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FIXED POINTS SUBGROUPS BY TWO INVOLUTIVE
AUTOMORPHISMS ¢, y OF COMPACT EXCEPTIONAL
LIE GROUPS F4, E¢ AND E;

By

Toshikazu MIYASHITA

Introduction

For simply connected compact exceptional Lie groups G = Fy, E¢ and E7,
we consider two involutions o, y and determine the group structure of subgroups
G?%7 of G which are the intersection G° N G? of the fixed points subgroups of
G° and G’. The motivation is as follows. In [I], we determine the group structure
of (F4)""’/, (Eﬁ)”’”’ and (E7)”’”,, and in [2], we also determine the group structure
of (G2)""', (F4)”" and (Eg)”"". So, in this paper, we try to determine the type of
groups (F43)”7, (E¢)”” and (E7)”". Our results are the following second columns.
The first columns are already known in [3], [4] or [5] and these play an important
role to obtain our results. In Table 1, the results of the group structure of G%7
are obtained by the result of G” and in Table 2, ones are obtained by the result
of G°. In this paper, we show the proof of the results of the first and the second
line of Table 1 and the third line of Table 2.

Acknowledgment

The author is grateful to Professor Ichiro Yokota for his valuable comments.

As for the group (Eg)”?, we can not realize explicitly, however we conjecture
(Eg)”? = (Spin(4) x Spin(12))/(Z> x Z3).
REMARK. In Ej, since y is conjugate to —o, we have (E;)” = (E7)°. (In

detail, see [4].) Note that the results of Table 1 and Table 2 are the same as a
set, however they are different as realizations.
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Table 1

G G | GO

Fy (Sp(1) x 5p(3))/ 2> (Sp(1) x Sp(1) x 5p(2))/ Z

Es (Sp(1) x SU(6))/Z (Sp(1) x S(U(2) x U(4)))/Z>

E; (SU(2) x Spin(12))/Z, (SU(2) x Spin(4) x Spin(8))/(Z, x Z>)

Table 2

G G° GO

F, Spin(9) (Spin(4) x Spin(5))/Z,

Eq (U(1) x Spin(10))/Z4 (U(1) x Spin(4) x Spin(6))/Z,

E; (SU(2) x Spin(12))/Z, (SU(2) x Spin(4) x Spin(8))/(Z2 x Z>)
Notation

(1) For a group G and an element s of G, we denote {g € G|sg = gs} by G°.

(2) For a transformation group G of a space M, the isotropy subgroup of G
at my,...,mye M is denoted by G, ..m = {9€ G|gm =m,...,gm =my}.

(3) For a R-vector space V, its complexification {u + iv|u,v € V} is denoted
by V¢. The complex conjugation in V¢ is denoted by 7: t(u+iv) =u —iv. In
particular, the complexification of R is briefly denoted by C: R = C.

(4) For a Lie group G, the Lie algebra of G is denoted by the corresponding
German small letter g. For example, so(n) is the Lie algebra of the group SO(n).

(5) Although we will give all definitions used in the following Sections, if in
case of insufficiency, refer to [3], [4] or [5].

1. Group Fy

We use the same notation as in [1], [2] or [5] (however, some will be rewritten).
For example, the Cayley algebra € = H @ He,, the exceptional Jordan algebra
I={XeM(3,€)| X* =X}, the Jordan multiplication X o Y, the inner product
(X,Y) and the elements Ej, E,, E3 € J, the group Fy = {a € Isog(J) |a(X 0 Y) =
aX oaY}.

We define R-linear transformations ¢ and y of J by

& o x3 X & —x3 =X &1 oyxz X,
cX =0 x5 & x1|=|-x & x|, Y X=|7 & oyxa |,
x X1 & -x2 X &3 yx2 X &3
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respectively, where yx; = y(my + ares) = my — ares, Xy =my +ares € H @ Hey = Q.
Then, o,y F4 and 6> =)?> =1. ¢ and y are commutative. From oy = yo, we
have

(Fa)" N (Fs)" = ((F4)°)" = ((Fa)")°.
Hence, this group will be denoted briefly by (F4)”".

ProposiTION 1.1. (F3)" = (Sp(1) x Sp(3))/Z>, Z> = {(1,E),(—1,—E)}.

