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A SPLITTING THEOREM FOR CAT(0) SPACES WITH
THE GEODESIC EXTENSION PROPERTY

By

Tetsuya HOSAKA

Abstract. In this paper, we show the following splitting theorem:
For a proper CAT(0) space $X$ with the geodesic extension prop-
erty, if a group $\Gamma=G_{1}\times G_{2}$ acts geometrically (i.e., properly dis-
continuously and cocompactly by isometries) on $X$ , then $X$ splits as
a product $X_{1}\times X_{2}$ and there exist geometric actions of $G_{1}$ and some
subgroup of finite index in $G_{2}$ on $X_{1}$ and $X_{2}$ , respectively.

1. Introduction and Preliminaries

The purpose of this paper is to study CAT(0) spaces. We say that a metric
space (X, $d$ ) is a geodesic space if for each $x,$ $y\in X$ , there exists an isometry
$\xi$ : $[0, d(x, y)]\rightarrow X$ such that $\xi(0)=x$ and $\xi(d(x, y))=y$ (such $\xi$ is called a geo-
desic). Let (X, $d$ ) be a geodesic space and let $T$ be a geodesic triangle in $X$ . A
comparison triangle for $T$ is a geodesic triangle $T$ ‘ in the Euclidean plane $R^{2}$ with
same edge lengths as $T$ . Choose two points $x$ and $y$ in $T$ . Let $x^{\prime}$ and $y^{\prime}$ denote
the corresponding points in $T^{\prime}$ . Then the inequality

$d(x, y)\leq d_{R^{2}}(x^{\prime}, y^{\prime})$

is called the CAT $(O)$ -inequality, where $d_{R^{2}}$ is the natural metric on $R^{2}$ . A geo-
desic space (X, $d$ ) is called a CAT(0) space if the CAT(O)-inequality holds for all
geodesic triangles $T$ and for all choices of two points $x$ and $y$ in $T$ . A CAT(0)
space $X$ is said to have the geodesic extension property if every geodesic can be
extended to a geodesic line $R\rightarrow X$ .

A metric space $X$ is said to be proper, if every closed metric ball in $X$ is
compact. A subset $M$ of a metric space $X$ is quasi-dense if there exists a number
$N>0$ such that each point of $X$ is N-close to some point of $M$ .
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The minimal set ${\rm Min}(\gamma)$ of an isometry $\gamma$ is defined as follows: Let $X$ be
a metric space and let $\gamma$ be an isometry of $X$ . Then the translation length of $\gamma$

is defined as $|\gamma|=\inf\{d(x, \gamma x)|x\in X\}$ , and the minimal set of $\gamma$ is defined as
${\rm Min}(\gamma)=\{x\in X|d(x, \gamma x)=|\gamma|\}$ . If $\Gamma$ is a group acting by isometries on $X$ , then
${\rm Min}(\Gamma)$ $:=\bigcap_{\gamma\in\Gamma}{\rm Min}(\gamma)$ .

P. L. Bowers and K. Ruane proved the following theorem in [1].

THEOREM 1.1 ([1, Proposition 1.1], [2, Theorem II.7.1]). Let $G$ be a group
and let $A$ be a free abelian group of rank $n$ . Suppose that $\Gamma=G\times A$ acts geo-
metrically on a proper CAT(0) space X. Then ${\rm Min}(A)=\bigcap_{\alpha\in A}{\rm Min}(\alpha)$ is a closed,
F-invariant, convex and quasi-dense subset of $X$ that splits as a product $Y\times R^{n}$ ,
and there exist geometric actions of $G$ and $A$ on $Y$ and $R^{n}$ , respectively. Moreover

if $X$ has the geodesic extension property, then $X={\rm Min}(A)=Y\times R^{n}$ .

The last sentence of the above theorem is obtained from the following
lemma.

LEMMA 1.2 ([2, Lemma II.6.16]). Let $X$ be a complete $CAT(O)$ space with
the geodesic extension property and let $\alpha$ be an isometry of X. If there exists a
group $\Gamma$ which acts cocompactly by isometries on $X$ such that $\alpha$ commutes with $\Gamma$ ,
then ${\rm Min}(\alpha)=X$ .

Also the following splitting theorem is known.

