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ON PRIMES IN ARITHMETIC PROGRESSIONS
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By
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1. Introduction

The Dirichlet theorem says that, for any coprime integers ¢ and a, there are
infinitely many primes which are congruent to @ modulo ¢. See [16, Kap. IV], for
instance. Then, for (¢,a) =1, let P(q,a) be the least prime in an arithmetic
progression p =a (modgq). The extended Riemann hypothesis gives that

(1) P(q,a) « ¢***

for any ¢ > 0. However it is conjectured that this exponent 2 could be replaced
by 1.
The Linnik theorem unconditionally shows that

P(q,a) « q*

with some absolute constant L, vide [16, Kap. X]. Many works have been done
to obtain an explicit value of this Linnik constant. The best known result is
L = 5.5 due to D. R. Heath-Brown [14].

The Bombieri-Vinogradov theorem, see [7, §28], has the same power as the
extended Riemann hypothesis in some sense. Indeed, it yields (1) for any given
a #0 and almost all g. In 1980 E. Fouvry and H. Iwaniec [10, 11] made a
significant step beyond the extended Riemann hypothesis. Their ideas have been
surprisingly developed by E. Fouvry [8, 9] and E. Bombieri, J. B. Friedlander and
H. Iwaniec (4, 5]. In particular, it follows from that, for any fixed @ # 0 and
almost all ¢,

(2) P(g,a) < ¢

where 0 < =05(¢q) > 0 as ¢ — 0.
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In 1986, for the first time, B. Rousselet proved (2) with an absolute
constant 6 = 107! E. Bombieri, J. B. Friedlander and H. Iwaniec [6] also got
the similar result without an explicit value of the exponent. Later R. C. Baker
and G. Harman [2] showed that

P(g,a) « g¥/13+
for any fixed a # 0 and almost all gq.
Our aim is to make a modest improvement upon it.

THEOREM. Let K > 32/17 and A, B > 0 be given. Let a be an integer and Q
be large with 0 < |a| < (log Q)®. Then, except possibly for O(Q(log 0)™*) integers
q with (q,a) =1 and Q < q <2Q, we have

P(q,a) « g~

where the implied constants depend only on A, B and K

As well as [17, 6, 2], our argument is a combination of the mean value
theorems, which are established by [8, 5], and the sieve identity methods, vide
[3, 12, 13] for instance. We add no new result on the former. Our idea is, if exists,
concerned with the latter. We introduce the incomplete sum

> ud)

din
d<+\/n

into the sieve of Eratosthenes, inspired by K. Alladi [I, Lemma 3] and 1. M.
Vinogradov [18, Chap. 2, ex. 25].

The sieve identity methods decompose “‘primes’ into ‘““‘products’. We here
count primes p<x, p=a (modq), for (qg,a)=1, Q <g<2Q. E. Fouvry’s
result, sce Lemma A in section 5, says that one may manage a ‘“‘product” if
its “good” factor falls in the interval (Q%x~!,x°/¢Q~%/3). So this “permissible”
interval has to be wide enough to pick a prime up. Actually our sieve procedure
requires that it should be of the form (a,f) with a?> < B. This imposes the
restriction (Q2x~')? < x6Q04/3 or Q < x'"/*2 and then the smallest “permis-
sible” interval becomes (x!/1%,x!/8). Thus, as far as based upon E. Fouvry’s
fundamental result, the exponent K > 32/17 seems to be the limit of our argu-
ment below.
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The reader may skip the whole of section 4, in which numerical integrations
are estimated by hand computation, if one can accept the statement that a routine
calculation shows C > 0.01.

We change a bit the usual notation in the sieve theory. This will be explained
in the next section. Except these, we use the standard notation in Number
Theory. Especially, the letter p is reserved for primes. a = b(g) is short for
a=b (modgq). n~N means N; <n < N, with some N <N;, N, <2N. For
a set S, |S| stands for its cardinality or measure. We use the abbreviation
£ =logx.

The present paper is a detailed and modified version of my talk delivered at
the Oberwolfach Institute, March 1996, and the Kansai Seminar House, May
1996. I would like to thank the organizers for kind invitation and the participants
for patience.

2. Sieve of Eratosthenes

To begin with, for z > 2, we introduce the arithmetical functions:

1, if p|n implies p >z or n=1
0, otherwise,

@.(n) = {

1, if p|n implies p<z or n=1
0, otherwise.

¥ = {

We notice that, in the usual notation in the sieve theory, S(/,z) =5, ., ®.(n),
and the sieve of Eratosthenes reads ®.(n) = >_,, #(d)¥:(d). We then observe
that both ® and ¥ are completely multiplicative. Let p(n) denote, as usual, the
least prime factor of an integer n > 1.

LEmMmA 1.

‘cpz(n) =1-Y o, (%)

pin
p<z
LEmMMA 2. For D > 2, we have
n
O.(n) =Y pd)P(d)+ Y u(d)P(d) Dy (2).
dn dn

d<D d/p(d)<D<d
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LEMMA 3. Suppose that, as x — o, z=z(x)— oo and logx/logz >
loglog x. Then we have

Z Y,(n) « xexp(— 112?:) .

n<x

is Buchstab’s identity. may be produced by an iterative
usage of Lemma 1. For an elegant simple proof, see [3]. is [16, Kap. V,
Lemma 5.2]. Lemmas 2 and 3 form a prototype of the fundamental lemma in the
sieve theory, vide [16, Kap. VI, Satz 6.1]. Lemma 4 below is the core of our
proof of Theorem and verified by a straightforward argument.

LEMMA 4. For square-free n, we have

(0, if u(n) =1

1, ifn=p
> ud) =10, if p|ln with \/n < p <n
din =2, if n=p,pyp3 With p3 < p, < p; <v/n

d<+/n

| =20, if v(n) = 7 with p(n) > n!/8,

For n having five prime factors, the above weight takes various values
depending on its prime factorization. To handle this, we define the sets

&' ={neN|n=p\p,p3psPs, Ps < P4 < p3 < P, < P}

and, with a parameter ¢ > 1,
(3) #(t) = {d e N|p2(d) = 1,v(d) = 3,Vi < d < /ip(d)}.

LEMMA 5. For ne &', we have

0< 3 2‘2”(“’)5{2’ if prp3 < p1Ps

T e 0, otherwise.
de#(n) d<\/n

Proor. Let X denote the incomplete sum of Mobius function in question.
Our starting point is »_,,u(d) =0. We divide the sum over d\n,d > \/n,
according as p(n)|d or not. For p(n)¥d|n, put d’ =dp(n). Then p(n)|d’'|n,
d' > y/np(n) and u(d) = —u(d’). We have that
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s=— 3w+ S wd)

p(n)ld|n p(m)|d’|n

d>y/n d'>\/np(n)
=— > @
p(n)ldin
Vn<d<y/np(n)
= —|22| + | 23| — |24],

where

2 = {d|v(d) = k, p(n)ld|n,v/n < d < v/np(n)}.

