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TRIANGULAR MATRIX ALGEBRAS OVER
QUASI-HEREDITARY ALGEBRAS

By

Bin ZHu*

Abstract. Let A and B be quasi-hereditary algebras and M an 4 —
B-bimodule. Let A be the triangular matrix algebra of 4 and B
with M. The quasi-heredity of the triangular matrix algebra A is
proved under a suitable condition on the bimodule M. Furthermore
the category of A-good A-modules and the characteristic module of
A are described by using the corresponding ones of 4 and B.

1. Introduction

Let R be a commutative artin ring and 4 an artin algebra over R. If R is
a field k, then A is a finite dimensional k-algebra. We will consider finitely gen-
erated left 4-modules, maps between A-modules will be written on the right hand
of the argument, thus the composition of maps f : M1 — M, g: M, — M3 will
be denoted by fg. The category of all 4-modules will be denoted by 4-mod. All
subcategories considered will be full and closed under isomorphisms.

Given a class ® of 4-modules, we denote by & () the full subcategory of all
A-modules which have a @-filtration, that is, a filtration

OZMICM,_IC CM]CM():M

such that each factor M;_/M; is isomorphic to one object in ® for 1 < i < t. The
modules in & (®) are called ®-good modules, and the category & (@) is called
the ®-good module category.

Let E(i), i € E be a complete list of simple 4-modules, where E = {1,...,n}
is a natural ordered set. For any i € E, let P(i) be the projective cover of E(i) and
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denote by A(i) the maximal factor module of P(i) with composition factors of
the form E(j) with j < i. Dually, let Q(i) be the injective hull of E(i) and by V(i)
the maximal submodule of Q(i) with composition factors of the form E(j) with
J <i. Let A (respectively, V) be the full subcategory consisting of all A(i), 1 <
i <n, (respectively, all V(i), 1 <i <n). The modules in A are called standard
modules and ones in V are called costandard modules.

The algebra A, or better, the pair (A4, E) is called a quasi-hereditary algebra if
44 belongs to #(A) and End,(A(i)) is a division ring, for any 1 <i <n.

From now on, we will assume that 4 is quasi-hereditary. It was proved in
that #(A) and # (V) are functorially finite in 4-mod, i.e. they are both
covariantly finite and contravariantly finite in 4-mod. A full subcategory 7 of
A-mod is called contravariantly finite in 4-mod provided that for any 4-module
M, there is a module M; in 4 with a morphism f: M; — M such that the
restriction of Hom(—, f) to  is surjective. Such a morphism f is called a right
J -approximation of M. A right J -approximation f : M; — M of M is called
minimal if the restriction of f to any non-zero direct summand of M, is non-
zero. The covariantly finiteness of 7, a left J -approximation of M and the
minimal left J -approximation of M can be defined dually, we omit them and
refer to [4]. The category % (A) admits the following description

Z(A) = {X € A-mod | Ext!(X,V) = 0}

= {X € A-mod | Ext/(X,T) = 0 for all i > 1}.
Dually, one has that

F (V) = {X € A-mod | Ext! (A, X) = 0}

= {Y € A-mod | Ext/(T, Y) =0 for all i > 1}.

It was also proved in that there is a unique basic module 47 such that
add(4T) = F(A)NF (V). Such 4T is a generalized tilting and cotilting 4-module,
which is called the characteristic module of 4. The endomorphism ring of 47 is
again a quasi-hereditary algebra with respect to the opposite ordering E? of E,
which is called Ringel dual of A.

Now we recall from [5, 2.5] the notion of a subspace category. Let ¢ be a
Krull-Schmidt category over a field k£, and | — | : # — k-mod an additive functor.
We call the pair (',| —|) a vectorspace category and denote by #(xX,|— |),
called subspace category of (", | — |), the category of all triples V = (Vo, Vi, vy ),
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where 14 belongs to A, ¥, belongs to k-mod and y, : V,, — | V| is a k-linear
map. A morphism from ¥V to V' by definition is a pair (f, f,,), where f, : Vo —
Vo and f, : V,, — V. such that y,|fy| = f,7y

If A is finite, i.e. A has, up to isomorphisms, only finitely many inde-
composable objects, then there exists an injective realization of ., namely,
there are a finite dimensional k-algebra 4 and a left A-module M such that we
can identify " with A-Inj., the category of finitely generated injective left A-
modules, | — | with the restriction of Homy4(M,—) to A-Inj., Thus (x| —|)
is a full subcategory of #(A-mod,Hom,(M,—)), the later is equivalent to A-
mod, where

A=A[M]=(’g f)

is the one-point extension of 4 by M, and any triple (Vy, V,,7) in %(X,) — 1)
Vi ) 0 M ..

corresponds to the left A-module (VO); the operation of ( 0 0 ) on it is
w

given by the map 7, : M ®; V,, — V, adjoint to y, [5, 1].

