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ANALYTIC REPRESENTATION OF GENERALIZED
TEMPERED DISTRIBUTIONS OF EXPONENTIAL

GROWTH BY WAVELETS

By

Byung Keun SOHN and Dae Hyeon PAHK

Abstract. The analytic representation of the generalized tempered
distributions of $e^{M(kx)}$ -growth with restricted order, $\mathscr{K}_{M^{r/}}(R)$ , is given
in terms of series of analytic wavelets. These series converge uni-
formly on compact subsets of the upper and lower half planes.

1. Introduction

The analytic representation of functions or distributions on the real line $R$ is
usually given by a Cauchy type formula, but in some cases may also be given by
an orthogonal series. It is well-known that trigonometric series may be used for
the analytic representation of periodic functions and distributions. Also, Hermite
series and Legendre polynomials can be used for the representation of non-
periodic functions and functions with compact support, respectively. Recently a
new category of orthogonal systems has been introduced in [1]. These systems
are composed of wavelets, i.e., orthogonal functions on $R$ consisting of dilations
and translations of a fixed function. G. G. Walter has found an expansion in
orthogonal wavelets and pointwise convergence of that expansion from $L^{2}(R)$ to
the tempered distributions with restricted order of derivative, $\mathscr{S}_{r}^{\prime}(R)$ , in [6] and [8]
and has showed an analytic representation of $\mathscr{S}_{r}^{\prime}(R)$ in terms of series of analytic
wavelets in [7]. These two results were extended by us to the case of the tem-
pered distributions of exponential growth with restricted order in [3], [5]. Also, we
have found the wavelet expansion of the tempered distributions of $e^{M(kx)}$ -growth
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with restricted order and the pointwise convergence of the wavelet expansion of
$\mathscr{M}_{M^{r/}}^{\prime}(R)$ in [4].

In this paper, we will present an analytic representation of $\mathscr{M}_{M^{r/}}^{\prime}(R)$ in terms of
series of analytic wavelets. These series converge uniformly on compact subsets of
the upper and lower half planes.

2. The Generalized Tempered Dishibutions Space $\mathscr{K}_{M^{\prime}}(R)$

Let $\mu(\xi)(0\leq\xi\leq\infty)$ denote a continuous increasing function such that
$\mu(0)=0,$ $\mu(\infty)=\infty$ . For $x\geq 0$ , we define

$ M(x)=\int_{0^{X}}\mu(\xi)d\xi$ .

The function $M(x)$ is an increasing, convex and continuous function
with $M(O)=0,$ $ M(\infty)=\infty$ and satisfies the fundamental convexity inequality
$M(x_{1})+M(x_{2})\leq M(x_{1}+x_{2})$ . Further we define $M(x)$ for negative $x$ by means
of the equality $M(-x)=M(x)$ . Note that since the derivative $\mu(x)$ of $M(x)$ is
unbounded in $R$ , the function $M(x)$ will grow faster than any linear function as
$|x|\rightarrow\infty$ . Now we list some properties of $M(x)$ which will be frequently used in
this paper.

$M(x)+M(y)\leq M(x+y)$ for all $x,$ $y\geq 0$ . (1)

$M(x+y)\leq M(2x)+M(2y)$ for all $x,$ $y\geq 0$ . (2)

Using the function $M(x)$ we define the space $\mathscr{K}_{M}(R)$ as the space of all
functions $\phi\in C^{\infty}(R)$ such that

$ v_{k}(\phi)=\sup_{x\in R,\alpha\leq k}e^{M(kx)}|D^{\alpha}\phi(x)|<\infty$ , $k=1,2,$ $\ldots$ , (3)

where $D^{\alpha}=d^{\alpha}/dx^{\alpha}$ . The topology in $\mathscr{K}_{M}(R)$ is defined by the family of the semi-
norms $v_{k}$ . Then $\ovalbox{\tt\small REJECT}_{M}^{\prime}(R)$ becomes a Fr\’echet space and the embeddings $\mathscr{D}\rightarrow$

