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SIMPLE CONTINUED FRACTION EXPANSIONS OF
SOME VALUES OF CERTAIN HYPERGEOMETRIC
FUNCTIONS

By

Takao KOMATSU

Abstract. The hypergeometric series reduce to many elementary
functions. Many of them are known to have the continued fraction
expansions. Few of them for certain values, however, are known
to have the simple continued fraction expansions which keep reg-
ularities. In this paper we show more simple continued fraction
expansions holding regularities.

1. Introduction

The hypergeometric function F(a,b,c;z) is defined by the power series

2
F(a,b,c;z) =1+%Z+a(a+l)b(b+1) 22

cle+1) 2
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cle+1D(c+2) 3! ’

where a, b and ¢ are any complex constants and ¢ is not any negative integer
or 0. It reduces to many elementary functions, for example, zF(1,1,2;—z) =
log(1+z), F(—k,1,1;—z) = (1+2)* and zF(1/2,1,3/2,—z?) = arctan z. The
confluent hypergeometric functions are defined by the entire functions
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where a, b and ¢ are any complex constants and ¢ is not any negative integer or
0. They also reduce to many elementary functions, for example,

2¥(3/2;2/4)°

_ z¥(3/2;-z2/4) sinz _
W(1/2;2/4)°

W(1/2;-22/4) cosz

D(1,1;z2) = €7, anh z, tan z

and

20+ D) YA+ 1;-22/4) _ Jr(2)
z  WYA+2;-z2/4)  JLi(z)’

where J;(z) is the Bessel function of the first kind of order A.
A lot of these functions can be expressed as the equivalence of the continued
fraction expansions. The typical one is the continued fraction of Gauss:

F(a,b,c;z) L biz
Fla,b+1,c+1;z) Lo bz 7
b3z
1 —
1 —...
where
. _ (a+n)(c—b+n) _
L7 (e 2n)(c+2n+ 1) (n=0,1,2,...)
and
o bAn)le—atn) a3

7 (¢4 2n—1)(c+2n)

See [2], Chapter 6 or [9], Chapter 18, 19 for details in the continued fractions of
hypergeometric functions. In this paper we shall refer mainly to though the
similar content is described in too.

Arithmetical properties of certain values of the hypergeometric functions by
using the continued fraction expansions can be seen in e.g., [7] or [8]. Most of the
reduced elementary functions in this paper were considered in [7] too. Much more
works in arithmetical properties are, however, handled by using the simple con-
tinued fraction expansion because it is easier to be handled. But, up to present,
only a few of them for some values have been known to have the simple con-
tinued fraction expansions holding regularities. For example, for positive integers
u and v the simple continued fraction expansions of

2
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and

W(u; 1)

‘P’(u'l):[u;u+1’u+2’u+3""]

are well-known. All of these values have the so-called quasi-periodic or Hur-
witzian continued fraction expansions. Namely, they are defined as the form

[CO;'cla <.y Cny Ql (k)7 ) Qp(k)]l(zo:l’

where ¢ is an integer, ci,...,c, are positive integers, Qi(k),..., Q,(k) are poly-
nomials with rational coefficients which take positive integral values for k =
1,2,... and at least one of the polynomials is not constant ([1], [4], [5]). But, it
seems that no case has been known for deg; Q;(k) > 1. The cases where Q;(k) is
exponential are initiated in and are appeared properly in [3], e.g.,

S 20a D T (@¥ — 1)
>eooa= [T (% — !

In this paper we shall show more simple continued fraction expansions of some
values of certain hypergeometric functions.

= [0;a,a%, a3 a*,.. ).

2. Main Results

We write

{01(K), .., @)}y = Q1(1), -+, p(1), @1(2), -+, Op(2), -, Q1(N), ..., Gp(N)

for simplicity. Denote (2k—1)!!'=(2k-1)2k—-3)---3-1 and (2k)!'=
(2k)(2k—-2)---4-2 (k=1,2,...) with (=)l =0!!=1.

THEOREM 1.