ProoF. The isomorphism is induced by the homomorphism ¢ : Sp(1) x Sp(3) —
(F2)", o(p,A)(M +a) = AMA* + pad*, M +aec33,H ®H=3. (In detail,
see [3], [5])

LemMA 1.2. ¢ : Sp(1) x Sp(3) — (F4)" of Proposition 1.1 satisfies op(p, A)o =
o(p, 1 AL), where I} = diag(—1,1,1).

ProoF. From o = ¢(—1,1;), we have the required one.

Now, we shall determine the group structure of (F4) "7 = ((F4)”)” = (F4)°)” =
(F4)" N (F4)".

TuHeoREM 1.3. (F4)”7 = (Sp(1) x Sp(1) x Sp(2))/Z,, Z>, = {(1,1,E),(-1,-1,
—E)}.

Proor. We define a map ¢, : Sp(1) x Sp(1) x Sp(2) — (F4)”? by

g|0 o0 g|0 O\ g|0 OV
’7B M+ a)= M ~+ pa ,
94(p, 4, B)( ) g 3 g 3 2 g 3

M +aec3(3,H)®H? =3, as the restriction of [Proposition 1.1. By Lemma 1.2,
¢, is well-defined and a homomorphism. We shall show that ¢, is onto. Let
ae (Fy)”7. Since (Fy)®" < (F4)?, there exist p € Sp(1) and A4 € Sp(3) such that
a=¢(p,A) (Proposition 1.1). From ocac =o, we have ¢(p,I1Al}) = ¢(p, A)

(Cemma 1.2). Hence,

p=r or p=-p ‘
LAL = A4 LAL = —-A"
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The latter case is impossible because p =0 is false. In the former case, from

q|0 0
LAL = A, we have 4 =| ¢ , g€ Sp(l), Be Sp(2). Hence, o =
o@ (0| o |)=0p.gB), thatis, g, is onto. And Ker g, ={(1,1,E),

0
(-1,-1,—E)} = Z,. Thus, we have the required isomorphism (Sp(1) x Sp(1) x
Sp(2))/Z> = (Fa)™'. |

2. Group E;

We use the same notation as in [1], [2] or [5] (however, some will be rewritten).
For example, the complex exceptional Jordan algebra I = {X e M(3,€%)]|
X* = X}, the Freudenthal multiplication X x Y and the Hermitian inner prod-
uct (X, Y), the group E¢ = {a € Isoc(I°)|aX x aY = tar(X x Y),{aX,aY) =
(X,Y>}, and the natural inclusion F; < Eg.

PROPOSITION 2.1. (Eg)” = (Sp(1) x SU(6))/Z>, Z, = {(1,E),(-1,-E)}.
Proor. The isomorphism is induced by the homomorphism ¢ : Sp(1) x
SU(6) — (Ee)', ¢(p, A)(M + a) = k' (Ak;(M)'A) +pak='(4*), M +ae 3(3,H)"

® (H*)€ = 3€. (In detail, see [3], [5])

LEMMA 2.2. ¢ : Sp(1) x SU(6) — (Es)" of Proposition 2.1 satisfies op(p, A)g =
¢(p, LAL), where I, = diag(—1,—1,1,1,1,1).

ProoF. From o = ¢(—1,1;), we have the required one.

Now, we shall determine the group structure of (E¢)”" = ((E¢)”)? = ((E6)?)" =
(E¢)° N (Ee)”.

THEOREM 2.3. (Eg)®" = (Sp(1) x S(U(2) x U(4)))/Z,, Z» = {(1,E),
(=1, —E)}.

PrOOF. We define a map ¢ : Sp(1) x S(U(2) x U(4)) — (E¢)”? by
v6(p, A)(M +a) = kj' (Ak;(M)'A) + pak™" (4"),

M+ace 3(3,H)CG-) (H?)€ = 3°, as the restriction of ¢ of [Proposition 2.1. By
Lemma 2.2, ¢, is well-defined and a homomorphism. We shall show that ¢¢ is
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onto. Let a e (Eg)”’. Since (E¢)”" = (Eg)’, there exist p € Sp(1) and 4 € SU(6)
such that o = ¢(p, A) (Proposition 2.1). From ooo = o, we have ¢(p,hADL) =

¢(p,A) (Lemma 2.2). Hence,

p=r or p=-p
hAL = A hAL = —-A°
The latter case is impossible because p = 0 is false. In the former case, we have

Ae S(U(2) x U(4)). Therefore, ¢ is onto. Ker gs = {(1,E),(—1,—E)} = 2Z,.
Thus, we have the required isomorphism (Sp(1) x S(U(2) x U(4)))/Z, = (Es)”".

