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SINGULAR SETS OF IDEAL INSTANTONS AND
POINCAR\’E DUALITY

By

Yasuyuki NAGATOMO

Abstract. A point in the boundary of a moduli space of quatemion
ASD connections can be regarded as a singular ASD connection with
a particular singular set. In the case of generalized 1 instantons on
$HP^{n}$ and $Gr_{2}(C^{n+2})$ , it is proved that Poincar\’e dual of the singular
set is the Chem class of the vector bundle.

1. Introduction

The purpose of the present paper is to show that Poincar\’e dual of the
homology class represented by the singular set of an ideal instanton is the even
degree Chem class of the vector bundle on which the ideal instanton is defined
(Theorem 2.3 and the Table).

It is well known that the moduli space of 1 instantons on the 4 dimensional
sphere $S^{4}$ is identified with the 5 dimensional open ball. From the viewpoint of
Uhlenbeck compactification, a point in the boundary of the moduli space can be
considered as an ASD connection with a point singularity. Since the Chem class
of the bundle is equal to 1, Poincar\’e dual of the singular set is the second Chem
class $c_{2}$ .

The quatemion projective space $HP^{n}$ and the complex Grassmannian man-
ifold $Gr_{2}(C^{n+2})$ are quatemion-K\"ahler manifolds and in particular, in the case
$n=1$ , these manifolds are $S^{4}$ and the complex projective plane $CP^{2}$ , respectively.
By definition, a quatemion-K\"ahler manifold is a $4n$-dimensional Riemannian man-
ifold for which the linear holonomy group can be reduced to $Sp(1)\cdot Sp(n)$ . Anti-
self-duality can be defined over quatemion-K\"ahler manifolds in the same way as
in the 4-dimensional case (see, for example, Mamone Capria and Salamon [3]).

From this point of view, 1 instantons on $S^{4}$ and $CP^{2}$ are generalized to
objects on $HP^{n}$ and $Gr_{2}(C^{n+2})$ (Definition 2.1). The moduli spaces of these
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generalized 1 instantons can be described by the theory of monads on the Salamon
twistor spaoe (see \S 2). This theory indicates a natural compactification of moduli
spaces and a point in the boundary of the moduli can also be regarded as an
ASD connection which is defined only on the complementary set of a closed
subset of the base manifold. We call such a closed subset the singular set. In the
case of generalized 1 instantons, the singular sets are described in Theorem 2.2,
and all of them are quatemion submanifolds.

As for the method of our proof, see \S 3. In particular, we use holomorphic
vector bundles and sections of them on the twistor spaces. All the holomorphic
vector bundles stated here have common properties in terms of ASD bundles and
line bundles on the twistor spaces. These properties will be formulated in the
forthcoming paper.

The author would like to express his sincere gratitude to Professor Simon
Salamon for many valuable comments, including computation of the Chem
classes. The author is a Monbusho-sponsored Japanese 0verseas Reserch Fellow
and would also like to thank the Ministry of Education and Culture for the
support.

2. Prehminaries

The symmetric spaces $HP^{n}$ and $Gr_{2}(C^{n+2})$ are quatemion-K\"ahler manifolds
with positive scalar curvature. A connection on a vector bundle on a quatemion-
K\"ahler manifold is called an $ASD$ connection if its curvature 2-form is invariant
under the action of $I,J,$ $K$ (see, for example, [3]). A vector bundle with an ASD
connection is also called instanton (bundle). On the other hand, every quatemion-
K\"ahler manifold has a twistor spaoe with a natural complex structure [9]. The
twistor spaces of $HP^{n}$ and $Gr_{2}(C^{n+2})$ are the odd dimensional complex projective
spaces $CP^{2n+1}$ and the generalized flag manifolds $ F^{2n+1}=SU(n+2)/S(U(1)\times$

$U(n)\times U(1))$ , respectively. The pull-back bundle with ASD connection on the
twistor space has a holomorphic stmcture induced by the pull-back connection.
Hence we do not distinguish ASD bundles on quatemion-K\"ahler manifolds from
the pull-back bundles on the twistor space, and we use the same symbol for both.

