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UNIQUE CONTINUATION FOR FAST DIFFUSION

By

Kazuya HAYASIDA*

Abstract. We consider the non-characteristic Cauchy problem for
the degenerate nonlinear parabolic equation $|u|^{\alpha}u_{t}=\triangle u$ , where we
assume that $1/2<\alpha<1$ . This equation is based on the fast diffusion
model. And we prove the unique continuation property for the above
problem.

1 Introduction

The non-characteristic Cauchy problem for the parabolic equation is not
well-posed in the $C^{\infty}$ class of functions, but the unique continuation property
holds a fact, which was proved first by Mizohata [12]. More precisely, his result
is as follows: Let $u$ be any solution of the second order parabolic equation with
linear principal parts defined in a neighborhood of the non-characteristic Cauchy
surface F. Then if its Cauchy data equals zero on $\Gamma,$ $u$ vanishes identically along
the horizontal zone of F. A model is the semilinear equation

(1.1) $u_{t}=\triangle u+f(x, u)$ ,

where $t$ is the time variable and $\triangle=\partial_{X}^{2_{1}}+\cdots+\partial_{X}^{2_{N}}$ with the space variable
$x=(x_{1}, \ldots, x_{N})$ . If the nonlinear part $f$ satisfies

$|f(x, u)|\leq M|u|$ , $ M<\infty$ ,

the result in [12] remains true. If $f(x, u)=V(x)u$ and $V$ is not locally bounded,
the situation is difficult. When $V\in L_{loc}^{(N+2)/2}$ , Lin [10] proved the following: If the
solution $u$ of (1.1) vanishes at $(x^{0}, t^{0})$ of infinite order with respect to the x-
variable, then $u(x, t^{0})=0$ identically in the horizontal plane. Mizohata’s proof
in [12] is to make use of the theory of singular integral operators, from which the
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theory of pseudo differential operators origins. Another elementary proof was
given by Saut and Scheurer [16].

In place of (1.1) we consider the non-characteristic Cauchy problem for the
equation

(1.2) $|u|^{\alpha}u_{t}=\triangle u$ .

Throughout this paper we assume that $\alpha>0$ . Thus (1.2) is a degenerate nonlinear
parabolic equation. In this paper we treat the equation (1.3) more general than
(1.2), but our leading equation is (1.2) itself.

From the viewpoint of physics (1.2) is known as a model of the fast diffusion.
The function $u$ means some positive power of the density of some substance. For
such a case it is natural to assume that $u$ is nonnegative. We shall consider the
initial value problem for (1.2). If the initial function is nonnegative, the solution $u$

of (1.2) is so. The precise result is referred to Kalashnikov’s work [7], which is a
survey on the theory of nonlinear parabolic equations. We note that (1.2) means
the porous media equation when $-1<\alpha<0$ . In this case the function $|u|^{\alpha}u$ is
a solution of the original porous media equation. Even if the initial value is
nonnegative and smooth, the solution is not always regular. More precisely, an
interface occurs. But if $N=1$ and $\frac{-\alpha}{\alpha+1}$ is an even natural number, the local
existence and the $C^{\infty}$ regularity property of solutions hold. This result is due
to [14].

We consider the non-characteristic Cauchy problem for (1.2) in the cate-
gory of nonnegative solutions. By the result of Sabinina [15] it is known that
$u(x, t^{0})=0$ on the horizontal plane, if $u(x^{0}, t^{0})=0$ for some point $(x^{0}, t^{0})\in$

$R^{N+1}$ . The method in [15] is to use a technique similar to the maximum prin-
ciple. This implies immediately that the unique continuation property holds for
nonnegative solutions of (1.2), conceming the non-characteristic Cauchy problem.

In general in order to show the unique continuation property we require
an estimate, which is called Carleman’s inequality. In several cases, from this
inequality we can deduce an estimate on the continuous dependence of solutions
under their prescribed bound and the bounds of their Cauchy data. But this is not
almost correct. For the present we call such an estimate by the “well-behaved”
estimate in accordance with John [6], where the elliptic case was treated. On the
non-characteristic Cauchy problem for (1.1) Cannon [2] proved a well-behaved
estimate for the heat equation. There are several results conceming it. These are
referred to [17]. For (1.2) the author and Yamashiro [3] proved a well-behaved
estimate for non-negative solutions, under the assumption with $0<\alpha<1$ . On the
main theorem in [3] we assumed that $N=1$ and the non-characteristic surface is
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strictly convex. Then an estimation of the $L^{2}$ -norms of $u,$ $u_{X}$ and $u^{\alpha}u_{t}$ were
obtained.