3. Group E;

We use the same notation as in [I], [4] or [5] (however, some will be rewritten).
For example, the Freudenthal C-vector space BC=3@ 3¢ @ C @ C, the Her-
mitian inner product (P, Q)», the C-linear map P x Q: BE — P (P, Qe BE),
the group E7 = {a € Isoc(‘Bc) (X x Y)oa™! = aP x aQ,{aP,aQ) = {P, 0)}, the
natural inclusion E¢ — E; and elements 0,0’ € Fy < Eg¢ = E7, A€ E.

We shall consider the following subgroup of Fj.

((Fa)*") gy = { € (Fa)*7 |aFy (k) = Fy(h) for all he HJ.
ProposiTioN 3.1, ((F4)”7)p, sy = Sp(1) x Sp(1) (=Spin(4)).

ProoF. We define a map ¢ : Sp(1) x Sp(1) = ((F4)”") g, by

qg|0 0 g|0 O\ g0 0
o(p,q)(M +a)=| 0 M| o + pa
E
0 0
as the restriction of ¢, of Theorem 1.3. By Fi(h) = ) + 0, ¢ is well-

defined and homomorphism. We shall show that ¢ is onto Let 2 € ((F8)”") k-
Since ((F4)” )F.(h) (F4)®7, there exist p,q € Sp(1) and B e Sp(2) such that a =

94(p,q, B) (Theorem 1.3). From «F; (h) = F;(h), we have B(g f))B* = (2 z),

so that

a=p4(p,q,E) or a=gup,q —E).

In the former case, we have a = ¢4(p,q, E) = ¢(p,q). In the latter case, we have
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a=@4(p,q, —E) = 04(—p, —q, E)p4(—1,~1,-E)
= @4(—p, —q, E)1 = o(—p, —q).

Hence, ¢ is onto. Ker ¢ = {(1,1)}. Thus, we have the required isomorphism
Sp(1) x Sp(1) = ((F8)”") pyny-

Hereafter, in B, we use the following notations.
(F1(h),0,0,0) = Fy(h), (0,E;,0,1) = Ej,
(O,EI,O’—I):E—J; (E2+E3,070a0) :E23-

We shall consider a subgroup (((E7)“*)")g,m). £, £.1. £ ©f E7-

LEMMA 3.2. The Lie algebra (((e7)x’#)y)F,(h),E‘l,E,l,Ez; of the group
(((E7)K’#)y)1%,(h),E.,E_1,Ezs is given by

(@) ) ey, B0,

019 0,0,0 01 9 (8) (4)
=< P y Uy Uy € s0 s D} € so .
0| D, 0| D ¢
In particular, we have

dim((((%)x’”)y)Fl(h),El,E'_.,EB) = 6.

0| 0
Hereafter, (ﬂ;) will be denoted by Dj, and also @(Dj,0,0,0) will
4
be denoted by @,.

PROPOSITION 3.3.  (((E7)"*)") ). £y, B By = (FO” ) gy

Proor. Letae ((Fa)”")p, - Since ((F4)"’V)F1(h) < (F4)? = (F4)g, (as for (Fy)°
= (Fa)g,, see [3], [5)), we see aE; = E;. As a result, because x and u are defined
using by E; (see [1], or [5]), we see that xa =oax and pax = op. From
«E = E (see [3], [5]), we have a(E, + E;) = E> + E;. Hence, aEy = Ej;. More-
over, from «(0,0,0,1) = (0,0,0,1) (see [4], [5]), we have aE; = E; and o«E_; =
E_,. Obviously aFj(h) = Fi(h). Thus, ae (((E7))"")")g,m.5,. 5., £y Conversely,
let ae (((E7)K’ﬂ)y)Fl(h),El,Eﬁl,Ezg’ From O(El = El and OCE_l = E_l, we have
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«(0,E1,0,0) = (0,E;,0,0) and «(0,0,0,1) =(0,0,0,1). Hence, ae((E6)y)F1(h),E1,E2+E3
(see [4], [5])- Thus, ((Fa)g)")rm = (Fa)”")p - Therefore, the proof of this
proposition is completed.

