TSUKUBA J. MATH.
Vol. 25 No. 1 (2001), 155-164

INTEGRAL GEOMETRY OF REAL SURFACES
IN COMPLEX PROJECTIVE SPACES

Dedicated to Professor Katsuhiro Shiohama on his sixtieth birthday

By

Hong Jae KANG and Hiroyuki TASAKI

1. Introduction
The purpose of this paper is to give a Poincaré formula of real surfaces in

complex projective spaces stated in the following theorem.

THEOREM 1.1. Let CP" be a complex projective space of complex dimension
n, M a real submanifold of CP" of real dimension 2 and N a complex submanifold
of complex dimension n — 1. Then we have

J $(M N gN) dptgns ) (6)
U(n+1)

_ vol(U(n+ 1)) vol(N)
N 2vol(CP') vol(CP")

where 0, is the Kdhler angle of M at x. Moreover the above formula holds for a

J (1 + cos? 0,) duy,(x),
M

real submanifold M of real dimension 2n — 2 and a complex submanifold N of
complex dimension 1, where O, is the Kihler angle of T+ M.

One of the oldest results in integral geometry is the Poincaré formula for the
average of the intersection number of two curves. Many differential geometers
have studied the Poincaré formula from various points of view. In particular, R.
Howard has generalized this formula in Riemannian homogeneous spaces and
obtained the following formula.

THEOREM 1.2. [1] Let G/K be a Riemannian homogeneous space with a
G-invariant Riemannian metric and take submanifolds M and N of G/K. Assume
that dim M + dim N = dim(G/K) and that G is unimodular. Then
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j 4(M N gN) dug(g) = j j ok (TEM, THN) dptygn (%, ),
G MxN

where o (T M, T, N) is defined by below. Furthermore, if G is transitive on
the sets of tangent spaces to each of M and N then

|, #0 008) diig(a) = ax(T4 3,75, 8) vol () vol (),
G
where xo and y, are any points of M and N, respectively.

Let CP" be a complex projective space of complex dimension #. The unitary
group U(n+ 1) acts transitively on CP". The isotropy subgroup of U(n+ 1) at a
point in CP" is U(1) x U(n). Thus CP" can be realized as a homogeneous space
CP"=U(n+1)/(U(1l) x U(n)). Let u(n+1) be the Lie algebra of U(n+1).
Define an inner product on u(n+ 1) by

(X,Y) = —%Trace(XY) (X, Y eun+1)).

We extend this inner product (-,-) on u(n+ 1) to the left invariant Riemannian
metric on U(n+1). Then we obtain a biinvariant Riemannian metric on
U(n+ 1). This biinvariant Riemannian metric on U(n + 1) induces a U(n + 1)-
invariant Riemannian metric on U(n + 1)/(U(1) x U(n)). R. Howard [1] has also
obtained the following formula in the case of CP”".

THEOREM 1.3. [l] Let CP" be a complex projective space.
(1) Let M and N be complex submanifolds of CP" of complex dimension 1
and n— 1. Then

__vol(U(n + 1)) vol(M) vol(N)
jvwn(MngN)duU(,.+1)(g>— e e

(2) Let M be a totally real submanifold of CP" of real dimension 2 and N a
complex submanifold of complex dimension n — 1. Then

_vol(U(n+ 1)) vol(M) vol(N)
jwm) HM N gN) gy (8) = e oo s

where RP? is a 2-dimensional real projective space.

Such complex and totally real submanifolds have constant Kéhler angles. In
the case (1) the Kéhler angle of M is 0 and in the case (2) that of M is n/2 and
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vol(RP?) = 21 = 2vol(CP'). Thus the formulas in are special cases
of the formula in [Theorem 1.1.
On the other hand, the second auther proved the following inequality in [2].

n— vol(U(n+1)
JU(n+l)ﬁ(MﬂgCP l)d/‘U(rH—l)(g) < v(ol((g‘Pl) )VOI(M),

where M is a submanifold of CP" of real dimension 2. This follows from
Theorem 1.1. In this formula, if M is a complex submanifold of CP" of complex
dimension 1 then the equality holds and this is the case of Kihler angle 0 in
Theorem 1.1

Acknowledgements

We would like to thank Professor Katsuei Kenmotsu for his considerable
comments at an early version of this paper. The authers are indebted to the
referee for useful comments which led to improvement of this paper.