Ay +1

Z—]—V———:——l— = [O; Q(l) - 1> l,{Q(k) - 2’ l}kN=2’ t ’]’

% log

where Q(k) = (2k — 1)((k =2/ (k — )")? Ay (k=1,2,...,N) with Ay = (N!)*.

EXAMPLE 1. shows that the simple continued fraction expansion
of (1/2) log((Any +1)/(Ax — 1)) has regularity at least up to (2N + 2)-th partial
quotient. For example, for N =5 we have
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A 2
%log 5“—[0;,45— 1,1,3,45—2,1,5(%) As—2.1,

As—1
2\? 31N\?
7(5) As _2’1’9<E> As—21,

41\? 511\?
11(5) As —2,1,13<@) As —2,...J

= [0;14399,1,43198,1,17998,1,44798, 1,18223, 1,45054,

1,18280,4,2820,1,38,5,7,2,2,1,3,1,15,1,2,1,3,1, 5,
3,7,2,3,3,1,5,1,1,55,2,2,1,1,5,1,.. ].
There is a regularity up to the 12-th partial quotient. However, the 13-th one,

13(5! /6!!)2A5 — 2 =18279 4+ 1/4, is not an integer. Thus, regularity is collapsed
after that, showing 18280,4,2820,1,....

ReMARK. Taking N as infinity in Theorem 1, we might have

1 Ay +1 Ve

A}l_rgo 3 log T 1= [0; (1) — 1,1, Q(k) — 2];2,.

But it is nonsense because it is trivially seen that both sides tend to 0.

THEOREM 2.
arctan 45! = [0; {Q(k)}Y,,.. ],

where Q(k) = (2k — 1)((k = 2)!'/(k — D)4y (k=1,2,...,N) with Ay = (N2

THEOREM 3.

N _ (NV/2)
arcsin By _ O;BN—I,{I, 4k — 1 BN—2,1,(4k+1)BN_2} N
1 — B2 2k(2k — 1) k=1

where By = N\.

THEOREM 4. If n>2 then
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C—l
Y od 1 /1 11
— _F T
L 117 Cy ( L1425 C]’(,)

_ {((Zk 2)n 1)CNH( )2,

k—1 2V
(2k - Dn+1 Cle(zn—}—l)}k o,

i=1

where Cy = Hi]il(in)z(in +1)2

3. Lemmas
Let o be real. We denote the continued fraction expansion of a by

L bf by b3 . b}
aO + I ao —|— >
af +a; +a; + b

a; +
3+

The simple (or regular) continued fraction expansion of o is given by o=
[ao; a1, aa, . . .], satisfying

a=ap+ (1/a1), ao = |a,

U = ap+ (1/0n11), = |aa] (n21).
Hence, when b} =b; =b; =---=1andaj € Z and a € N (i > 1), we can write
b b b

ay +—

* * *
- =lag;ai,a;5,...].
a; +a +at + 0> 172

An equivalence formation between the continued fraction expansion and the
simple continued fraction expansion is well-known.

LEmMmA 1.
P by b3
1 ap; Ay, az, . =ay,+— L -2 3
(1) [a0; a1, a2 ]\0 al +a; +a; +
if ap =ag, a1 = ai/bf and for k=1,2,...
by b33 bi bybik—z b3

*
A%k = * %k ¥ Do and Qh+1 = 75 * * a2k+1 .
bZkb2k——2 t b2 b2k+lb2k—l b
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Proor. See [2], (2.3.23) (p. 35). [2], Theorem 2.6 shows that (1) holds if
and only if there is a sequence of non-zero constants {r,} with ro =1 such
that b} =r,r,m; (n=1,2,...) and a; =r,a, (n=0,1,...). Therefore, ay = ag,
n=>bf, for k=1,2,...

byb3k—z---b3

P2k = 35 * *
b2k—1b2k—3 T 'bl

* * *
b2k+lb2k—l e bl

and 7y =

byby_p b3
yielding a; = aj/r1 = a{/b;, and for k =1,2,...