Next, we shall consider the following subgroup of Fj.

(F)*7) Fy(heyy = {2 € (Fa)77 | aF1 (hes) = Fi(hes) for all he H}.
PROPOSITION 3.4.  ((F4)”7)F (heyy = SP(2) (=Spin(5)).

ProOF. We define a map ¢ : Sp(2) — ((F4)”") g, (hey) DY

110 0 110 0\ 110 0\
p(B)(M +a)=| 0 M| o +al o :
B
0 B 0 B 0

as the restriction of ¢, of [Theorem 1.3. Obviously ¢ is well-defined and
homomorphism. We shall show that ¢ is onto. Let ae€ ((F4)”7)F, (s, Since
((Fa)"")py (hegy = (Fa)*7, there exist p,q e Sp(1) and Be Sp(2) such that a=
04(p,q,B) (Theorem 1.3). From oF)(hes) = Fi(hes) (=0 + (h,0,0)), we have
phg=nh (he H), so that

d:¢4(1a1aB) or a:¢4(“1a_1a3)'

In the former case, we have o = ¢,(1,1, B) = ¢(B). In the latter case, we have
x = (P4(—1, _17B) = (P4(1, 1, _B)(p4(_1’ —1,—E)
= ¢4(1’ 1, —'B)l = (p(_B)

Hence, ¢ is onto. Ker ¢ = {E}. Thus, we have the required isomorphism Sp(2) =~
((F4)a’y)pl(he4)~

Then, we have the following proposition.

PROPOSITION 35 (((E7)Kuu)Y)Fl(he4),E~1,E_1,E23 = ((F4)a,y)F1(he4)'

Proor. This proof is in the way similar to [Proposition 3.3|

We shall consider the subgroup (((E7)“*)”)g hes) 1,2, ©Of E7-

LemMmA 3.6. The Lie algebra (((e7)x’”)y)l""l(he‘;),i"],il of the group
(((ED)*)) by hes). E1 B, 1S given by
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(€D )V, thea), 11, -,

of(Pd0) 14 'gOONOOODLi—O 8
= <<0 0>+ 1(p) +1i 0;_(18 |(0 0>eso(),

D4eso(4),eeR,p,qu}.

In particular, we have

dim((((eﬁx’”)y)ﬁl(he4),él,E_,) =15.

Dy | 0
Hereafter, o 1o will be denoted by Dj.

LemMa 3.7. (1) For ae H, we define a map a,(a) of 3¢ by

(& =&
) & = <2 ; $ + & ;— & cos|a| + i(aal) sin|a
&H =8 H+ 8 (a,x1) .
A cos|a ~—~ sin|a
\63 2 + 2 | |+l 'al | |
( 2
) 2(a, :
x| = x1 + i———(é2 +&)a sin|a| — 2a,x1)a x21)a (sm M)
|al |l 2
ﬁ xh=x cos'ﬁl%—ip—a sin|£l
2 2 2 |a] 2
Xt = X3 cosl—‘ﬂ—i—ig—c3 sinM
- 2 |al 2

Then, da(a) € ((E7)"")") £ (hea). E1, B -
(2) For t€ R, we define a map a3(t) of 3¢ by

51 X3 X f] eit/2x3 e_i’/z)_cz
an(t)| % & x| =] e"?x;  e'E, X1
x2 X1 &3 e "2x, X1 e,

Thena &23(t) € (((E7)xhu)y)F|(he4),E~'1,E.'71'

Proor. (1) For a e H, we have iFi(a) € (((¢7)"*)") £, (hey). £, £, (Lemma 3.6).
Hence, &;(a) = exp iFi(a) € (((E7)K’ﬂ)y)ﬁ.(he4),E",,E_l-
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(2) For te R, we have it(E; — E3)™ € (((¢1)"*)") £, (hew. 5.5, (Lemma 3.6).
Hence, dy;(7) = exp it(E, — E3)™ € (((E7)"”‘)V)Fl(he‘t),gl’,;-_l.
We define a 6 dimensional R-vector space V° by

Ve ={Pe P |xP=P,utiP = P,yP = P,(P,E|> = 0,{(P,E_|> = 0}

0 0 0
:{pz ((0 E h ),0,0,0)|§ec,heH}
0 h —1¢

with the norm (see for the definition of {,}’s)

(P, P), = 3 {uP, P} = 3 (uP.iP) = (z2)¢ + ih.