2. Preliminaries

In this section we shall review the Poincaré formula on Riemannian
homogeneous spaces given by R. Howard [I].

Let E be a finite dimensional real vector space with an inner product. For
two vector subspaces V' and W of dimension p and ¢ in E, take orthonormal
bases vy,...,v, and wy,...,w, of V and W, respectively, and define

gV, W)=[v1 A -+ AUp AWL A -+ AW

This definition is independent of the choice of orthonormal bases. Furthermore, if
p+q=dimE then

a(V,W)=0a(Vt, wt).

Let G be a Lie group and K a closed subgroup of G. We assume that G has a
left invariant Riemannian metric that is also invariant under the right actions of
elements of K. This metric induces a G-invariant Riemannian metric on G/K. We
denote by o the origin of G/K. For x and y in G/K and vector subspaces V" and
W in T,(G/K) and T,(G/K), we define ax(V, W) by

(2.1) ox(V, W) = J o((dgx); 'V, dk; (dg,);' W) dug (k)

K
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where g, and g, are elements of G such that g.o = x and g,0 = y. This definition
is independent of the choice of g, and g, in G such that g0 = x and g,0 = y.

PROPOSITION 2.1. Let V and W be vector spaces with inner product. Assume
dmV =m>n=dmW. Let F:V — W be a linear mapping. We set JF =

sup{|F(u;) A -+ A F(un)| | w1, ... ,u, is orthonormal system of V}. If F is not
onto mapping then JF =0. And if F is onto then for any basis vy,...,v, of
(Ker F)*,

|F(v1) A -+ /\F(v,,)l.

JF =
lop A -+ Ayl

We can easily show this proposition and omit its proof. We will use this later
in calculating the coarea formula.

Let C” be an n-dimensional complex vector space with standard real inner
product <-,-> and almost complex structure J. Let V' be a vector subspace of
C" of real dimension 2. If vj,v; is an orthonormal basis of V' then —1 <
{Jvy,v> < 1. In the case of —1 < {Jv;, 1) <0, we choose —v; instead of v,.
Then 0 < {Jvy,1m) < 1. We set

6 = cos™ ' Jvy, v2).

We call 0 the Kdhler angle of V. We remark that the definition of 6 is inde-
pendent of the choice of the orthonormal basis of V. In particular, the vector

subspace V is complex or totally real if and only if 6 = 0 or 8 = /2, respectively.
The action of U(1) x U(n) to C”" is defined by

(z, A)v = zvA™
for (z,A) e U(1) x U(n) and ve C".

LEMMA 2.2. Let Gy be the set of real 2-dimensional vector subspaces with
Kdhler angle 0 of C". Then U(1) x U(n) acts transitively on Gg.

Proor. Take V € Gy and its orthonormal basis e}, e, such that {Je;,e;)> =
cosf. For any (z,A4) e U(1) x U(n), zeyA*, ze2A* is an orthonormal basis of
zVA*. Moreover zVA* € Gy, since {J(ze;A*),ze;A*) = cos 0.

By the action of U(n), we can transport e; to (1,0,...,0). We decompose
ey as

ey = (Z],O,...,O)+(0,22,...,Z,,).
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Put e; = (z,0,...,0) and ef =(0,z2,...,2z,). Then we can transport e} to
(0,5],0,...,0) by the action of U(n—1). Set ¢} = (z,0,...,0). Since U(n)
preserves the inner product and the Kihler angle, we can transport e, to

(V—=1cos8,sin6,0,...,0)

by the action of U(n). Thus we can transport any V in Gy to Vy by the action of
U(n), where

Ve = Spang{(1,0,...,0),(V—1cos8,sin6,0,...,0)}.
Therefore U(1) x U(n) acts transitively on Gj. O
COROLLARY 2.3. For a real 2-dimensional vector subspace V in C",
aumyxvm (V, C" ) is dependent only on the Kihler angle of V.
3. Poincaré Formulas of Real Surfaces in Complex Projective Spaces

Let CP" be an n-dimensional complex projective space with almost complex
structure J and let M a real 2-dimensional submanifold of CP”. For x in M let
0, be the Kahler angle of 7. M in T,CP". This is a function on M. We call 8,
the Kdhler angle of M at x.

