðA1Þ, ðA2Þ and ðBÞ in HnC are

Levi-parallel (with respect to the g.-Tanaka-Webster connection).

Now, we shall prove M of types ðCÞ, ðDÞ and ðEÞ in PnC is not Levi

parallel. For M of type ðCÞ, ðDÞ or ðEÞ in PnC, M has five distinct constant

principal curvatures, say l1, l2, l3, l4 and a so that TM ¼ Vl1
lVl2

lVl3
l

Vl4
l fxgR. We put x ¼ cot y� p

4

� �
p
4 < y < p

2

� �
. Then we may express (cf. [11])

l1 ¼ x; l2 ¼ � 1

x
; l3 ¼ x þ 1

1 � x
; l4 ¼ x � 1

x þ 1
; a ¼ �4x

x2 � 1
:ð4:7Þ
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We note that

0 < x < 1 and jVl1
¼ Vl2

; jVl2
¼ V�l1

; jVla
¼ Vla

; a ¼ 3; 4:ð4:8Þ

We first prove the following

Lemma 1. Let M be a real hypersurface M of types ðCÞ, ðDÞ and ðEÞ in

PnC. If M is Levi-parallel, then

ð1Þ for X A Vli
ði ¼ 1; 2Þ; ‘ZX ¼ ð‘ZX Þli

� gðX ; jAZÞx;ð4:9Þ

ð2Þ for X A Vla
ða ¼ 3; 4Þ; ‘ZX ¼ ð‘ZXÞla

� gðX ; jAZÞx:

for any Z A D, where Xl denotes the Vl-component of the vector X.

Proof. For X A Vl and Y A Vm, we get

gðð‘ZAÞX ;YÞ ¼ ðl� mÞgð‘ZX ;YÞ:

If we put l ¼ alþ2
2l�a

, then jX A V
l

and jY A Vm. Together with (2.2) we get

gðð‘ZAÞjX ; jYÞ ¼ ðl� mÞgð‘ZðjXÞ; jY Þ

¼ ðl� mÞgðjð‘ZXÞ; jY Þ

¼ ðl� mÞgð‘ZX ;YÞ

Suppose that M is Levi-parallel. Then from (4.2) we obtain

½ðl� mÞ þ ðl� mÞ�gð‘ZX ;YÞ ¼ 0:ð4:10Þ

From (4.7) and (4.10) we calculate the following:

for X A Vli
ði ¼ 1; 2Þ; Y A Vl3

;
ðx þ 1Þðx2 þ 1Þ

xðx � 1Þ gð‘ZX ;Y Þ ¼ 0;ð4:11Þ

for X A Vli
; Y A Vl4

;
ðx � 1Þðx2 þ 1Þ

xðx þ 1Þ gð‘ZX ;YÞ ¼ 0;

for X A Vl1
; Y A Vl2

; 2xgð‘ZX ;Y Þ ¼ 0;

for X A Vl2
; Y A Vl1

; �2xgð‘ZX ;YÞ ¼ 0;

for X A Vl3
; Y A Vl4

;
ðx þ 1Þðx2 þ 1Þ

xð1 � xÞ gð‘ZX ;YÞ ¼ 0;

for X A Vl4
; Y A Vl3

;
ð1 � xÞðx2 þ 1Þ

xðx þ 1Þ gð‘ZX ;YÞ ¼ 0:
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Since gð‘ZX ; xÞ ¼ �gðX ; jAZÞ, from (4.8) and (4.11), we may express ‘ZX as

(4.9). r

Secondly, we also prove

Lemma 2. Let M be a real hypersurface M of type ðCÞ, ðDÞ and ðEÞ in PnC.

Then we have

‘xZ A Vli
l fjZgR for Z A Vli

ði ¼ 1; 2Þ:ð4:12Þ

Proof. For any unit vector Z A Vl, from (2.3) and Proposition 3 it follows

that

ð‘ZAÞx� ð‘xAÞZ ¼ ‘ZðAxÞ � A‘Zx� ‘xðAZÞ þ Að‘xZÞ

¼ ðaI � AÞjAZ � ðxlÞZ � ðlI � AÞ‘xZ

¼ l a� alþ 2

2l� a

� �
jZ � ðlI � AÞ‘xZ:

On the other hand, from (3.2) we get

ð‘ZAÞx� ð‘xAÞZ ¼ �jZ:

Hence we obtain

ðlI � AÞ‘xZ ¼ l a� alþ 2

2l� a

� �� �
jZ for Z A Vl:ð4:13Þ

Since jVl1
¼ Vl2

, from (4.13) we can find (4.12). r

Thus, it follows from Proposition 3 and (4.13) that for i ¼ 1; 2,

li �
ali þ 2

2li � a

	 

gð‘xZ; jZÞ ¼ li a� ali þ 2

2li � a

� �� �
gðjZ; jZÞ

or

2ðl2
i � ali � 1Þgð‘xZ; jZÞ ¼ aðl2

i � ali � 1ÞgðjZ; jZÞ:ð4:14Þ

But, for a real hypersurface M which is locally congruent to one of types

ðCÞ, ðDÞ and ðEÞ we know that l2 � al� 10 0. (We note that the equation

l2 � al� 1 ¼ 0 holds if and only if M is locally congruent to a real hypersurface

of type ðA1Þ or ðA2Þ.) Therefore from (4.14) we get
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gð‘xZ; jZÞ ¼ a

2
gðjZ; jZÞ for Z A Vli

; i ¼ 1; 2:ð4:15Þ

For X A Vl1
and Z A Vl3

, by using (1) and (2) in (4.9), we have

RðZ; jZÞX ¼ ‘Zð‘jZX Þ � ‘jZð‘ZXÞ � ‘½Z;jZ�Xð4:16Þ

¼ ‘Zfð‘jZX Þl1
� l3gðX ; j2ZÞxg

� ‘jZfð‘ZX Þl1
� l3gðX ; jZÞxg

� ‘fð‘ZjZÞl3
�l3xgX þ ‘fð‘jZZÞl3

þl3xgX

¼ ð‘Zð‘jZX Þl1
Þl1

� l3gðð‘jZXÞl1
; jZÞx

� ð‘jZð‘ZX Þl1
Þl1

þ l3gðð‘ZXÞl1
; j2ZÞx

� ð‘ð‘ZjZÞl3
X Þl1

þ l3gðX ; jð‘ZjZÞl3
Þxþ l3‘xX

þ ð‘ð‘jZZÞl3
X Þl1

� l3gðX ; jð‘jZZÞl3
Þxþ l3‘xX :

The equations (4.15) and (4.16) show that

gðRðZ; jZÞX ; jXÞ ¼ 2l3gð‘xX ; jX Þ ¼ al3gðjX ; jX Þ:

On the other hand, since jX A Vl2
and jZ A Vl3

, the equation of Gauss (3.1) gives

gðRðZ; jZÞX ; jXÞ ¼ �2gðjZ; jZÞgðjX ; jX Þ:ð4:17Þ

From this, together with (4.7), we have �4x
x2�1

� 1þx
1�x

¼ �2, that is, x2 þ 1 ¼ 0. This is

a contradiction.

Thus, we have our Main Theorem. r
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