For p(n)|d|n, define d' = (n/d)p(n). If d € 2; then v(d') = 6 — k, p(n)|d'|n and
vn < d' < \/np(n). Hence 1 is a bijection between 2, and 24, and a permutation
of 25. It follows that

|25 = | 24],

and that, in view of dd' = np(n),

|125] = 2[{d | W(d) = 3, p(n)|d|n,v/n < d < \/np(n)}| = 2|2}, say.
Since p(n)|d|n means p(d) = p(n), 2} may be written as
{d|v(d) = 3, p(n)|d|n,vn < d < \/np(d)}

= {d|d e #(n), p(n)\d|n}

= {d|d e #(n),dIn}\{d|d € #(n), p(n) ¥ d|n}

= S \R, say.
We therefore have that

T =212} - |220) = 2(1| - 2] - |22)),
or

2|#| - £ = 2(1%| + |22,

from which the first part of follows.
To see the second part, for d|n, define d* = n/d. Write Z* = {d* |d € #}.
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Then d € # means that v(d*) =2, \/n/p(n/d*) < d* < \/n and p(n)|d*|n. Hence
we find that * is an injection from £ to #*, #*° N2, = & and

n

#U2, {dl v(d) =2, p(n)|d|n, p(n/d)

<d< \/ﬁp(n)} =39, say.

Thus
|2 + 22| < |R*| + 2| = 2" U 2| < |2

Now, we plainly write &' 3n = p,pp3psps, Ps < P4 < P3 < p, < p;. Then
d € 2 must be of the form p;ps, i =1,2,3,4, because of p(n)|d. However, unless
i=1, d*= (p,.ps)2 < p1P2PsPs = n/p3 < n/p(n/d), which contradicts the con-
dition of d € 2. Thus the possible member of 2 is d = p,ps; only, in partic-
ular, |2| < 1. 25d = p,ps implies (1)1‘05)2 =d? > n/p(n/d) = p,p,p;ps, Whence
P1Ps > p>p3- Namely, |2| =0 unless p,ps > p,p3, as claimed.

We then have to count the divisors d|n with d € 5 (n). Put

2 = {n|n= ppap3Ps P4 < P3 < P2 < Py < P2P3P4, P2P3 < P1}-

LEMMA 6. For square-free n, we have
0, ifvin)<d4andn¢2
Z 5 < 2, ifne2
T — 120, if v(n)=6
de(n) 0, if v(n) =7 with p(n) > n'/3,

ProoF. Let %, denote the set of divisors d|n with d € #(n) in question.
If v(n) <3 then plainly &%, is empty. We consider the case of v(n) =4;
n=p\pyp3Ps; Ps < P3 < Py < p,. Let d e . Obviously, ps td/p(d). Suppose
pild/p(d). Then d/p(d)=p\p;, j=2,3. However (d/p(d))’=(p\p)*>
DP1P2P3Ps > n/p(d), which is impossible. Hence we have p, td/p(d), so that
d/p(d) = p,p; and p(d) = p,. Thus, |%| =1 or 0, according as p,p;p, € H#(n)
or not.

6
If v(n) = 6, then the number of divisors d|n with v(d) =3 is ( 3). In view
of the correspondence d « n/d, the condition d > /n is fulfilled by the half of

6
them. Hence we see that |%,| < <3)/2 = 10.
Finally, if v(n) =7 and p(n) > n'/?® then, for any divisor d|n with v(d) = 3,
d < np(n)™ < /n. Hence %, is empty.
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3. Proof of
Put x= QK y=x%"*and # = {q| 0 < ¢ <20Q,(q,a) = 1}. We shall show

that
-1
@ Wplx-y<psxp=amodg) > LEOLEN L rix,yig,a)
with
(5) Z |R(x, y; q,a)| <« x#~47°.

qe N

To derive from these, let /%' = {qe .#|P(q,a) > q%}. If ge .4’ then,
since gX > QX = x, the left hand side of (4) is zero. Namely,

R(x, y;q,a)] » yQ~' &2 =xQ~ . ™°
uniformly for g € #'. Thus, (5) shows that
xQ '\ LM « x P70,

from which follows.

Obviously, we may assume that K is close to 32/17, so that Q = x17/3279 with
some sufficiently small § = d(K) > 0. We call a function F(x, y;q,a) “admissible”
remainder term, if 3 . , |F(x, y;¢,a)| « x#~* for any fixed E > 0, and indicate
such a function by “4.R.” in a formula. To prove (4) and (5), we define

(6) ©=0(x,y;q.a)= ( Zu(d)) @ (k)

keg \ ‘dik
k=a(q) \ d<I

where H = x'/8, I =x'/2 and # = (x— y,x]. We begin by giving an asymp-
totic formula for ®. We postpone our proof of the following evaluation until
section 7.

ProPoSITION 1.

_ @ 3 (me) Oy (k) + O(yg ' £ + A.R.
keg | dk
(k,q)=1 \ d<I

For the sum in the right hand side of the above formula, we drop the
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condition (k,q) = 1, then restrict k € # to square-free integers and replace d <
I = x'2 by d < Vk. The resulting cost is

<> > 1+> 1+ )01

ke g elq Pk d\k
elk p=>H d*e ¢
e>H
Y
« T2+ T (Ze1)+ T2
H<e|q H<p<1 dzef
< y¥.
Then we put
(7) E(k) = w2 (k) [ Y w(d)\ Pu(k).
dlk
d<vk

By Lemma 4, we find that

(8) > (Z#(d))d)ﬂ(k) Za<k>+0<y$~4>

ke g d\k ke g
(k,q)=1 d<I

=D +D+> (-2)+ > _E(k)

pPES ke¥ keé&
+ > (-20)+ 0(y2™
ke¥%

where

€ = {p1P2rs€ I H < p3 < py < py < ppp3},
& = {p1P2p3PaPs € F | H < ps < py < p3 < py < 1},

G = {P1P2P3PaPsPsP1 € F | H < p; < ps < ps < ps < p3 < py < 1 }-
As well as |{p € #}|, the cardinalities |¢| and || can be evaluated by the prime

number theorem and partial summation. We leave the sum over k € & untouched.
It therefore follows from [Proposition I and (8) that

