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TRIANGULAR MATRIX ALGEBRAS OVER
QUASI-HEREDITARY ALGEBRAS

By

Bin ZHU*

Abstract. Let $A$ and $B$ be quasi-hereditary algebras and $M$ an $A-$

B-bimodule. Let $\Lambda$ be the triangular matrix algebra of $A$ and $B$

with $M$. The quasi-heredity of the triangular matrix algebra $\Lambda$ is
proved under a suitable condition on the bimodule $M$. Furthermore
the category of $\Delta$-good $\Lambda$-modules and the characteristic module of
$\Lambda$ are described by using the corresponding ones of $A$ and $B$ .

1. Introduction

Let $R$ be a commutative artin ring and $A$ an artin algebra over $R$ . If $R$ is
a field $k$, then $A$ is a finite dimensional k-algebra. We will consider finitely gen-
erated left A-modules, maps between A-modules will be written on the right hand
of the argument, thus the composition of maps $f$ : $M_{1}\rightarrow M_{2},$ $g:M_{2}\rightarrow M_{3}$ will
be denoted by $fg$ . The category of all A-modules will be denoted by A-mod. All
subcategories considered will be full and closed under isomorphisms.

Given a class $\Theta$ of A-modules, we denote by $\mathscr{F}(\Theta)$ the full subcategory of all
A-modules which have a O-filtration, that is, a filtration

$0=M_{t}\subset M_{t-1}\subset\cdots\subset M_{1}\subset M_{0}=M$

such that each factor $M_{i-1}/M_{i}$ is isomorphic to one object in $\Theta$ for $1\leq i\leq t$ . The
modules in $\mathscr{F}(\Theta)$ are called $\Theta$-good modules, and the category $\mathscr{F}(\Theta)$ is called
the $\Theta$-good module category.

Let $E(i),$ $i\in E$ be a complete list of simple A-modules, where $E=\{1, \ldots,n\}$

is a natural ordered set. For any $i\in E$ , let $P(i)$ be the projective cover of $E(i)$ and
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denote by $\Delta(i)$ the maximal factor module of $P(i)$ with composition factors of
the form $E(j)$ with $j\leq i$ . Dually, let $Q(i)$ be the injective hull of $E(i)$ and by $\nabla(i)$

the maximal submodule of $Q(i)$ with composition factors of the form $E(j)$ with
$j\leq i$ . Let $\Delta$ (respectively, $\nabla$) be the full subcategory consisting of all $\Delta(i),$ $ 1\leq$

$i\leq n$ , (respectively, all $\nabla(l),$ $1\leq i\leq n$). The modules in $\Delta$ are called standard
modules and ones in $\tilde{\nabla}$ are called costandard modules.

The algebra $A$ , or better, the pair $(A, E)$ is called a quasi-hereditary algebra if
$\Lambda A$ belongs to $\mathscr{F}(\Delta)$ and $End_{\Lambda}(\Delta(i))$ is a division ring, for any $1\leq l\leq n$ .

From now on, we will assume that $A$ is quasi-hereditary. It was proved in
[4] that $\mathscr{F}(\Delta)$ and $\mathscr{F}(\nabla)$ are functorially finite in A-mod, i.e. they are both
covariantly finite and contravariantly finite in A-mod. A full subcategory $\mathscr{T}$ of
A-mod is called contravariantly finite in A-mod provided that for any A-module
$M$, there is a module $M_{1}$ in $\mathscr{T}$ with a morphism $f:M_{1}\rightarrow M$ such that the
restriction of $Hom(-,f)$ to $\mathscr{T}$ is surjective. Such a morphism $f$ is called a right
$\mathscr{T}$-approximation of $M$. A right $\mathscr{T}$-approximation $f:M_{1}\rightarrow M$ of $M$ is called
minimal if the restriction of $f$ to any non-zero direct summand of $M_{1}$ is non-
zero. The covariantly finiteness of $\mathscr{T}$ , a left $\mathscr{T}$-approximation of $M$ and the
minimal left $\mathscr{T}$-approximation of $M$ can be defined dually, we omit them and
refer to [4]. The category $\mathscr{F}(\Delta)$ admits the following description [4]

$\mathscr{F}(\Delta)=\{X\in A- mod |Ext^{1}(X, \nabla)=0\}$

$=$ { $X\in A- mod |Ext^{i}(X,$ $T)=0$ for all $i\geq 1$ }.

