A SPLITTING THEOREM FOR CAT(0) SPACES WITH THE GEODESIC EXTENSION PROPERTY

By
Tetsuya Hosaka

Abstract

In this paper, we show the following splitting theorem: For a proper CAT(0) space X with the geodesic extension property, if a group $\Gamma=G_{1} \times G_{2}$ acts geometrically (i.e., properly discontinuously and cocompactly by isometries) on X, then X splits as a product $X_{1} \times X_{2}$ and there exist geometric actions of G_{1} and some subgroup of finite index in G_{2} on X_{1} and X_{2}, respectively.

1. Introduction and Preliminaries

The purpose of this paper is to study $\mathrm{CAT}(0)$ spaces. We say that a metric space (X, d) is a geodesic space if for each $x, y \in X$, there exists an isometry $\xi:[0, d(x, y)] \rightarrow X$ such that $\xi(0)=x$ and $\xi(d(x, y))=y$ (such ξ is called a geodesic). Let (X, d) be a geodesic space and let T be a geodesic triangle in X. A comparison triangle for T is a geodesic triangle T^{\prime} in the Euclidean plane \mathbf{R}^{2} with same edge lengths as T. Choose two points x and y in T. Let x^{\prime} and y^{\prime} denote the corresponding points in T^{\prime}. Then the inequality

$$
d(x, y) \leq d_{\mathbf{R}^{2}}\left(x^{\prime}, y^{\prime}\right)
$$

is called the $C A T(0)$-inequality, where $d_{\mathbf{R}^{2}}$ is the natural metric on \mathbf{R}^{2}. A geodesic space (X, d) is called a $\operatorname{CAT}(0)$ space if the $\operatorname{CAT}(0)$-inequality holds for all geodesic triangles T and for all choices of two points x and y in T. A CAT(0) space X is said to have the geodesic extension property if every geodesic can be extended to a geodesic line $\mathbf{R} \rightarrow X$.

A metric space X is said to be proper, if every closed metric ball in X is compact. A subset M of a metric space X is quasi-dense if there exists a number $N>0$ such that each point of X is N-close to some point of M.

[^0]The minimal set $\operatorname{Min}(\gamma)$ of an isometry γ is defined as follows: Let X be a metric space and let γ be an isometry of X. Then the translation length of γ is defined as $|\gamma|=\inf \{d(x, \gamma x) \mid x \in X\}$, and the minimal set of γ is defined as $\operatorname{Min}(\gamma)=\{x \in X|d(x, \gamma x)=|\gamma|\}$. If Γ is a group acting by isometries on X, then $\operatorname{Min}(\Gamma):=\bigcap_{\gamma \in \Gamma} \operatorname{Min}(\gamma)$.
P. L. Bowers and K. Ruane proved the following theorem in [1].

Theorem 1.1 ([1, Proposition 1.1], [2, Theorem II.7.1]). Let G be a group and let A be a free abelian group of rank n. Suppose that $\Gamma=G \times A$ acts geometrically on a proper $C A T(0)$ space X. Then $\operatorname{Min}(A)=\bigcap_{\alpha \in A} \operatorname{Min}(\alpha)$ is a closed, Γ-invariant, convex and quasi-dense subset of X that splits as a product $Y \times \mathbf{R}^{n}$, and there exist geometric actions of G and A on Y and \mathbf{R}^{n}, respectively. Moreover if X has the geodesic extension property, then $X=\operatorname{Min}(A)=Y \times \mathbf{R}^{n}$.

The last sentence of the above theorem is obtained from the following lemma.

Lemma 1.2 ([2, Lemma II.6.16]). Let X be a complete CAT(0) space with the geodesic extension property and let α be an isometry of X. If there exists a group Γ which acts cocompactly by isometries on X such that α commutes with Γ, then $\operatorname{Min}(\alpha)=X$.

Also the following splitting theorem is known.
Theorem 1.3 ([2, Proposition II.6.23, Lemma II.6.24]). Suppose that a group $\Gamma=G_{1} \times G_{2}$ acts geometrically on a proper CAT(0) space X with the geodesic extension property. If G_{2} has the finite center, then X splits as a product $X_{1} \times X_{2}$, the subspaces of the form $X_{1} \times\left\{x_{2}\right\}$ are the closed convex hulls of the G_{1}-orbits, G_{1} acts geometrically on X_{1}, and there exists a geometric action of G_{2} on X_{2}.

In this paper, using Theorems 1.1 and 1.3, we prove the following splitting theorems as an extension.