If " is a directed vectorspace category, i.e. there are no cycles between
indecomposable objects in ¥, it was proved in that (A,E) is a quasi-
hereditary algebra with standard modules E(1),E(2),...,E(n), P(n+1), and
U(A,|—|)) is equivalent to the category of V-good modules over A, where
P(n+1) is the indecomposable projective A-module corresponding to the ex-
tension vertex.

Let A be the one-point extension of 4 by M. In contrasting to the ordering
on simple A-modules above, we fix an ordering 4E on simple A-modules and
let 4E={0}U 4E such that E(0) is the simple A-module corresponding to
the extension vertex. It was proved in that if (A4, 4E) is a quasi-hereditary
algebra and M belongs to # (4A), then (A, AE) is a quasi-hereditary algebra and
U(F (4A),Homy (M, -)) = F(5A).

In the study of a quasi-hereditary algebra A, instead of the complete module
category, one is mainly interested in the category &% (A), or the category & (V).
In this paper, we study A-good (or V-good) module categories and characteristic
modules of a one-point extension algebra, and of a triangular matrix algebra.

This paper is organized as follows: in Section 2 our algebras are finite
dimensional over field k. We consider the one-point extension A of 4 by an
arbitrary left 4-module M. We prove that for an ordering 4E on simple A-
modules, if (4, 4E) is a quasi-hereditary algebra and M is a left 4-module,
then (A,AE) is a quasi-hereditary algebra, where AE = 4EU{n+ 1} such that
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E(n+1) is the simple A-module corresponding to the extension vertex. We
describe the category of V-good modules over A by using the notion of a
subspace category and describe the characteristic module of A, these results
generalize the main results in [2]; in Section 3, all algebras are artin algebras over
a commutative artin ring R. We prove the quasi-heredity of the triangular matrix
algebras of quasi-hereditary algebras 4 and B by a bimodule 4Mp under a
suitable condition on the bimodule M. Moreover, we describe the good module
category over this quasi-hereditary triangular matrix algebra and the characteristic
module of it. We note that if R is a field k, 4 is a finite dimensional k-algebra
and B is k, then this triangular matrix algebra becomes one-point extension of A
by M, but the ordering on the simple modules of the one-point extension con-

sidered in this section is different from that of the one-point extension considered
in Section 2.

2. One-Point Extensions

Thoughout this section, any algebra means a finite dimensional one over
a fixed field k. Let (A4, 4E) be a quasi-hereditary algebra, M an arbitrary left
A
0

such that E(n+ 1) is the simple module corresponding to the extension vertex,

M ) .
A-module, and A = ( k ) the one-point extension. Let \E = 4EU{n+ 1}

THEOREM 2.1. Let (A, 4E) be a quasi-hereditary algebra and M a left A-
module. Let A be the one-point extension of A by M and A E the ordering on simple
A-modules as above. Then (A,AE) is a quasi-hereditary algebra, and F (V) =
U(F (4V),Hom, (M, -)).

Proor. Let E(1),...,E(n) be the simple 4-modules. Thus there is a com-
plete set of orthogonal primitive idempotents {e;,...,e,} of 4. Let e, =

0 0 ) .
( 0 1). Then {ei,...,en,enr1} is a complete set of orthogonal primitive

idempotents of A.
It is easy to see that the costandard A-modules are as follows:

AV(i)=(AV0(i) g), l<i<n

AVin+1)=A0n+1)=En+1).
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We have that Enda(AV(i)) is a division ring and AQ(i) € #(AV) for any
1 <i<n+ 1. Then (A, AE) is a quasi-hereditary algebra with costandard modules
AV(i) = (4V(9),0,0) forall 1 <i<nand A\V(n+ 1) = prE(n+1) = (0,k,0).

Since the subspace category % (% (4V),Hom(M,—)) is a full subcategory of
A-mod which is closed under extensions and for any i,AV(i) is in %(ZF (4V),
Hom(M, -)), we have that F(\V) < %(% (4V), Hom(M,—)). For any object
(Vo, Voo, 7y) in %(F(4V),Hom(M, —)), we have an exact sequence:

0 — (7,0,0) — (W, Vo, 7y) — (0, ¥, 0) — 0,

where 1} is in % (4V), hence (¥5,0,0) is in % (,V). We know that (0, V;,,0) is in
F(AV(n+ 1)) from the fact AV(n+ 1) = (0,k,0). Then (¥, Vo, yy) is in F(AV).
Therefore F(\V) = #(F (4V), Hom(M, —)). The proof is finished.