Dually, one has that

$\mathscr{F}(\nabla)=\{X\in A- mod |Ext^{1}(\Delta, X)=0\}$

$=$ { $Y\in A$-mod $|Ext^{j}(T,$ $Y)=0$ for all $i\geq 1$ }.

It was also proved in [4] that there is a unique basic module $AT$ such that
add $(AT)=\mathscr{F}(\Delta)\cap \mathscr{F}(\nabla)$ . Such $A$

$T$ is a generalized tilting and cotilting A-module,
which is called the characteristic module of $A$ . The endomorphism ring of $A$

$T$ is
again a quasi-hereditary algebra with respect to the opposite ordering $E^{op}$ of $E$,

which is called Ringel dual of $A$ .
Now we recall from [5, 2.5] the notion of a subspace category. Let $\mathscr{K}$ be a

Krull-Schmidt category over a field $k$ , and – : $\mathscr{K}\rightarrow k$-mod an additive functor.
We call the pair $(\mathscr{K}, |-|)$ a vectorspace category and denote by $\check{\mathscr{U}}(\chi|-|)$ ,
called subspace category of $(ff |-|)$ , the category of all triples $V=(V_{0}, V_{w}, \gamma_{V})$ ,
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where $V_{0}$ belongs to $\ovalbox{\tt\small REJECT},$ $V$ belongs to k-mod and $\gamma_{V}$ : $V_{\omega}\rightarrow|V_{0}|$ is a k-linear
map. A morphism from $V$ to $V^{\prime}$ by definition is a pair $(f_{0}, f_{\omega})$ , where $f_{0}$ : $ V_{0}\rightarrow$

$V_{0}^{\prime}$ and $f_{\omega}$ : $V\rightarrow V_{\omega}^{\prime}$ such that $\gamma_{V}|f_{0}|=f_{\omega}\gamma_{V^{\prime}}$ .
If $\mathscr{K}^{\rightarrow}$ is finite, i.e. X has, up to isomorphisms, only finitely many inde-

composable objects, then there exists an injective realization of X namely,
there are a finite dimensional k-algebra $A$ and a left A-module $M$ such that we
can identify $\mathscr{M}^{\rho}$ with A-Inj., the category of finitely generated injective left A-
modules, – with the restriction of $Hom_{A}(M, -)$ to A-Inj., Thus $\check{\mathscr{U}}(\mathscr{K}, |-|)$

is a full subcategory of $\check{\mathscr{U}}$ ( $A$ -mod, $Hom_{A}(M,$ $-)$ ), the later is equivalent to $\Lambda-$

mod, where

$\Lambda=A[M]=\left(\begin{array}{ll}A & M\\0 & k\end{array}\right)$

is the one-point extension of $A$ by $M$, and any triple $(V_{0}, V_{\omega}, \gamma)$ in $\check{\mathscr{U}}(X, |-|)$

corresponds to the left $\Lambda$-module $\left(\begin{array}{l}V_{0}\\V_{\omega}\end{array}\right)$ ; the operation of $\left(\begin{array}{ll}0 & M\\0 & 0\end{array}\right)$ on it is

given by the map $\overline{\gamma}_{V}$ : $M\otimes_{k}V_{\omega}\rightarrow V_{0}$ adjoint to $\gamma_{V}[5,1]$ .
If ff is a directed vectorspace category, i.e. there are no cycles between

indecomposable objects in ff it was proved in [2] that $(\Lambda, E)$ is a quasi-
hereditary algebra with standard modules $E(1),$ $E(2),$

$\ldots,$
$E(n),$ $P(n+1)$ , and

$\check{\mathscr{U}}(ff|-|))$ is equivalent to the category of V-good modules over $\Lambda$ , where
$P(n+1)$ is the indecomposable projective $\Lambda$-module corresponding to the ex-
tension vertex.