* * * *
o = Dy _ bik_1b5%_3 - b a*
k= T ThEbr ... bx (%%
2k 2k 2k-2 2

and

* * ok *
Qi1 byby o b3 a,

T Lx * L h* 2k+1-
Fak+1 b2k+1b2k-1” b;

Qk+1 =

If some partial quotients are inadmissible, the following lemma is also useful.

Denote
_ 1 1 1 1
[O,a,b,c,d,...]_z_z_z_.g_
LEMMA 2.
~[0;a,b,¢,d,...] =(0;a,—b,c,—d,...]
=[0;a—1,1,b—2,1,c—2,1,d—2,1,.. ]
Proor. Since bf =1 and by =b =---= -1, by we have for
k>1
k-1 k-1
e, e e
o — (—1)(_1) at —at and Qe = (_1)(_1) : la* = —at
TED) (=) 1% T % D) (=) % 2%
k-1 k

Hence, ~[0;a,b,c,d,...] =(0;a,—b,c,—d,...]. By repeating the relation
[...,a,=b,y]=[..,a—1,1,b—1,—9]
in [6], Section 6, we obtain
[0;a,—b,c,—d,..]=[0;a—1,1,b—-1,—c¢,d,..
=[0;a—1,1,b—-2,1,c—1,-d,.. ]
—[0;a—1,1,b—2,1,c=2,1,d—1,..]=---.
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4. Proofs of the Theorems

ProoF oF THEOREM 1. From [2], (6.1.18) (p. 203)

log -2 = 2zF(l 1 E;z2>

1—z 2772
_ 2z 1222 2272 3272 4272
T 1- 3 -5 - 7 - 9 -

Since af =0, a%,_, =4k — 3, aj, = 4k — 1 (k = 1), bj =2z, b} = —(2k — 1)°2?
and b3, = —(2k)?z% (k> 1), we have ap =0, for k > 1

(—(2k — 3)%2%)(—(2k — 5)%22) - - - (—1%2%)

= ok — 2)222) (= (2K — 4)222) - (—2222) - 22 (4 =3)
4k —3 ((2k - )Y
T2z ((2k ~ 2)!!)
and |
iy = (—(2k — 2)222) (= (2k — 4)%22) ... (=2222) - 22 @ — 1)
(—(2k — 1)%22)(—(2k — 3)%22) - - (=3222) (= 1222)
O 2(4k—1) ((2k = 2NV
Tz ((Zk — 1)!!) ‘
From 2[ag;a1,a,a3,...] = [2a0;%,2a2,%,...] and we obtain

1, 1+z (1.3,

Elogl_—Z—ZF(i,l,z,Z>
[ 4 =3 (@ =3y sk -1 (@ -2V "
ST \@ o)z \ek-nn) |

— 3 e ]
B [0' 2%k — 1 ((k — 2)!!> ]
o ’ —1n )
z (k=1 it
But, the partial quotients are inadmissible if they are not integers. Then this
expression means nonsense. Therefore, we must take z~! = (N !)2 so that

e

can become integral for k =1,2,...,N + 1.
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ProOF OF THEOREM 2. From [2], (2.1.19) (p. 24)

arctan z = —Z- ZZ 4—22 922 1622
C1+34+ 54+ 7+ 9 4+

Since a,_, =4k —3, aj, =4k —1 (k= 1), bf = (k — 1)*2% (k = 2) with b} =z,
we have for k > 1

(2 -3)’(2k—5)%---3%12 L (k=3 4k-3
A2%-1 = (2k —2)%(2k — 4)2 .- 4222. Z(4k 3) = ((Zk — 2)!!) z
and
2k —2)2(2k—4)%-.-22.2 o ((2k=2)N\ 4k—1
B k1) (2k - 3)2. 3212 k-1 = ((Zk— 1)”) z

Hence, when z7! = (N!) , a; is integral for i=1,2,... N+ 1.

