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A FAMILY OF INFINITELY DEGENERATE OPERATORS

OF SECOND ORDER
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0. Introduction

In [17] hypoellipticity and local non-solvability were studied for a special
family of infinitely degenerate operators of second order. The family of operators
was chosen such that for $\varphi\in(-\pi/2, \pi/2)$ the operators $P_{\varphi}$ are degenerate elliptic
besides for $\varphi=\pm\frac{\pi}{2}$ . In these cases the operators are weakly hyperbolic. More
precisely, the family of operators $\{P_{\varphi}\}_{\varphi\in[0,\pi/2)}$ ,

(0.1) $P_{\varphi}=D_{t}^{2}+e^{2i\varphi}t^{-4}\exp(-2|t|^{-1})D_{x}^{2}-b(t)e^{i\varphi}t^{-4}\exp(-|t|^{-1})D_{X}$

was considered, while

(0.2) $b(t)=\left\{\begin{array}{l}b_{-}\in C\\b_{+}\in C\end{array}\right.$ $whent\geq 0whent<0$
,

is a piecewise constant function. In [10] hypoellipticity and non-hypoellipticity for
$P_{0}$ were studied in the cases $b_{+}=b_{-}$ and $b_{+}=-b_{-}$ . In both papers [10], [17] a
connection between hypoellipticity for degenerate elliptic and effect of branching
of singularities for weakly hyperbolic operator was mentioned. The full classi-
fication for hypoellipticity in [17] and for branching properties for the corre-
sponding weakly hyperbolic operator in [1] makes it possible to conclude an
interesting connection.

“The weakly hyperbolic equation $P_{\pi/2}u=0$ has a solution whose wave front
set coincides with a simple ray passes through the origin $(0,0)$ and is completely
reflected by it if and only if the operator $P_{0}$ is not hypoelliptic at the origin.”

This observation seems to be new and very interesting in the theory of
degenerate partial differential operators. Is this observation a chance for the
special family of operators (0.1), (0.2)? May be not, because one can find the
same connection for a special family of finitely degenerate operators. It follows
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from results of [7], [14], [22]. In the present paper we deal with the family of
infinitely degenerate operators $\{L_{\varphi}\}_{\varphi\in(-\pi/2,\pi/2)}$ ,

(0.3) $L_{\varphi}$
$:=D_{t}^{2}u+\lambda^{2}(t)e^{2i\varphi}D_{X}^{2}u-b(t)e^{i\varphi}D_{x}u$ ,

where the coefficients $\lambda(t),$ $b(t)$ satisfy the assumptions which are cited in section 1.
Hypoellipticity and local solvability for $L_{0}$ were investigated in several

papers. Firstly, let us mention the case that $\lambda=\lambda(t)$ has a zero of finite order in
$t=0$ . In [8] hypoellipticity was proved if $b(t)=0$ . Some examples of operators
$L_{0}$ with term of lower order were studied in [7], [14]. Hypoellipticity for general
operator $L_{0}$ was obtained in [26], [16].

Secondly, we cite some papers for the case that $\lambda=\lambda(t)$ has a zero of infinite
order (infinite degeneracy). The result from [8] was generalized in [5]. The papers
[9], [21] are devoted even to the case of operator $L_{0}$ with infinite degeneracy
including term of lower order. The Levi conditions were used there are more
restrictive than the ones are formulated later (see (1.5)).

May be that one cannot expect this interesting connection in the general
case $\{L_{\varphi}\}$ of (0.3) because it implies connection between elliptic and hyperbolic
theory. But for $\{P_{\varphi}\}_{\varphi\in[0,\pi/2)}$ some other properties could be proved in [17]:

(A1) Assume that neither $b_{+}=-2l-1,$ $b_{-}=-2n-1$ nor $b_{+}=2l+1$ ,
$b_{-}=2n+1$ , where $n$ and $l$ are non-negative integers. Then every
operator $P_{\varphi},$ $\varphi\in[0, \pi/2$), is hypoelliptic as well as locally solvable at
$(0,0)$ .