Let $\Lambda$ be the one-point extension of $A$ by $M$. In contrasting to the ordering
on simple $\Lambda$-modules above, we fix an ordering $AE$ on simple A-modules and
let $AE=\{0\}\bigcup_{A}E$ such that $E(O)$ is the simple $\Lambda$-module corresponding to
the extension vertex. It was proved in [3] that if $(A_{A}E)$ is a quasi-hereditary
algebra and $M$ belongs to $\mathscr{F}(A\Delta)$ , then $(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra and
$\check{\mathscr{U}}(\mathscr{F}(A\Delta), Hom_{A}(M, -))\approx \mathscr{F}(\Lambda\Delta)$ .

In the study of a quasi-hereditary algebra $A$ , instead of the complete module
category, one is mainly interested in the category $\mathscr{F}(\Delta)$ , or the category $\mathscr{F}(\nabla)$ .
In this paper, we study $\Delta$-good (or $\nabla$-good) module categories and characteristic
modules of a one-point extension algebra, and of a triangular matrix algebra.

This paper is organized as follows: in Section 2 our algebras are finite
dimensional over field $k$ . We consider the one-point extension $\Lambda$ of $A$ by an
arbitrary left A-module $M$. We prove that for an ordering $AE$ on simple A-
modules, if $(A_{A}E)$ is a quasi-hereditary algebra and $M$ is a left A-module,
then $(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra, where $\Lambda E=AE\cup\{n+1\}$ such that
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$E(n+1)$ is the simple $\Lambda$-module corresponding to the extension vertex. We
describe the category of $\nabla$-good modules over $\Lambda$ by using the notion of a
subspace category and describe the characteristic module of $\Lambda$ , these results
generalize the main results in [2]; in Section 3, all algebras are artin algebras over
a commutative artin ring $R$ . We prove the quasi-heredity of the triangular matrix
algebras of quasi-hereditary algebras $A$ and $B$ by a bimodule $AM_{B}$ under a
suitable condition on the bimodule $M$. Moreover, we describe the good module
category over this quasi-hereditary triangular matrix algebra and the characteristic
module of it. We note that if $R$ is a field $k,$ $A$ is a finite dimensional k-algebra
and $B$ is $k$ , then this triangular matrix algebra becomes one-point extension of $A$

by $M$, but the ordering on the simple modules of the one-point extension con-
sidered in this section is different from that of the one-point extension considered
in Section 2.

2. One-Point Extensions

Thoughout this section, any algebra means a finite dimensional one over
a fixed field $k$ . Let $(A, AE)$ be a quasi-hereditary algebra, $M$ an arbitrary left

A-module, and $\Lambda=\left(\begin{array}{ll}A & M\\0 & k\end{array}\right)$ the one-point extension. Let $\Lambda E=AE\cup\{n+1\}$

such that $E(n+1)$ is the simple module corresponding to the extension vertex,

THEOREM 2.1. Let $(A_{\Lambda}E)$ be a quasi-hereditary algebra and $M$ a left A-
module. Let $\Lambda$ be the one-point extension of $A$ by $M$ and $\Lambda E$ the ordering on simple
$\Lambda$-modules as above. Then $(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra, and $\mathscr{F}(\Lambda\nabla)=$

$\check{\mathscr{U}}(\mathscr{F}(A\nabla), Hom_{A}(M, -))$ .

PROOF. Let $E(1),$
$\ldots,$

$E(n)$ be the simple A-modules. Thus there is a com-
plete set of orthogonal primitive idempotents $\{e_{1}, \ldots, e_{n}\}$ of $A$ . Let $e_{n+1}=$

$\left(\begin{array}{ll}0 & 0\\0 & l\end{array}\right)$ . Then $\{e_{1}, \ldots, e_{n}, e_{n+1}\}$ is a complete set of orthogonal primitive

idempotents of $\Lambda$ .
It is easy to see that the costandard $\Lambda$-modules are as follows:

$\Lambda\nabla(i)=(^{A}\nabla_{0}(i)$ $00$ , $1\leq i\leq n$ .