ProoF OF THEOREM 3. From [2], (6.1.20) (p. 203)

arcsinz  zF(3,1,3;22)

V1 - z2 F(z’_%’i’zz)
_z 1-222 1-2z2 3-4z2 3.4z22 5.6z2 5.6z22

" 1- 3 - 5 - 7 - 9 - 11 - 13 -

Since a},_, =4k —3, a3 =4k — 1, by = b3, = —(2k — 1)(2k)z* (k = 1) with
bf =z, we have for k>1

_ (2k—2)(2k - 3) - (2k — 4)(2k — 5) 2 4k — 3
G-l = ok —2)(2k — 3) - 2k — 4)(2k - 5) - - (4" ==
and
_ (2k—2)(2k —3) - (2k — 4)(2k—5) e 1) — 4k — 1
=TT 0Rk=1) - 2k —2)(2k —3) - 2( )__(2k)(2k—1)z'

Hence, when z~! = N!, we have ay_1eN (k=1,2,...) and —ayeN (k=1,
.,[N/2]). Together with we have the desired result.

ProOF OF THEOREM 4. From [2], (6.1.19) (p. 203)

= dt 1 1
=zF(=,1,14-;—z2"
[ o)

12.z  (1-n)?z2"  (n+1)%z" (2n)%-z"  (2n+1)%z"
+n+1+ 2n+1 + 3n+1 + 4n+1 + 5Sn+1 +

=2
1
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Since a} = (k—Dn+1), bf =z, b} = ((k— n+1)’z" and b, = (kn)*z"
(k>=1), we have for k > 1

N (2 2)n+1)2((k 3)n+1)2 ( +1) (2 — 2t 1)

((k = n)*((k —2)m)*-

and
k—Dn)((k —2)n)?*---n?z
v (= D) (k= 2n)” (@ —1nt)
\ ((k—Dn+1D)(k=2)n+1)"---(n+1)°z"
Hence, when z~! = Ji in)?(in + 1 2, axy.—1 and ay, become integral for k=1,
i=1
2,...,N+1. '

5. General Hypergeometric Functions

The continued fraction expansion of Gauss F(a,b+ 1,c¢+ 1;z)/F(a,b,c;z) or
®(1,c;z) is well-known, but it is not easy to transform it into the simple one.
We consider the modified expression about zF(a,b + 1,c+ 1;z%)/F(a,b, c;z?) or
z®(1, c; z2).

THEOREM 5.
R

N—c+2
(k—l)'( !
et k- 2) (c+ 2k - 2)B,V—1}k=1 }

where ¢ is a positive integer and By = N\.

Proor. Since from [2], (7.1.52) and (7.1.54)

. 1 1 1
D(l,c;z) =1+~ 2 34,
(Laz) =1+ 22+ 37 Y er e’ T
1z 1.z cz 2z (c+ 1)z 3z
l—-c+c+l—c+2+c+3— c+4 +c+5- "~
we have
1 1 1
< z®(1. c: 2y -3 5 7
(L) =2+ 2+ T Y e D)
_z 22 1.22 cz? 222 (c+1)z2 322
" l-—c+c+l—c+2+c+3— c+4 +c+5-
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Since af =1, a; =c+k—2 (k=2), b} =z, b3 = —z%, b}, =kz* and b3, =
—(c+k—1)z% (k=1), we have for k > 1

(—(c+k—=3)2%)(=(c+k—4)z?) .- (—cz?)(-2?)

D1 = (k—1)z2.(k—2)z2..-122 .2 (e+2k—3)
= (=) (c+k—=3)! c+2k-3
B (k=D c—-1)! z
and
- 2 (k- 2...122.
(k—=1)z* - (k—2)z 1z%. z (c+2k—2)

D= et k—2)22) (—(c+ k —3)z2) - (—cz2)(—22)

k=Dl e—1)c+2k -2
=0T ) P

Since [...,a,—b,y] =[...,a—1,1,b—1,—y] as seen in [6], Section 6, one has
[0; a1, —a}, —a3, ay, a5, —ag, —ay, . . .]
=[0;a; —1,1,a5 — 1,a; — 1,1,a; — l,a5 — 1,1,a;, — 1,47 — 1,1,.. ]

Hence,

z(I)(l,c;zz) = [0; |a2k_1| — 1, 1,|a2k| - 1];021.
When Z_IZN!, ay_1€N (k=1,2,...,N+1) and a2k€N(k=l,2,...,
N—-c+2).