$\mathscr{M}_{M}^{\prime}\rightarrow \mathscr{S}\rightarrow \mathscr{E}$ are continuous; here $\mathscr{E}$ denotes the space of all $C^{\infty}$ -functions, $\mathscr{S}$

the space of the tempered distributions of polynomial growth and $\mathscr{D}$ the space of
$C^{\infty}$ -functions with compact supports. By $ff_{M^{\prime}}(R)$ , we mean the space of con-
tinuous linear functionals on $\ovalbox{\tt\small REJECT}_{M}^{\prime}(R)$ . Pahk characterized the distributions in
$\ovalbox{\tt\small REJECT}_{M^{\prime}}^{\prime}(R)$ by the growth at infinity [2, Theorem 2.3]; a distribution $T\in \mathscr{D}^{\prime}$ is in
$\ovalbox{\tt\small REJECT}_{M^{\prime}}^{\prime}(R)$ if and only if there exist positive integers $\alpha,$

$k_{0}$ and a bounded continuous
function $f(x)$ on $R$ such that

$T=D^{\alpha}[e^{M(k_{0}x)}f(x)]$ .
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DEFINITION 1. For a natural number $r$ , we denote by $\mathscr{M}_{M}^{\prime\prime}(R)$ the space of all

functions $\phi\in C^{r}(R)$ such that

$ v_{k}^{r}(\phi)=\sup_{x\in R,\alpha\leq r}e^{M(kx)}|D^{\alpha}\phi(x)|<\infty$ , $k=1,2,3,$ $\ldots$ .

The topology of $\ovalbox{\tt\small REJECT}_{M}^{\prime\prime}(R)$ is defined by the family of semi-norms $\{v_{k}^{r}\}_{k=1,2},\ldots\cdot$

By $\ovalbox{\tt\small REJECT}_{M^{r/}}^{\prime}(R)$ , we mean the space of continuous linear functionals on $\mathscr{M}_{M}^{\prime\prime}(R)$ . Each
$S\in ff_{M^{r/}}(R)$ is characterized by

$S=D^{r}[e^{M(k_{0}x)}f(x)]$ , (4)

where $f(x)$ is a bounded continuous function on $R$ and $r,$ $k_{0}\in N$ , the set of
natural numbers, by the same method of the above $\mathscr{K}_{M^{\prime}}$ -case in [2, Theorem 2.3].
Similarly, we can define

$\mathscr{S}_{r}(R)=\{\theta(t)\in C^{r}(R);|D^{k}\theta(t)|\leq C_{pk}(1+|t|)^{-p}, p\in N,k=0,1, \ldots, r\}$

and its dual $\mathscr{S}_{r}^{\prime}(R)$ . For further details, we refer to [2].

3. Multiresolution Analysis of $L^{2}(R)$ Associated with $\phi\in\ovalbox{\tt\small REJECT}_{M}^{\prime\prime}(R)$

Let $\phi\in \mathscr{M}_{M^{r}}^{\prime}(R)$ . In order for it to qualify as a scaling function, there must be
associated with $\phi$ a multiresolution analysis of $L^{2}(R)$ , i.e., a nested sequenoe of
closed subspaces $\{V_{m}\}_{m\in Z}$ for the set of integers $Z$ such that

(i) $\{\phi(\cdot-n)\}$ is an orthonormal basis of $V_{0}$ ,
(ii) .. . $\subset V_{-1}\subset V_{0}\subset V_{1}\subset\cdots\subset L^{2}(R)$ ,
(iii) $f(\cdot)\in V_{m}\Leftrightarrow f(2\cdot)\in V_{m+1}$ ,
(iv) $\bigcap_{m}V_{m}=\{0\},$ $\overline{\bigcap_{m}V_{m}}=L^{2}(R)$ .