$\Lambda\nabla(n+1)=\Lambda Q(n+1)=E(n+1)$ .
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We have that $End_{\Lambda}(\wedge\nabla(i))$ is a division ring and $\Lambda Q(i)\in \mathscr{F}(\Lambda\nabla)$ for any
$1\leq i\leq n+1$ . Then $(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra with costandard modules
$\Lambda\nabla(i)=(_{A}\nabla(i), 0,0)$ for all $1\leq j\leq n$ and $\Lambda\nabla(n+1)=\Lambda E(n+1)=(0, k, 0)$ .

Since the subspace category $\check{\mathscr{U}}(\mathscr{F}(A\nabla), Hom(M, -))$ is a full subcategory of
$\Lambda$-mod which is closed under extensions and for any $i_{\Lambda}\nabla(i)$ is in $\check{\mathscr{U}}(\mathscr{F}(A\nabla)$ ,
$Hom(M, -))$ , we have that $\mathscr{F}(\Lambda\nabla)\subseteq\check{\mathscr{U}}(\mathscr{F}(A\nabla), Hom(M, -))$ . For any object
$(V_{0}, V_{\omega}, \gamma_{V})$ in $\check{\mathscr{U}}(\mathscr{F}(A\nabla), Hom(M, -))$ , we have an exact sequence:

$0\rightarrow(V_{0},0,0)\rightarrow(V_{0}, V_{\omega}, \gamma_{V})\rightarrow(0, V_{\omega}, 0)\rightarrow 0$ ,

where $V_{0}$ is in $\mathscr{F}(A\nabla)$ , hence $(V_{0},0,0)$ is in $\mathscr{F}(\Lambda\nabla)$ . We know that $(0, V_{\omega}, 0)$ is in
$\mathscr{F}(\wedge\nabla(n+1))$ from the fact $\wedge\nabla(n+1)=(0, k, 0)$ . Then $(V_{0}, V_{\omega}, \gamma_{V})$ is in $\mathscr{F}(\Lambda\nabla)$ .
Therefore $\mathscr{F}(\Lambda\nabla)=\check{\mathscr{U}}(\mathscr{F}(A\nabla), Hom(M, -))$ . The proof is finished.

Let $(\Lambda_{\Lambda}E)$ be the quasi-hereditary algebra in Theorem 2.1. Let $f$ : $ M\rightarrow$

$P(n+1)$ be the injection such that coker $f$ is the simple projective $E(n+1)$ (the
existence of $f$ is from the fact that $M$ is the radical of $P_{\Lambda}(n+1))$ . Let $f_{0}$ :
$M\rightarrow M_{0}$ be the minimal left $\mathscr{F}(\Lambda\nabla)$ -approximation of $M$. Thus by [4], we have
that the following exact sequence:

$0\rightarrow M\rightarrow f_{0}M_{0}\rightarrow N_{0}\rightarrow 0$ , where $N_{0}\in \mathscr{F}(\Lambda\Delta)$ .

Then we have a commutative diagram which is the pull-out diagram of mor-
phisms $f$ and $f_{0}$ .

$M\rightarrow P(n+1)$

$M_{0}\downarrow-$ $ G\downarrow$

.

Let $T_{0}$ be an indecomposable direct summand of $G$ having a composition
factor as $E(n+1)$ . We have that

THEOREM 2.2. Let $A,$ $M$ and $\Lambda$ be the same as in Theorem 2.1. and AT
the characteristic module of A. Let $\Lambda T=AT\oplus T_{0}$ . Then $\Lambda T$ is the characteristic
module of the quasi-hereditary algebra $(\Lambda_{\Lambda}E)$ .