Theorem A. Suppose that a group G acts geometrically (i.e., properly discontinuously and cocompactly by isometries) on a proper CAT(0) space X. Then there exist subgroups $G^{\prime}, A \subset G$ such that
(1) $G^{\prime} \times A$ is a subgroup of finite index in G,
(2) G^{\prime} has the finite center, and
(3) A is isomorphic to \mathbf{Z}^{n} for some n, and there exist convex subspaces $X^{\prime}, Z \subset X$ such that
(1) $X^{\prime} \times Z$ is a quasi-dense subspace of X,
(2) there exists a geometric action of G^{\prime} on X^{\prime}, and
(3) Z is isometric to \mathbf{R}^{n}.

Moreover if X has the geodesic extension property, then $X=X^{\prime} \times Z$.

Theorem B. Suppose that a group $\Gamma=G_{1} \times G_{2}$ acts geometrically on a proper $C A T(0)$ space X with the geodesic extension property. Then X splits as a product $X_{1} \times X_{2}$ and there exist geometric actions of G_{1} and some subgroup of finite index in G_{2} on X_{1} and X_{2}, respectively.

2. Proof of Main Theorems

To prove Main Theorems, the following lemma plays a key role.
Lemma 2.1. Suppose that a group $\Gamma=G \times H$ acts geometrically on a proper $C A T(0)$ space X. Then there exist subgroups $G^{\prime}, A \subset G$ such that
(1) $G^{\prime} \times A$ is a subgroup of finite index in G,
(2) G^{\prime} has the finite center, and
(3) A is isomorphic to \mathbf{Z}^{n} for some n.

We first recall some properties of $\mathrm{CAT}(0)$ spaces.

Definition 2.2. An isometry γ of a metric space X is called semi-simple if $\operatorname{Min}(\gamma)$ is nonempty.

The following results are known.
Lemma 2.3 ([2, Proposition II.6.10 (2)]). Suppose that a group Γ acts geometrically on a proper metric space X. Then every element of Γ is a semi-simple isometry of X.

Lemma 2.4 ([2, p. 439, Theorem 1.1 (1), (4)]). If a group Γ acts geometrically on a proper $\operatorname{CAT}(0)$ space, then
(1) Γ is finitely presented, and
(2) every abelian subgroup of Γ is finitely generated.

Lemma 2.5 ([2, p. 439, Theorem 1.1 (iv)]). Let G be a finitely generated group that acts properly discontinuously by semi-simple isometries on a proper $C A T(0)$ space X. If $A \cong \mathbf{Z}^{n}$ is central in G, then there exists a subgroup of finite index in G that contains A as a direct factor.

Using lemmas above, we prove Lemma 2.1.
Proof of Lemma 2.1. Since the center $C(G)$ of G is an abelian subgroup of $\Gamma, C(G)$ is finitely generated by Lemma 2.4 (2). If the center $C(G)$ is finite, then $G^{\prime}:=G$ and $A:=0$ satisfy the three conditions of this lemma. Suppose that $C(G)$ is infinite.

Let A_{1} be the free abelian subgroup of $C(G)$ such that $C(G)=A_{1} \times B_{1}$, where B_{1} is the torsion subgroup of $C(G)$. Since $G \times H$ is finitely presented by Lemma 2.4 (1), G is finitely generated. By Lemma 2.3, G acts properly discontinuously by semi-simple isometries on X. Hence, by Lemma 2.5, there exists a subgroup $G_{1} \subset G$ such that $G_{1} \times A_{1}$ is a subgroup of finite index in G. If G_{1} has the finite center, then $G^{\prime}:=G_{1}$ and $A:=A_{1}$ satisfy the three conditions of this lemma. Suppose that the center $C\left(G_{1}\right)$ of G_{1} is infinite.

Let A_{2} be the free abelian subgroup of $C\left(G_{1}\right)$ such that $C\left(G_{1}\right)=A_{2} \times B_{2}$, where B_{2} is the torsion subgroup of $C\left(G_{1}\right)$. Since $\left[G \times H: G_{1} \times A_{1} \times H\right]<\infty$, $G_{1} \times A_{1} \times H$ acts geometrically on X. Hence $G_{1} \times A_{1} \times H$ is finitely generated by Lemma 2.4 (1), i.e., G_{1} is finitely generated. By Lemma 2.3, G_{1} acts properly discontinuously by semi-simple isometries on X. By Lemma 2.5, there exists a subgroup $G_{2} \subset G_{1}$ such that $G_{2} \times A_{2}$ is a subgroup of finite index in G_{1}. Then $G_{2} \times A_{2} \times A_{1} \times H$ acts geometrically on X.