We now drop the assumption of the nonnegative definiteness of solutions.
Then (1.2) is considerd from the viewpoint of pure mathematics. Brezis and
Friedman [1] proved the existence of weak solutions of some related equations of
(1.2) conceming the initial value problem. The regularity of solutions cannot be
assured any more. But under some assumptions on $N$ and $\alpha$ , there are infinitely
many classical solutions of (1.2) taking both positive and negative values. This
is stated at the end of this section. Thus it seems to us that it is meaningful to
consider only classical solutions of (1.2) without nonnegative definiteness.

In place of (1.2) we consider the non-characteristic Cauchy problem for the
equation

(1.3) $|u|^{\alpha}u_{t}=\triangle u+\gamma|u|^{-\beta}u$ ,

whose lower order term contains the sublinear case.
Using the method in [16], the author [4] has proved a well-behaved estimate

for solutions of (1.3) (see [5] too). In [4] some assumptions on $\alpha,\beta$ , and $\gamma$ are
imposed. In particular it is assumed that $\alpha\geq 1$ . But in our approach the $L^{2_{-}}$

norms of $u,$
$\nabla u$ and $|u|^{\alpha}u_{t}$ can be estimated. Clearly it is impossible to weaken the

assumption $\alpha\geq 1$ by our method in [4].
In this paper our aim is to weaken the above assumption. We can replace

it with the assumption $\frac{1}{2}<\alpha<1$ (see Theorems 1 and 2). The method is quite
different from that in [4] ([5]). Furthermore the computation is more simple.
However we need to suppose that the Cauchy datas are all zero. That is, the
“well-behaved” estimate cannot be proved any longer. This is the reason why
Lemma 2 in Section 3 is necessary for the proof of Theorem 1.

In our result we treat only any solution $u$ of (1.3), but not any difference of
two solutions of (1.3), namely $u-v$ , where $u$ and $v$ are both solutions of (1.3).
From the viewpoint of the uniqueness property it is desirable to consider such a
difference. But up to now there is no such a consideration. We raise the following
two examples.

Masuda [11] proved the backward unique continuation for Navier-Stokes
equation. His result is as follows: Let $u$ be a vector valued solution of Navier-
Stokes equation with homogeneous boundary condition in a cylindrical domain.
Let $u(\cdot, t^{0})=0$ for some $t^{0}$ . Then $u(\cdot, t)$ vanishes identically for $t\leq t^{0}$ . Moreover
Kazdan [8] suggested the following conjecture at the end of his paper: Let $u$ be a
p-harmonic function. Let $u$ vanish at a point with infinitely fast order. Then does
$u$ vanish identically?
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Our method is to yield Carleman’s inequality with a weight function. The
weight function to be used here is the primitive form in [13].

Finally we show that there are infinitely many classical solutions of (1.2)
taking both positive and negative values, under some conditions on $N$ and $\alpha$ . Let
$A>0$ and $\lambda<0$ be two given numbers. We define

$u(x, t)=(A+\alpha\lambda t)^{1/\alpha}w(x)$ .
If $w$ satisfies

(1.4) $\triangle w=\lambda|w|^{\alpha}w$ in $R^{N}$ ,

then we see that $u$ is a solution of (1.2) in $R^{N}\times(-\infty,A/(\alpha|\lambda|))$ . By virtue
of Kusano and Naito [9] it is known that (1.4) has infinitely many classical
entire solutions taking both positive and negative values, if $N\geq 3$ and $0<\alpha<$

$4/(N-2)$ .

2 Theorems

Let $x=(x_{1}, \ldots, x_{N})$ be the space variable in $R^{N}$ , and $t$ be the time variable
in $R^{1}$ . We write $R^{N+1}=R_{X}^{N}\times R_{t}^{1}$ . The origin in $R_{X}^{N}(R_{X}^{N}\times R_{t}^{1})$ is denoted by
$O((O, 0))$ , respectively.

Throughout this paper let $\Omega$ be a domain of class $C^{1}$ contained in the half
space $\{x_{N}>0\}$ of $R^{N+1}$ such that $\partial\Omega\ni(O, 0)$ . We say that $\Omega$ is strongly convex
at $(O, 0)$ , if there exists a positive number $\delta_{0}$ such that $\Omega\cap\{x_{N}=\delta\}$ is a bounded
domain in $R^{N}$ for $\delta$ with $0<\delta<\delta_{0}$ and its diameter tends to $0$ as $\delta\rightarrow 0$ .