PROOF. We have the exact sequence: $0\rightarrow M\rightarrow M_{0}\rightarrow N_{0}\rightarrow 0$ with $ N_{0}\in$

$\mathscr{F}(\wedge\Delta)$ , and a commutative diagram
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$ 0\downarrow$ $ 0\downarrow$

$0\rightarrow M$ $\rightarrow^{f_{0}}P(n+1)\rightarrow E(n+1)\rightarrow 0$

$f_{0\downarrow}$ $\downarrow$ $\Vert$

$ 0\rightarrow M_{0}\rightarrow$ $G$ $\rightarrow E(n+1)\rightarrow 0$ ,

$N_{0}\downarrow=$ $ N_{0}\downarrow$

$ 0\downarrow$ $\downarrow 0$

where the rows and the columns are exact sequences. Since $\mathscr{F}(\Lambda\nabla)$ and $\mathscr{F}(\wedge\Delta)$

are closed under extensions, we have that $G$ is in $\mathscr{F}(\Lambda\Delta)$ and in $\mathscr{F}(\wedge\nabla)$ . From
the constructions of standard (or costandard) $\Lambda$-modules, we have that $ AT\in$

$\mathscr{F}(\Lambda\Delta)\cap \mathscr{F}(\wedge\nabla)$ . Since $T_{0}$ has a composition factor as $E(n+1)$ and $T_{0}$ is not
the direct summand of $AT$ , we have that $\Lambda T$ is the direct sum of $n+1$ non-
isomorphic indecomposable modules belonging to $\mathscr{F}(\Lambda\Delta)\cap \mathscr{F}(\Lambda\nabla)$ . Thus it is
the characteristic module of the quasi-hereditary algebra $(\Lambda, \wedge E)$ . The proof is
finished.

EXAMPLE. Let $A$ be the algebra given by

$\rightarrow^{\alpha}$

2 $0$

$\overline{\beta}\circ 1$

with relation $\beta\alpha=0$ . Then $A$ is a quasi-hereditary algebra with standard

modules $A\Delta(1)=E(1),$ $A\Delta(2)=E(1)E(2)$ . The characteristic module of $A$ is $T=$

$E(1)$

$E(1)\oplus E(2)$ .
$E(1)$

Let $\Lambda$ be the one-point extension of $A$ by $M=E(2)$ . Then $\Lambda$ is the algebra
given by

$3\circ\rightarrow^{\gamma}2\circ\rightarrow^{\alpha}\circ 1$

$\leftarrow^{\beta}$
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with relations $\beta\alpha=\alpha\gamma=0$ . Then $\Lambda$ is a quasi-hereditary algebra with standard

modules $\wedge\Delta(1)=E(1),$ $\wedge\Delta(2)=E(1)E(2)$ $\Lambda\Delta(3)=E(2)E(3)$ . Its characteristic module
$E(1)$

$E(1),$ $E(3)$ $E(1),$ $E(3)$
$\Lambda T=E(1)\oplus E(2)\oplus$ , where is determined as follows,

$E(2)$ $E(2)$
$E(1)$

$ 0\downarrow$

$0$

$ E(3)\downarrow$

$ 0\rightarrow E(2)\rightarrow$ $\rightarrow E(3)\rightarrow 0$

$E(2)$

$0\rightarrow E(1)-E(1),$ $E(3)-E(3)\rightarrow 0$
$E(2)$ $E(2)$

$0-E(1)\downarrow-$ $ E(1)\downarrow$

$ 0\downarrow$ $ 0\downarrow$

REMARK. The Ringel dual of the quasi-hereditary algebras in Theorem 2.1. is
neither a one-point extension of algebras, nor a one-point coextension of algebras
in general. For example, the Ringel dual of $\Lambda$ in the example above is the algebra
given by:

$1_{o}\rightarrow^{\alpha}3\circ\rightarrow^{\beta}\circ 2$

$\gamma$

with relation $\gamma\beta=0$ .