To specify vector bundles, we need to describe the cohomology rings on
the twistor spaces. As for the complex projective spaces, $x$ is defined as the
standard positive generator of $H^{2}(CP^{2n+1},Z)$ . Since the twistor space $F^{2n+1}$ can
be expressed as the projective bundle of the holomorphic cotangent bundle of
$CP^{n+1}$ , the Leray-Hirsch theorem implies that the cohomology ring $H^{*}(F^{2n+1}, Z)$

is isomorphic to the quotient ring of $Z[x, y]$ by the ideal generated by $x^{n+2}$ and
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$x^{n+1}-x^{n}y+\cdots+(-1)^{n+1}y^{n+1}$ , where $x$ is the pull-back of the standard positive
generator of $H^{2}(CP^{n+1}, Z)$ . The twistor space $F^{2n+1}$ has another fibration over
the dual complex projective space $CP^{n+1^{*}}$ . Then $y$ is the pull-back of the standard
positive generator of $H^{2}(CP^{n+1^{*}}, Z)$ .

We now define the ASD bundles which we wish to consider in the present
paper.

DEFINITION 2.1. (0) Let $E_{0}$ be an ASD bundle on $HP^{n}$ with structure
group $Sp(n)$ . The total Chem class $c(E_{0})$ of $E_{0}$ is assumed to be equal to
$(1-x^{2})^{-1}$ . More precisely, the Chem classes are expressed as $c_{2}(E_{0})=x^{2}$ ,
$c_{4}(E_{0})=x^{4},$

$\ldots,$
$c_{2n}(E_{0})=x^{2n}$ .

(1) Let $E_{1}$ be an ASD bundle on $Gr_{2}(C^{n+2})$ with stmcture group $Sp(n)$ . The
total Chem class $c(E_{1})$ of $E_{1}$ is assumed to be equal to $(1-x^{2})^{-1}(1-y^{2})^{-1}$

More precisely, the Chem classes are expressed as $c_{2i}(E_{1})=\sum_{k=0}^{i}x^{2i-2k}y^{2k}$ ,
where $i=1,2,$

$\ldots,$
$n$ .

(2) Let $E_{2}$ be an ASD bundle on $Gr_{2}(C^{n+2})$ with stmcture group $SU(n+1)$ .
The total Chem class $c(E_{2})$ of $E_{2}$ is assumed to be equal to $\{1+(-x+y)\}$ .
$(1-x)^{-1}(1+y)^{-1}$ More precisely, the Chem classes are expressed as $c_{j}(E_{2})=$

$-\sum_{k=1}^{i-1}x^{i-k}(-y)^{k}$ , where $i=1,2,$ $\ldots,n+1$ .

REMARK. In the case $n=1,$ $E_{0}$ is nothing but a 1 instanton on $S^{4}$ and $E_{1}$

and $E_{2}$ are isomorphic to each other, because $Sp(1)\cong SU(2)$ , and our relations
for generators of the cohomology yield that $c(E_{1})=c(E_{2})$ . The last two bundles
are 1 instantons on $CP^{2}$ .

Let $\mathscr{M}_{0},$ $\mathscr{M}_{1}$ and $\mathscr{M}_{2}$ be the moduli spaces of ASD connections on $E_{0},$ $E_{1}$

and $E_{2}$ , respectively. From the viewpoint of [6],
(0) $\mathscr{M}_{0}$ is identified with an open ball in $\wedge^{2}C^{2n+2}$ , where $\wedge^{2}C^{2n+2}$ is the

corresponding representation of $Sp(n+1)$ .
(1) $\mathscr{M}_{1}$ is identified with an open cone over $P(\wedge^{2}C^{n+2})$ , where $\wedge^{2}C^{n+2}$ is the

corresponding representation of $SU(n+2)$ .
(2) $\mathscr{M}_{2}$ is identified with an open cone over $P(C^{n+2})$ , where $C^{n+2}$ is the

standard representation space of $SU(n+2)$ .
The completeness of these moduli spaces is proved in [1], [2], [8] and [4]. In

particular, the theory of monads is available for proving the completeness of the
moduli ([3], [2], [8] and [4]). From the viewpoint of the theory of monads, the
boundary point of the moduli spaces represents a singular ASD connection with
a singular set, which we denote by $S$. These singular sets are described in [1],
[7] and [4].
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THEOREM 2.2. In each case, the singular set is one of the following quaternion

submanifolds of $HP^{n}$ or $Gr_{2}(C^{n+2})$ :
(0) $HP^{j}$ , where $i=0,1,$ $\ldots,$