Our first aim is to prove

THEOREM 1. Let $\Omega$ be strongly convex at $(O, O)$ . Let $u\in C^{3}(\overline{\Omega})$ satisfy
(1.3) in $\Omega$ . Suppose that $\frac{1}{2}<\alpha<1$ and $\alpha+\beta<1$ . Suppose that either $\beta\gamma>0$ or
$\gamma=0$ . Then $u$ vanishes identically in a neighborhood of $(O, 0)$ , if $u=u_{t}=u_{x_{i}}=0$ ,
$i=1,$

$\ldots,$
$N$ , on $\partial\Omega\cap\{x_{N}<\delta_{0}\}$ .

Next we don’t assume the strong convexity of $\Omega$ at $(O, 0)$ . Then we need
to restrict the conclusion to the case of $N=1$ . But on the next theorem the
assumptions on $\alpha,\beta$ and $\gamma$ are weaker than that of Theorem 1. Writing $x_{1}$ as $x$

simply, we have

THEOREM 2. Let $\partial\Omega\cap\{x=0\}$ be an open interval in $R^{1}$ containing the origin.
Let $u\in C^{3}(\overline{\Omega})$ satisfy (1.3) in $\Omega$ . Suppose that $\frac{1}{2}<\alpha<1,$ $\alpha+\beta<1$ and $\beta\gamma\geq 0$ .
Then $u$ vanishes identically in a neighborhood of the origin, if $u=u_{X}=0$ on $\partial\Omega\cap$

$\{x=0\}$ .
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REMARK. Naturally the question arises: Does the conclusion of Theorem 2
hold for general $N\geq 2$ ? We cannot yet prove this at the present stage. The
reason is as follows:

After the Holmgren’s transformation, the new variables are denoted by the
previous ones. We set $v=\exp\{\lambda x_{N}\}u$ for the function $u$ in Theorem 2. Our aim
is to estimate the $L^{2}$ -norm of $v_{\chi_{N}}$ from above. But if $N\geq 2$ , the term of the
following $L^{1}$ -norm of $(1+\sum_{i=1}^{N-1}x_{i}^{2})^{-1}(\sum_{i=1}^{N-1}x_{i}v_{\chi_{i}\chi_{N}})v_{x_{N}}$ appears and we cannot
find any method to estimate it.

3 Preliminaries

We prepare some lemmas. First we have

LEMMA 1. Let $u$ belong to $C^{1}[a, b]\cap C^{2}(a, b)$ . Suppose that $u,$
$u^{\prime}\neq 0$ in $(a, b)$

and $u^{\prime}(a)=u^{\prime}(b)=0$ . Then for $\kappa\geq 2$ , it holds that

(3.1) $|u^{\prime}(t)|^{\kappa}\leq\kappa|u(t)|\sup_{(a,b)}(|u^{\prime}|^{\kappa-2}|u^{\prime\prime}|)$
, $t\in(a, b)$ .

PROOF. First assume that $u,$
$u^{\prime}>0$ in $(a, b)$ . By Cauchy’s theorem on the

mean value theorem, we see that for any $t\in(a, b)$ there exists a number $c$ such
that $a<c<t$ and

(3.2) $(|u^{\prime}(t)|^{\kappa}-|u^{\prime}(a)|^{\kappa})/(u(t)-u(a))=(|u^{\prime}|^{\kappa})^{\prime}(c)/u^{\prime}(c)$

$=\kappa|u^{\prime}(c)|^{\kappa-2}u^{\prime\prime}(c)$ .

From our assumption, $0<u(t)-u(a)\leq u(t)$ . Thus we obtain the required
inequality.

Next let $u>0$ and $u^{\prime}<0$ in $(a, b)$ . Then the left-hand side of (3.2) can be
replaced with

$(|u^{\prime}(t)|^{\kappa}-|u^{\prime}(b)|^{\kappa})/(u(t)-u(b))$ .

Finally let $u<0$ in $(a, b)$ . Then it is enough to replace $u$ with $-u$ . Q.E.D.

