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ON THE GROUPS WITH HOMOGENEOUS THEORY

By

Kikyo HIROTAKA

1. Introduction

D. MacPherson [5] proved that no infinite groups are interpretable in any
finitely homogeneous stmcture. A countable structure $M$ is called finitely
homogeneous if its language is finite, its domain is countable, and every iso-
morphism between finite tuples in $M$ extends to an automorphism of $M$.

We shall consider a similar condition which applies to general stmctures.

DEFINITION 1.1. Let $2\leq m<n$ . We say that a stmcture $M$ is $(m, n)-$

homogeneous if for any two n-tuples $\overline{a},\overline{b}$ from $M$, tp $(\overline{a})=tp(\overline{b})$ if and only if
corresponding m-tuples from $\overline{a}$ and $\overline{b}$ have the same type. A complete theory $T$ is
$(m,n)$ -homogeneous if every model of $T$ is $(m, n)$ -homogeneous.

Note that the additive group of integers $(Z, +)$ is $(2, n)$ -homogeneous for any
$n>2$ . But it tums out that its theory is not $(n, n)$ -homogeneous for any $m,$ $n$ by
the stability and Theorem 2.3 below.

In this paper, we treat the following conjecture:

CONJECTURE 1.2. If $(M, \cdot)$ is a group (it may have other structures) then the
theory of $(M, \cdot)$ is not $(m, n)$ -homogeneous for any $m,$ $n$ such that $2\leq m<n$ .

We call a theory $(m, \infty)$ -homogeneous if it is $(m, n)$ -homogeneous for any
$n>m$ . Handa [2] studied $(m, \infty)$ -homogeneous theories and proved that no
infinite Abelian p-groups are interpretable in a model of such a theory, and if the
theory is $\omega$-stable in addition then no infinite groups are interpretable.

lf the above conjecture is true then no groups are interpretable in a model of
$(m, \infty)$ -homogeneous theories. However, we cannot claim that no groups are
interpretable in a model of an $(m, n)$ -homogeneous theory. The following
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example suggested by Ehud Hmshovski is $\omega$-stable, $(2,3)$ -homogeneous, not
$(3,4)$ -homogeneous, and interprets an infinite group.

EXAMPLE 1.3. Consider the projective line $P^{1}$ over an algebraically closed
field $K$ and the action of $PGL(2, K)$ on it. This group acts sharply 3-transitively
on $P^{1}$ . Define a relation $R(z_{1},z_{2},z_{3},z_{4}, w_{1}, w_{2}, w_{3}, w_{4})$ on $P^{1}$ as follows: There
is a regular linear map $A$ in $PGL(2, K)$ such that $Az_{i}=w_{i}$ for each $i=1,2,3$

and 4.
$R$ is invariant under the action of $PGL(2, K)$ . Since this group acts sharply

3-transitively on $P^{1}$ , given two sets of three points $\{p, q, r\}$ and $\{p^{\prime}, q^{\prime}, r^{\prime}\}$ for $P^{1}$ ,
the relation $R(z,p, q, r, w,p^{\prime}, q^{\prime}, r^{\prime})$ between $z$ and $w$ represents an automorphism
of $(P^{1}, R)$ which belongs to $PGL(2, K)$ .

Now we can easily see that Th $(P^{1}, R)$ is $(2,3)$ -homogeneous but $(P^{1}, R)$

interprets the infinite group $PGL(2, K)$ . As we can interpret $(P^{1}, R)$ in the field $K$,
Th $(P^{1}, R)$ is $\omega$-stable.

Moreover, the theory is not $(3,4)$ -homogeneous. Choose three distinct points,
$a,$ $b,$ $c$ from $P^{1}$ and a linear map $A$ from $PGL(2, K)$ sending $a,b,$ $c$ to $b,$ $c,a$

respectively. Since $K$ is algebraically closed, $A$ has a fixed point $d$ in $P^{1}$ . Note that
$d$ is different from $a,$

$b$ and $c$ . Choose a new point d’ from $P^{1}$ that is not fixed by
$A$ . Then $R(d, a, b, c, d, b, c, a)$ holds but $R(d^{\prime},a, b, c, d^{\prime}, b, c, a)$ does not hold. Since
there is only one 3-type realized by three distinct points, this shows that the
theory is not $(3,4)$ -homogeneous.

Also, we cannot claim that no groups are definable in a model of an $(m, n)-$

homogeneous theory. The following example is due to Akito Tsuboi. This
example is $\omega$-categorical, $\omega$-stable, $(2,3)$ -homogeneous, not $(2,4)$ -homogeneous,
but some infinite groups are definable with three parameters.