$n+1$ ,
(1) $HP^{i}$ , where $i=0,1,$ $\ldots,$ $[(n+2)/2]$ and
(2) $Gr_{2}(C^{n+1})$ ,

where $[m]$ is the greatest integer not greater than $m$ .

THEOREM 2.3 (Main Theorem). The Poincar\’e dual of the homology class
represented by the (real) $4(n-l)$ -dimensional singular set is the $2ith$ Chem class of
the $ASD$ bundle on which the singular $ASD$ connection is defined.

3. Zero Loci of Sections

The following two sections are devoted to the proof of the Main Theorem.
Since our strategy is common to all three cases, we shall now describe it.

First of all, we determine a holomorphic vector bundle $V$ on the twistor
space which has a (holomorphic) section $s$ . It is shown that the zero locus of the
section $s$ is the inverse image $\tilde{S}$ by the twistor fibration of the singular set $S$ and
is transverse to the zero section. Hence, Poincar\’e dual of $\tilde{S}$ equals the top Chem
class of $V$.

Next, it is proved that the top Chem class of $V$ equals the pull-back of the
appropriate Chem class of the ASD bundle.

Finally, the Gysin sequence or fibre integration yields the desired results and
we omit the details of this procedure.

3.1. THE CASE OF $E_{0}$ . We may choose $V$ to be the direct sum of line
bundles of degree 1. To put it more accurately, we denote by $[z_{0};z_{1} ; \ldots ; z_{2n+1}]$

the homogeneous coordinates on $CP^{2n+1}$ and by $\mathcal{O}(d)$ the line bundle of degree
$d$ on $CP^{2n+1}$ . Now $V$ is the direct sum $\mathcal{O}(1)^{\oplus 2i}$ , the top Chem class of $V$ is
$x^{2i}$ , and so it equals $c_{2i}(E_{0})$ . The section $s$ of $V$ which we should choose is
$(z_{2(n-i)+1}, z_{2(n-i)+2}, \ldots, z_{2n}, z_{2n+1})$ .
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3.2. THE CASE OF $E_{1}$ AND $E_{2}$ . Since $F^{2n+1}$ is a Fano manifold, the Picard
group is $H^{2}(F^{2n+1}, Z)$ . We denote by $\mathcal{O}(p, q)$ the line bundle of which the first
Chem class is $px+qy$ . As mentioned in the previous section, $F^{2n+1}$ has two
holomorphic fibrations:

$p_{1}$ : $F^{2n+1}\rightarrow CP^{n+1}$ and $p2^{;F^{2n+1}}\rightarrow CP^{n+1^{*}}$

From our definition of the cohomology classes $x$ and $y$ , we obtain $ p_{1}^{*}\mathcal{O}(1)\cong$

0 $(1,0)$ and $p_{2^{*}}\mathcal{O}(1)\cong \mathcal{O}(0,1)$ . For brevity, we fix a unitary basis $\{e_{1}, \ldots, e_{n+2}\}$

of the standard representation space $C^{n+2}$ of $SU(n+2)$ and the dual basis
$\{e^{1}, \ldots, e^{n+2}\}$ of $C^{n+2^{*}}$ . The corresponding homogeneous coordinates on $CP^{n+1}$

and $CP^{n+1^{*}}$ are denoted by $[z_{1}$ ; $\ldots$ ; $z_{n+2}]$ and $[w_{1}$ ; $\ldots$ ; $w_{n+2}]$ , respectively. Then
$F^{2n+1}$ can be identified with the divisor on $CP^{n+1}\times CP^{n+1^{*}}$ defined by the equa-
tion $\sum_{i=1}^{n+2}z_{j}w_{i}=0$ .