Let (A,AE) be the quasi-hereditary algebra in Theorem 2.1. Let f: M —
P(n+ 1) be the injection such that coker f is the simple projective E(n+ 1) (the
existence of f is from the fact that M is the radical of Pa(n+1)). Let f:
M — M, be the minimal left # (,V)-approximation of M. Thus by [4], we have
that the following exact sequence:

0— ML My — Nog—0, where Noe F(5A).

Then we have a commutative diagram which is the pull-out diagram of mor-
phisms f and f.

M — P(n—l—l)

L

My —— G.

Let Ty be an indecomposable direct summand of G having a composition
factor as E(n+1). We have that

THEOREM 2.2. Let A, M and A be the same as in Theorem 2.1. and 4T
the characteristic module of A. Let \T = 4T @ Ty. Then AT is the characteristic
module of the quasi-hereditary algebra (A, AE).

PrOOF. We have the exact sequence: 0 > M — My — Ny — 0 with Ny e
F(AA), and a commutative diagram
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0 0
0———»M—-LP(n+1)——>En+1———>O
: |
N2 +
0 — My — G — E(n+1) — 0,
];’OZ Ny
0 0

where the rows and the columns are exact sequences. Since Z (AV) and F (AA)
are closed under extensions, we have that G is in #(,A) and in % (,V). From
the constructions of standard (or costandard) A-modules, we have that 4T €
F (AA)NF (aV). Since Tp has a composition factor as E(n+ 1) and Ty is not
the direct summand of 47, we have that A7 is the direct sum of n+ 1 non-
isomorphic indecomposable modules belonging to % (,A)N % (AV). Thus it is
the characteristic module of the quasi-hereditary algebra (A,AE). The proof is
finished.

ExaMpPLE. Let A be the algebra given by

with relation fa=0. Then A is a quasi-hereditary algebra with standard

modules 4A(1) = E(1), 4A(2) = i,g; The characteristic module of 4 is T =
E(1)

E(1)® E(2).
E(1)

Let A be the one-point extension of 4 by M = E(2). Then A is the algebra
given by
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with relations fo = ay = 0. Then A is a quasi-hereditary algebra with standard

modules AA(1) = E(1), AAQ2) = gg;, AA(3) = 58; Its characteristic module
E(1)
E(1),E(3) (1),E(3) . .
AT=E()® EQ2) ® , wWhere is determined as follows,
| E@ E()
[
E(3)
0 — E2) — EQ) — ElT) —— 0
E(1) E(1),E(3) .
0 —— EQ) N EQ) — E(3) — 0
0 —— E(1) =—— E(1)
0 0

ReEMARK. The Ringel dual of the quasi-hereditary algebras in Theorem 2.1. is
neither a one-point extension of algebras, nor a one-point coextension of algebras
in general. For example, the Ringel dual of A in the example above is the algebra
given by:

L)

o

with relation yg = 0.

3. Triangular Matrix Algebras over Quasi-Hereditary Algebras

Throughtout this section, we assume that 4 and B are artin R-algebras,
where R is a commutative artin ring. Let

A M
A=
(6 3)
be the triangular matrix algebra, where M is an 4 — B-bimodule such that A is
an artin R-algebra. It is well known that any A-module N can be identified with
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a triple (X, Y, f), where X is an A-module, Y a B-module, and f : M ®g Y — X
an A-module morphism [1].

TuroreM 3.1. Let (A,4E) and (B,gE) be quasi-hereditary algebras and
AE = (BE, 4E). If 4M is in F(4A), then (A, AE) is a quasi-hereditary algebra.
Moreover, F(AA) = {(X,Y,f)| X € F(4A), Y € F(8A)}.

Proor. Let (A4,4E) and (B,gE) be quasi-hereditary algebras and AE =
(sE, 4E) the ordering on simple A-modules. An easy calculation shows that
(A, AE) is a quasi-hereditary algebra with standard modules

a0 = (g D)

AA(m+n) = <AA(n) 0).

0 0

We now prove the second assertion. Let  be the subcategory of A-mod
consisting of all triples (X, Y, f) with X is from % (4A) and Y is from £ (gA).
For any triple (X,Y,f) in 4, we have an exact sequence:

0— (X,0,0) - (X,Y,f)—(0,Y,0) =0,

where (X,0,0) and (0,Y,0) are in & (aA). Thus (X,7Y, f) is in F(AA) since
F (aAA) is closed under extensions in A-mod. Therefore 7 < F(AA).