Then, S°> = {PeV®|(P,P), =1} is a 5 dimensional sphere.

Lemma 3.8. (((E1)™*)")f thes). 1. 5.,/ SPIN(5) =~ S3. In particular,
(((E'/)K”u)y)Fl(he4),E1,E_1 is connected.

Proor. Since E7 is commutative with ¢4, the group (((E7)"*)")g ey £, £,
acts on S°. We shall show that this action is transitive. To show this, it is sufficient
to show that any element P € S° can be transformed to (i(E; + E3),0,0,0) € S°
under the action of (((E7)"*)")g, (ney.,.5.,- Now, for a given

0 0 0
P:((O E h ),O,O,O)GSS,
0 h —1¢

choose ¢ € R such that e”£ e R. For this t € R, operate d;(¢) (Lemma 3.7(2)) €
(((ED)"*)) (hes. By £, On P. Then, we have

0 0 O
dx(f)P = ((O r h ),0,0,0) =P, reR.
0 h —r

In the case of h # 0, operate &;(nh/2|h|) (Lemma 3.7(1)) €
(((E1)*))E, (heo). 51,5, On P1. Then, we have

., 0 0 0
&l(‘;m)]’lz (0 él 0 )70’0a0>=P26S5’ élec'
0 0

&
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Here, from (7&')¢' =1, ¢’ € C, we can put &' = e 0 < 0 < 2n. Operate dy(—0)
on P,. Then,

d3(—6)Py = (E; — E3,0,0,0) = Ps.

Moreover, operate dp3(7/2) on Ps,

5"23 (g) P3 - (l(EZ + E3),0,0, 0) = iE23.

This shows the transitivity. The isotropy subgroup (((E7)°*)"), (ke £, £, 2t En
is ((E7)"*)") Fu(hea), By E1, Ezy = Sp(2) (Propositions B.3) = Spin(5). Therefore,
we have the homeomorphism (((E7)*)”)f, (ney) £, 5.,/ SPIN(5) =~ S°.

ProPOSITION 3.9.  (((E7)"*)")f, (hey). £ E., = SPin(6).

Proor. Since (((E7)*)’)g,(nes). £, 6., i connected (Lemma 3.8), we can
define a homormorphism 7 : (((E7)"*)")f,hes). £, 5., — SO(6) = SO(V®) by
n(o) = a|VC.

It is not difficult to see that Ker ¢ = {1,0} = Z,. Since
dim((((E7)"*)"), (hes). £1,£.,) = 15 (Lemma 3.6) = dim(s0(6)), = is onto. Hence,
((ED))E, (heo) £y £,/ Z2 = SO(6). Therefore, (((E7)"*)"), (heq).E,.£., 15 isomor-
phism to Spin(6) as a double covering group of SO(6).

We shall consider a subgroup (((E7)“*)")f, hey) £, of Er-

Lemma 3.10. The Lie algebra (((e7)*)")g hey) 5, Of the group
(((E7)K’”)y)p‘,(he4),é. is given by

(((e)**)"), (hes), Ey

0 0 O 0 O O 0 0 O
:{¢(D4+/i~1(p)+i(0 € q),(O o ix),—r(O o ix),O)
0 g —¢ 0 ix 1« 0 ix ta

| D4 € 50(4) cso(8),aeR,oceC,p,q,er}.

In particular, we have

dim((((¢7)"*)") £, (hes), £,) = 21

LeMMA 3.11. For a€ R, we define maps ox(a), k =2,3 of BE by
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X (1 +(cosa—1)p)X —2(sin a)Ex x Y + x(sin a)Ey
Y| | 26ina)Ex x X+ (1+ (cosa—1)px)Y — &(sin a) Ex
¢
n

%) - ((sin @)Ex, Y) + (cos a)& ’
(—(sin @)Ey, X) + (cos a)n
where pi : 3¢ — I is defined by
pe(X) = (X, Ex)Ex + 4E; x (Ex x X), X e3°.
Then, oy € E7 and ay(a),a3(b) (a,b € R) commute with each other.
ProoOF. For @y(a)=D(0,aEy, —aEy,0)€e;, we have ax(a) =exp Pi(a)€ E;.
Since [Dy(a), P3(b)] =0, ax(a) and a3(b) are commutative.