THEOREM 1.3 ([2, Proposition II.6.23, Lemma II.6.24]). Suppose that a group
$\Gamma=G_{1}\times G_{2}$ acts geometrically on a proper CAT(0) space $X$ with the geodesic
extension property. If $G_{2}$ has the finite center, then $X$ splits as a product $X_{1}\times X_{2}$ ,
the subspaces of the form $X_{1}\times\{x_{2}\}$ are the closed convex hulls of the $G_{1}$ -orbits,
$G_{1}$ acts geometrically on $X_{1}$ , and there exists a geometric action of $G_{2}$ on $X_{2}$ .

In this paper, using Theorems 1.1 and 1.3, we prove the following splitting
theorems as an extension.

THEOREM A. Suppose that a group $G$ acts geometrically (i.e., properly
discontinuously and cocompactly by isometries) on a proper CAT(0) space X. Then
there exist subgroups $G^{\prime},$ $A\subset G$ such that

(1) $G^{\prime}\times A$ is a subgroup offinite index in $G$,
(2) $G^{\prime}$ has the finite center, and
(3) $A$ is isomorphic to $Z^{n}$ for some $n$ ,

and there exist convex subspaces $X^{\prime},$ $Z\subset X$ such that
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(1) $X^{\prime}\times Z$ is a quasi-dense subspace of $X$,

(2) there exists a geometric action of $G^{\prime}$ on $X^{\prime}$ , and
(3) $Z$ is isometric to $R^{n}$ .

Moreover $\iota fX$ has the geodesic extension property, then $X=X^{\prime}\times Z$ .

THEOREM B. Suppose that a group $F=G_{1}\times G_{2}$ acts geometrically on a
proper CAT(0) space $X$ with the geodesic extension property. Then $X$ splits as
a product $X_{1}\times X_{2}$ and there exist geometric actions of $G_{1}$ and some subgroup of
finite index in $G_{2}$ on $X_{1}$ and $X_{2}$ , respectively.

2. Proof of Main Theorems

To prove Main Theorems, the following lemma plays a key role.

LEMMA 2.1. Suppose that a group $\Gamma=G\times H$ acts geometrically on a proper
CAT(0) space X. Then there exist subgroups $G^{\prime},$ $A\subset G$ such that

(1) $G^{\prime}\times A$ is a subgroup offinite index in $G$,
(2) $G^{\prime}$ has the finite center, and
(3) $A$ is isomorphic to $Z^{n}$ for some $n$ .

We first recall some properties of CAT(0) spaces.

DEFINITION 2.2. An isometry $\gamma$ of a metric space $X$ is called semi-simple if
${\rm Min}(\gamma)$ is nonempty.

The following results are known.

LEMMA 2.3 ([2, Proposition II.6.10 (2)]). Suppose that a group $F$ acts geo-
metrically on a proper metric space X. Then every element of $F$ is a semi-simple
isometry of $X$.

LEMMA 2.4 ([2, p. 439, Theorem 1.1 (1), (4)]). If a group $F$ acts geometricafly
on a proper CAT $(O)$ space, then

(1) $F$ is finitely presented, and
(2) every abelian subgroup of $\Gamma$ is finitely generafed.

LEMMA 2.5 ([2, p. 439, Theorem 1.1 (iv)]). Let $G$ be a finitely generated
group that acts properly discontinuously by semi-simple isometries on a proper
CAT(0) space X. If $A\cong Z^{n}$ is central in $G$, then there exists a subgroup offinite
index in $G$ that contains $A$ as a direct factor.
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Using lemmas above, we prove Lemma 2.1.

PROOF OF LEMMA 2.1. Since the center $C(G)$ of $G$ is an abelian subgroup
of $\Gamma,$ $C(G)$ is finitely generated by Lemma 2.4 (2). If the center $C(G)$ is finite,
then $G^{\prime}$ $:=G$ and $A$ $:=0$ satisfy the three conditions of this lemma. Suppose that
$C(G)$ is infinite.

Let $A_{1}$ be the free abelian subgroup of $C(G)$ such that $C(G)=A_{1}\times B_{1}$ ,
where $B_{1}$ is the torsion subgroup of $C(G)$ . Since $G\times H$ is finitely presented by
Lemma 2.4 (1), $G$ is finitely generated. By Lemma 2.3, $G$ acts properly discon-
tinuously by semi-simple isometries on $X$ . Hence, by Lemma 2.5, there exists a
subgroup $G_{1}\subset G$ such that $G_{1}\times A_{1}$ is a subgroup of finite index in $G$ . If $G_{1}$

has the finite center, then $G^{\prime}$ $:=G_{1}$ and $A$ $:=A_{1}$ satisfy the three conditions of
this lemma. Suppose that the center $C(G_{1})$ of $G_{1}$ is infinite.