Then $\phi$ has an expansion

$\phi(t)=\sum_{n^{C_{n}}}\sqrt{2}\phi(2t-n)$ , $\{c_{n}\}\in l^{2},$ $t\in R$ , (5)

where $l^{2}=\{\{c_{n}\};\sum_{n}|c_{n}|^{2}<\infty\}$ . Once we have the scaling function $\phi\in \mathscr{M}_{M^{r}}^{\prime}(R)$ ,

we can obtain a mother wavelet $\psi$ such that $\{\psi(t-n)\}$ is an orthogonal basis of
the space $W_{0}$ , given by the orthogonal complement of $V_{0}$ in $V_{1}$ . Also, $\psi$ has an
expansion

$\psi(t)=\sum_{n}d_{n}\sqrt{2}\phi(2t-n)$ , $\{d_{n}\}\in l^{2}$ , (6)
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for $d_{n}$ corresponding to $c_{n}$ in (5). We will adopt the construction of a mother
wavelet defined by $d_{n}=(-1)^{n}\overline{c_{1-n}}$ . If such a $\psi(t)$ can be found, then $\psi_{mn}(t)=$

$2^{m/2}\psi(2^{m}t-n)$ is an orthogonal basis of $W_{m}$ which is the orthogonal complement
of $V_{m}$ in $V_{m+1}$ .

EXAMPLE. In [1], Corollary 5.5.3 states that it is impossible that $\psi$ has
exponential decay and that $\psi\in C^{\infty}$ , with all derivatives bounded, unless $\psi=0$ .
Hence there is no mother wavelet $\psi\in\ovalbox{\tt\small REJECT}_{M}^{\prime}(R)$ . So we will restrict our attention to
$\mathscr{M}_{M^{r}}^{\prime}(R)$ . Daubechies’ compactly supported wavelets are examples of $\ovalbox{\tt\small REJECT}_{M}^{\prime\prime}(R)$ , but
Battle-Lemari\’e’s wavelets (in the page 152 of [1]) are not $\mathscr{K}_{M^{r}}(R)$ wavelets even if
they have exponential decay and smoothness.

The reproducing kemel of $V_{0}$ is given by

$q(x, t)=\sum_{n}\overline{\phi(x-n)}\phi(t-n)$ ,

where $\phi(x)$ is the scaling function. The series and its derivatives with respect
to $t$ of order $\leq r$ converge uniformly on $x\in R$ because of the regularity of
$\phi\in ff_{M^{r}}(R)$ , i.e.,

$|\phi^{(\alpha)}(x)|\leq C_{\alpha k}e^{-M(kx)}$ , $\alpha=0,1,$
$\ldots,$ $r;k=1,2,$ $\ldots$ . (7)

The reproducing kemel for $V_{m}$ is given by

$q_{m}(x, t)=2^{m}q(2^{m}x, 2^{m}t)$ .

Similarly, we can define the reproducing kemel $r_{m}(x, t)$ for $W_{m}$ by

$r_{m}(x, t)=2^{m}\sum_{n}\overline{\psi(2^{m}x-n)}\psi(2^{m}t-n)$ ,

where $\psi(t)$ is the mother wavelet.
The sequence $\{q_{m}(x, t)\}$ is a delta sequence in $\mathscr{S}_{r}^{\prime}(R)\subset \mathscr{K}_{M^{r/}}(R)$ , i.e.,

$q_{m}(x, t)\rightarrow\delta(x-t)$ . This follows from the fact that

$\int_{-\infty}^{\infty}q_{m}(x, t)\theta(t)dt\rightarrow\theta(x)$ as $ m\rightarrow\infty$ ,

for each $\theta\in ff_{M^{r}}(R)\subset \mathscr{S}_{r}(R)$ , where the convergence is in the $L^{2}$ -sense. These
kemels have a number of interesting properties, some of which come out of the
wavelet moment theorem. Since $\mathscr{K}_{M^{\gamma}}(R)\subset \mathscr{S}_{r}(R)$ , we have by [1],
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LEMMA 2. Let $\psi\in \mathscr{K}_{M^{r}}(R)$ with $\psi_{mn}(x)=2^{m/2}\psi(2^{m}x-n)$ an orthogonal
system in $L^{2}(R)$ . Then

$\int_{-\infty}^{\infty}x^{k}\psi(x)dx=0$ , $k=0,1,$ $\ldots,$
$r$ .