We define a 7 dimensional R-vector space V7 by

V7 = {PeBC|kP = P,utAP = P,yP = P,{P,E;> = 0}

0 0 O in 0 O
={P=<(O E h ),(O 0 0),0,—in)|feC,heH,neR}
0 h —1¢ 0 0O
with the norm
1 _
(P,P), = 3 (uP,AP) = (1&)E + hh +n*.

Then, S¢={PeV7|(P,P), =1} is a 6 dimensional sphere.

LiMMA 312, (((ED)™*)) £, (hea), £,/ SPIN(6) =~ S8. In particular,
((CED ) )Ey hes, £, 1s comnected.

PrOOF. The group (((E7)™*)”) hes), £, 2Cts on S°. We shall show that this
action is transitive. To show this, it is sufficient to show that any element P € S°
can be transformed to (0, —iE},0,i) € S¢ under the action of ((ED )V, hea). -

Now, for a given
0 in 0 0
h ),(0 0 0),0,—i;7)eS6,
14 0O 0 O

o

choose ae R, 0 <a<n/2 such that tan 2a = 122’76 (if ©£&—¢& =0, then let

S v O
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a=rmn/4). Operate oy(a):= a(a)as(a) =exp(P(0,a(E; + E3), —a(E, + E3),0))
(Lemma 3.11) € (((E7)"*)") £, (hes). 5, (Lemma 3.10) on P. Then, the z-term of
ax(a)P is (1/2)(¢ — 1¢) sin 2a + in cos 2a = 0. Hence,

0 0 O
w3(a)P = ((0 { m ),0,0,0) =P eS’cSS.
0 m -—-1¢

Since (((E7)"*)") g, hea), 1, 8-, (S(ET)")") 5, (hes), £, ) ACTS transitivity on S3 (Lemma
3.8), there exist f € ((E7)"%)")£, hes). £, £, SUch that Py = (i(Ez + E3),0,0,0) =
P, € 85 = S%. Moreover, operate oy3(—n/4) on P,,

23 <_§)PZ - (0, —iEhO? l) = —iE_l'

This shows the transitivity. The isotropy subgroup (((E7)"*)")g, (hea), Ey @t E_i is
(((E1)"*)")E, (hes), £1, £, = Spin(6) (Proposition 3.9). Thus, we have the homeo-
morphism (((E7)*)"), (hes), £,/ SPP(6) = SS.

PrOPOSITION 3.13.  (((E7)"*)7) £, (hey), £, = Spin(7).
Proof. Since (((E7)*)")f, (hes), £ 18 connected (Lemma 3.12), we can define
a homormorphism 7 : (((E7)"*)") 5, (heg). 5, = SO(7) = SO(V") by
n(a) = o V.

It is not difficult to see that Ker ¢ = {1,0} = Z,. Since
dim((((E7)*)")# (hes).£,) = 21 (Lemma 3.10) = dim(so(7)), = is onto. Hence,
(((ED)"")) £y hew). £,/ Z2 = SO(T). Therefore, (((E7)*)"), (hey), 5, 18 isomorphism
to Spin(7) as a double covering group of SO(7).

We shall consider the subgroup (((E7)*)") ke, of E7-

LeMMA 3.14.  The Lie algebra (((¢1)")") g, ey of the group (((E7)**)7) g, (hes)
is given by

(((97)K’”)Y)F,(he4)
| e 0 OV /0 0 0 0 0 0 \
={<D(D4+A~1(p)+i<0 & q),(O o) x),—r(O o x),—ziel)
0 7§ & 0 X o3 0 X o3

| Dy € s0(4) cso(8),ockeC,p,qu,erC,akeR,81 +é& +é&3 =O}.
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In particular, we have
dim((((e7)"*)") £, (hey)) = 28.

Hereafter, any element of the Lie algebra (((e7)*)")f 4,) Will be denoted by Ps.