Let $t$ be a holomorphic section of 0 $(1,0)$ . If $t$ is the pull-back section of
0(1) on $CP^{n+1}$ which corresponds to $\sum a^{i}z_{j}$ , we shall say that $t$ is the section
corresponding to $\sum a^{j}z_{j}$ . We also use a similar terminology for a section of
$\mathcal{O}(0,1)$ .

LEMMA 3.1. Let $s$ be a section of the direct sum $\mathcal{O}(1,0)\oplus \mathcal{O}(0,1)$ . If $s$ cor-
responds to $(z_{n+2}, w_{n+2})$ , then the zero locus of $s$ is $F^{2n-1}$ which is the twistor space
of the quaternion submanifold $Gr_{2}(C^{n+1})$ of $Gr_{2}(C^{n+2})$ .

PROOF. Using our notation, we define divisors $CP^{n}=\{z_{n+2}=0\}$ and
$CP^{n^{*}}=\{w_{n+2}=0\}$ on $CP^{n+1}$ and $CP^{n+1^{*}}$ , respectively. Then we have $J^{-1}(0)=$

$p_{1}^{-1}(CP^{n})\cap p_{2}^{-1}(CP^{n^{*}})$ . $\square $

In this case, it is clear that $J^{-1}(0)$ is transverse to the zero section. The second
Chem class of $\mathcal{O}(1,0)\oplus \mathcal{O}(0,1)$ is $xy$ , and so it is equal to $c_{2}(E_{2})$ . Thereby, in the
case of $E_{2}$ , the proof is completed.

Pulling back the Euler sequence on $CP^{n+1^{*}}$ , we obtain the exact sequence:
$0\rightarrow \mathcal{O}(1, -1)\rightarrow \mathcal{O}(1,0)^{\oplus n+2}\rightarrow Q\rightarrow 0$ .

Using weights for example, we also obtain the exact sequence:

$0\rightarrow V\rightarrow Q\rightarrow \mathcal{O}(2,0)\rightarrow 0$ .

(The vector bundle $V$ is the “twisted tautological bundle”.) By the Bott-Borel-
Weil theorem, $H^{0}(F^{2n+1}, V)$ is identified with $\wedge^{2}C^{n+2^{*}}$ as representations of
$SU(n+2)$ .
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For brevity, we replace $SU(n+2)$ by $G$ and the isotropy subgroup $ S(U(1)\times$

$U(n)\times U(1))$ by $K_{Z}$ . As a $C^{\infty}$ vector bundle, $V$ is identified with the associated
vector bundle with $G$ of which the typical fibre is the representation space
Ce $1\otimes C^{n^{*}}$ of $K_{Z}$ , where $C^{n^{*}}$ is spanned by $e^{2},$

$\ldots,$

$e^{n+1}$ . We denote the orthogonal
projection by $\pi$

$:\wedge^{2}C^{n+2^{*}}\rightarrow Ce^{1}\otimes C^{n^{*}}$ , which is explicitly given by

$\pi(\phi)=e^{1}\wedge\iota(e_{1})\phi-h(\phi, e^{1}\wedge e^{n+2})e^{1}\wedge e^{n+2}$ ,

where $\phi\in\wedge^{2}C^{n+2^{*}},$ $l$ is the interior product and $h$ is the induced Hermitian
inner product on $\wedge^{2}C^{n+2^{*}}$ Using $\pi$ , the isomorphism between $\wedge^{2}C^{n+2}$ and
$H^{0}(F^{2n+1}, V)$ is expressed as

$s_{\phi}[g]=[g, \pi(g^{-1}\phi)]$ ,

where $[g]$ is the point of $F^{2n+1}$ represented by $g\in G$ , and $[g, \pi(g^{-1}\phi)]$ is the
element of $V$ represented by $(g, \pi(g^{-1}\phi))$ .