Generalizing Lemma 1, we have

LEMMA 2. Let $u$ belong to $C^{1}[a, b]\cap C^{2}(a, b)$ . Let $u(a)=u^{\prime}(a)=u(b)=$

$u^{\prime}(b)=0$ . Suppose that $u^{\prime}(\xi)=0$ if $u(\xi)=0,$ $a<\xi<b$ . Then (3.1) holds for
$\kappa\geq 2$ .
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PROOF. It is written that

$(a, b)=(\bigcup_{i=1}^{\infty}(a_{i}, b_{i}))\cup E$ , $(a_{i}, b_{j})\cap(a_{j}, b_{j})=\emptyset$ $(i\neq j)$ ,

where $u=0$ on $E,$ $u(a_{j})=u(b_{i})=0$ and $u\neq 0$ in $(a_{i}, b_{i})$ . From our assump-
tion, $u^{\prime}(a_{i})=u^{\prime}(b_{j})=0$ and $u^{\prime}=0$ on $E$

We rewrite $(a_{i}, b_{i})$ with $(a^{\prime}, b^{\prime})$ newly. We can rewrite as

$(a^{\prime},b^{\prime})=(\bigcup_{i=1}^{\infty}(a_{i}^{\prime}, b_{i}^{\prime}))\cap E^{\prime}$ ,

where $u^{\prime}=0$ on $E^{\prime},$ $u^{\prime}(a_{i^{\prime}})=u^{\prime}(b_{i}^{\prime})=0$ and $u^{\prime}\neq 0$ in $(a_{j}, b_{j})$ . By Lemma 1 we
see that (3.1) holds on each $(a_{i^{\prime}}, b_{i}^{\prime})$ . This completes the proof. Q.E.D.

Next we give some property for classical solutions of (1.3). Let $D$ be a
domain in $R^{N+1}$ .

LEMMA 3. Let $u\in C^{3}(D)$ satisfy (1.3) in $D$ and suppose that $0<\alpha<1$ and
$\alpha+\beta<1$ . Then $u_{t}(P)=0,$ $\iota fu(P)=0$ for $P\in D$.

PROOF. Without loss of generality we may assume that $P=(O, 0)$ . We set
$v(t)=u(O, t)$ . Since $v(O)=0$ , it is written that

$v(t)=At+o(t)$ $(t\rightarrow 0)$ .

We often write as $o(t^{k})$ simply, Landau’s notation $o(t^{k})(\iota\rightarrow 0)$ . From (1.3),
it follows that $(\triangle u)(O, O)=0$ . Hence it follows that

$(\triangle u)(O, t)=Bt+o(t)$ .

It is enough to show that $A=0$ . Since $v^{\prime}(t)=A+o(1)$ , we have from (1.3) that

$|At+o(t)|^{\alpha}(A+o(1))=Bt+o(t)+\gamma|At+o(t)|^{-\beta}(At+o(t))$ .

Hence

$|A+o(1)|^{\alpha}(A+o(1))=(B+o(1))|t|^{-\alpha}t+\gamma|A+o(1)|^{-\beta}(A+o(1))|t|^{-\alpha-\beta}t$ ,

if $A\neq 0$ . But it is a contradiction, because the limits of the both sides are
different if $t\rightarrow 0$ . This means that $u_{t}(O, 0)=0$ . Q.E.D.

Lastly we have
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LEMMA 4. Suppose that $\frac{1}{2}\leq\alpha_{0}<\alpha$ and $\alpha+\beta<1$ . Let $\Omega$ be the domain in
Theorem 1. Let $u\in C^{3}(\overline{\Omega})$ satisfy (1.3) in $\Omega$ and $u=u_{t}=u_{x_{i}}=0,$ $i=1,$

$\ldots,$
$N$ , on

$\partial\Omega\cap\{x_{N}<\delta_{0}\}$ . Then it holds that

$|u|^{\alpha-1}|u_{l}|\leq C_{0}|u|^{\alpha-\alpha_{0}}$ in $\Omega\cap\{x_{N}<\delta_{0}\}$ ,

where $C_{0}$ is a positive constant depending only on $\alpha$ and $u$ .

PROOF. If we set $\kappa=\frac{1}{1-\alpha_{0}}\geq 2$ and $v(t)=u(x, t)$ for any fixed $x$ , then by
virtue of Lemma 3, $v$ satisfies the assumption in Lemma 2. Hence (3.1) holds,
namely

$|u_{t}(x, t)|^{\kappa}\leq\kappa|u(x, t)|\sup_{\Omega}(|u_{t}|^{\kappa-2}|u_{tt}|)$
$(x, t)\in\Omega\cap\{x_{N}<\delta_{0}\}$ .

From this we obtain immediately the required inequality. Q.E.D.