LEMMA 3.15. For te R, we define a map a(t) of B by
(1) (X, Y,&n)

—2it —it —it

e el'xy e''%, e 2y, e My; ey,

- it 2ity 2it
= e''xs & x1 || ey m n |,e e n

ellx; X &3 ey, ¥ U

Then, a(t) € ((E1)*)") £, he)-

Proor. For & = ®(2itE; v E1,0,0,-2it) € (((¢1)"*)") £, e,y (Lemma 3.14),
we have o(t) = exp @ € (((E7)*)") g e,y bY E1 v Ev = (1/3)(2E, — E; — E3)".

h €4

We define an 8 dimensional R-vector space V¥ by

V8 = {Pe P |xP = P,utiP = P,yP = P}

00 0 7 0 0
:{P:((O E h ),(0 0 0),0,rn)|é,neC,heH}
0 h —z¢ 00 0

with  the norm

(P, P), = 5 (uP, AP) = (2&)¢ + hh + ().

N -

Then, S7 = {Pe V®|(P,P), =1} is a 7 dimensional sphere.

is connected.

Proor. The group (((£7)°%)”)g ke, acts on S7. We shall show that this
action is transitive. To show this, it is sufficient to show that any element P e S’
can be transformed to (0,E;,0,1) € S7 under the action of (((E7)*)")f, (res)-

Now, for a given
0 n 0 O
h ),(0 0 0),0,177)6S7,
—1& 0 0 O

-

Sy O



212 Toshikazu MIYASHITA

choose 7 € R such that e~%'y € iR. Operate a(¢) (Lemma 3.15) e (((ED")) £, (hewy
on P. Then,

00 O i 0 0
a(t)P = ((0 E h ),(0 0 0),0,——1‘;7’):P16S6CS7, 7' eR
0 h —1¢& 0 00

Since (((E7)"*)") iyt £ (SU(E) "))y (heyy) acts tranmsitivity on S® (Lemma
3.12), there exists B € (((E7)"*)”)f, (hey). 5, SUch that Py = (0,—iE,0,i) = Py €
S® = S7. Moreover, operate a(—n/4) (Lemma 3.15) on P,

a(—g)Pz = (O,EI,O,I) =E1.

This shows the transitivity. The isotropy subgroup (((E7)“*)”)f, e, at E; is
(((E1)" ")), (hes). £, = Spin(T) (Proposition 3.12). Thus, we have the homeo-
morphism (((E7)"*)") 4, (he,)/ SPin(7) ~ S7.

PrOPOSITION 3.17. (((E7)*)”) £, (hey) = Spin(8).

Proor.  Since (((E7)*)”), (e, 18 connected (Lemma 3.16), we can define a
homormorphism 7 : (((E7)*)") £, (hey) — SO(8) = SO(V®) by
n(a) = o| V2.

It is not difficult to see that Ker ¢ = {1, 0} = Z;. Since dim((((E7)"*)") £, he,)) = 28
(Lemma 3.14) = dim(s0(8)), = is onto. Hence, (((E7)"*)")f, (hes)/Z2 = SO(8).
Therefore, (((E7)*)”)f,(he,) is isomorphism to Spin(8) as a double covering
group of SO(8).

We shall determine the group structre of ((E;)"*)”.
LeMMA 3.18. The Lie algebra ((e7)")” of the group ((E;)**)? is given by

g 0 0V 0O 0 O
((97)K’”)y={¢(D4+D£+A~1(p)+i(0 & q),(O o x),

0 g & 0 x o3

0 0 O 3
_T(O %) x),—5i81>|D4,D"‘eso(4)cso(8),akeC,p,qu,
0 X o3

xeHC e eR,e1 + & + & :0}.
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In particular, we have

dim(((e7)"#)") = 34.

ProposITION 3.19. ((E7)"#)" =~ (Spin(4) x Spin(8))/Z,, Z, = {(1,1),
(_17 _1)}

ProOOF. For Spin(4) = Sp(1) x Sp(1) = (((E7)"*)") i), £1, £, £, (PTOPpOSsitions
B.1, B3) and Spin(8) = (((E71)*)"),(he,) ([Proposition 3.17), we define a map
¢y : Spin(4) x Spin(8) — ((E7)™*)” by

¢1 (Ot,ﬂ) = Otﬂ.