PROPOSITION 3.2. We assume that $n$ is even. If $\phi\in\wedge^{2}C^{n+2^{*}}$ is non-degenerate,
then the zero locus of $s_{\phi}$ is expressed as

$s_{\phi}^{-1}(0)=\{([v], [\iota(v)\phi])\in CP^{n+1}\times CP^{n+1^{*}}\}\cong CP^{n+1}$ .

$PR\infty F$ . With our notation, $s_{\phi}^{-1}(0)=\{[g]\in F^{2n+1}|\pi(g^{-1}\phi)=0\}$ . From the
definition of $\pi,$ $\pi(g^{-1}\phi)=0$ if and only if $\phi(ge_{1}, ge_{l})=0$ for an arbitrary $l=$

$2,$ $\ldots,n+1$ and so, there exists a non-zero constant $\alpha$ such that $\iota(g^{-1}e_{1})\phi=$

$\alpha ge^{n+2}$ , because $\phi$ is non-degenerate. $\square $

If $n$ is odd, then any $\phi\in\wedge^{2}C^{n+2^{*}}$ is degenerate, but in the generic case, the
rank of $\phi$ is equal to $n+1$ . Note that if $\phi$ is of rank $n+1$ , then there exists a
non-zero vector $v_{0}\in C^{n+2}$ such that $\iota(v_{0})\phi=0$ .

PROPOSITION 3.3. We assume that $n$ is odd. If $\phi\in\wedge^{2}C^{n+2^{*}}$ is of rank $n+1$

and satisfies $\iota(v_{0})\phi=0$ for non-zero vector $v_{0}\in C^{n+2}$ , then the zero locus of $s_{\phi}$ is
isomorphic to the blow up of $CP^{n+1}$ at one point. More explicitly, the zero locus is
expressed as

$s_{\phi}^{-1}(0)=\{([v], [\iota(v)\phi])\in CP^{n+1}\times CP^{n+1^{*}}|[v]\neq[v_{0}].\}$

$\cup\{([v_{0}], [\psi])\in CP^{n+1}\times CP^{n+1^{*}}|\psi(v_{0})=0.\}$

PROOF. Under the same notation as in the proof of Proposition 3.2, we
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obtain the same condition $\phi(ge_{1}, ge_{l})=0$ for an arbitrary $l=2,$
$\ldots,$

$n+1$ . This
implies the explicit expression of the zero locus in the Proposition.

To see that this set is identified with the blow up of $CP^{n+1}$ at $[v_{0}]$ , we
may assume that $v_{0}=e_{n+2}$ and $\phi=e^{1}\wedge e^{2}+e^{3}\wedge e^{4}+\cdots+e^{n}\wedge e^{n+1}$ . Under
the assumption $z_{n+2}\neq 0$ , we introduce the inhomogeneous coordinate $\xi_{m}=$

$z_{m}/z_{n+2}$ for $m=1,$ $\ldots,n+1$ . After a “compatible” transformation on $CP^{n+1}$

( $e_{1}\mapsto e_{2},$ $e_{2}\mapsto-e_{1},$
$\ldots,$ $e_{n+1}\mapsto-e_{n}$ , and $e^{n+2}\leftarrow\rangle e^{n+2}$ ) related to $\phi$ , on a neigh-

bourhood of $([v_{0}], [e^{1}])\in F^{2n+1}\subset CP^{n+1}\times CP^{n+1^{*}}$ , the zero locus can be ex-
pressed as $([\xi_{1}$ ; $\ldots$ ; $\xi_{n+1}$ ; 1], $[w_{1}$ ; $\ldots$ ; $w_{n+1}$ ; $0])$ , where there exists $\lambda\in C$ such that
$(\xi_{1}, \ldots, \xi_{n+1})=\lambda(w_{1}, \ldots, w_{n+1})_{\rightarrow}$ $\square $

LEMMA 3.4. If $\phi\in\wedge^{2}C^{n+2^{*}}$ is of full rank, then the corresponding section
$s_{\phi}\in H^{0}(F^{2n+1}, V)$ is transverse to the zero section.