(A2) Assume that either $b_{+}=-2l-1,$ $b_{-}=-2n-1$ or $b_{+}=2l+1$ ,
$b_{-}=2n+1$ , where $n$ and $l$ are non-negative integers. Then every
operator $P_{\varphi},$ $\varphi\in[0, \pi/2$), is non-hypoelliptic as well as locally non-
solvable at $(0,0)$ .

The goal of the present paper is to derive corresponding results for the
family $\{L_{\varphi}\}_{\varphi\in(-\pi/2,\pi/2)}$ .

An important tool for describing the properties of $\{L_{\varphi}\}_{\varphi\in(-\pi/2,\pi/2)}$ is the so-
called Stokes matrix $(T_{ij}(b, \varphi, \xi))_{i}^{2_{j=1}}$

, (see section 1). In [2], [19], [20] this Stokes
matrix is used for precise description of branching of singularities for weakly
hyperbolic operators with finite degeneracy.

Among other results will be proved in the present paper we mention only
one which follows from Theorem 4.7.

THEOREM 0.1. If one of the Stokes coefficients $T_{11}(\pm b, \varphi_{0}, \xi),$ $\varphi_{0}\in$

$(-\pi/2, \pi/2)$ , vanishes for all sufficiently large positive $\xi$ , then all operators
$L_{\varphi},$ $\varphi\in(-\pi/2, \pi/2)$ , are non-hypoelliptic at $(0,0)$ .
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1. Assumptions, tools and philosophy of approach

At first we want to describe the class of operators will be studied in this
paper. With an arbitrary $\varphi\in(-\pi/2, \pi/2)$ let us consider (0.3). The real-valued
function $\lambda\in C^{\infty}([-1,1])$ vanishes at $t=0(\lambda(0)=\lambda^{\prime}(0)=0)$ , while $|\lambda^{\prime}(t)|>0$ for
$t\neq 0$ . In the following $\lambda^{\prime}$ means $d\lambda/dt$ . Moreover, defining $\Lambda(t)=\int_{0^{l}}\lambda(r)dr$ we
assume

(1.1) $\lambda^{2}\Lambda^{-1}\in C^{\infty}([-1,1])$ ,

(1.2) $C_{0}|\lambda(t)/\Lambda(t)|\leq|\lambda^{\prime}(t)/\lambda(t)|\leq C_{1}|\lambda(t)/\Lambda(t)|$ ,

(1.3) $|\lambda^{(k)}(t)|\leq c_{k}|\lambda^{\prime}(t)/\lambda(t)|^{k-1}|\lambda^{\prime}(t)|$ ,

(1.4) $C_{2}|\ln\lambda(t)|\leq|\lambda^{\prime}(t)/\lambda(t)|\leq C_{3}|\ln\lambda(t)|^{d}$

for all $t\in[-1,1]\backslash \{0\},k=1,2,$ $\ldots$ , where $d,$ $c_{k}$ , and $C_{i}$ are non-negative con-
stants, $C_{0}>1/2$ . It is easy to see that the condition (1.4) implies degeneracy of
infinite order. Moreover, (1.4) implies additionally

$\lambda(t)\leq\exp\{-\epsilon_{0}|t|^{-}\}$ for all $t\in[-1,1]\backslash \{0\}$

with some positive constants $\epsilon_{0}$ and $\epsilon_{1}$ .
The condition $|\lambda^{\prime}(t)|>0$ excludes difficulties which arise by oscillations of

the principal symbol near $t=0$ . Indeed, the result of [4] shows that in the case
of weakly hyperbolic operator without terms of lower order and which has
infinitely number of oscillations near $t=0$ one cannot expect results of non-
degenerate theory.

lf the equation $L_{\varphi}u=0$ has lower order terms, then it is reasonable to
suppose Levi conditions. For $L_{\varphi}$ the Levi conditions are the following [24]:

(1.5) $(\frac{d}{dt})^{k}b(t)\leq C_{k}\frac{\lambda^{2}(t)}{|\Lambda(t)|}(\frac{\lambda^{\prime}(t)}{\lambda(t)})^{k}$

for all $t\in[-1,1]\backslash \{0\},$ $k=0,1,$ $\ldots$ , where $C_{k}$ are positive constants.
To study $L_{\varphi}u=f$ we transform $L_{\varphi}$ to an ordinary differential equation with

a tuming point of infinite order $t=0$ . Following the approach of [25] two linear
independently solutions $u_{1}$ and $u_{2}$ of

(1.6) $(d/dt)^{2}u-\lambda^{2}(t)e^{2i\varphi}\xi^{2}u+b(t)e^{i\varphi}\xi u=0$

of the form

$u_{1}(t, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t)}a_{1}(t, \varphi, \xi)$ , $u_{2}(t, \varphi, \xi)=e^{-\xi e^{i\varphi}\Lambda(t)}a_{2}(t, \varphi, \xi)$
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are constmcted in section 2, where $a_{1}$ and $a_{2}$ are amplitude functions having
relations to suitable symbol classes (see Theorem 2.1).

We restrict ourselves to the case $\xi>0$ . The case $\xi<0$ can be transformed
to the first one. One has only to study

$(d/dt)^{2}u-\lambda^{2}(t)e^{2i\varphi}(-\xi)^{2}u-b(t)e^{i\varphi}(-\xi)u=0$ .

For the construction of these two solutions $u_{1},$ $u_{2}$ we use the subsets
$Z_{ext}(M, N)$ and $Z_{int}(M,N)$ of $\{(t, \xi)\in[0,1]\times\overline{R_{M}^{+}}\}$ . Here $\overline{R_{M}^{+}}:=\{\xi\in R|\xi\geq$

$M>0\}$ . Firstly, we consider the exterior zone $Z_{ext}(M, N)$ defined for some
positive numbers $M$ and $N$ as

$Z_{ext}(M, N)=\{(t, \xi)\in[0,1]\times\overline{R_{M}^{+}}|\langle\xi\}\geq M,$ $\Lambda(t)\langle\xi$ } $\geq N\ln\{\xi\}\}$ .

Let $t_{\xi}>0$ be the root of

(1.7) $\Lambda(t)\langle\xi\rangle=N\ln\langle\xi\rangle$ .

We carry out these constmctions for all $(\varphi, \xi)\in Z_{e}(M, N,\delta)$ is defined as

(1.8) $Z_{e}(M, N,\delta)=\{(\varphi, \xi)\in(-\pi/2, \pi/2)\times\overline{R_{M}^{+}}|\ln\langle\xi\}\cos\varphi\geq\delta\}$

with suitable positive constants $M,$ $ N,\delta$ . This is enough for the consideration of
the degenerate elliptic operator $L_{\varphi}$ in section 4.

A main tool to describe the construction of $a_{1}$ are the symbol classes

$S\{m_{1}, m_{2}\}_{M,N}=\{a(t, \varphi, \xi)\in C^{\infty}(Z_{e,ext}(M, N,\delta))||D_{t}^{l}D_{\xi}^{\rho}a(t, \varphi, \xi)|$

$\leq C_{l_{1}p}\langle\xi\}^{m_{1}-p}(\lambda(t)/\Lambda(t))^{l}(\ln\langle\xi\rangle)^{m_{2}}\}$ .

Here

$Z_{e,ext}(M, N,\delta)=\{(t, \varphi, \xi)\in[0,1]\times(-\pi/2, \pi/2)\times\overline{R_{M}^{+}}|$

$(t, \xi)\in Z_{ext}(M, N)$ and $(\varphi, \xi)\in Z_{e}(M, N,\delta)$ }.

The amplitude function $a_{1}$ has a relation to $S\{m_{1}, m_{2}\}_{M,N}$ .
To construct $a_{2}$ we shall use the symbol classes (compare with [23])

$S\{m_{1},m_{2},m_{3}\}_{M,N}=\{a(t, \varphi, \xi)\in C^{\infty}(Z_{e,ext}(M,N,\delta))||D_{t}^{l}D_{\xi}^{\rho}a(t, \varphi, \xi)|$

$\leq C_{l,p}\langle\xi\rangle^{m_{1}-p}\lambda(t)^{m_{2}}(\lambda(t)/\Lambda(t))^{m_{3}+l}\}$ .