Then, ¢, is well-defined. For @4 € spin(4) and @3 € spin(8) (Lemma
3.14), since @4, Dg] =0, we have off = fa. Hence, ¢, is a homomorphism. It
is not difficult to see that Ker ¢, = {(1,1),(—1,—1)} = Z,. Since ((E7)"*)’
(=(Spin(12))?. (see [4], [5]) is connected and dim(((E;)**)") =34 (Lemmal
3.18) = 6 + 28 = dim(spin(4) @ spin(8)), ¢, is onto. Thus, we have the required
isomorphism (Spin(4) x Spin(8))/Z, = ((E7)"*).

Now, we shall determine the group structure of (E;)””.

LEMMA 3.20. The Lie algebra (e7)®" of the group (E;)”7 is given by

~ €1 0 0 ~ 4] 0 0
()" = @ D4+D4+A1(p)+l' 0 & q ], 0 o x|},
0 g & 0 X o3
o1 0 0
—T(O 0w x |,v |D4,Df‘eso(4)cso(8),ockeC,p,qu,erc,
0 x o3

ekeR,81+82-+—83=O,veiR}.

In particular, we have

dim((e7)®7) = 37.

PrOPOSITION 3.21. For Ae SUQ2)={Ae M(2,C)|(7'4)4A = E,det 4 = 1},
we define C-linear transformations ¢(A) of BE by



214 Toshikazu MI1YASHITA

<1 X3 552\ m y3 )
X X1 ) j)‘3 H N 76”7
x2 X1 &) \»2 Fioms

({ x} n‘cﬁ\ A

!/

= / 5/ ! r o1

xé 62 X{ ’ Y3 M N 76 %/ )
=/ / ! =/ /

x; X 53) Y2 Y1 M3

()=4G) Go)=+G) (8)=4(2),
(4)-4(2) Gp)=ca)
Gi)-G2) G-

Then, ¢(A) € (E7)”".
PrROOF. Let & = ®(2vE| v Ey,aE;, —1aE),v), ae C, veiR. Then, @ e (e7)””

(Lemma 3.20). Therefore, for A4 =exp( ’ N )ESU(Z), we have ¢(4) =
o —-ta —v
exp @ e (E7)”7.

WS W

PROPOSITION 3.22. (E;)? = (SU(2) x Spin(12))/Z>, Z, = {(E,1),(—E, —0)}.

Proor. The isomorphism is induced by the homomorphism ¢, : SU(2) x
Spin(12) — (E7)° by ¢,(4,6) = ¢(4)5. (In detail, see [4], [5])

THEOREM 3.23. (E7)a,y = (SU(Z) X Spin(4) X Spin(8))/(22 X Zz), Z, x Z) =
{(Ea 1,1),(E,0, O')} x {(E, 1,1),(—E,», —O'y)}.

Proor. For SU(2) (Proposition 3.21), Spin(4) = (((E1)"")" )k ). £ B, Exs
(Propositions B.1, B.3) and Spin(8) = (((E7)*)")¢ e, (Proposition 3.17), we
define a map ¢ : SU(2) x Spin(4) x Spin(8) — (E7)”” by

o(4,a, ) = ¢(4)ap.

Then, ¢ is well-defined. From Propositions B.19, B.22, ¢ is a homomorphim.
We shall show that ¢ is onto. Let p € (E;)®”. Since (E7)”" < (E7)°, there exist
A € SU(2) and 6 € Spin(12) such that p = ¢,(4,5) (Proposition 3.22). Now, from
ypy = p, we have ¢(A4)(ydy) = #(A)é. Hence,
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A=A or A=—-A4
Yoy =& P60y = —ad
The latter case is impossible because 4 = 0 is false. In the former case, from

[Proposition 3.19, there exist o € Spin(4) and B € Spin(8) such that 6 = ¢,(«, B).
Hence, we have

p=01(4,0) = $(4)6 = $(A)¢1 (2 B)
= $(A)of = p(4, a, ).
It is not difficult to see that
Ker 9 ={(E,1,1),(E,0,0),(-E,», —07),(=E, 07, —7)}
={(E,1,1),(E,0,0)} x{(E, 1,1),(=E, 7, —07)}
=2, x Z;.

Thus, we have the required isomorphism (SU(2) x Spin(4) x Spin(8))/(Z, x Z,) =
(E7)*7.
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