4 Proof of Theorems

First we prove Theorem 1.
(Proof of Theorem 1)
We define for $\delta<\delta_{0}$ :

$\Omega_{\delta}=\Omega\cap\{x_{N}<\delta\}$ , $\Gamma_{\delta}=\partial\Omega\cap\{x_{N}<\delta\}$ and $H_{\delta}=\Omega\cap\{x_{N}=\delta\}$ .

We put $y=x_{N},$ $x‘=(x_{1}, \ldots, x_{N-1})$ and

$\triangle^{\prime}=\sum_{i\neq N}\partial_{x_{i}}^{2}$
, V’ $=(\partial_{x_{1}}, \ldots, \partial_{x_{N- 1}})$ .

For $\lambda<-1$ we set $v=e^{\lambda y}u$ . Then from (1.3)

(4.1) $v_{yy}+\triangle^{\prime}v-2\lambda v_{y}+\lambda^{2}v+\gamma e^{\beta\lambda y}|v|^{-\beta}v-e^{-\alpha\lambda y}|v|^{\alpha}v_{t}=0$ .

We retake $\lambda$ in such a way that $|\lambda|$ is sufficiently large, if necessary.
From now on we denote by $(, )$ the $L^{2}(\Omega_{\delta})$ -inner product. We often use the

integration by parts without saying. From (4.1) it follows that

(4.2) $-(v_{yy}+\triangle^{\prime}v+\lambda^{2}v+\gamma e^{\beta\lambda y}|v|^{-\beta}v, 2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})\leq 0$ .

We write the left-hand side of (4.2) as $I$ . Then

$I=-(v_{yy}+\triangle^{\prime}v+\lambda^{2}v, 2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})-2\gamma\lambda(e^{\beta\lambda y}|v|^{-\beta}v, v_{y})-\gamma(e^{(\beta-\alpha)\lambda y}|v|^{\alpha-\beta}v, v_{t})$ .
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Clearly

$-(e^{\beta\lambda y}|v|^{-\beta}v, v_{y})=-\frac{1}{2-\beta}(e^{\beta\lambda y}, (|v|^{2-\beta})_{y})$

$=\frac{\beta}{2-\beta}\lambda(e^{\beta\lambda y}, |v|^{2-\beta})-\frac{1}{2-\beta}e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dx^{\prime}d\iota$

and

$(e^{(\beta-\alpha)\lambda y}|v|^{\alpha-\beta}v, v_{t})=\frac{1}{\alpha-\beta+2}(e^{(\beta-\alpha)\lambda y}, (|v|^{\alpha-\beta+2})_{t})=0$ .

We set
$I^{\prime}=-(v_{yy}+\triangle^{\prime}v+\lambda^{2}v, 2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})$ .

Then from the above

(4.3) $I=I^{\prime}+\frac{2\beta\gamma}{2-\beta}\lambda^{2}(e^{\beta\lambda y}, |v|^{2-\beta})-\frac{2\gamma}{2-\beta}\lambda e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dx^{\prime}dt$ .

Now we calculate $I^{\prime}$ . We write

(4.4) $I^{\prime}=-2\lambda(v_{yy}, v_{y})-2\lambda(\triangle^{\prime}v, v_{y})-2\lambda^{3}(v, v_{y})-(v_{yy}, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})$

$-(\triangle^{\prime}v, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})-\lambda^{2}(e^{-\alpha\lambda y}, |v|^{\alpha}vv_{t})$ .

The last term vanishes as previously. We see that

(4.5) $-(v_{yy}, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=-\alpha\lambda(v_{y}e^{-\alpha\lambda y}, |v|^{\alpha}v_{t})+\alpha(v_{y}^{2}, e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t})$

$+(v_{y}e^{-\alpha\lambda y}, |v|^{\alpha}v_{ty})-e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dx^{\prime}dt$ .

We consider the second term on the right-hand side of (4.5). Since
$e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t}=|u|^{\alpha-2}uu_{t}$ , we can use Lemma 4. Thus the term $(v_{y}^{2}, e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t})$

is finite. More carefully we examine (4.5). By replacing $|v|^{\alpha}$ with $(v^{2}+\epsilon)^{\alpha/2}$ and
integrating by parts the left-hand side of (4.5), we take $\epsilon\rightarrow+0$ . Then we see that
(4.5) is correct.