The amplitude function $a_{2}$ has a relation to $S\{m_{1}, m_{2},m_{3}\}_{M,N}$ . For better
understanding of this symbol class we note that $a\in S\{-l, -l, I\}_{M,N}$ satisfies

$|a(t, \varphi, \xi)|\leq C_{0,0}(\langle\xi\rangle\Lambda(t))^{-l}\leq C_{0,0}(N\ln\langle\xi\rangle)^{-l}$ .
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For further calculations we need

LEMMA 1.1. The function $t_{\xi}$ is as a smooth function of $\xi$ defined on $\overline{R_{M}^{+}}$ . For
its derivatives one has

(1.9) $\frac{\partial t_{\xi}}{\partial\xi}=\frac{N(1-\ln\xi)}{\xi^{2}\lambda(t_{\xi})}$ ,

while for every integer $k,$ $k\geq 1$ , the following estimate holds:

(1.10) $\frac{\partial^{(k+1)}t_{\xi}}{\partial\xi^{(k+1)}}\leq C_{k}\xi^{-k}\frac{\partial t_{\xi}}{\partial\xi}$ .

PROOF. The first formula is obvious, while the estimates for derivatives can
be proved by induction.

Taking account of $(t_{\xi}, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ we have data $u_{i}(t_{\xi}, \varphi, \xi)$ and
$\partial_{t}u_{i}(t_{\xi}, \varphi, \xi)$ on $t=t_{\xi}$ . One can show that these solutions $u_{1},$ $u_{2}$ can be continued
with respect to $t$ to the interval $[0, t_{\xi}]$ . Consequently, $(t, \varphi, \xi)\in Z_{e,int}(M, N,\delta)$ .
Here

$Z_{e,inl}(M, N,\delta)=\{(t, \varphi, \xi)\in[0,1]\times(-\pi/2, \pi/2)\times\overline{R_{M}^{+}}|$

$(t, \xi)\in Z_{int}(M, N)$ and $(\varphi, \xi)\in Z_{e}(M,N,\delta)$ },

where, $Z_{int}(M, N)$ is defined as

$Z_{int}(M, N)=\{(t, \xi)\in[0,1]\times\overline{R_{M}^{+}}|\langle\xi\rangle\geq M, \Lambda(t)\langle\xi\rangle\leq N\ln\langle\xi\rangle\}$ .

The amplitude functions are satisfying estimates from Theorem 2.1.
In section 4.1 we follow the approach of [14], [17]. The construction of

Green’s function is carried out. An estimate which leads to hypoellipticity will
be given in Corollary 4.1. In [17] we were able to express conditions for
hypoellipticity and non-hypoellipticity through the behaviour of $b=b(t)$ (see

(0.2), (A1) and (A2) from introduction). This seems to be impossible for the
general differential operator $L_{\varphi}$ .

An effective tool for the description of sufficient conditions for hypo-
ellipticity, local solvability, local non-solvability and non-hypoellipticity is the
so-called Stokes matrix $(T_{ij}(b, \varphi, \xi))_{i}^{2_{j=1}},\cdot$ Let us define this matrix.

Suppose that we have constmcted solutions $u_{1},$ $u_{2}$ of (1.6) with coefficient
$b=b(t)$ . Let us denote these by

(1.11) $u_{1}^{+}(t, \varphi, \xi)=e^{\xi e^{i\prime}\Lambda(t)}a_{1}^{+}(t, \varphi, \xi)$ , $u_{2}^{+}(t, \varphi, \xi)=e^{-\xi e^{i\varphi}\Lambda(t)}a_{2}^{+}(t, \varphi, \xi)$
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for $t\in[0,1]$ , and