Let $A_{2}$ be the free abelian subgroup of $C(G_{1})$ such that $C(G_{1})=A_{2}\times B_{2}$ ,
where $B_{2}$ is the torsion subgroup of $C(G_{1})$ . Since $[G\times H:G_{1}\times A_{1}\times H]<\infty$ ,
$G_{1}\times A_{1}\times H$ acts geometrically on $X$ . Hence $G_{1}\times A_{1}\times H$ is finitely generated
by Lemma 2.4 (1), i.e., $G_{1}$ is finitely generated. By Lemma 2.3, $G_{1}$ acts properly
discontinuously by semi-simple isometries on $X$ . By Lemma 2.5, there exists a
subgroup $G_{2}\subset G_{1}$ such that $G_{2}\times A_{2}$ is a subgroup of finite index in $G_{1}$ . Then
$G_{2}\times A_{2}\times A_{1}\times H$ acts geometrically on $X$ .

By the same argument, we have a sequence

$G\supset G_{1}\times A_{1}\supset G_{2}\times A_{2}\times A_{1}\supset\cdots\supset G_{m}\times(A_{m}\times\cdots\times A_{1})$ ,

where each index is finite and $A_{j}\cong Z^{n_{j}}$ for some $n_{j}\geq 1$ . By Lemma 2.4 (2), this
is a finite sequence, i.e., $G_{m}$ has the finite center for some $m$ . Then $G^{\prime}$ $:=G_{m}$ and
$A:=A_{1}\times\cdots\times A_{m}$ satisfy the three conditions of this lemma. $\square $

We obtain Theorem A from Lemma 2.1 and Theorem 1.1.

PROOF OF THEOREM A. Since $G\times O$ acts geometrically on $X$ , by Lemma 2.1,
there exist subgroups $G^{\prime},$ $A\subset G$ such that

(1) $G^{\prime}\times A$ is a subgroup of finite index in $G$ ,
(2) $G^{\prime}$ has the finite center, and
(3) $A\cong Z^{n}$ for some $n$ .

Since $[G:G^{\prime}\times A]<\infty$ , $G^{\prime}\times A$ acts geometrically on $X$ . By Theorem 1.1,
${\rm Min}(A)$ is closed, $(G^{\prime}\times A)$ -invariant, convex and quasi-dense subset of $X$ , it
splits as a product $X^{\prime}\times R^{n}$ , and there exists a geometric action of $G$ ‘ on $X^{\prime}$ .
Moreover, if $X$ has the geodesic extension property, then $ X={\rm Min}(A)=X^{\prime}\times$

$R^{n}$ . $\square $
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Using Lemma 2.1 and Theorems 1.1 and 1.3, we prove Theorem B.

$PR\infty F$ OF THEOREM B. By Lemma 2.1, there exist subgroups $G_{2}^{\prime},$ $A_{2}\subset G_{2}$

such that
(1) $G_{2}^{\prime}\times A_{2}$ is a subgroup of finite index in $G_{2}$ ,
(2) $G_{2}^{\prime}$ has the finite center, and
(3) $A_{2}\cong Z^{n}$ for some $n$ .

Then $G_{1}\times G_{2}^{\prime}\times A_{2}$ acts geometrically on $X$ because $[G_{1}\times G_{2} : G_{1}\times G_{2}^{\prime}\times A_{2}]<$

$\infty$ . Since $A_{2}\cong Z^{n}$ , by Theorem 1.1, $X={\rm Min}(A_{2})$ splits as a product $Y\times Z$,

where $Z\cong R^{n}$ , and there exist geometric actions of $G_{1}\times G_{2}^{\prime}$ and $A_{2}$ on $Y$ and
$Z$ , respectively. Since $G_{2}^{\prime}$ has the finite center, by Theorem 1.3, $Y$ splits as a
product $X_{1}\times Y^{\prime}$ and there exist geometric actions of $G_{1}$ and $G_{2}^{\prime}$ on $X_{1}$ and $Y^{\prime}$ ,
respectively. Therefore

$X=Y\times Z=(X_{1}\times Y^{\prime})\times Z=X_{1}\times(Y^{\prime}\times Z)$ ,

and $G_{2}^{\prime}\times A_{2}$ acts geometrically on $Y^{\prime}\times Z$ by product. Here $G_{2}^{\prime}\times A_{2}$ is a
subgroup of finite index in $G_{2}$ . $\square $
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