Furthermore

$(v_{y}e^{-\alpha\lambda y}, |v|^{\alpha}v_{ty})=\frac{1}{2}(e^{-\alpha\lambda y}|v|^{\alpha}, (v_{y}^{2})_{t})=-\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t}, v_{y}^{2})$ .

From (4.1), it follows that

$(v_{y}e^{-\alpha\lambda y}, |v|^{\alpha}v_{t})=(v_{y}, v_{yy})+(v_{y}, \triangle^{\prime}v)-2\lambda(1, v_{y}^{2})+\lambda^{2}(v_{y}, v)+\gamma(v_{y}, e^{\beta\lambda y}|v|^{-\beta}v)$ .
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Hence (4.5) becomes

(4.6) $-(v_{yy}, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=-\alpha\lambda(v_{y}, v_{yy})-\alpha\lambda(v_{y}, \triangle^{\prime}v)+2\alpha\lambda^{2}(1, v_{y}^{2})$

$-\alpha\lambda^{3}(v_{y}, v)-\alpha\gamma\lambda(v_{y}, e^{\beta\lambda y}|v|^{-\beta}v)+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t}, v_{y}^{2})$

$-e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dx^{\prime}dt$ .

Combining (4.4) with (4.6), we obtain

(4.7) $I^{\prime}=-(2+\alpha)\lambda(v_{y}, v_{yy})-(2+\alpha)\lambda(v_{y}, \triangle^{\prime}v)+2\alpha\lambda^{2}(1, v_{y}^{2})$

$-(2+\alpha)\lambda^{3}(v_{y}, v)-\alpha\gamma\lambda(v_{y}, e^{\beta\lambda y}|v|^{-\beta}v)+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t}, v_{y}^{2})$

$-(\triangle^{\prime}v, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})-e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dx^{\prime}dt$ .

Obviously

$(v_{y}, v)=\frac{1}{2}(1, (v^{2})_{y})=\frac{1}{2}\int_{H_{\delta}}v^{2}dx^{\prime}dt$ , $(v_{y}, v_{yy})=\frac{1}{2}(1, (v_{y}^{2})_{y})=\frac{1}{2}\int_{H_{\delta}}v_{y}^{2}dx^{\prime}dt$

and

$(v_{y}, \triangle^{\prime}v)=-(\nabla^{\prime}v_{y}, \nabla^{\prime}v)=-\frac{1}{2}(1, (|\nabla^{\prime}v|^{2})_{y})=-\frac{1}{2}\int_{H_{\delta}}|\nabla^{\prime}v|^{2}dx^{\prime}dt$ .

We easily see that

$(v_{y}e^{\beta\lambda y}, |v|^{-\beta}v)=\frac{1}{2-\beta}(e^{\beta\lambda y}, (|v|^{2-\beta})_{y})$

$=-\frac{\beta\lambda}{2-\beta}(e^{\beta\lambda y}, |v|^{2-\beta})+\frac{1}{2-\beta}e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dx^{\prime}dt$ .

Further

(4.8) $-(\triangle^{\prime}v, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=\alpha(|\nabla^{\prime}v|^{2}e^{-\alpha\lambda y}, |v|^{\alpha-2}vv_{t})+(e^{-\alpha\lambda y}|v|^{\alpha}, \nabla^{\prime}v\cdot\nabla^{\prime}v_{t})$

and

(4.9) $(e^{-\alpha\lambda y}|v|^{\alpha}, \nabla^{\prime}v\cdot\nabla^{\prime}v_{t})=\frac{1}{2}(e^{-\alpha\lambda y}|v|^{\alpha}, (|\nabla^{\prime}v|^{2})_{t})$

$=-\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}|\nabla^{\prime}v|^{2})$ .
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Hence

$-(\triangle^{\prime}v, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}|\nabla^{\prime}v|^{2})$ .

Combining the above with (4.7), we obtain

$I^{\prime}=2\alpha\lambda^{2}(1, v_{y}^{2})+\frac{\alpha\beta\gamma}{2-\beta}\lambda^{2}(e^{\beta\lambda y}, |v|^{2-\beta})+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}|\nabla v|^{2})$

$-\frac{1}{2}(2+\alpha)\lambda\int_{H_{\delta}}(v_{y}^{2}-|\nabla^{\prime}v|^{2}+\lambda^{2}v^{2})dx^{\prime}dt-\frac{\alpha\gamma}{2-\beta}\lambda e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dx^{\prime}dt$

$-e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dx^{\prime}dt$ .