DEFINITION 3. We define the spaces $T_{0}$ and $U_{0}$ by $T_{0}=\{f;f(t)=$

$\sum_{n}a_{n}\phi(t-n)$ for some sequence of complex numbers with $a_{n}=\mathcal{O}(e^{M(k_{1}n)})$ for
some $k_{1}\in N$} and $U_{0}=\{g;q(t)=\sum_{n}a_{n}\psi(t-n)$ for some sequence of complex
numbers with $a_{n}=\mathcal{O}(e^{M(k_{1}n)})$ for some $k_{1}\in N$ }. We denote by $T_{m}$ and $U_{m}$ their
corresponding dilation spaces, i.e., $f\in T_{0}\Leftrightarrow f(2^{m}t)\in T_{m}$ and $ g\in U_{0}\Leftrightarrow g(2^{m}t)\in$

$U_{m}$ .

We may expect that a multiresolution analysis of $\ovalbox{\tt\small REJECT}_{M^{r/}}^{\prime}(R)$ exists, namely,

. . . $\subset T_{-m}\cdots\subset T_{-1}\subset T_{0}\subset T_{1}\cdots\subset T_{m}\subset\cdots\subset \mathscr{K}_{M^{r/}}(R)$ (8)

and
$\overline{\bigcup_{m}T_{m}}=\mathscr{M}_{M^{r/}}^{\prime}(R)$ ,

where the closure is in the topology of $ff_{M^{\gamma/}}(R)$ .
Now in [3], we have found the expansion in orthogonal wavelets from $L^{2}(R)$

to $ff_{M^{r/}}(R)$ .

THEOREM 4. Let the scaling function $\phi\in ff_{M^{r}}(R)$ satisfy the dilation equation
(5) with $c_{k}=\mathcal{O}(e^{-M(lk)})$ for all $l\in N$ , and have an associated multiresolution
analysis in $L^{2}(R)$ ; let $\psi\in ff_{M^{r}}(R)$ be the mother wavelet given in (6). Then there
exists a multiresolution analysis (8) of closed dilation subspaces $\{T_{m}\}$ whose union
is dense in $\mathscr{M}_{M^{r/}}^{\wedge}(R)$ ; the closed subspace $U_{m}$ in Definition 3 is a complementary
subspace of $T_{m}$ in $T_{m+1}$ and

$T_{m}=U_{0}\oplus U_{1}\oplus\cdots\oplus U_{m}\oplus T_{0}$ ,

where $\oplus denotes$ the nonorthogonal direct sum.

4. Analytic Representation of Distributions of $ff_{M^{r/}}$ by Wavelets

A quasi-positive delta sequence is a sequence $\{\delta_{m}(\cdot, y)\}$ of functions in $L^{1}(R)$

with a parameter $y\in R$ which satisfies the following:

(a) there is a $C>0$ such that

$\int_{-\infty}^{\infty}|\delta_{m}(x, y)|dx\leq C$ , $y\in R,$ $m\in N$ ;
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(b) there is a $c>0$ such that

$\int_{y-c}^{y+c}\delta_{m}(x, y)dx\rightarrow 1$

uniformly on compact subsets of $R$ , as $ m\rightarrow\infty$ ;
(c) for each $\gamma>0$ ,

$\sup_{|x-y|\leq\gamma}|\delta_{m}(x, y)|\rightarrow 0$ as $ m\rightarrow\infty$ .

Then since $\ovalbox{\tt\small REJECT}_{M}^{\prime\prime}(R)\subset \mathscr{S}_{r}(R)$ , we have the following important lemmas as
in [8]:

LEMMA 5. Let $\{\delta_{m}(x, y)\}$ be a quasi-positive delta sequence and let $f\in L^{1}(R)$

be continuous on $(a, b)$ . Then

$f_{m}(y)=\int_{-\infty}^{\infty}\delta_{m}(x, y)f(x)dx\rightarrow f(y)$ as $ m\rightarrow\infty$

uniformly on compact subsets of $(a, b)$ .