(9) O=(1-2C3—-20C; +0(ZL™"))

fp(q ¢(q) D_E(k)+ 4R,

keé&
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where
dt,dt

(10) C3:JJ1/8<13<12(1_t 2_;)[ t

26+1<1 2 3)4243

h+13>1/2
and

dt,dtsdtdtsdtedt;
(11) C7: 1/8<t1<te<ts<tsa<t3<t (1 t ! t t ¢ t)tttttt :
T<t6 5<i4 3.2 —_ — —_ — —_ —
2pts+tatts+15+17<1 2= Bl is = te — 7)0203t405060T

Next we shall deduce an upper bound for ®. In the definition (6) of ®, we
change the summand by =, which is given by (7). The resulting error is

<Y (T
ke # Pk dlk
k=a(q) \ p=H d’e g

The first term is admissible. In fact, the averaged sum over g € . is
«Y S dk-aext 3 (L)«
ke # p2lk,p=H H<p<I ‘

for any ¢ > 0. To bound the second error term, we appeal to C. Hooley’s argu-
ment [15, Chapter 1]. We first express it by means of the function y(z) =¢—
[f] + 1/2, then expand y as a Fourier series, and employ bounds for incomplete
Kloosterman sums. Thus, for any ¢ > 0, the above second term is

(12) < Z ld+q1/2+£+xl—8q—l « yq_lg_4.
d’e g

By again, we then see that

(13) @= Y Ek)+0(yg 'L+ 4R
ke ¢
k=a(q)
= Y (+D)+ D (=2+ D> E(k)+ > (-20)
pE ke® ke& ke
k=a(q) k=a(q) k=a(q) k=a(q)

Trivially,
(14) > (-20) <.

ke
k=a(q)
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We proceed to the sum over k € &. Put

() =2k (D 2\ 0ulk)
de‘ﬁil’f(k)

in the notation of section 2. Then, shows that

(15) S OEKk) < > Y(k)

ke& ke&
k=a(q) k=alq)
=Y (S Newwrof ¥ X0
ke # dlk ke g dik
k=a(q) \ de#(x) k=a(q) d2e g

The above O-term becomes O(yq~!.#~*) as before in (12). We put our proof of
the following formula on the above first term off until section 8.

PROPOSITION 2.

S Y Nost=— 3 [ S 2\outk) +0(g £ + AR,
ke g dlk 9(q)
x) x)

k=a(q) \ de#( de #(

As for the sum in the right hand side, we take the same route as in the
opposite derection. Lemmas 5 and 6 show that

1 3 ( ) 2)%(/«)

ke g dlk
(k,q)=1 \ de#(x)

< ( 3 2)<1>H(k)+0 DI

ke s dk kes eflk
(k,g)=1 \ de#(k) elfeyg
of <x3/5
Yy
= Y(k)+ O 1 1 (0] —
2 YWH0fd (D 14D 1))+ (Zzef>
=y ker | 7k ‘ag s
p=>H d\k
d=H

<Y 24320+ Y 2+ Y 20+ 0(y2™?)

ke ke& keé&” keF
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where
2 = {p1Pap3ps € | H < py < p3 < py < p1 < P2P3P4 P2P3 < P}
&* = {p1pap3Paps € F | H < ps < py < p3 < py < P1, P2P3 < P1Ps}

F ={p\p2p3PspPsps € F | H < pg < ps < py < p3 < p, < p1}-

As before, by the prime number theorem, (16) becomes

(17) > E(k) + (2C4 +2C5 +20Cs + O(L 7)) y £
keé&
where
dtydtzdty
wo ] ’
19 e T e b = s
btita>1/2
d dt
(19) Cs = JJJJ1/8<t5<t4<t3<tz (1—1— def“_ t55)t2t314t5
26 +264+1<1

and Cg is similar to C; given by (11). In conjunction with (15), [Proposition 2|
(16) and [17), we have that

1 _ y
20 2: =(k s—§jak+2c +2C*+20Cs+0O(Z 7! +A.R..
( ) — ( ) ¢(q)keép ( ) ( 4 5 6 ( ))¢(q)$

kEa(q)

We turn to the sum over k € ¢ in [I3). We define the subset # = € by

(21) B ={pp,p3€€|p3p3 < x0+1_25»P§P§ < x*7%, pyp3 = x%}

with 6 = 17/32. Here we remember that Q = x% and that 6 =46(K) >0 is
supposed to be sufficiently small. In section 9 we shall show the following
formula on the sum over 4.

ProPoOSITION 3.

It therefore turns out that

2) S (2= 3 (-2)+4R
k=a(q) (k,q)=1

= (-2C, + O(Z£™) (p(qy)g + O(yp(q) ' ™4 + A.R.
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where

dtydts
! !
23) C3_C3(5)=“ I8<n<t (1 Bty
31,4+213<0+1-28 2 3)%2%3
31,+413<2—-6
t+13>60

Substituting [14), (20) and (22) into [13}], we conclude that

(24) O@< 3 1+ (-2C}+2Cs+2C; +20Cs+ O(L ™)) —~
= 9(9)&

p=a(q)
1

+m;3(k) +AR.

We are now in the final step. Combining (24) with (9), we have that

_ ¥y
1> (C+0(g! + A.R.

,,Ee; ( ( ))(,,(q)g

p=a(q)

where C = C(0) =1—-2((C3 — C§(6)) + C4 + C5 + 10Cs +10C7). In the next
section, we shall check

(25) C = C(5) =001,

providing that é = 6(K) > 0 is small enough. This shows (4) and (5).
We thus get apart from the verification of Propositions 1, 2, 3 and
(25).

4. Numerical Integrations

In this section we shall verify (25). We begin with C3 — C3(J). Recall the
definitions (10) and (23). For simplicity, we rewrite (3,;) = (u,v) € R*. Let A#g =
{(u,v)|1/8 <u<v,2v+u<1,1/2 < v+u} the integral region of C3. Note that
v>1/4 and u<1/3. Put &/ ={(u,v) e Ap|3v+2u>0+1 or 3v+4u>2 or
v+ u < 0}. Then we find that, with some absolute constant Co > 0,

(26) Gy — Ci(0) < ”M dodu

————+ Cpo = C§ :
1—v—u)vu+ 00 = C3 + Cyd, say
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We shall divide A" into five subsets. Let
N ={(u,v) e M |3v+2u>0+1 or 3v+4u>2}U{(u,v) e N |v+u<b}

=N"UN", say.