Therefore from (4.2) and (4.3) it holds that

(4.10) $2\alpha\lambda^{2}(1, v_{y}^{2})+\frac{2+\alpha}{2-\beta}\beta\gamma\lambda^{2}(e^{\beta\lambda y}, |v|^{2-\beta})+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}|\nabla v|^{2})$

$\leq\frac{1}{2}(2+\alpha)\lambda\int_{H_{\delta}}(|\nabla v|^{2}+\lambda^{2}v^{2})dx^{\prime}dt+\frac{2+\alpha}{2-\beta}\gamma\lambda e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dx^{\prime}dt$

$+e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dx^{\prime}dt$ .

As previously the third term on the left-hand sided of (4.10) equals
$\frac{\alpha}{2}(|u|^{\alpha-2}uu_{t}, |\nabla v|^{2})$ , which is finite. This means that

(4.11) $|(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}|\nabla v|^{2})|\leq C_{0}(1, |\nabla v|^{2})$ .

From now on we denote by $C_{i},$ $i=1,2,$ $\ldots$ , all positive constants inde-
pendent of $\lambda$ . By virtue of (4.11), (4.10) becomes

(4.12) $\lambda^{2}(1, v_{y}^{2})+\beta\gamma\lambda^{2}(e^{\beta\lambda y}, |v|^{2-\beta})\leq C_{1}(|\lambda|^{3}e^{2\delta\lambda}+(1, |\nabla v|^{2}))$ .

Lastly we estimate $(1, |\nabla^{\prime}v|^{2})$ . Multiplying the both sides of (4.1) by $v$ , we
have

$(v_{yy}, v)+(\triangle^{\prime}v, v)+\lambda^{2}(1, v^{2})+\gamma(e^{\beta\lambda y}|v|^{-\beta}, v^{2})-2\lambda(v_{y}, v)-(e^{-\alpha\lambda y}|v|^{\alpha}v_{t}, v)=0$ .

Using the previous equalities, we see that

$(1, |\nabla^{\prime}v|^{2})\leq\lambda^{2}(1, v^{2})+\gamma(e^{\beta\lambda y}, |v|^{2-\beta})+\int_{H_{\delta}}vv_{y}dx^{\prime}dt-\lambda\int_{H_{\delta}}v^{2}dx^{\prime}dt$ .
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By Poincar\’e’s inequality, $(1, v^{2})\leq C_{2}(\delta)(1, v_{y}^{2})$ , where $C_{2}(\delta)\rightarrow 0$ as $\delta\rightarrow 0$ . Hence

$C_{1}(1, |\nabla^{\prime}v|^{2})\leq C_{1}C_{2}(\delta)\lambda^{2}(1, v_{y}^{2})+C_{1}\gamma(e^{\beta\lambda y}, |v|^{2-\beta})+C_{3}|\lambda|e^{2\delta\lambda}$ .

Combining this with (4.12), we obtain

$(\lambda^{2}-C_{1}C_{2}(\delta)\lambda^{2}-C_{1})(1, v_{y}^{2})+(\beta\lambda^{2}-C_{1})\gamma(e^{\beta\lambda y}, |v|^{2-\beta})\leq C_{4}|\lambda|^{3}e^{2\delta\lambda}$ .

Taking $\delta$ with $C_{1}C_{2}(\delta)<1$ , we fix it. Moreover $taking-\lambda$ as sufficiently large, we
conclude that

$(1, v^{2})\leq C_{5}|\lambda|e^{2\delta\lambda}\leq C_{6}e^{3\delta\lambda/2}$ .

We proceed as in the usual way. That is, on the left-hand side we replace the
integral domain $\Omega_{\delta}$ with $\Omega_{\delta/2}$ . Then

$\int_{\Omega_{\delta/2}}u^{2}dxdt\leq C_{6}e^{\delta\lambda/2}$ .

Letting $\lambda\rightarrow-\infty$ , we conclude that $u=0$ in $\Omega_{\delta/2}$ . Thus we have finished the
proof of Theorem 1.

Next we prove Theorem 2.
(Proof of Theorem 2)
We use the Holmgren’s transformation: $t^{\prime}=t,$ $y^{\prime}=y+t^{2}$ . Then $\mathcal{U}_{\mathcal{Y}}/=u_{y}$ ,

$\mathcal{U}_{t}/=u_{t}-2tu_{y}$ . So (1.3) becomes

(4.13) $|u|^{\alpha}u_{t^{\prime}}=u_{y^{\prime}y^{\prime}}-2t^{\prime}|u|^{\alpha}u_{y^{\prime}}+\gamma|u|^{-\beta}u$ .

