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ON THE GROUPS WITH HOMOGENEOUS THEORY

By

Kikyo HIROTAKA

1. Introduction

D. MacPherson proved that no infinite groups are interpretable in any
finitely homogeneous structure. A countable structure M is called finitely
homogeneous if its language is finite, its domain is countable, and every iso-
morphism between finite tuples in M extends to an automorphism of M.

We shall consider a similar condition which applies to general structures.

DeFiNiTION 1.1. Let 2 <m <n. We say that a structure M is (m,n)-
homogeneous if for any two n-tuples @, b from M, tp (@) = tp (b) if and only if
corresponding m-tuples from @ and b have the same type. A complete theory T is
(m, n)-homogeneous if every model of T is (m,n)-homogeneous.

Note that the additive group of integers (Z, +) is (2,n)-homogeneous for any
n > 2. But it turns out that its theory is not (n,n)-homogeneous for any m, n by
the stability and below.

In this paper, we treat the following conjecture:

CoNIJecTURE 1.2. If (M,-) is a group (it may have other structures) then the
theory of (M,-) is not (m,n)-homogeneous for any m, n such that 2 <m < n.

We call a theory (m,o0)-homogeneous if it is (m,n)-homogeneous for any
n > m. Handa studied (m, c0)-homogeneous theories and proved that no
infinite Abelian p-groups are interpretable in a model of such a theory, and if the
theory is w-stable in addition then no infinite groups are interpretable.

If the above conjecture is true then no groups are interpretable in a model of
(m, 00)-homogeneous theories. However, we cannot claim that no groups are
interpretable in a model of an (m,n)-homogeneous theory. The following
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example suggested by Ehud Hrushovski is w-stable, (2,3)-homogeneous, not
(3,4)-homogeneous, and interprets an infinite group.

ExaMPLE 1.3. Consider the projective line P! over an algebraically closed
field K and the action of PGL(2, K) on it. This group acts sharply 3-transitively
on P!. Define a relation R(z1,22,23,24, W1, W2, W3, Ws) OD P! as follows: There
is a regular linear map 4 in PGL(2, K) such that 4z; = w; for each i=1,2,3
and 4.

R is invariant under the action of PGL(2, K). Since this group acts sharply
3-transitively on P!, given two sets of three points {p,q,r} and {p’,q’,7'} for P!,
the relation R(z,p,q,r,w,p’,q’,r') between z and w represents an automorphism
of (P!, R) which belongs to PGL(2, K).

Now we can easily see that Th(P!,R) is (2,3)-homogeneous but (P!, R)
interprets the infinite group PGL(2, K). As we can interpret (P!, R) in the field K,
Th(P', R) is w-stable.

Moreover, the theory is not (3,4)-homogeneous. Choose three distinct points,
a,b,c from P! and a linear map A from PGL(2, K) sending a,b,c to b,c,a
respectively. Since K is algebraically closed, 4 has a fixed point d in P!. Note that
d is different from a, b and c. Choose a new point d’ from P! that is not fixed by
A. Then R(d,a,b,c,d,b,c,a) holds but R(d’,a,b,c,d’, b, c,a) does not hold. Since
there is only one 3-type realized by three distinct points, this shows that the
theory is not (3,4)-homogeneous.

Also, we cannot claim that no groups are definable in a model of an (m,n)-
homogeneous theory. The following example is due to Akito Tsuboi. This
example is w-categorical, w-stable, (2,3)-homogeneous, not (2,4)-homogeneous,
but some infinite groups are definable with three parameters.

EXAMPLE 1.4. Let Vi, V3, V3, V4 be four copies of Zg") where Z, is the
Ablian group of order 2. Let M be the disjoint union of these four sets, and
define the relation R(xj,x»,x3,x4) by x; € V; and x; + x2 + x3 + x4 = 0. Then
Th(M,R) is (2,3)-homogeneous but Zg“’) is definable in it.