By the construction of standard A-modules, we have that all standard A-
modules AA(i) are in J, where 1 <i<m+ n. By identifying an 4-module X
with a triple (X,0,0), and a B-module Y with a triple (0, Y,0), we can consider
both A-mod and B-mod as subcatgories of A-mod, namely, we identify 4-mod
with subcategory (4-mod, 0, 0), and B-mod with subcategory (0, B-mod, 0). Then
Ext) (4-mod, B-mod) = 0, #(4A) and # (sA) are closed under extensions in A-
mod. We know from [4] that % (gA) [ F(4A) := {N € A-mod |there is an exact
sequence 0 - X - N — Y — 0, with X € F(4A), Y € #(8A)} is closed under



Triangular matrix algebras 9

extensions in A-mod. Then J = # (gA) [ #(4A) is a subcategory closed under
extensions in A-mod. For any A-good A-module N, we have N is in J since N

has a sA-filtration and all AA(i) are in 7. Therefore
Fa) =T ={(X, Y, /)| X e F(44),Y € #(3A)}.

The proof is finished.
We keep all notation in Theorem 3.1. in the following. We will describe the

characteristic module of A.

Let e = (e1,...,e,) be a complete set of orthogonal primitive idempotents
of A corresponding to the ordered index set 4E of simple A4-modules, [ =
(fi,---,fn) a complete set of orthogonal primitive idempotents of B corre-
sponding to the ordered index set pE of simple B-modules. Thus (f,e) =
(f1s---s fmr€1,---,€) is @ complete set of orthogonal primitive idempotents of
A corresponding to the ordered index set AE = (gE, 4E) of simple A-modules.
We have a chain of ideals of A:

A=Jyp>J1> - >In-12Im D1 > - > Jmin-1 D Imin =0,

L, _(4 R
O_OB,

h= (g B(fy+ -{2-+fm)B)’

where

(A(ez +--+e)Ad Aler +---+e,,)R)
Ims1 =

0 0

(Ae,,A Ae,R )
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For each i in {1,2,...,m+ n}, let A; be the quotient of A by J;. Then all A;
are quasi-hereditary algebras, whose standard modules are AA(1l),...,AA(i). In
particular, for any i > m + 1, AA(i) is an A;-module. We assume that the injective
Ai-hull of AA(i) is A,Q'(i). We have a commutative diagram

0 0
]\J}.’ —— A}i’

0 — A(l) —_— Q(l) N; > 0
H 1 L

where N; — M; is the minimal right & (5,A)-approximation of M;. Then we have
N/ is in F(AV) by [4]. Therefore Q(i) € # (o, A)NF(AV), since F(a,A) and
F (AV) are closed under extensions in A;-mod, A,Q’(i) and N/ are in F(AV),
while A(i) and N; are in & (5,A). Let T(i) be an indecomposable direct sum-
mand, which has a composition factor as E(i), of Q(i). Then we have that

T(m+1), T(m+2),...,T(m+ n) are non-isomorphic indecomposable modules.

THEOREM 3.2. Let A, B, 4Mp, and A be the same as in Theorem 3.1. and gT

the characteristic module of B. Then pT @ (@;’:1 T(m + j)) is the characteristic
module of A.

ProoF. By Theorem -3.1., we have that F(AA) = {(X,7Y,f)|X € F(4A),
Y € FpA}, and pT € F(gA) < F(aAA). Let0 — pT — (M,N,g) — (X, Y, f) -0
be an exact sequence with (X, Y, f) € #(AA). Then 0 —» g7 - N - Y — 0 is an
exact sequence with Y € #(gA). Since g7 is the characteristic module of B, the
exact sequence above splits, and N =~ g7 @ Y. It implies that the exact sequence
0— 3T — (M,N,g) — (X, Y, f) — 0 splits. We have that Ext} (# (1A), 5T) =0,
and gT € F(AA)NF (AV). Let AT be the characteristic module of A with a
decomposition of indecomposable direct summands AT = AT(1) @ --- @ AT (m)
DOAT(m+1)®D --- ®AT(m+n). Then AT(1)® --- @ AT(m) is the character-
istic module of quasi-hereditary algebra A,. It follows that the characteristic



Triangular matrix algebras 11

module of B is isomorphic to A7T(1)@® --- @ AT (m) from the fact that A,, is
isomorphic to B. By the construction of 7(i), the modules g7 @ T(m + 1), and
AT(1)@® --- @ AT(m) ® AT(m+ 1) are the characteristic module of A, thus
T(m+1) = AT(m+1). We can get that T(m + j) is isomorphic to T(m + j) for
each 1 < j <n by an easy induction on j. The proof is finished.
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