By the same argument, we have a sequence

$$
G \supset G_{1} \times A_{1} \supset G_{2} \times A_{2} \times A_{1} \supset \cdots \supset G_{m} \times\left(A_{m} \times \cdots \times A_{1}\right),
$$

where each index is finite and $A_{i} \cong \mathbf{Z}^{n_{i}}$ for some $n_{i} \geq 1$. By Lemma 2.4 (2), this is a finite sequence, i.e., G_{m} has the finite center for some m. Then $G^{\prime}:=G_{m}$ and $A:=A_{1} \times \cdots \times A_{m}$ satisfy the three conditions of this lemma.

We obtain Theorem A from Lemma 2.1 and Theorem 1.1.
Proof of Theorem A. Since $G \times 0$ acts geometrically on X, by Lemma 2.1, there exist subgroups $G^{\prime}, A \subset G$ such that
(1) $G^{\prime} \times A$ is a subgroup of finite index in G,
(2) G^{\prime} has the finite center, and
(3) $A \cong \mathbf{Z}^{n}$ for some n.

Since $\left[G: G^{\prime} \times A\right]<\infty, G^{\prime} \times A$ acts geometrically on X. By Theorem 1.1, $\operatorname{Min}(A)$ is closed, $\left(G^{\prime} \times A\right)$-invariant, convex and quasi-dense subset of X, it splits as a product $X^{\prime} \times \mathbf{R}^{n}$, and there exists a geometric action of G^{\prime} on X^{\prime}. Moreover, if X has the geodesic extension property, then $X=\operatorname{Min}(A)=X^{\prime} \times$ \mathbf{R}^{n}.

Using Lemma 2.1 and Theorems 1.1 and 1.3, we prove Theorem B.

Proof of Theorem B. By Lemma 2.1, there exist subgroups $G_{2}^{\prime}, A_{2} \subset G_{2}$ such that
(1) $G_{2}^{\prime} \times A_{2}$ is a subgroup of finite index in G_{2},
(2) G_{2}^{\prime} has the finite center, and
(3) $A_{2} \cong \mathbf{Z}^{n}$ for some n.

Then $G_{1} \times G_{2}^{\prime} \times A_{2}$ acts geometrically on X because $\left[G_{1} \times G_{2}: G_{1} \times G_{2}^{\prime} \times A_{2}\right]<$ ∞. Since $A_{2} \cong \mathbf{Z}^{n}$, by Theorem 1.1, $X=\operatorname{Min}\left(A_{2}\right)$ splits as a product $Y \times Z$, where $Z \cong \mathbf{R}^{n}$, and there exist geometric actions of $G_{1} \times G_{2}^{\prime}$ and A_{2} on Y and Z, respectively. Since G_{2}^{\prime} has the finite center, by Theorem 1.3, Y splits as a product $X_{1} \times Y^{\prime}$ and there exist geometric actions of G_{1} and G_{2}^{\prime} on X_{1} and Y^{\prime}, respectively. Therefore

$$
X=Y \times Z=\left(X_{1} \times Y^{\prime}\right) \times Z=X_{1} \times\left(Y^{\prime} \times Z\right)
$$

and $G_{2}^{\prime} \times A_{2}$ acts geometrically on $Y^{\prime} \times Z$ by product. Here $G_{2}^{\prime} \times A_{2}$ is a subgroup of finite index in G_{2}.

References

[1] P. Bowers and K. Ruane, Boundaries of nonpositively curved groups of the form $G \times \mathbf{Z}^{n}$, Glasgow Math. J. 38 (1996), 177-189.
[2] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
[3] E. Ghys and P. de la Harpe (ed), Sur les Groups Hyperboliques d'apres Mikhael Gromov, Progr. Math. vol. 83, Birkhäuser, Boston MA, 1990.
[4] M. Gromov, Hyperbolic groups, in Essays in group theory (S. M. Gersten, ed.), M.S.R.I. Publ. 8 (1987), 75-264.
[5] T. W. Hungerford, Algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1974.
[6] K. Ruane, Boundaries of CAT(0) groups of the form $\Gamma=G \times H$, Topology Appl. 92 (1999), 131-152.

Institute of Mathematics
University of Tsukuba
Tsukuba, 305-8571, Japan

Current address: Department of Mathematics Utsunomiya University
Utsunomiya, 321-8505, Japan
E-mail address: hosaka@cc.utsunomiyau.ac.jp

[^0]: 1991 Mathematics Subject Classification. 20F65, 20 F67.
 Key words and phrases. CAT(0) spaces, geometric actions.
 Received November 14, 2001.
 Revised September 24, 2002.