3. Triangular Matrix Algebras over Quasi-Hereditary Algebras

Throughtout this section, we assume that $A$ and $B$ are artin R-algebras,
where $R$ is a commutative artin ring. Let

$\Lambda=\left(\begin{array}{ll}A & M\\0 & B\end{array}\right)$

be the triangular matrix algebra, where $M$ is an $A-B$-bimodule such that $\Lambda$ is
an artin R-algebra. It is well known that any $\Lambda$-module $N$ can be identified with
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a triple (X, $Y,f$), where $X$ is an A-module, $Y$ a B-module, and $f$ : $M\otimes_{B}Y\rightarrow X$

an A-module morphism [1].

THEOREM 3.1. Let $(A, AE)$ and $(B_{B}E)$ be quasi-hereditary algebras and
$\Lambda E=(E,E)$ . If AM is in $\mathscr{F}(A\Delta)$ , then $(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra.
Moreover, $\mathscr{F}(\wedge\Delta)=\{(X, Y,f)|X\in \mathscr{F}(A\Delta), Y\in \mathscr{F}(B\Delta)\}$ .

PROOF. Let $(A_{\Lambda}E)$ and $(B_{B}E)$ be quasi-hereditary algebras and $\Lambda E=$

$(E,E)$ the ordering on simple $\Lambda$-modules. An easy calculation shows that
$(\Lambda_{\Lambda}E)$ is a quasi-hereditary algebra with standard modules

$\wedge\Delta(1)=\left(\begin{array}{ll}0 & 0\\0 & B\Delta(1)\end{array}\right)$ ,

$\Lambda\Delta(m)=\left(\begin{array}{ll}0 & 0\\0 & B\Delta(m)\end{array}\right)$ ,

$\Lambda\Delta(m+1)=\left(\begin{array}{ll}A\Delta(1) & 0\\0 & 0\end{array}\right)$ ,

$\wedge\Delta(m+n)=\left(\begin{array}{ll}A\Delta(n) & 0\\0 & 0\end{array}\right)$ .

We now prove the second assertion. Let $\mathscr{T}$ be the subcategory of $\Lambda$-mod
consisting of all triples (X, $Y,f$ ) with $X$ is from $\mathscr{F}(A\Delta)$ and $Y$ is from $\mathscr{F}(B\Delta)$ .
For any triple (X, $Y,f$) in $\mathscr{T}$ , we have an exact sequence:

$0\rightarrow(X, 0, O)\rightarrow(X, Y,f)\rightarrow(O, Y,0)\rightarrow 0$ ,

where (X, 0,0) and $(0, Y, 0)$ are in $\mathscr{F}(\Lambda\Delta)$ . Thus (X, $Y,$ $f$ ) is in $\mathscr{F}(\Lambda\Delta)$ since
$\mathscr{F}(\Lambda\Delta)$ is closed under extensions in $\Lambda- mod$ . Therefore $\mathscr{T}\subseteq \mathscr{F}(\wedge\Delta)$ .

By the constmction of standard $\Lambda$-modules, we have that all standard $\Lambda-$

modules $\Lambda\Delta(i)$ are in $\mathscr{T}$ , where $1\leq i\leq m+n$ . By identifying an A-module $X$

with a triple (X, $0,0$), and a B-module $Y$ with a triple $(0, Y, 0)$ , we can consider
both A-mod and B-mod as subcatgories of $\Lambda$-mod, namely, we identify A-mod
with subcategory (A-mod, $0,0$), and B-mod with subcategory ( $0$ , B-mod, $0$). Then
$Ext_{\Lambda}^{1}$ (A-mod, B-mod) $=0,$ $\mathscr{F}(\Lambda\Delta)$ and $\mathscr{F}(B\Delta)$ are closed under extensions in $\Lambda-$