We can retake the domain $\Omega_{\delta}$ as follows: $\Omega_{\delta}=\{(y^{\prime}, t^{\prime})|t^{\prime 2}<y^{\prime}<\delta\}$ . Then
$u=u_{t^{\prime}}=u_{y^{\prime}}=0$ on $\partial\Omega_{\delta}\cap\{y^{\prime}=t^{\prime 2}\}$ . In the proof of Lemma 3 we replace $\triangle u$

with $u_{y^{\prime}y^{\prime}}-2t^{\prime}|u|^{\alpha}u_{\mathcal{Y}^{\prime}}$ and we proceed similarly. Then from (4.13) we see that
$u_{t}/(P)=0$ , if $u(P)=0$ for $ P\in\Omega$ . Hence the assumption in Lemma 2 is satisfied.
This means that Lemma 4 is applicable for such a $u$ .

From now on we denote $(y^{\prime}, l^{\prime})$ be $(y, l)$ simply. We put $F=2t|u|^{\alpha}(v_{y}-\lambda v)$ ,
where $v$ is the function in the proof of Theorem 1. Then (4.13) is rewritten as

(4.14) $(v_{yy}+\lambda^{2}v+\gamma e^{\beta\lambda y}|v|^{-\beta}v)-(2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=F$ .

We proceed along the proof of Theorem 1. In place of (4.2) we have

(4.15) $-(v_{yy}+\lambda^{2}v+\gamma e^{\beta\lambda y}|v|^{-\beta}v, 2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})\leq\frac{1}{2}(1,F^{2})$ .

From (4.14) we obtain

$(v_{y}e^{-\alpha\lambda y}, |v|^{\alpha}v_{t})=(v_{y}, v_{yy})-2\lambda(1, v_{y}^{2})+\lambda^{2}(v_{y}, v)+\gamma(v_{y}, e^{\beta\lambda y}|v|^{-\beta}v)-(v_{y}, F)$ .
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Thus in place of (4.6)

$-(v_{yy}, e^{-\alpha\lambda y}|v|^{\alpha}v_{t})=-\alpha\lambda(v_{y}, v_{yy})+2\alpha\lambda^{2}(1, v_{y}^{2})-\alpha\lambda^{3}(v_{y}, v)$

$-\alpha\gamma\lambda(v_{y}, e^{\beta\lambda y}|v|^{-\beta}v)+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}vv_{t}, v_{y}^{2})$

$-e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dt+\alpha\lambda(v_{y}, F)$ .

As previously we denote by $I$ the left-hand side of (4.15). In addition if we
set similarly

$I^{\prime}=-(v_{yy}+\lambda^{2}v, 2\lambda v_{y}+e^{-\alpha\lambda y}|v|^{\alpha}v_{t})$ ,

the same inequality as in (4.3) holds.
In place of (4.10) we have

$2\alpha\lambda^{2}(1, v_{y}^{2})+\frac{2+\alpha}{2-\beta}\beta\gamma\lambda^{2}(e^{\beta\lambda y}, |v|^{2-\beta})+\frac{\alpha}{2}(e^{-\alpha\lambda y}|v|^{\alpha-2}v, v_{t}v_{y}^{2})$

$\leq\frac{1}{2}(2+\alpha)\lambda\int_{H_{\delta}}(v_{y}^{2}+\lambda^{2}v^{2})dt+\frac{2+\alpha}{2-\beta}\gamma\lambda e^{\beta\delta\lambda}\int_{H_{\delta}}|v|^{2-\beta}dt+e^{-\alpha\delta\lambda}\int_{H_{\delta}}|v|^{\alpha}v_{y}v_{t}dt$

$-\alpha\lambda(v_{y}, F)+\frac{1}{2}(1, F^{2})$ .

Here we note that $|(v_{y}, F)|\leq C_{7}\sqrt{\delta}|\lambda|((1, v_{y}^{2})+(1, v^{2}))$ . Furthermore $(1, F^{2})\leq$

$C_{7}(\lambda^{2}(1, v^{2})+(1, v_{y}^{2}))$ . Therefore as previously we conclude that

$\lambda^{2}(1-c_{7}\sqrt{\delta}-C_{7}C_{2}(\delta))(1, v_{y}^{2})\leq C_{7}|\lambda|^{3}e^{2\delta\lambda}$ .

Thus we have completed the proof of Theorem 2.
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