EXAMPLE 1.4. Let $V_{1},$ $V_{2},$ $V_{3},$ $V_{4}$ be four copies of $Z_{2}^{(\omega)}$ where $Z_{2}$ is the
Ablian group of order 2. Let $M$ be the disjoint union of these four sets, and
define the relation $R(x_{1}, x_{2}, x_{3}, x_{4})$ by $x_{i}\in V_{i}$ and $x_{1}+x_{2}+x_{3}+x_{4}=0$ . Then
Th $(M, R)$ is $(2,3)$ -homogeneous but $Z_{2}^{(\omega)}$ is definable in it.

First, we can recover a group stmcture on each $V_{i}$ . Fix three elements $a,b,$ $c$

one from each $V_{2},$ $V_{3}$ and $V_{4}$ . The formula

$\exists x_{2},$ $x_{3}[R(u_{2}, x_{2},b, c)\wedge R(u_{3},a,x_{3}, c)\wedge R(u_{1},x_{2}, x_{3}, c)]$

is equivalent to $u_{1}+u_{2}+u_{3}+a+b+c=0$ for $u_{1},$ $u_{2},$ $u_{3}$ in $V_{1}$ which gives a
group stmcture on $V_{1}$ . The same argument works for each $V_{i}$ .
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To show that there is only one 3-type realized by three distinct elements from
$V_{1}$ is the most essential in the proof of $(2, 3)$ -homogeneity of the theory. Consider
each $V_{i}$ as a vector space over the prime field of characteristic 2. Let $\{a_{1}, a_{2}, a_{3}\}$

and $\{b_{1}, b_{2}, b_{3}\}$ be two sets of three distinct elements from $V_{1}$ . Whether each set
is dependent or not, we can choose $c$ from $V_{1}$ so that $\{a_{1}-c, a_{2}-c, a_{3}-c\}$ and
$\{b_{1}-c, b_{2}-c, b_{3}-c\}$ are both linearly independent sets. Let $s$ be a linear
automorphism on $V_{1}$ sending each $a_{i}-c$ to $b_{i}-c$ . Then $\sigma(x)=s(x-c)+c$ is an
automorphism of $V_{1}$ which sends $a_{i}$ to $b_{i}$ for $i=1,2,3$ . Extend $\sigma$ to $V_{2},$ $V_{3}$ and
$V_{4}$ by $\sigma(x)=s(x+c)-c$ on $V_{2}$ , and $\sigma(x)=s(x)$ on $V_{3}$ and $V_{4}$ . Then $\sigma$ is an
automorphism of $(M, R)$ .

We prove Conjecture 1.2 with various additional conditions such as $\omega-$

categoricity, o-minimality, stability and simplicity (in Shelah’s sense), but it seems
very hard to prove it in general. In the simple case, we only prove that the theory
is not $(2, 3)$ -homogeneous. Also, we have not found a pure group with the $(m, n)-$

homogeneous theory for some $m$ and $n$ .
In this paper, the language is countable and the notation follows Pillay’s

book [7].

2. $(m,n)$-Homogeneous Theory

In this section, we prove that Conjecture 1.2 holds if Th $(M)$ is $\omega$-categorical,
stable, or o-minimal.

THEOREM 2.1 If $(M, \cdot)$ has an infinite Abelian p-subgroup then Th $(M, \cdot)$ is not
$(m, n)$ -homogeneous for any $m$ and $n$ .

PROOF. The proof is much the same as Handa’s proof in [2] which is a
modification of Macpherson’s argument [5]. We give the proof for reader’s
convenience.

We work in an Abelian subgroup and write the group operation additively.
It is enough to show that the theory is not $(m, m+1)$ -homogeneous for any

$m$ . We find elements $a_{1},$
$\ldots,$ $a_{m+1}$ that are linearly independent over a finite prime

field $F_{p}$ with the $p$ elements, and the corresponding m-tuples from $(a_{1},$ $\ldots,a_{m}$ ,
$a_{1}+\cdots+a_{m}+a_{m+1})$ and $(a_{1}, \ldots,a_{m},a_{1}+\cdots+a_{m})$ have the same type. Note
that we can describe this condition by a set of elementary formulas. We show
that for given finite set $\Delta$ of m-formulas, we can find elements $a_{1},$ $\ldots$ , $a_{m+1}$

satisfying the above condition except that the phrase “have the same type”
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changed to “have the same $\Delta$-type”. Then by compactness, we get the desired
tuple.