$mod$ . We know from [4] that $\mathscr{F}(B\Delta)\int \mathscr{F}(A\Delta)$ $:=\{N\in\Lambda$-mod $|$ there is an exact
sequence $0\rightarrow X\rightarrow N\rightarrow Y\rightarrow 0$ , with $X\in \mathscr{F}(A\Delta),$ $Y\in \mathscr{F}(B\Delta)$ } is closed under
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extensions in $\Lambda- mod$ . Then $F=\mathscr{F}(B\Delta)\int \mathscr{F}(A\Delta)$ is a subcategory closed under
extensions in $\Lambda- mod$ . For any $\Delta$-good $\Lambda$-module $N$, we have $N$ is in $\mathscr{T}$ since $N$

has a $\wedge\Delta- filtration$ and all $\wedge\Delta(i)$ are in $\mathscr{T}$ . Therefore

$\mathscr{F}(\Lambda\Delta)=\mathscr{T}=\{(X, Y,f)|X\in \mathscr{F}(A\Delta), Y\in \mathscr{F}(B\Delta)\}$ .

The proof is finished.
We keep all notation in Theorem 3.1. in the following. We will describe the

characteristic module of $\Lambda$ .
Let $\underline{e}=(e_{1}, \ldots, e_{n})$ be a complete set of orthogonal primitive idempotents

of $A$ corresponding to the ordered index set $AE$ of simple A-modules, $\underline{f}=$

$(f_{1}, \ldots,f_{m})$ a complete set of orthogonal primitive idempotents of $B$ corre-
sponding to the ordered index set $BE$ of simple B-modules. Thus $(\underline{f},\underline{e})=$

$(f_{1}, \ldots,f_{m}, e_{1}, \ldots, e_{n})$ is a complete set of orthogonal primitive idempotents of
$\Lambda$ corresponding to the ordered index set $\wedge E=(E,E)$ of simple $\Lambda$-modules.
We have a chain of ideals of $\Lambda$ :

$\Lambda=J_{0}\supset J_{1}\supset.$ . . $\supset J_{m-1}\supset J_{m}\supset J_{m+1}\supset.$ . . $\supset J_{m+n-1}\supset J_{m+n}=0$ ,

where

$J_{0}=\left(\begin{array}{ll}A & R\\0 & B\end{array}\right)$ ,

$J_{1}=\left(\begin{array}{llll}A & & R & \\0 & B(f_{2}+ & \cdots & +f_{m})B\end{array}\right)$ ,

. . . $\ldots$

$J_{m-1}=\left(\begin{array}{ll}A & R\\0 & Bf_{m}B\end{array}\right)$ ,

$J_{m}=\left(\begin{array}{ll}A & R\\0 & 0\end{array}\right)$ ,

$J_{m+1}=\left(A(e_{2}+ & 0 & +e_{n})A & A(e_{2}+ & 0 & +e_{n})R\right)$ ,

. . . $\ldots$

$J_{m+n}=\left(\begin{array}{ll}Ae_{n}A & Ae_{n}R\\0 & 0\end{array}\right)$ ,

$J_{m+n}=0$ .
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For each $i$ in $\{1, 2, \ldots, m+n\}$ , let $\Lambda_{i}$ be the quotient of $\Lambda$ by $J_{i}$ . Then all $\Lambda_{i}$

are quasi-hereditary algebras, whose standard modules are $\Lambda\Delta(1),$
$\ldots,$

$\Lambda\Delta(i)$ . In
particular, for any $i\geq m+1,$ $\Lambda\Delta(i)$ is an $\Lambda_{j}$-module. We assume that the injective
$\Lambda_{i}$ -hull of $\Lambda\Delta(i)$ is $\Lambda_{i}Q^{\prime}(i)$ . We have a commutative diagram

$0\rightarrow\Delta(i)-$

$\Omega^{0}N_{i}^{\prime}\downarrow_{(i)}\downarrow$ $---N_{i_{i^{\prime}}}N0\downarrow\downarrow\rightarrow 0$