LEMMA 6. If the scaling function $\phi\in \mathscr{K}_{M^{r}}(R)$ , then the reproducing kernel
$q_{m}(x, y)$ and $K_{m}(x, t)=\frac{(x-l)}{\alpha!}\frac{\partial^{\alpha}}{\partial t^{\alpha}}q_{m}(x, t)$ for $\alpha\in N,$ $0\leq\alpha\leq r$, are quasi-positive
delta sequences on $R$ .

In order to represent an element of $ff_{M^{r/}}(R)$ by series of analytic wavelets,
we impose conditions on the scaling function $\phi$ again. Since $\mathscr{M}_{M}^{\prime\prime}(R)\subset L^{2}(R)$ , an
analytic representation of $\phi$ is given by

$\phi^{\pm}(z)=\frac{1}{2\pi i}\int_{-}^{\infty_{\infty}}\frac{\phi(x)}{x-z}dx$ , $Imz\gtrless 0$ ,

where $\phi^{\pm}$ are analytic in the upper half-plane and the lower half-plane, respec-
tively. An analytic representation of the mother wavelet is also given by

$\psi^{\pm}(z)=\frac{1}{2\pi i}\int_{-}^{\infty_{\infty}}\frac{\psi(x)}{x-z}dx$ , $Imz\gtrless 0$ ,

and the analytic wavelets $\psi_{mn}^{\pm}$ are obtained by dilation and translation of $\psi^{\pm}$ .
Now, we define $T_{0}^{\pm}=$ {$f(z)=\sum_{n}a_{n}\phi^{\pm}(z-n);a_{n}=\mathcal{O}(c^{l_{0}M(n)})$ for some $l_{0}\in N$}
and we denote by the subspaces $T_{m}^{\pm}$ of $T_{0}^{\pm}$ the corresponding dilation spaces.
Then the spaces $T_{m}^{+}$ and $T_{m}^{-}$ are composed of analytic functions in the upper
and the lower half-planes, respectively, whose boundary functions are continuous
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functions of $e^{M(x)}$ -growth. Since $\overline{\cup T_{m}}=\mathscr{K}_{M^{r/}}(R)$ , we might expect to obtain an
analytic representation of $f\in \mathscr{K}_{M^{r/}}(R)$ in terms of wavelets,

$f^{+}(z)=\sum_{n=-\infty}^{\infty}a_{n}\phi^{+}(z-n)+\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}b_{mn}2^{m/2}\psi^{+}(2^{m}z-n)$ ,

where the first series may not converge. Since an analytic representation is a
continuous map from $\mathscr{K}_{M^{r/}}(R)$ to a corresponding space of analytic functions
and $f_{m}(x)=(f, q_{m}(x, t))\rightarrow f(x)=D^{r}F(x)$ in $ff_{M^{r/}}(R)$ for a continuous function
of $e^{M(x)}$ -growth $F(x)$ [cf. (4)] by Lemmas 5 and 6, $f_{m}^{+}(z)\rightarrow f^{+}(z)$ uniformly
on bounded subsets of the upper half-plane. Moreover, $f^{+}(z)=D_{Z}^{r}F^{+}(z)$ , where
$F^{+}(z)$ is an analytic representation of $F(z)$ , and is given by

$F^{+}(z)=\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{F(x)}{x-z}e^{-M(kx)}e^{M(kz)}dx$ ,

for a sufficiently large $k$ such that $F(x)e^{-M(kx)}\in L^{2}(R)$ . Here for $z\in C$, we define
$e^{M(z)}$ as $e^{M(|z|)}$ .