Since v+ u < @ implies 3v +2u <30 —u<30-1/8<6f+1and3v+4u <40 —v
<40 —1/4 <2, we see that &' N A" = & and that the condition 1/2 < v + u of
A% 1s absorbed by the additional condition of A,

We first deal with A"'. If u < (1 —6)/2 then 3v+4u >2 means 3v+ 2u
>2-2u>2—-(1-6)=60+1,and 3v+2u > 60+ 1 implies 30 > 0+ 1—-2u >0+
1-(1-0)=20>1>3u. If (1-6)/2<u<2/7 then 3v+2u > 60+ 1 means
3v+4u>0+1+2u>0+1+(1—-0)=2, and 3v+ 4u > 2 implies 3v > 2 — 4u
> 3u. If 2/7 < u then u < v implies 3v + 4u > 7u > 2. Hence A" is written as the
mutually disjoint union 47U A3 U .43 where

N ={(uv)]1/8<u<(1-6)/2,3v+2u>0+1,2v+u < 1},
N ={(u,0)|(1-60)/2<u<2/7,3v+4u>22v+u< 1},
Ny ={(u,0)|2/T<u<v,2v+u<l}. .

We turn to A", The additional condition v+ u < 8 of A" implies 2v + u
<20-u<20-1/8<1.Ifu<1/4then 1/2 < v+ u implies v>1/2 —u>u. If
u>1/4 then u <v implies v +u > 2u > 1/2. Hence 4" is the disjoint union
N3 U A5 where

No={(u,v)|1/8<u<1/4,1/2 <v+u< 6},
Ns={(u,v)|1/d <u<v,o+u<b}

Now we replace 4" the integral region of C; by A4} (1 <j < 5) and write the
resulting integral by N;. Then, C; = 21.5:1 N;. For j=1,2,5, we use the simple
inequality:

Ny < |4 sup ((1—v—uow)",

() € 4
We begin with Ni:
(1-6)/2 ((1-)/2 dvdu
JI/S J(0+1—2u)/3 (1—v—upou

Then

(1-6)/2 1 15/64 N 1715
Ni| = C(u—(20-1))du= —(u—=) ==L 22
il .L/s gu— (20— 1))du /ég 12 (“ 16) 12 64 64
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As for the intgrand, we see that
(A—v—wpu>(1—(0+1—2u)/3—u)(0+1—2u)/3)u
=(1/9)(2-60—-u)(6+1 - 2u)u
> (1/9)min{(2 — 8 — 1/8)( + 1 — 1/4)/8, (3 — 8)6(1 — 6)/2}

| (43411 7917151)

ToMM 323282 2322)

in the intgral region #7. Hence, N} <7-15-3/(2-43-41) = 315/3526. Next

2/7 (1-u)/2 dvdu
N, = J J __ dvdu
(2—4u)/3 (1 — v — w)ou

(1-0)/2
As above,
271 27 1 115 269
N3] = —(5u—1)du = Su—1 —_ -
2 J(I—H)/26(u ) du = /5/6460( u=1)°= T 607-647-64’
and, in A5,

(I—v—wou>(1-2—4u)/3 —u)((2 —4u)/3)u

= (2/9)(1 + w)u(l — 2u)
2 791517 923

=gm (646432 777)
Hence, 45 <23-269-4/(7-7-79-5-17) = 24748/329035. We turn to Ns.

(1-u)/2 dvdu
J J (1—v—u)u

l—u)—u
J2/7 (1 = 2u)u? au

j ( i)
4 el
SR

I\JI—- NI*-‘

NI'—‘
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Similarly,
J1/4J dvdu
1/8 J1/2-u l—v—u) u
0—1/2 A
s (1= (1/2—u) —u)(1/2 — u)u
1 (41 1
=4(0—-= J (—l— >du
(-3) ], G
L a2
"8/ B2
:%log&
Finally,
Ne :Jg/zje_u_d@_-
/a Ju (1 —v—ujou
Then

0/2 o2 1/1Y
= [ 0-2ma= )" o2 =1 (LY.
|45 1/4( ) L —7( u)? = 3

Since, in A5, (1 —v—uou> (1 —2u)u®>1/2(1/4)%, we see N5 <1/128. On
summing up, we have that

27) 315 24748 1 (1

N 1 1
Cc; L 10g2) + L 10g3 + — < 0.3569.
3= 3526 7329035 T 2\2 °g2)+8 8> F 138 <

128

Next we estimate C4 given by [18):

J’JJ dwdvdu
71 —w—v—w)wou

where 7 = {(u,v,w)eR*|1/8 <u<v<w, 2w+20+u<1,1/2<w+v+u}.
We divide 7 into three mutually disjoint subsets J = 7, U 7, U Z3, by adding

u>1/6, dv+2u>1; u<l1/6,4v+2u>1; 4v+2u<l.

For 71, 1/6 <u<v<w implies w+v+u>3u>1/2 and 4v+2u > 6u > 1.
For 75, u<1/6 and 4v+2u>1 imply 4v>1—-2u>4u. And v<w and
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4v+2u>1imply w+v+u>2v+u>1/2. For 73, 4v+2u<1and 1/2 <w+
v+u imply 2v <1 —2u —2v < 2w. Hence we see that

T

I

{(u,o,w)|1/6 <u<v<w?2w+2v+u<l},

T2 ={(u,o,w)|1/8 <u<1/6,4v+2u>1l,v<w2w+2v+u<l,},

T3 ={(u,o,w)|1/8<u<v,dv+2u<1,1/2<w+ov+u2w+2v+u<1}

Let 7 the integral domain of C; replace by Z; (j=1,2,3) and denote the
resulting integral by 7;. Then C4 = Zle T;. We plainly bound each of T; by
the supremum of the integrand times the volume of the integral domain, as
before.

To start with,

1/5 p(1~u)/4 (1—20—u)/2 dwdvdu
T1 = J J J

1/6 Ju v (1—w—v—wwou

The volume of 7 is

1/5 ((1-u)/4 1/5 4 , 1 1 5\3
S((1—u)—4 - —a- == —(1-2).
L/6 Ju 2((1 u) — 4v) dvdu Jl/6 16( Su)” du 61 ( 6)

Since, in 73, (1 —w—v—w)wou > (1 — 20 —u)v?u = (1 -3u)u® = (1-3/6)(1/6)°,
we find that 77 < 1/120. Next,

1/6 p(1-u)/4 (1-20-u)/2 dwdvdu
o B

1/8 J(1-2up/a Jo (1—w—v—u)wou’

The volume of 75 is

1/6 r(1-u)/4 1 1/6 1\ 2 11 3 %
2{=(1—u) —v dvdu——-J =) du=— = (—)—(—) .
J1/8 J(I—Zu)/4 (4( ) ) 1/8 (4) 16 3\ \6 8
Since (1—w—v—wwou> (1 —20—u)ou > (1/2)(1/16)(1 — 2u)’u > (1/2)-
(1/16)(1 — 1/4)*(1/8) in J>, we have that T, < 37/1458. Finally,

1/6 ¢(1-2u)/4 (1-20—u)/2 dwdvdu
n=[. ] )

1/8 Ju 1/2-v—u (I-w—v—uwou

The volume of 3 is equal to

176 41 — 6u /‘/61 1 (/121 /1\*1
= du = — (1 —du) = — (—) ——(—) =
Jl/gz 4 s 16 16\\6/) 3 \8/) 2
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Since (1 —w — v —wywou > (1/2)(1/2 — v — wyou > (1/2)(1/2 — 2u)u® > (1/8)° in
I3, it follows that 73 < 5/108. On summing up the above estimates, we obtain
that

1 37 5
120 1458 T 108
We proceed to C; given by [19):

dtydt;dtadts
1/8<ts<ta<ts<ty (1 — ) — t3 — 14 — t5)tzt3t4t5'

26+2t3+1<1

(28) Co < < 0.08001.