PROOF. It is sufficient to show that there exists $X\in \mathfrak{s}u(n+2)$ such that
$\phi(Xge_{1}, ge_{l})+\phi(ge_{1}, Xge_{l})\neq 0$ for an arbitrary $l=2,$ $\ldots,n+1$ under the assump-
tion $\phi(ge_{1}, ge_{l})=0$ for an arbitrary $l=2,$ $\ldots,n+1$ . In the case that $n$ is even,
we may choose $X_{l}$ such that $X_{l}ge_{1}=\sqrt{-1}ge_{1}$ and $X_{l}ge_{l}=ge_{n+2}$ .

If $n$ is odd and $ge_{1}=v_{0}$ , then $X_{l}$ may be chosen such that
$\phi(X_{l}ge_{1}, ge_{l})\neq 0$ , because $\phi$ is non-degenerate on the orthogonal complement
of $Cv_{0}$ in $C^{n+2}$ . $\square $

PROPOSITION 3.5. We now assume that $n$ is even. If $\phi\in\wedge^{2}C^{n+2^{*}}$ defines a
compatible quaternion structure with the Hermitian inner product $h$ on $C^{n+2}$ , then
the zero locus of the section $s_{\phi}$ of $V$ is the twistor space of a quaternion sub-
mamfold $HP^{(n+2)/2}$ of $Gr_{2}(C^{n+2})$ .

PROOF. From the assumption, there exists a unitary basis $\{e_{1}, \ldots, e_{n+2}\}$ of
$C^{n+2}$ such that $\phi=e^{1}\wedge e^{2}+e^{3}\wedge e^{4}+\cdots+e^{n+1}\wedge e^{n+2}$ . The corresponding
quatemion stmcture is denoted by $j$ .

We denote by $\sigma_{F}$ the real stmcture of $F^{2n+1}[9]$ . If $([v], [\iota(v)\phi])$ is in the zero
locus of the section $s_{\phi}$ , we obtain $\sigma_{F}([v], [\iota(v)\phi])=([-jv], [\iota(jv)\phi])$ . This means
that the real stmcture $\sigma_{F}$ can be restricted to the zero locus and corresponds to
the real structure of $CP^{n+1}$ as the twistor space of $HP^{(n+2)/2}$ . $\square $

In the case that $n$ is odd, we define a vector bundle $V$ ‘ as $V^{\prime}=V\oplus \mathcal{O}(1,0)$ .
Using Lemma 3.1 and Proposition 3.3, we can find a section whose zero locus is
holomorphically isomorphic to $CP^{n}$ . Then, the following proposition is obtained
in a similar way.
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PROPOSITION 3.6. In the case that $n$ is odd, it is assumed that $\phi\in\wedge^{2}C^{n+2^{*}}$

defines a compatible quaternion structure with the Hermitian inner product $h$ on
$C^{n+1}$ , where $C^{n+1}$ is the orthogonal complement of $Cv_{0}$ and $v_{0}\in C^{n+1}\backslash \{0\}$ satisfies
$\iota(v_{0})\phi=0$ . The corresponding section $(s_{\phi}, s_{v^{0}})$ of $V^{\prime}$ is defined in the following way.

The section $s_{\phi}$ is the corresponding section of V. The linear form $v^{0}$ is defined as
$Kerv^{0}=C^{n+1}$ and $v^{0}(v_{0})=1$ . The section $s_{v^{0}}$ is the section of $\mathcal{O}(1,0)$ corre-

sponding to $v^{0}$ .
Then the zero locus of the section $(s_{\phi},s_{v^{0}})$ of $V^{\prime}$ is the twistor space of a

quaternion submamfold $HP^{(n+1)/2}$ of $Gr_{2}(C^{n+2})$ .

Using Lemma 3.1 and Propositions 3.5 and 3.6, we know that the vector

bundles $V\oplus(\mathcal{O}(1,0)\oplus \mathcal{O}(0,1))^{\oplus k}$ has a section of which the zero locus is the

twistor space of $HP^{(n+2)/2-k}$ in the case that $n$ is even and the vector bundle
$V^{\prime}\oplus(\mathcal{O}(1,0)\oplus \mathcal{O}(0,1))^{\oplus k}$ has a section whose zero locus is the twistor space

of $HP^{(n+1)/2-k}$ in the case that $n$ is odd. Lemma 3.4 yields that each section is

transverse to the zero section.