First, we can recover a group structure on each V;. Fix three elements a, b, c
one from each V,, V3 and V4. The formula

3xy, x3[R(uz2, x2,b,¢) A R(u3,a,x3,¢) A R(uy, x2,x3, )]

is equivalent to uy +up +us +a+b+c=0 for u;, up, u3 in ¥; which gives a
group structure on V. The same argument works for each V.
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To show that there is only one 3-type realized by three distinct elements from
V1 is the most essential in the proof of (2, 3)-homogeneity of the theory. Consider
each V; as a vector space over the prime field of characteristic 2. Let {a;, as, a3}
and {b;,b2,b3} be two sets of three distinct elements from V7. Whether each set
is dependent or not, we can choose ¢ from V; so that {a; — c,a; — c¢,a3 — ¢} and
{by — ¢,bs — ¢,b3 — ¢} are both linearly independent sets. Let s be a linear
automorphism on ¥; sending each a; — ¢ to b; — c¢. Then o(x) = s(x —¢) + cis an
automorphism of V; which sends a; to b; for i = 1,2,3. Extend o to V5, V3 and
V4 by o(x) =s(x+c) —c on V3, and o(x) = s(x) on V3 and V4. Then o is an
automorphism of (M, R).

We prove Conjecture 1.2 with various additional conditions such as w-
categoricity, o-minimality, stability and simplicity (in Shelah’s sense), but it seems
very hard to prove it in general. In the simple case, we only prove that the theory
is not (2,3)-homogeneous. Also, we have not found a pure group with the (m, n)-
homogeneous theory for some m and n.

In this paper, the language is countable and the notation follows Pillay’s
book [7]

2, (m,n)-Homogeneous Theory

In this section, we prove that Conjecture 1.2 holds if Th(M) is w-categorical,
stable, or o-minimal.

THEOREM 2.1 If (M,-) has an infinite Abelian p-subgroup then Th(M,-) is not
(m, n)-homogeneous for any m and n.

PrOOF. The proof is much the same as Handa’s proof in [2] which is a
modification of Macpherson’s argument [5] We give the proof for reader’s
convenience.

We work in an Abelian subgroup and write the group operation additively.

It is enough to show that the theory is not (m,m + 1)-homogeneous for any
m. We find elements a,...,a,+1 that are linearly independent over a finite prime
field F, with the p elements, and the corresponding m-tuples from (a,...,am,
a+:-+an+an) and (ay,...,am,a1 + -+ a,) have the same type. Note
that we can describe this condition by a set of elementary formulas. We show
that for given finite set A of m-formulas, we can find elements ay,...,au+1
satisfying the above condition except that the phrase ‘“have the same type”
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changed to “have the same A-type”. Then by compactness, we get the desired
tuple.

Let V be an infinite Abelian p-subgroup of (M,-). Consider V as a vector
space over F,. We can assume that V' has the countable dimension over F,.
Choose a basis (v;:i < w) of V. Now we give a rule for coloring the m-
dimensional subspaces of V.

First, we give a rule for ordering the elements of a such subspace. If U is an
m-dimensional subspace of V, then the cardinality of U is p™. Since U is a finite
dimensional subspace of V, U is covered by the F,-span of (v; : i < n) for some
natural number n. Every element of U can be written as a linear combination of
(vi : i < n) over F,. If we list all of them, we naturally get a |U| x n matrix with
entries in F,. Then we can find a unique row reduced echelon form of the matrix.
It has m(= dim U) nonzero rows, and the tuple of elements of U represented by
those rows is an ordered basis of U. We call it the canonical basis of U. Order the
elements of U lexicographically according to their coordinates with respect to the
canonical basis.

Now, if U and U’ are m-dimensional subspaces of V, we say that U and U’
have the same color if every corresponding m-tuples with respect to the above
ordering have the same A-type. Note that the number of the colors is finite.

By the affine version of Ramsey’s theorem [I], ¥ has an (m + 1)-dimensional
subspace W all of whose m-dimensional subspaces have the same color. Let
(ai,...,am,am+1) be the canonical basis of W.

All we have to show is that the corresponding m-tuples from (a,...,am,
a+---+an+amy1) and (ay,...,am,a1 + - - - + a,) have the same A-type. Let U,
be the F,-span of {ai,...,am,a1 + -+ @m + amy1} \{a;} and U, the F,-span of
{a1,...,am,a1 + --- + am} \{a;}. Then their dimensions are both m. Since U; has
the canonical basis (aj,...,a; + @ms1,--.,am) and U, has the canonical basis
(ar,...,Qiy....am), &1+ +a@n+amy1 in Uy and a) + --- + a, in U, have the
same coordinate (1,...,1). Thus, we get the desired result. [ |

As there exists an infinite Abelian p-subgroup in a w-categorical group
(see [5]), we have the following.