(1.12) $u_{1}^{-}(t, \varphi, \xi)=e^{\xi e^{l\varphi}\Lambda(t)}a_{1}^{-}(t, \varphi, \xi)$ , $u_{2}^{-}(t, \varphi, \xi)=e^{-\xi e^{l\varphi}\Lambda(t)}a_{2}^{-}(t, \varphi, \xi)$

for $t\in[-1,0]$ . Then the solutions $u_{1}^{-}$ and $u_{2}^{-}$ can be continued as solutions of
ordinary differential equations for $t\in[0,1]$ . If we know that $u_{1}^{+},$ $u_{2}^{+}$ are linear
independent solutions for $t\in[0,1]$ , then it is clear that the continuations $u_{1}^{-c},$ $u_{2}^{-c}$

of $u_{\overline{1}},$ $u_{\overline{2}}$ respectively, are linear combinations of $u_{1}^{+},$ $u_{2}^{+}$ . Especially, it holds for
$t=0$ and $i=1,2$

(1.13) $u_{i}^{-}(-0, \varphi, \xi)=T_{i1}(b, \varphi, \xi)u_{1}^{+}(+0, \varphi, \xi)+T_{i2}(b, \varphi, \xi)u_{2}^{+}(+0, \varphi, \xi)$ ,

(1.14) $\partial_{t}u_{i}^{-}(-0, \varphi, \xi)=T_{i1}(b, \varphi, \xi)\partial_{t}u_{1}^{+}(+0, \varphi, \xi)+T_{i2}(b, \varphi, \xi)\partial_{t}u_{2}^{+}(+0, \varphi, \xi)$ .

The elements $T_{ij}(b, \varphi, \xi)$ form the Stokes matrix. By the aid of some elements of
Stokes matrix sufficient conditions for hypoellipticity, local solvability, local non-
solvability and non-hypoellipticity will be given in Theorem 4.2, 4.4, 4.6 and
Corollary 4.2, respectively. A uniqueness property of $T_{11}(b, \varphi, \xi)$ will be proved in
section 4.2.

It seems to be interesting to formulate the conditions for hypoellipticity,
local solvability, local non-solvability and non-hypoellipticity from [7], [14] by
the aid of the Stokes matrix.

2. Equations with a turning point of infinite order depending on parameter

We consider the linear ordinary equation

(2.1) $(d/dt)^{2}u-\lambda^{2}(t)e^{2i\varphi}\xi^{2}u+b(t)e^{i\varphi}\xi u=0$

with parameters $(\varphi, \xi)\in Z_{e}(M,N,\delta)$ . Here $t=0$ is a tuming point of infinite
order [15], [25].

THEOREM 2.1. Under the assumptions $(1.1)-(1.5)$ there exists for all
$\varphi\in(-\pi/2, \pi/2)$ solutions $u_{1}(t, \varphi, \xi),$ $u_{2}(t, \varphi, \xi)$ having representations

(2.2) $u_{1}(t, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t)}a_{1}(t, \varphi, \xi)$ , $u_{2}(t, \varphi, \xi)=e^{-\xi e^{l\varphi}\Lambda(t)}a_{2}(t, \varphi, \xi)$ .

The functions $a_{i}$ are amplitude functions satisfying with suitable constants $m_{i}$

(2.3) $(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial\xi})^{p}a_{i}(t, \varphi, \xi)\leq C_{l,p,i}\{\xi\rangle^{m_{l}-p}$

for all $t\in[0,1]$ and $(\varphi, \xi)\in Z_{e}(M, N,\delta)$ .

A proof of this result is deferred to the following subsections.
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2.1. Construction of formal asymptotic solutions in $Z_{e,ext}(M,N,\delta)$

Firstly, we are looking for formal asymptotic solutions

(2.4) $y1(t, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t)}a_{1}(t, \varphi, \xi)$ , $y2(t, \varphi, \xi)=e^{-\xi e^{i\varphi}\Lambda(t)}a_{2}(t, \varphi, \xi)$

with amplitude functions $a_{1}(t, \varphi, \xi),$ $a_{2}(t, \varphi, \xi)$ developing in finite expansions

(2.5) $a_{1}=\sum_{l=0}^{L}a_{1,l}$ , $a_{2}=\sum_{l=0}^{L}a_{2,l}$ .