$0-\Delta(i)-||\Lambda_{j}Q’(i)\downarrow-M_{i}\downarrow-0$

$0$ $0$

where $N_{i}\rightarrow M_{i}$ is the minimal right $\mathscr{F}(\Lambda_{j}\Delta)$ -approximation of $M_{i}$ . Then we have
$N$[ is in $\mathscr{F}(\Lambda_{i}\nabla)$ by [4]. Therefore $\Omega(i)\in \mathscr{F}(\Lambda_{j}\Delta)\cap \mathscr{F}(\Lambda_{i}\nabla)$ , since $\mathscr{F}(\Lambda_{j}\Delta)$ and
$\mathscr{F}(\Lambda_{i}\nabla)$ are closed under extensions in $\Lambda_{l}$ -mod, $\bigwedge_{j}Q^{\prime}(i)$ and $N/$ are in $\mathscr{F}(\wedge\nabla)$ ,

while $\Delta(i)$ and $N_{i}$ are in $\mathscr{F}(\Lambda_{j}\Delta)$ . Let $\overline{T}(i)$ be an indecomposable direct sum-
mand, which has a composition factor as $E(i)$ , of $\Omega(i)$ . Then we have that
$\overline{T}(m+1),\overline{T}(m+2),$ $\ldots,\overline{T}(m+n)$ are non-isomorphic indecomposable modules.

THEOREM 3.2. Let $A,$ $B,M$ , and $\Lambda$ be the same as in Theorem 3.1. and $BT$

the characteristic module of B. Then $BT\oplus(\oplus_{j^{n}=1}\overline{T}(m+j))$ is the characteristic
module of $\Lambda$ .

PROOF. By Theorem 3.1., we have that $\mathscr{F}(\Lambda\Delta)=\{(X, Y,f)|X\in \mathscr{F}(A\Delta)$ ,
$Y\in \mathscr{F}_{B}\Delta\}$ , and $BT\in \mathscr{F}(B\Delta)\subseteq \mathscr{F}(\Lambda\Delta)$ . Let $0\rightarrow BT\rightarrow(M, N, g)\rightarrow(X, Y,f)\rightarrow 0$

be an exact sequence with (X, $Y,f$) $\in \mathscr{F}(\wedge\Delta)$ . Then $0\rightarrow BT\rightarrow N\rightarrow Y\rightarrow 0$ is an
exact sequence with $Y\in \mathscr{F}(B\Delta)$ . Since $BT$ is the characteristic module of $B$ , the
exact sequence above splits, and $N\cong BT\oplus Y$ . It implies that the exact sequence
$0\rightarrow BT\rightarrow(M, N, g)\rightarrow(X, Y,f)\rightarrow 0$ splits. We have that $Ext_{\Lambda}^{1}(\mathscr{F}(\Lambda\Delta), BT)=0$ ,
and $BT\in \mathscr{F}(\Lambda\Delta)\cap \mathscr{F}(\Lambda\nabla)$ . Let $\Lambda T$ be the characteristic module of $\Lambda$ with a
decomposition of indecomposable direct summands $\wedge T=\Lambda T(1)\oplus\cdots\oplus_{\Lambda}T(m)$

$\oplus_{\Lambda}T(m+1)\oplus\cdots\oplus_{\Lambda}T(m+n)$ . Then $\Lambda T(1)\oplus$ – $\oplus_{\Lambda}T(m)$ is the character-
istic module of quasi-hereditary algebra $\Lambda_{m}$ . It follows that the characteristic
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module of $B$ is isomorphic to $\Lambda T(1)\oplus\cdots\oplus_{\Lambda}T(m)$ from the fact that $\Lambda_{m}$ is
isomorphic to $B$ . By the construction of $\overline{T}(i)$ , the modules $BT\oplus\overline{T}(m+1)$ , and
$\Lambda T(1)\oplus\cdots\oplus_{\Lambda}T(m)\oplus_{\Lambda}T(m+1)$ are the characteristic module of $\Lambda_{m+1}$ , thus
$\overline{T}(m+1)\cong\Lambda T(m+1)$ . We can get that $\overline{T}(m+j)$ is isomorphic to $T(m+j)$ for
each $1\leq j\leq n$ by an easy induction on $j$ . The proof is finished.
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