COROLLARY 2.2. If Th(M,-) is countably categorical then it is not (m,n)-
homogeneous for any m and n.

We now turn to the stable case. In this case, Conjecture 1.2 holds by the
existence of stationary generic types.
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THEOREM 2.3. If Th(M,-) is stable then it is not (m,n)-homogeneous for any
m and n.

ProOOF. It is enough to show that the theory is not (m, m + 1)-homogeneous

for any m. Let p be a stationary generic type over a model N, and ay,...,an
independent (over N) realizations of p. Let b=a;----- an. Since p is generic,
tp(b/N) is also a stationary generic type, and any m elements from ay,...,am,b

are independent over N.

Now choose ¢ such that tp (¢/a;...anN) is a nonforking extension of
tp(b/N) and consider the two (m+ 1)-tuples (ai,...,am,b) and (ai,...,am,c).
They do not have the same type since b is algebraic (definable) over {ay,...,am}
and c is independent of {ay,...,a,}. But the corresponding m-tuples from both
tuples have the same type by the stationarity of types over a model. This shows
that the theory is not (m,m + 1)-homogeneous. |

To finish this section, we consider the o-minimal case.

THEOREM 2.4. If Th(M,-,<) is o-minimal then it is not (m,n)-homogeneous
for any m and n. ' '

Proor. Choose algebraically independent elements q,...,a, (in the big
model). If we cannot choose such elements, then by compactness, there are
formulas y;(x;»1,...,Ym-1) (i=1,...,m) such that any m-tuple satisfies one of
Yy’s (by permuting if necessary) and if x,yi,...,Ym-1 satisfies y; then x is
algebraic over yi,...,ym—1. But if we choose an infinite indiscernible sequence
{ai|i < @), we get a contradiction by considering ay,axx, .. .,am for sufficiently
large k.

Let b =a;---a, and consider the types
tp(b/A;) where A;={ay,...,am} \{ai}.

Note that they are non-algebraic types. If a formula ¢;(x) belongs to tp(b/A4;)
then it is a finite union of intervals by o-minimality. Without loss of generality,
we can assume that ¢;(x) represents a single interval [c;,d;] where ¢; and d; are
definable elements over A4; (this may not be a closed interval, but the argument
will be the same in any case). Since b is not algebraic over 4;, b belongs to the
open interval (c;,d;). As this is true for each i =1,...,m, the type

tp(b/A1)U---Utp(b/Am)
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is non-algebraic by compactness. Choose b’ # b satisfying this type. Considering
the tuples (ai,...,am,b) and (ay,...,am,b’), we see that the theory is not
(m,m + 1)-homogeneous. |

3. (2,3)-Homogeneous Theory

If the theory is simple then we can still find a generic type, but it is not
necessarily stationary. Instead, we can use the Independence Theorem due to
B. Kim and A. Pillay to prove the conjecture in a special form. But we could
not prove the conjecture in the general form.

We use the following definition and facts from [4] and [6].

DEerFINITION 3.1. A 1-type p(x) over A is called generic if for any a realizing
p and b such that a is independent from b over A4, a-b is independent from A4b
over § and so is b-a.

Facr 3.2. If Th(M,-) is simple then there is a generic type.

Fact 3.3 (Independence Theorem). Suppose the theory is simple. If A and B
are independent over a model M and a type py over A and a type q, over B are
both nonforking extensions of a type p over M, then there is a type q over aU B
such that q extends both p, and p,, and q does not fork over M.

THEOREM 3.4. If Th(M,-) is simple then it is not (2,3)-homogeneous.

PrOOF. Let p be a generic type over some model N, and a,, a; independent
realizations of p. Let b = a; - ;. Then both tp(b/a;N) and tp(b/a;N) do not fork
over N. By the Independence Theorem, we can choose ¢ such that tp(c/a;a;N)
does not fork over N and tp(c/aia;N) extends both tp(b/a;N) and tp(b/axN).
This implies that corresponding pairs from (a;,a»,b) and (a;, as, c) have the same
type. On the other hand, (ay,a,,b) and (ay, a,, ¢) have different types over @ since
b =a; - a; but ¢ is non-algebraic over {a1,a2}UN. [ ]
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