The volume of the integral domain is equal to

]/5 1/5 (1—[4)/4 (1—2[3*[4)/2
J J J J dtrdtzdtsdts

1/8 ts 7 13

(1/5 (1/5 p(1-1)/4 1
B 1/8 J J 5((1 — 14) — 413) dtzdt,dts
b ts 73
r1/5 01/5 ,
- — (1 = 5t4)° dtsdt
‘Jl/s L 16( 4)" diadts
- — (1 = 5¢t5)" dt
Jiys 16 15( 5)” dts

__ v (s
T 16-15-20 8/

Since, in the domain in question,

(1 — ) — 13— 14 — t5)t2t3t4t5 = (l — 213 — 14 — l‘5)l‘§'t4t5
> (1 — 3ty — t5)t5¢5

> (1 — 4t5)td

we find that

27
2 < —=0. .
(29) s < 200 0.03375

We then turn to

Co— J dtrdtzdtadtsdts
6= 1/8<ts<ts<ty<ts<tr (1 — ty — t3 — 14 — t5 — lg)lalslalsts

2t4+-t3+1t4+ts+Hte<1
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The volume of the integral domain equals

1/6 p(1—16)/5 p(1—ts—16)/4 (1—ta—1t5—16)/3 p(1-t3—t4—ts—16)/2
J J J J J dtrydtydtsdtsdts

1/8 J1 ts 14 n

m1/6 ‘(1_t6)/5 (1—15—~I(,)/4 (1—t4—t5—t6)/31
J } —((1 — 4 — 15 — t(,) — 3[3) dtzdtadtsdts
J1/8 Jg 2

ts 14

(1/6 p(1-16)/5 ((1-15-16)/4 | )
J ((1 — ts — t6) — 4t4)" diadtsdts

ul/S Jle s W

r1/6 ¢(1-86)/5 3
= ((1 — t6) - 5t5) dtsdte

Jl/gulg W
1/6 1

- — (1 — 6t5)* dt
~1/84!5!( 6) dts

L8y
BRI A

Since (1 — b —13— 14— 1t5— I6)t213t4t5t6 = (1 — 5[6)12 > (1 — 5/8)(1/8)5 in the
domain under consideration, we see that

29
(30) Cs < e < 0.000988.
Similarly,
1 NG 6Y' e 4

In conjunction with (27), [28), (29), [30) and [31), we conclude that

Ci + Cq + CI +10Cs + 10C;
< 0.35696 + 0.08001 + 0.03375 + 0.00988 + 0.00002 = 0.48062.
It follows from this and that
C=C(6) =1-2((Cs — CL(0)) + Ca + C& + 10Cs + 10C)
>1-2x0481 — Cpo
= 0.038 — Coo > 0.01,

providing that 6 = §(K) > 0 is small enough. This shows [25), as required.
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5. Mean Value Estimates

In this section we quote three mean value theorems from [5, 8] so as to
provide for our proof of Propositions. The following Lemma A is [8, Théoréme
1]. Lemmas B and C are [5, Theorem 3] and [5, Theorem 5*|, respectively.

For a sequence o = (a;), x < kK « x, put

1
S((x); Q) = Z Z ® ——(-5 Z Xk |-
0<4=20 |(=aly P9 =1
q,a)=

Here 0 < |a| < %8 with a constant B > 0. Let x > 2 be an integer. If o « 7, (k)
we call a of order k. All sequences in this section are supposed to be of order «.
Let £ >0 be a fixed small number. Our goal is to get that

(32) S((#); Q) < x& ™
for any 4 > 0, under some assumption on «. Here the implied «-constant may
depend on B, k, ¢ and A.

LEMMA A. Let x < LM « x; L, M » x&,
(=), I~Ly &=(n), m~M; a={xL
Suppose that, for any d > 1, b #0, r > 1, (r,b) =1 and E > 0,
1 _
(33) Yo == > G+ (udLLE).
1=5(r) o(r) 552
(1, d)=1 (Ld)=1
Then we have provided that

Q2x£«1 « L « x5/6_£Q_4/3.

LemMA B. Let x <« LMN < x; L,M,N >» x?%
C:(cl)a lNLa éz(ém)v m~M; ”:(”n)a n~N; dzi*i*ﬂ

Suppose that if p|lmn with p < exp(L(log £)~?) then {;&,m, = 0. Let { fulfill (33).
Then we have (32), provided that

LM > Qx°®,
L’M? « Ox'2,
(L+ M)L*M* « x*7¢,

LemmMa C. Let x < LMN «<x; L,M,N » x* 2 <:z<<exp(Z(log 55’)’2).
Define
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o.(l), if L<I<Ly<2L
¢ = .
0, otherwise.

Let £ = (&y),m~M; n=n,),n~N; a=_*xExn. Then we have [32), provided
that

l-¢ -1

M<x Q"

4 2—-e -1
MN* <« x“7°Q7 ",

MN? « x>7¢Q72,

6. Proof of

First of all, we remember the definition (6) of ®. We shall decompose the
summand of ® into some suitable form for Lemmas A and C. To this end, for

k € ¢, put

= (Zﬂ(d)) Oy (k).

dk
d<I

Since @ is completely multiplicative, we see

(34) Eof ZZu(d)d)H )Pr (D).

dl=
d<1

We first handle ®y(/). Let A=1+.2"% and # = (HA“")IS,-S,0 where I is
determined by the inequality HA~"D > exp(#(log #)™%) > HA™™ = Z, say.
Then we see that [Z,H) = |, ., (U, UA) and |%| = I « £°.