Let $V$ be an infinite Abelian p-subgroup of $(M, \cdot)$ . Consider $V$ as a vector
space over $F_{p}$ . We can assume that $V$ has the countable dimension over $F_{p}$ .
Choose a basis $(v_{i} : i<\omega)$ of $V$. Now we give a mle for coloring the m-
dimensional subspaces of $V$.

First, we give a mle for ordering the elements of a such subspace. If $U$ is an
m-dimensional subspace of $V$, then the cardinality of $U$ is $p^{m}$ . Since $U$ is a finite
dimensional subspace of $V,$ $U$ is covered by the $F_{p}$ -span of $(v_{i} : i<n)$ for some
natural number $n$ . Every element of $U$ can be written as a linear combination of
$(v_{j} : i<n)$ over $F_{p}$ . If we list all of them, we naturally get a $|U|\times n$ matrix with
entries in $F_{p}$ . Then we can find a unique row reduced echelon form of the matrix.
It has $m(=\dim U)$ nonzero rows, and the tuple of elements of $U$ represented by
those rows is an ordered basis of $U$. We call it the canonical basis of $U$. Order the
elements of $U$ lexicographically according to their coordinates with respect to the
canonical basis.

Now, if $U$ and $U$ ‘ are m-dimensional subspaces of $V$, we say that $U$ and $U$ ‘

have the same color if every corresponding m-tuples with respect to the above
ordering have the same $\Delta$-type. Note that the number of the colors is finite.

By the affine version of Ramsey’s theorem [1], $V$ has an $(m+1)$-dimensional
subspace $W$ all of whose m-dimensional subspaces have the same color. Let
$(a_{1}, \ldots,a_{m},a_{m+1})$ be the canonical basis of $W$.

All we have to show is that the corresponding m-tuples from $(a_{1},$ $\ldots,a_{m}$ ,
$a_{1}+\cdots+a_{m}+a_{m+1})$ and $(a_{1}, \ldots, a_{m},a_{1}+\cdots+a_{m})$ have the same $\Delta$-type. Let $U_{1}$

be the $F_{p}$-span of $\{a_{1}, \ldots, a_{m},a_{1}+\cdots+a_{m}+a_{m+1}\}\backslash \{a_{j}\}$ and $U_{2}$ the $F_{p}$ -span of
$\{a_{1}, \ldots, a_{m},a_{1}+ , . . +a_{m}\}\backslash \{a_{i}\}$ . Then their dimensions are both $m$ . Since $U_{1}$ has
the canonical basis $(a_{1}, \ldots, a_{j}+a_{m+1}, \ldots,a_{m})$ and $U_{2}$ has the canonical basis
$(a_{1}, \ldots, a_{j}, \ldots,a_{m}),$ $a_{1}+\cdots+a_{m}+a_{m+1}$ in $U_{1}$ and $a_{1}+\cdots+a_{m}$ in $U_{2}$ have the
same coordinate (1, $\ldots$ , 1). Thus, we get the desired result. $\blacksquare$

As there exists an infinite Abelian p-subgroup in a $\omega$-categorical group
(see [5]), we have the following.

COROLLARY 2.2. If Th $(M, \cdot)$ is countably categorical then it is not $(m,n)-$

homogeneous for any $m$ and $n$ .

We now tum to the stable case. In this case, Conjecture 1.2 holds by the
existence of stationary generic types.
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THEOREM 2.3. If Th $(M, \cdot)$ is stable then it is not $(m, n)$ -homogeneous for any
$m$ and $n$ .

$PR\infty F$ . It is enough to show that the theory is not $(m, m+1)$ -homogeneous
for any $m$ . Let $p$ be a stationary generic type over a model $N$, and $a_{1},$ $\ldots,a_{m}$

independent (over $N$ ) realizations of $p$ . Let $b=a_{1}\cdots\cdot\cdot a_{m}$ . Since $p$ is generic,
$tp(b/N)$ is also a stationary generic type, and any $m$ elements from $a_{1},$ $\ldots,a_{m},$

$b$

are independent over $N$.
Now choose $c$ such that tp $(c/a_{1}\ldots a_{m}N)$ is a nonforking extension of

$tp(b/N)$ and consider the two $(m+1)$-tuples $(a_{1}, \ldots, a_{m},b)$ and $(a_{1}, \ldots, a_{m}, c)$ .
They do not have the same type since $b$ is algebraic (definable) over $\{a_{1}, \ldots,a_{m}\}$

and $c$ is independent of $\{a_{1}, \ldots, a_{m}\}$ . But the corresponding m-tuples from both
tuples have the same type by the stationarity of types over a model. This shows
that the theory is not $(m,m+1)$ -homogeneous. $\blacksquare$

To finish this section, we consider the o-minimal case.