Take a complex submanifold N of complex dimension n — 1. By
1.2, we have

(3.1) j §(M N gN) dptgns ) (6)
U(n+1)

= JJ aU(l)xU(n)(TxMa TyN) dpprn(x, y).
MxN .

We can simply write
o(0x,n) = Oyu(l)x U(n)(TxMa TyN)

by |Corollary 2.3. We shall identify the tangent space of CP” with C" and that of
N with C""!. By the action of U(1) x U(n) we can identify TyM with V, defined
in the proof of [Lemma 2.2. Then

a(0,n) :J a(k™'Vy, Cn“l)dﬂuu)xz/(n)(k)
U()x Un)

— vol(U(1)) JU( ok, €7 g (B
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The one parameter subgroup eVt in U(1) corresponds to v/—1 in the Lie
algebra u(1), whose length is 1/1/2 with respect to the invariant inner product. So
vol(U(1)) = 2n//2.

We put ¢ = (1,0,...,0) and ¢(0) = (\/—_lcos(),sinG,O,...,O). Let ey,...,e,
be the standard unitary basis of C”. For k = (k;;) € U(n) we have

o(k™'V,,C"
=k 'e; Ak7le(B) A ey A V—=les A -+ Aey A V—ley,|
=lek ne(@k ney AV —Tles A - Aey A V—ley|
= |k; A (\/—_1C030k1 + sin6k;) A ez A V—les A - Aey A \/——le,,|
= |kier A (V—=1cos 6k e; + sinOkaier) Aex A -+ A V—ley|
= ||k11|* cos 0 — # (ki1ka1) sin )|

where k; and k; are the first two columns of & and .#(z) is imaginary part of
complex number z. Thus we have

2n 2 7 .
G(B,H)Z—J |k|1| COSO—f(kllkp_])Slng d;l n k)
7 U(n)| | duym(
The natural projection p: U(n) — S ' <« C"; ks k' (1,0,...,0) is U(n)-
equivariant, so Jdp is constant on U(n).

AR 18] ALl T e

is an orthonormal basis of (Kerdp.). Using [Proposition 2.] we get Jdp =

Jdp. = V2. By the coarea formula we have

\fzj |lk11]% cos @ — F (kiikar) sin 0] dpy (k)
U(n)

z
= vol(U(n — 1))J ||z1 1> cos @ — #(z12) sin 6| dpgon
S2

n—1
Zn

Define a mapping f : S ! — {z|z=1(0,0,23,...,2,) € S} — §* by

1 2]
f(z):f(’(21,22,23,...,z,,))_ [ ]
|zl|2 + |zz|2 22

= Ww.
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By the coarea formula, for a function ¢ defined on S?"~! we have

La (Jfl(w) $(z) du ) (Z)) dugs(w) = LZH $(2)J dfed g (2).

We first compute Jdf. at a point z = (z1,z5,723,...,2,). Since the mapping f is
O(4) x O(2n — 4)-equivariant, it is sufficient to compute Jdf, at

x = (cos«,0,0,0,sina,0,...,0)

where cosoa = 4/|z;|* + |z2|® and sino = \/|Z3|2+---+|z,,|2. Put

y="!(-sina,0,0,0,cos,0,...,0).

Then
y,eie; (2<i<4,6<j<2n)

is an orthonormal basis of T,S?"~!. It is obvious that y,e; (6 < j <2n) are
elements of Kerdf,. Using [Proposition 2.1, we get

1
(217 +1z2%)*2

Jdf, =

Hence we put
#(z) = (|21]* + |z2|2)**- ||21|zcos0 — J(212,) sin b,

then we have the following equation.