THEOREM 6.

F(a,b+1,c+ 1;D3%)

=[0; Dy — 1,{1, —2,1, N
Dy - F(ab,c; D) [0; Dy {1, |ax| 21 — 2} p—ps - -]

with N' = N —max(b,c —a,a—1,c — b —1), where for k=1,2,...,N

(b +k-DNc—a+k—-1)(a-1)(c—b—
kT T G k—Dlc—b+k—1)bl(c—a)!

1)!
(c+ 2k —1)cDy

and

_ (at+k=Dlc—b+k—1bl(c—a) c+2%k
U = c—arl@a-Dlc—b-1)! ¢

Dy

with Dy = c¢(N")2.
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Proor. Since

zF(a,b+1,c+1;2%)  z w2 w2’ u3z?  ugz?
F(a,b,c;z?) 1- 1 -1 -1 -1 = 7
where
(a+k)(c—b+k)
= k=0,1,2,...
u2k+1 (C+2k)(('+2k+1) ( ) Ly e )
and
uy = LHRNe—a+hk) g5

(¢ +2k —1)(c+2k)
(2], Theorem 6.1), we have for k =0,1,2,...

G = (—ua-12%) (—ua—32%) - (—wz?) _ vppe—rtippe—3 - 1
T Cupzd) (~ugp—22?) - (~waz?)z  Untrh—z Uy Z

_(a+k-—DYc—b+k—-1)bl(c—a) c+2k
Cb+k)(c—a+k)a-Dl(c—b-1) cz

and for k=1,2,...

axy = (—those—22®) (~ttrp—42?) - - (~thp2%)z __ Makolgk—4 -t 1
(—uze-12%) (—k—322) -+ (-1 2) Udk—1Uzk—3 """ UL Z

_ _(+k-—Dic—a+k-Dla—1c—b-1)! (c+2k—1)c

- (@+k—-Dlic—b+k—1)bl(c—a) P

When z7! = ¢(N)?, anps1€N (k<N —max(b,c—a)) and ayxeN (k<N+
1 — max(a,c — b)). Together with we have the desired result.
Denote

72 3

Q(a, b; z) =1+abz+a(a+1)b(b+I)E—f-a(a—{—1)(a+2)b(b+1)(b+2)%+---

(], (89.5)). One has

0 ,~u,,a—1
Q(a, b; —2) 1 J e "u" du

T T@lo (1+zu)®
Since

Qa,b;—z) 1 az bz (a+]1)z b+1)z (a+2)z
Qab-1;-z) 1+1+1+ 1 + 1 + 1 +
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(9], (92.1)), we have
az? b_zz_ (a+1)z22 (b+1)z* (a+2)2?
1

z Q(a’b;_zz) __Z_ “a
Qab-1-2z) 1+ 1 +1 4+ 1 + 1 4+ 1 +

yielding the following.

THEOREM 7. For positive integers a and b we have

Q(a, b; —By?)
By - Q(a,b -1 —BX,Z)

o favk=21p-1)  (b+k-2)a-1), "
B [0’ {(b+k —2)a— 1) @+ k- DB 1)!BN}k=1"'}

with N' = N +2 —max(a + 1,b), where By = N\.

If we take H;’::l(;(?z)jv ~!7 instead of By, this continued fraction expansion is

valid from k=1 up to k= N.
Since

J°° edu z'™* a 1 a+l 2 a+2
o Z+uw)?®  z +14+z+ 1 +z

(9], (92.8)), we have the following.

COROLLARY 2.

N
© e *du at+k-—2 a+k—1\"'Ey
= I N e P R 1
N )o (u+ EZ)° a-1 )™\ a-1 kf_

where Ey = [[Ly(n+ a).
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