4. The Chem Classes

Under our notation, $V$ is isomorphic to $GX_{K_{Z}}$ Ce $1\otimes C^{n^{*}}$ . Theorem 3.4 in

[6] assures that the vector bundle $G\times {}_{Kz}C^{n^{*}}$ is isomorphic to the pull-back of

an instanton bundle $E$ on $Gr_{2}(C^{n+2})$ . The pull-back of $E$ can be obtained by the

monad [5]:

$\mathcal{O}(0, -1)\rightarrow\underline{C^{n+2^{*}}}\rightarrow \mathcal{O}(1,0)$ .

Hence we have $c_{p}(E)=\sum_{i=0}^{p}(-x)^{i}y^{p-i}$ .

LEMMA 4.1. The top Chem class $c_{n}(V)$ of $V$ on $F^{2n+1}$ equals $\sum_{p=0}^{[n/2]}x^{2p}y^{n-2p}$ .

$PR\infty F$ . Since $V\cong E\otimes \mathcal{O}(1,0)$ and $c_{1}(\mathcal{O}(1,0))=x$, it follows that
$c_{n}(V)=\sum_{p^{n}=0}c_{p}(E)x^{n-p}=\sum_{p^{n}=0}\sum_{i=0}^{p}(-1)^{j}x^{n-p+t}y^{p-i}$ . Consequently, we obtain
$c_{n+1}(V^{n+1})=c_{n}(V)x+\sum_{i=0}^{n+1}(-x)^{i}y^{n+1-i}$ , where $V^{n+1}$ is defined on $F^{2(n+1)+1}$ .

The induction yields our result. $\square $

4.1. $n$: even. The relation $x^{n+1}-x^{n}y+\cdots+(-1)^{n+1}y^{n+1}$ , the definition of
$E_{1}$ and Lemma 4.1 imply that $c_{n}(V)=c_{n}(E_{1})$ and $xc_{n}(V)=yc_{n}(V)$ . On the other

hand,

$c_{n+2k}(V\oplus(\mathcal{O}(1,0)\oplus \mathcal{O}(0,1))^{\oplus k})=x^{k}y^{k}c_{n}(V)$ ,
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$c_{n+2k}(E_{1})=c_{n}(E_{1})y^{2k}+x^{2m}\sum_{q=1}^{k}x^{2q}y^{2k-2q}$ .

The relation $x^{n+2}=0$ yields $c_{n+2k}(E_{1})=c_{n}(E_{1})y^{2k}=c_{n}(V)y^{2k}=x^{k}y^{k}c_{n}(V)$ .
Thereby, $c_{n+2k}(V\oplus(\mathcal{O}(1,0)\oplus \mathcal{O}(0,1))^{\oplus k})=c_{n+2k}(E_{1})$ .

4.2. $n$: odd. Lemma 4.1 yields $c_{n+1}(V^{\prime})=xy\sum_{p=0}^{(n-1)/2}x^{2p}y^{n-1-2p}$ . This
equation, the relation $x^{n+1}-x^{n}y+\cdots+(-1)^{n+1}y^{n+1}$ and the definition of $E_{1}$

imply $c_{n+1}(V^{\prime})=c_{n+1}(E_{1})$ . The relation $y^{n+2}=0$ yields $yc_{n+1}(E_{1})=xc_{n+1}(V^{\prime})=$

$xc_{n+1}(E_{1})$ and $c_{n+1+2k}(E_{1})=x^{2k}c_{n+1}(E_{1})$ . Hence

$c_{n+1+2k}(V^{\prime}\oplus(\mathcal{O}(1,0)\oplus \mathcal{O}(0,1))^{\oplus k})=x^{k}y^{k}c_{n+1}(V^{\prime})=x^{2k}c_{n+1}(E_{1})$

$=c_{n+1+2k}(E_{1})$ .
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