Now, shows that

a(l) = ®z() =Y > @,(n).

pn=I
Z< p<H

For pe [U,UA), Ue %, we change ®,(n) by ®y(n) with the cost of

D,(n) — Oy(n) = ZZ@

p'm=n
U<p'<p

by Lemma 1. Thus we have that

35  oxh=0:0-3 33 q>U(n)+o(Z 2221).

Uet pn=l Ueu p'pm=l
U<p<UA U<p'<p<UA
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When Z < U < G := x!/19 we decompose ®y(n) one more. shows that
(36)  ®y(n) = Py(n)®z(n)

= ZZ,U\PU(DZ((Z (DZ ZZ /,t\PU(I)Z ( )(l )

el'=n el'=n
e<4G/U 4G/U<e
e/p(e)<4G/U

In the above second term, we see that Z < p(e) < U, because of Wy®z(e). Then,
for p(e) e [V,VA) with Ve and V < U, we replace ®,(l') by ®y(I'). By
[Cemma 1, the resulting error in (36) is

(37) <Y > Wule) > ZZ @, (m)

el'=n Vell "m=l'
y<u V<p”<p(e)< VA

<2 2.2 20 )

Veu p'fp"m=n
V<U y<p'<p'<VA

which contributes to (35)

(38) « ZZZZZ(Z ZZ%<f>>~

X Uew " pf=g

V<p'<p'<VA U< p<UA

Since the above inner sum is

(39) <Y 3N v ZZ‘P ) < Pr(g),

Ue¥ pf=g
U<p<UA Z<p<H

the O-term in (35) is absorbed by [38), with g = 1. It therefore follows from (35),
(36), [38) and K@] that

(40)  @y(I) Z Z ZZH‘PU(DZ )Dz(1")

Uelu pe[’
U<G y<p<UA
e<4G/U

-3 ZZZ ¥y @z (e)@y ()

U, Vel pel'=l
V<U<G U<p<UA
4G/ U <e<4G/Up(e)

V<ple)<VA
- ZZ‘DU("HO( ) ZZZZ‘PH@)
Ued  pn=l Ueu p'pmg=I
U=2G y<p<UA U<p'<p<UA

5
= ij(l)
j=1
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Substituting this into [34), we have that Eo(k) = 21'5:1 Z;(k) where

5(k) = Z Zucbﬂ(d Pl

d<l

First we deal with Z,. Put pe = g. Then we observe that g < UA-4G/U =
4AG < 8G, and that the coefficient of g has the same property as [39). Thus Z, is
written as

(41) S S S wbn(d)au(g)®2(0)

Ueu dgl=k
d<lI
g<8G

where Y ;. lau(g)] « Pudz(g), in particular, ay(g) <« YuPz(g). Also Z; has
the same expression as above, with g = 1.

We turn to E;. Put dlI’=m and pe =1I. The coefficient of m is O(z(m))
simply. For given V < U < G, we see that 4G=U -4G/U <l = pe < UA-
4G/U - VA <4UAG < 4G?* = 4H. Let wy(n) denote the characteristic function
of primes € [U, UA). Then the coefficient of / is written as the convolution

(42) (wU * (XU’V)(I)

with some ay y(e) « Wy(e). Hence =3 is put into the form

(43) ZZZZCU,V(I)fV(m

U Ve Im=k
G<l<4H

where (y y(I) « 1 has the expression and &y (m) < t(m).

Z4 has also the same form as [43), with { = w. Next, Zs5(k) is bounded
by

SR P DB BB B ACLICED PP DL

p' pmgd=k Ue p'pn=k
U<p'<p<UA U<p'<p<UA

Thus Eg(k) is written as the sum of [41), and (44).

We have to rearrange furthermore. We shall split up u(d)®y(d) in [41).
Since if d > 1 then x'/8 = H <d < I = x'?, d has at most three prime factors.
Thus, for d > 1, we have that

(45) ;z(d)(I)H(d)z—d)H(d)+ZZ4+O( 3 1).

p'p=d pild
H<p',p H<p<x'*=H?
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shows, as in (36) and [37), that

(46) @u(d) =D uPu®z(e)0z(f)+ > > u¥u®z(e)0y(f)

ef=d Ve ef=d
e<H H <e<Hp(e)
V<ple)<VA
O[3 2 D ) ).
Ve  p'pn=d
V<p'<p<VA

In the above second sum, we see that H < e < Hp(e) < H?, because of ¥y(e).
Combining (46) with [45), we have that
47 w(@®u(d) =Y pEOz(f)+ D D D Brle)ry(f) +r(d)

ef =d Vel ef=d
e<H H<e<H?

where B,f,,7y <« ®z and r consists of O-terms in and (46). Here we notice
that the second term in the right hand side of is put into that in (47), since
min(p’, p)> < p’p < I = H*. By substituting (47), becomes
(48) S S Y S B0@2(f)au ()@ (0)
Ue% efgl=k
e<H
ef<l,g<8G

+3 5SS Br@re(Naulg)@z())

U, Vel efgl=k
H<e<H?
ef <I,g<8G

+ o(z S Y Ira)) lau<g>|<1>z<l>>-

Ueu dgl=k

The above O-term is

(49) < YOS " ir(d)|(m)
dm=k
APDILCED BRI
oot Yy peva

which is larger than (44). As for the second term of [48), we write fg = m and
e=n. Then Hm < em = efg < 81G = 8IHG™! or m < 8IG™!, and H <n < H?.
We treat the condition nf =ef < I by using

1/2 . . 1/2 ;
J e—thn Z e2mtm dt = J e—2mtn T(t; f) dt’ say.

-1/2 mi<l 172
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Since T(r; f) « min(Z,|f|™"), the second term in is written as

(0) szm S5 ST 0208, v (), (m) | min(Z, 117" de

U, Veul Imn=k
m<8IG~!
H<n<H?

where &y y(m) =33 vy (Now(9)T(t f)/min(1, 1| ™") « =(m) and 7, ,(n)
= By (n)e 2m « 1.
We proceed to the first term in [(48). [Lemma 2 shows that

=3 u(d)¥z(d)+ 0 ( >N ‘Pz(d))
dm=f dm=

d<F

F<d<FZ

where F = x" with a fixed small number # > 0. We also have the similar de-
composition of ®z(/). Then we replace ®z(f)Dz(/) by

SN d)¥z(d) DD u(n)¥z(r)

dm=f rn=I[

d<F r<F

The resulting error term contributes to (48)

(51) < ZZ‘PZ Yzs5(m).
reiz

Write ed = h. Then h < HF and hm = edm = ef < I. Therefore the first term in

) becomes
(52) D337 culamn

Ue¥ ghmn=k
g<8GF
h<HF,hm<I

where

S lEv@l < D30 aug)¥z(n) < YD ®z(g")¥z(r) « 1,

Ueu Ue g'r=g g'r=g
<« SSSTBEMNZ@) « 33 0z(e)¥2(d) « 1.
ed=h ed=h

On summing up the above decomposition, Z is written as the sum of “type I”