We may express $f_{m}$ as

$f_{m}=f_{0}+f_{m}-f_{0}=f_{0}+\sum_{k=0}^{m-1}\sum_{n=-\infty}^{\infty}b_{kn}\psi_{kn}$ ,

and if the inner sum converges,

$f_{m}^{+}(z)-f_{0}^{+}(z)=\sum_{k=0}^{m-1}\sum_{n=-\infty}^{\infty}b_{kn}\psi_{kn}^{+}(z)+g_{m}(z)$ , (9)

where $g_{m}(z)$ is an entire function.

LEMMA 7. Let $\psi\in ff_{M^{r}}(R)$ and $b_{n}=\mathcal{O}(e^{M(kn)-\epsilon})$ for any $k\in N$ and some
$\epsilon>0$ . Then

$\sum_{n=-\infty}^{\infty}b_{n}\psi^{+}(z-n)$

converges uniformly on compact subsets of the upper half-plane.

PROOF. The proof is based on the moment property, Lemma 2,

$\int_{-\infty}^{\infty}x^{l}\psi(x)dx=0$ , $l=0,1,$
$\ldots,$

$r$ .

Hence, for any $k\in N$ and a natural number $p\leq r+1$ ,
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$e^{M(kz)}\psi^{+}(z)=\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot\frac{z^{p}}{x-z}\psi(x)dx$

$=\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot\frac{z^{p}-x^{p}}{x-z}\psi(x)dx$

$+\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot\frac{x^{p}}{x-z}\psi(x)dx$

$=-\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot(x^{p-1}+zx^{p-2}+\cdots+z^{p-2_{X}}+z^{p-1})\psi(x)dx$

$+\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot\frac{x^{p}}{x-z}\psi(x)dx$

$=\frac{1}{2\pi i}\int_{-\infty}^{\infty}\frac{e^{M(kz)}}{z^{p}}\cdot\frac{x^{p}}{x-z}\psi(x)dx$

holds. By the growth condition of $\psi\in\ovalbox{\tt\small REJECT}_{M^{r}}^{\prime}(R),$ $|e^{M(kz)}\psi^{+}(z)|$ is uniformly bounded
on compact subsets of the half-plane $Imz\geq\epsilon>0$ for any $k\in N$ and a natural
number $p\leq r+1$ . Hence, the preceding fact holds for any $k\in N$ and any
$p\leq r+1$ . Thus the conclusion follows.

THEOREM 8. For natural numbers $s,$ $r$ with $s<r$, let $f\in ff_{M}^{s/}(R),$ $\phi,$ $\psi\in$

$K_{M}^{r}(R)$ and let $b_{mn}=\langle f, \psi_{mn}\rangle,$ $m=0,1,2,$ $\ldots;n=0,$ $\pm 1,$ $\pm 2,$
$\ldots$ be the wavelet

coefficients of $f$ . Then an analytic representation of $f$ is given by

$f^{+}(z)=f_{0}^{+}(z)+\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}b_{mn}\psi_{mn}^{+}(z)$ ,

where the series converges umformly on compact subsets of the half-plane $Imz\geq 1$

and $f_{0}^{+}(z)$ is an analytic representation of $f_{0}$ , the projection of $f$ on $T_{0}$ .

PROOF. First, we will estimate $|b_{mn}|$ . Each $f\in ff_{M^{s/}}(R)$ is characterized
by

$f=D^{s}[e^{M(k_{0}x)}\mu]$

for some integer $k_{0}$ and finite measure $\mu$ on $R$ . Each $\psi\in \mathscr{K}_{M^{r}}(R)$ satisfies

$|\psi^{(l)}(x)|\leq C_{j}e^{-M(jx)}$ , $l=1,2,$ $\ldots,$
$r;j\geq 0$ .