J . |21 1> cos 0 — F(z,2,) sin 0| dugani(z)
s

= (211> + [221%) 2| |21|* cos 0 — 5 (212,) sin 0] dpap-r ) (2) dpss (w).
s dr 1) 7

We note that for any we S3, f~'(w) is equal to the set
{"(rw1,rwa, V1 = P2z3, . ..., \/7—72,,) 10 <r<1,'(z3,...,2,) € S?}.
Here we define a mapping g : (0,1] x S5 — f~1(w) by
=" (z3,...,22)) — ‘(rwi,rwa, V1 — r2z3, ..., V1 =72z,).
It is clear that g is a difftomorphism. By a simple calculation, we get

Jdg. = (1 —r¥)"2,
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By the coarea formula,

V4 d -1 zZ
jf_,(w) #(2) dyr,, (2)
- j j (60 6)(2)Ig(2') o esms(2')
(0,1]x S21-$

1
= ||w1|2 cos 6 — S (w; ;) sin 6] vol(S**~3) Jo rPe(1=r))"3dr

_ vol(S$2—3)
T nn—-1)(n-2)

- ||w1]? cos 6 — # (w; ) sin 6).
So we obtain

J o ||zl|zcosH — J(212) sin 0| dpgn-1 (2)
sn-

_ vol(§23) 5 .
T n(n=1)(n-2) L3 |lw1]” cos 8 — £ (w1 ,) sin 0] dugs (w).
Since
|laz1|* cos 8 — F((az1) - @Z2) sin 6] = ||z1]” cos 6 — . (212,) sin 6|

for any «a € C with |a| =1, we have

J . ||21 ‘2 cosf — J(zlfz) sin 0' d,uss (Z)
S

= 2nJ ||z1 |2 cos 0 — F(z122) sin 0| ducp: [z).
CP

Let H(2,C) be a vector space of 2 by 2 Hermitian matrices. Define an inner
product on H(2,C) by

1
(4,B) = 3 Trace(AB™*)
where B* is the conjugate transpose of B. We define S? by

S?={XeH(2,C)|X*= X,Trace(X) = 1}.
REMARK 3.1. S? is a 2-dimensional Riemannian submanifold in H(2,C).

LeMMA 3.2. Let h: CP' — S? be a mapping given by
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[Zl] [2151 2122}
- - — i
bt} 22Z1  Z2Z»
where '(z1,z;) € S3. Then h is an isometry.

A direct computation shows that S? is a sphere with center

o= [1(/)2 1(/)2}

and radius 1/2. So we put S?(1/2) = S?. Set

L={XeH(2,C)|Trace(X) = 0}.

o AL o L=

is an orthonormal basis of L. Hence any point x of S?(1/2) is represented by

RN TR AR IV

Then

_ [ 1/2 + x; X2+\/—IX3]
X2—V—1)C3 1/2—)(?1 .

Therefore we obtain

JC 1 ||z1]% cos 6 — F(z12) sin 0] ducp [z]
P

—cosf + x;cos@ — x3sinf

_ J 1
52(1/2)

7 dpts2(1/2) (%)

By the isometric variable transformation

u cos@ 0 —sinf7] [xy
us sinf 0 cosf X3

the above integral is equal to

J 1
§2(1/2)

1
—cos 8 + u; —cosf —uy

> dusa ) (u).

dug: u :J
s2(1/2) () s
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Using the spherical coordinates, we have the following.

1
J —cosf — u;
S2(1/2)
2n pm
-1,

2
:g(l + cos2 6).

dﬂsZ(l/z) (u)

1 1 1 .
2 cos @ — 7 cos¢1‘ ‘2 sing, d¢,d¢,

Using vol(§?"~!) = 22 /(m — 1)!, we obtain

_ vol(U(n + 1))
o(0,n) = 2 vol(CP') vol(CP"1) (1 +00s%0).

Now implies for a real submanifold M of real dimension 2 and
a complex submanifold N of complex dimension n — 1.

In the case of a real submanifold M of real dimension 2n — 2 and a complex
submanifold N of complex dimension 1 we can prove using
and the above formula of o(8,n).

REMARK 3.3. By the transfer principle in integral geometry (see [1] para-
graph 3.5 on pages 14-15), it is clear that holds for all complex
space forms with isotropy subgroup U(1) x U(n).
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