52), (50), “type II” [43) and “error” (51), (49). Consequently,
A A A

1 -
(53) Do = Do(x, y;q,a) == Y Eo(k) ——— > Eo(k)
= ()
k=a(q) (k,q)=1

=Dy + Dy + Dy + Dy
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Here D;;; comes from “type I” [52)

(54) D« 3% Zzl_ﬁzzl.

g<8GH h<HF | ghmne ¢ ghmne ¢
ghmn=a(q) (ghmn,q)=1
hm<I hm<I

The contribution of “type I’ (50) is D;/;, which will be found admissible.
(55)  Sr:=>_|Dypl

qe M

« £Ysup Z ZZZ(DZ(I)émn,, —ﬁzzz(bz(l)fmﬂn

0<g<2Q Imne ¢ Imne ¢

(g,0)=1 Imn=a(q) (Imn,q)=1
m<8IG~! m<8IG~!
H<n<H? H<n<H?

= %YsupS;, say,

where the supremum is over all ¢ and # satisfying &, « 7(m) and 5, « 1. Next
Dy arises from “‘type II” (43).

(56) Sp:= Z |Dy| < £18sup Z ZZClém —ﬁzzclfm

qe M 0<g<2Q Ime ¢ Ime ¢
(g:9)=1 | Im=a(q) (Im,q)=1
G<l<4H G<I<4H

= 2" sup Sy, say,

where the supremum is taken over all { having the expression and all ¢ with
¢ < t(m). Finally Dy, which corresponds to ‘“‘error” and (49}, is divided
into three parts.

Dyr = D+ Dijp + Dy s

where
(57) Dypy < Y > Wz(d)ts(n) + p(g)”" >N Wz (d)rs(n),
dne ¢ . dne ¢
dn=a(q) F<d<FZ
F<d<FZ
(58) Dy « Z Z Z Z t4(n) + (/’(Q)—l Z Z Z Z 74(n),
Ue¥ p'pney Ue¥ p'pneyg
p'pn=a(q) U<p'<p<UA
U<p'<p<UA
(59) S = Z |Diny3| < Z Z u3(n)(z(p’n — a) + £).
qe M plne g
H< p<H?

We shall estimate these sums in the next section.
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7. Proof of Proposition 1, Continued

In remains to show that D; « yg~'#~* (i=1/1,1II/1,1II /2), and that, for
any 4>0, S;«<x¥ ", (i=I1,1I,1II). We begin with Sy given by [59). We
have that, for any ¢ > 0,

Sy < x¢ E xp 2« xITH « x84,

H < p<H?

which is negligible. The first term of Dy, given by is

v’
< (;@/ Ug_zp’:<pZ<UA qp,p

1 1
<« yq_'$3 Z Z p’logp’UZ ilg;ﬁ

Ue¥ U<p'<UA < p<UA
1 ¢p3
<yg & log A
Z;,K,,plogp
<yq ',

which is also acceptable. The second term of Dy, is easier to treat and bounded
similarly. The first part of Dy, given by is

y&*
qd

< Z Yz(d)
F<d<FZ

« yg~ ' #* exp(—log F/log Z)

< yq ' £t exp(—nL?)
by Lemma 3. This is satisfactory as well. The second part is similar. Hence
(60) Dy =O0(yqg ' %)+ A.R..

Next we handle D;/; given by (54). Since |{ne .#|(n,q) = 1}| = o(q)/q|#| +
O(z(q)) for any interval .#, we have that

Dy « § E E E 1_%.{.0(@)
g<8GF h<HF | hm<I (x—y)/ghm<n<x/ghm qghm (P(q)
(gh,q)=1 (m,g)=1 n= ghma(q)



On primes in arithmetic progressions 147

It follows from the method deriving that the sum inside the absolute value
symbol is bounded by

xl—a
« (ql/2+s+_@> +qu~l

for any e > 0. Since g « x!7/32, we have that

(61) DI/I « ql/ZGHx6+2:7+x1—£/2q—l + Glxn—i-eq—l
« g 2x316 e | 1=e/2m1
« xe2g1,

providing that both # > 0 and & > 0 are small enough.
We proceed to S; given by (55). Lemmas 2 and 3 yield that, for any interval
S and (b,q) =1,

S oz —plg) Y @)« D W(d)| D 1—p@)” D1

le s le s d<F le s, d|l le s, d|l
[=b(q) (1,q)=1 I=b(q) (I,q)=1
+ Y P Y 1ol Y1
F<d<FZ le #,d|l le s, d|l
I=b(q) (=1

< Zl+ Z ‘Pz(d)<|{i| 1)

d<F F<d<FZ
« FZ + |#|q ' exp(—log F /log Z)
« x¥ +15|q7" exp(—n(log £)?).

Hence, the part of S; with m < H 1is

(62) « PY Z Z Z r(m)( 2 + — exp( n(log &) ))

Q<q<2Q m<H
(g,a)= H<n<H?

< LVP(QH? LxY + x 3 exp(—n(log £)?))
« x4 4 x P2 exp(—n(log )%,

which is satisfactory.
When m > H, we appeal to Lemma C, on taking 0 < ¢ <J. We have to
remove the condition /mne ¢ from S;. To this end, we divide the summa-
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tion ranges into short intervals, as a standard way. Write k ~ X for k € [X,
X(14+ 2 %)), where W =1 is a constant. This splitting argument shows that

Sy« LP((LH Y supS) + xtgV)

where S; is the same expression as S;, except for the new condition /=~ L,
m= M, n~ N in place of Imn e ¢, and the supremum is additionally taken over
L, M, N such that

x<ILMN«<x, H«M«IG'", H«N H?.

For given E >0, we choose W = E +23. Then S} satisfies all assumptions of
Lemma C, since

xl/8 « M « x7/l6 < x15/32’
MN4 « IG—]H8 « x1+7/16 < x1+15/32’

MN? « IGTVH* = x13/16
and N >» x!/%. It therefore follows that
(63) Sy« x¥7E,

together with [62).
To estimate S;; given by (56), we use Lemma Al Since ({;) contains the

characteristic function of primes in the interval [U,U(1+ £7%)) with U >»
exp(Z(log #)7?) as its convolution factor, the Siegel-Walfisz theorem [16, Kap.
IV, Satz 8.3] ensures that ({;) fulfilles the assumption of Lemma Al After
removing the condition /m e ¢ as above, we have that

Sy« LB3(LY Y sup S+ x23e7V)

where ” in S} indicates the condition Im € # of S, is replaced by Ix L, m~ M,
and the supremum is taken, in addition, over L, M such that

x<IM«x, G«L<«<H.