If we use integration by parts s-times, we have, for $m>1$ ,
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$|b_{mn}|\leq\int_{-\infty}^{\infty}|D^{s}[e^{M(k_{0}x)}]\psi_{nm}(x)|d|\mu|\leq\int_{-\infty}^{\infty}e^{M(k_{0}x)}|\psi_{mn}^{(s)}(x)|d|\mu|$

$\leq\int_{-\infty}^{\infty}e^{M(k_{0}x)}c_{k_{0}}2^{m/2+sm}e^{-M(k_{0}(2^{m}x-n))}d|\mu|$

$\leq\int_{-\infty}^{\infty}e^{M(2k_{0}(x-n2^{-m}))}e^{M(2k_{0}n2^{-m})}c_{k_{0}}2^{m/2+sm}e^{-M(2^{m}k_{0}(x-n2^{-m}))}d|\mu|$

$\leq c_{k_{0}}^{\prime}2^{m/2+sm}e^{M(2k_{0}n2^{-m})}$ .

By the fact in the proof of Lemma 7, on every compact subset $K$ of the half-
plane $Imz\geq 1$ , there exists a constant $c$ such as $|\psi^{+}(z)|\leq ce^{-M(kz)}$ for any $k\in N$ .

Hence if we take $k$ sufficiently large with $k>\sup\{k_{0}, \frac{3}{2}+s\}$ , then for $z\in K$ ,

$\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}|b_{mn}\psi_{mn}^{+}(z)|$

$\leq\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}c_{k_{0}}^{\prime}e^{(1/2+s)m}e^{M(2k_{0}n2^{-m})}c2^{m/2}e^{-M(k(2^{m}z-n))}$

$\leq\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}cc_{k_{0}}^{\prime}e^{(3/2+s)m}e^{M(2k_{0}n2^{-m})}e^{-M(k2^{m}(n2^{-m}-Rez-iImz))}2^{-m/2}$

$\leq\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}cc_{k_{0}}^{\prime}e^{(3/2+s)m}e^{M(2k_{0}n2^{-m})}$

$\times e^{-M(k2^{m}(n2^{-m}-Rez))}e^{-M(2^{m- 1}k)}2^{-m/2}$

$\leq\{\sum_{m=0}^{2}\sum_{n=-\infty}^{\infty}+\sum_{m=3}^{\infty}\sum_{n=-\infty}^{\infty}\}cc_{k_{0}}^{\prime}e^{(3/2+s)m}e^{M(2k_{0}n2^{-m})}$

$\times e^{-M(k2^{m}(n2^{-m}-Rez))}e^{-M(2^{m- 1}k)}2^{-m/2}$

$\leq\sum_{m=3}^{\infty}C_{k_{0},z}2^{-m/2}<\infty$ ,

where we use the properties (1), (2) and the inequality $\sqrt{2}|z|\geq|Rez|+|Imz|\geq$

$|Rez|+1$ for $|Imz|\geq 1$ . Hence the series $\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}b_{mn}\psi_{mn}^{+}(z)$ converges
uniformly on compact subsets of the half-plane $Imz\geq 1$ .

Now, by taking the limit in (9) as $ m\rightarrow\infty$ , we have

$f^{+}(z)=f_{0}^{+}(z)+\sum_{k=0}^{\infty}\sum_{n=-\infty}^{\infty}b_{kn}\psi_{kn}^{+}(z)+g_{\infty}(z)$ ,

where $g_{\infty}(z)=\lim_{m\rightarrow\infty}g_{m}(z)$ is an entire function. Since an analytic representa-
tion plus an entire function is an analytic representation, we can drop $g_{\infty}$ in (9).

REMARK. We have only worked out the convergence for $f^{+}$ but proof
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for $f^{-}$ is parallel. Then by the same method as in the proof of Theorem 8, an
analytic representation of $f$ is given by

$f^{-}(z)=f_{0^{-}}(z)+\sum_{m=0}^{\infty}\sum_{n=-\infty}^{\infty}b_{mn}\psi_{mn}^{-}(z)$ ,

where the series converges uniformly on compact subsets of the half-plane
$Imz\leq-1$ and $f_{0^{-}}(z)$ is an analytic representation of $f_{0}$ , the projection of $f$ on
$T_{0}$ .
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