THEOREM 2.4. If Th $(M, \cdot, <)$ is o-minimal then it is not $(m, n)$ -homogeneous

for any $m$ and $n$ .

PROOF. Choose algebraically independent elements $a_{1},$
$\ldots,$

$a_{m}$ (in the big
model). lf we cannot choose such elements, then by compactness, there are
formulas $\psi_{l}(x;y1\cdots,y_{m-1})(i=1, \ldots,m)$ such that any m-tuple satisfies one of
$\psi_{1}\prime s$ (by permuting if necessary) and if $x,y1,$ $\ldots,y_{m-1}$ satisfies $\psi_{j}$ then $x$ is
algebraic over $y1,$ $\ldots,y_{m-1}$ . But if we choose an infinite indiscemible sequence
$\langle a_{i}|i<\omega\rangle$ , we get a contradiction by considering $a_{k},$ $a_{2k},$

$\ldots,$
$a_{mk}$ for sufficiently

large $k$ .
Let $b=a_{1}\cdots a_{m}$ and consider the types

$tp(b/A_{i})$ where $A_{l}=\{a_{1}, \ldots, a_{m}\}\backslash \{a_{j}\}$ .

Note that they are non-algebraic types. lf a formula $\varphi_{i}(x)$ belongs to $tp(b/A_{j})$

then it is a finite union of intervals by o-minimality. Without loss of generality,
we can assume that $\varphi_{i}(x)$ represents a single interval $[c_{i}, d_{i}]$ where $c_{j}$ and $d_{i}$ are
definable elements over $A_{i}$ (this may not be a closed interval, but the argument
will be the same in any case). Since $b$ is not algebraic over $A_{i},$ $b$ belongs to the
open interval $(c_{i}, d_{t})$ . As this is tme for each $i=1,$ $\ldots,m$ , the type

$tp(b/A_{1})\cup\cdots\cup tp(b/A_{m})$
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is non-algebraic by compactness. Choose $b^{\prime}\neq b$ satisfying this type. Considering
the tuples $(a_{1}, \ldots,a_{m}, b)$ and $(a_{1}, \ldots, a_{m}, b^{\prime})$ , we see that the theory is not
$(m,m+1)$ -homogeneous. $\blacksquare$

3. $(2,3)$-Homogeneous Theory

If the theory is simple then we can still find a generic type, but it is not
necessarily stationary. Instead, we can use the Independence Theorem due to
B. Kim and A. Hllay to prove the conjecture in a special form. But we could
not prove the conjecture in the general form.

We use the following definition and facts from [4] and [6].

DEFINITION 3.1. A l-type $p(x)$ over $A$ is called generic if for any $a$ realizing
$p$ and $b$ such that $a$ is independent from $b$ over $A,$ $a\cdot b$ is independent from $Ab$

over $\emptyset$ and so is $b\cdot a$ .

FACT 3.2. If Th $(M, \cdot)$ is simple then there is a generic type.

FACT 3.3 (Independence Theorem). Suppose the theory is simple. If $A$ and $B$

are independent over a model $M$ and a type $p1$ over $A$ and a type $q2$ over $B$ are
both nonforking extensions of a type $p$ over $M$, then there is a type $q$ over $a\cup B$

such that $q$ extends both $p_{1}$ and $p2$ , and $q$ does not fork over $M$.

THEOREM 3.4. If Th $(M, \cdot)$ is simple then it is not $(2,3)$ -homogeneous.

$PR\infty F$ . Let $p$ be a generic type over some model $N$, and $a_{1},$ $a_{2}$ independent
realizations of $p$ . Let $b=a_{1}\cdot a_{2}$ . Then both $tp(b/a_{1}N)$ and $tp(b/a_{2}N)$ do not fork
over $N$. By the Independence Theorem, we can choose $c$ such that $tp(c/a_{1}a_{2}N)$

does not fork over $N$ and $tp(c/a_{1}a_{2}N)$ extends both $tp(b/a_{1}N)$ and $tp(b/a_{2}N)$ .
This implies that corresponding pairs from $(a_{1},a_{2},b)$ and $(a_{1},a_{2}, c)$ have the same
type. On the other hand, $(a_{1},a_{2}, b)$ and $(a_{1}, a_{2}, c)$ have different types over $\emptyset$ since
$b=a_{1}\cdot a_{2}$ but $c$ is non-algebraic over $\{a_{1},a_{2}\}\cup N$ . $\blacksquare$
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