For given E > 0, we choose W = F +21. And we take 0 < ¢ <J in Lemma A.
Since

0 ' « x/1® =G and x¥67°Q7Y3 » x!/® = H,
Lemma A shows

(64) S” < x.,?_E.

Therefore [Proposition 1 follows from [60), [61), [63) and [64).
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8. Proof of [Proposition 2
We remember the definition (3) of #(x). Put, for ke ¢,

Yotk)=( > 1\ @a() =3 > > "> @ull)

dlk P1pap3l=k
de H(x)

where * indicates the condition:

(65) H<pi<p,<p, I=x2<ppps, (p1p2)°p; <.

We decompose @y (/) into the same form as or the combination of [41),
and (44) to obtain that

(66) Yo(k)=> "% > Z* DY au(g)®z(l) + Ya(k) + Ya(k)

Ueu piLP2P3gl=k
g<8G

where Y, and Y3 are written as the form and (44), respectively. Then, as
before, Y, and Y; are handled in the same way as Sy and D15, respectively.
Let Y| denote the first term in [66). Put p,p, = m and p;g = n. Then, since
implies p3 < (p,p,)°p; < x and p; > H, we see that
H? <m=pp, < (x/p3)"? < (x/H)'* = IG™",

1/2
mn = p1prP39 = (P1P2P31/2)P3/ g < xl/z(xl/5)1/28G = 8x3/3G,

H < n= pyg < 8x'°G.

We treat the condition [65) on p; by the integration

1/2 1/2
J Z ethh e—27mp3 dt = J T(t;phpz)e—http3 dt, say.
-1/2 H<h<p, -1/2
1<p poh
(P1p2)*h<x

Here note that T'(¢; p;, p,) < min(Z, |¢|™"). To deal with the boundary condition
k € #, we split up the summation ranges into short intervals. Let » ~ N denote
the condition n e [N, N(1 + £~ '!)). Therefore, Y,(k), k € #, is written as

HICES )35 35 3] I (zzzoz DE(mn, U<n>) min(7, ") d

Ueu Imn=
IxLmxMnx~N
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where L, M, N run through the powers of A = (14 £~} satisfying

(67) x«LMN «x, H*«M«IG"', H«N<«x°G, MN «x**G,

and

E(m) = ZZ T(¢t; py, py)/min(, |z|‘1) <1, #n,yln)= szu(g)e_z”i'm.

Prpy=m pP3g=n
P2<py HSP3

Here we notice that, by [41),

STho®l< 3TN > lawlg)l« Y D Wulg) <1

Ueu pg=n H<p UeW pg=n H<p

Let Y’ be the part of Y, restricted by the condition x — y < LMN and LMN A3
< x, that implies Imn e ¢. Let Y” be the part of Y| with the condition LMN <
x — y or x < LMNA?, that means Imn < (x — y)A® or Imn > xA™>. Then we have
that

ZZY”(k) < & Z 13(k) « LxL Ng ' PP« xq P8 = ygl P,

ke g x— y<k <(x—y)A3
k=alq) or xA <k <x
k=a(g)

which is acceptable. Similarly,

o)™ Y Y'(k) < yo(q)' £ 74,

which is also acceptable. Moreover we have that

1
Y YWk ——= > Yk
0<qg<20| key ¢(q) kes
(g.a)=1 | k=alq) (k,q)=1

« (L

sup > (NS 0 (08, - (p—(lq—) S NN oz,

0<q=<2Q |{I=xLmx~Mnx=N IxLmx~Mnx~N
(g,a)=1 Imn=a(q) (Imn,q)=1
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where the supremum is taken over (&,,) with &, « 1(m), (n,) with , <« 1 and L,
M, N satisfying (67). We take 0 < ¢ < in [Lemma C. Then all assumptions of
Lemma C are satisfied. Indeed, by (67),

MN* « X3G(x1/5G)? = x8/5G* = x1H9/20 < x1415/32

MN? <« X35Gx\5G = x*35G2 = x37/%0 L x15/16

Thus [Proposition 2| follows.

9. Proof of [Proposition 3

We recall the definition of #. To make the variables p; (j=1,2,3)
separated, we define the sequence

= (HA)gcmery A=1+27%  My=(1/2)¢""

where W > 1 is a constant. For Pe 2, we write n~ P for P<n < PA. We
divide # by the restriction p;~ Pe? (j=1,2,3). Let # denote the set of
(Py, Py, P3) € 23 such that

(x —y) < PIPyP;, P\P,P3A’ <x, P3; <P, <P < P,Ps,
(P2A)’ (P3A)? < x%1=% (P,A)?(PsA)* < x27°, PPy > xP.

If (P1, P2, P3) € # then p;~ P; (j=1,2,3) implies all conditions of pp,p; € .
Hence

1
) > | > 1-om 2!

qe Ml | keR ke#
k=a(q) (k,q)=1

225330 3 DHHITEFTD 3 B IF

(j=1,2,3) qe | p;~P; (j=1,2,3) pi~P; (j=1,2,3)

(P1 Py, P3)eR pipap3=alq) (p1P2P3,9)=1

D 20 2D wmprs -+ 2 DY Y
P; (j=1,2,3) PI1D1P3€ER P1P2P3€R
(P1, Py, P3)¢% pi=P; (j=1,2,3) pi~P; (j=1,2,3)

=S +S5,;, say.
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If (P,P2,P3)¢R, p;=P; (j=1,2,3) and p,p,p; € # then at least one of the
following eight conditions holds:

X—y < pipopy < (x— p)A’; XA < pipypy < x;
(69) D3 <pr<p3A; py < pr<pA; py<pp3< P1A2;
x0+l-—25A—5 < P%P% < x0+1—26; xZ—JA—7 < p;pg < x2—5; x0 < p2p3 < x0A2.

Thus it is not hard to see that

P UDI)BELDIPIPIELL S

P (j=1,2,3) PI1P2P3ER X—y<p paP3<Xx
(P1,P2,P3)¢ R pi=P; (j=1,2,3) one of

Hence Cauchy’s inequality shows that
(70) S, « xFTW2,

As for Sj, we appeal to Lemma B, by taking 0 <& <d, L =P, M = P; and
N = P,. Then all conditions of Lemma B are fulfilled. Actually the set # € € is
determined in this way. Hence we have that

(71) Sy « (LY xgP

for any D > 0.
For given E > 0, we choose W =2E +2 and D =7E +9. Then

3 follows from (68), and (7T}
This completes our proof of Mheoreml
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