We seek for $a_{i,j}$ as solutions of the following equations:

$(a_{1,0})_{t}+K_{1}(t)a_{1,0}=0$ , $(a_{2,0})_{t}+K_{2}(t)a_{2,0}=0$ ,

$(a_{1,k+1})_{t}+K_{1}(t)a_{1,k+1}=-\frac{1}{2\xi\lambda(t)e^{i\varphi}}(a_{1,k})_{tt}$ ,

$(a_{2,k+1})_{t}+K_{2}(t)a_{2,k+1}=\frac{1}{2\xi\lambda(t)e^{i\varphi}}(a_{2,k})_{ll}$ ,

where we have denoted

$K_{1}(t)=\frac{\lambda^{\prime}(t)+b(t)}{2\lambda(t)}$ , $K_{2}(t)=\frac{\lambda^{\prime}(t)-b(t)}{2\lambda(t)}$

Moreover we prescribe the data

$a_{1,0}(t_{\xi}, \varphi, \xi)=a_{2,0}(T, \varphi, \xi)=1$ , $a_{1,k+1}(t_{\xi}, \varphi, \xi)=a_{2,k+1}(T, \varphi, \xi)=0$ .

Hence we conclude for $k=0,1,$ $\ldots$ the representations

$a_{1,0}(t, \varphi, \xi)=e^{-\int_{\iota_{\xi}}^{l}K_{1}(s)d}$ , $a_{2,0}(t, \varphi, \xi)=e^{\int_{t}^{T}K_{2}(s)ds}$ ,

$a_{1,k+1}(t, \varphi, \xi)=-\int_{l}^{\iota_{\xi}}\frac{1}{2\xi\lambda(t_{1})e^{i\varphi}}(a_{1,k}(t_{1}, \varphi, \xi))_{t_{1}t_{1}}e^{-\int_{t}^{\iota_{1}}K_{1}(s)ds}dt_{1}$ ,

$a_{2,k+1}(t, \varphi, \xi)=-\int_{t}^{T}\frac{1}{2\xi\lambda(t_{1})e^{i\varphi}}(a_{2,k}(t_{1}, \varphi, \xi))_{t_{1}t_{1}}e^{\int_{t_{1}}^{t}K_{2}(s)ds}dt_{1}$ .

Moreover, the functions $b_{1,k}(t, \varphi, \xi)$ are defined by

(2.6) $b_{1,k}(t, \varphi, \xi)=a_{1,k}(t, \varphi, \xi)\exp(\int_{t}^{t_{\xi}}K_{1}(s)ds)$
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fulfil for $k=0,1,2,$ $\ldots$

$(b_{1,k+1}(t, \varphi, \xi))_{l}=-\frac{1}{2\xi e^{i\varphi}\lambda(t)}\{(b_{1,k}(r, \varphi, \xi))_{tt}-2K_{1}(t)(b_{1,k}(t, \varphi, \xi))_{t}$

(2.7) $-((K_{1}(t))_{t}+K_{1}^{2}(t))b_{1,k}(t, \varphi, \xi)$ },

(2.8) $b_{1,0}(t, \varphi, \xi)=1$ , $b_{1,k+1}(t_{\xi}, \varphi, \xi)=0$ .

Hence we have in $Z_{e,ext}(M, N,\delta)$ for $k=1,2,$ $\ldots$ , the representations

$b_{1,k}(t, \varphi, \xi)=-\frac{1}{2\xi e^{i\varphi}}\int_{t^{t_{\xi}}}\frac{1}{\lambda(s)}\{(b_{1,k-1}(s, \varphi, \xi))_{ss}-2K_{1}(s)(b_{1,k-1}(s, \varphi, \xi))_{s}$

(2.9) $-((K_{1}(s))_{s}+K_{1}^{2}(s))b_{1,k-1}(s, \varphi, \xi)$ } $ds$ .

LEMMA 2.1. The functions $b_{1,k}(t, \varphi, \xi)$ have the following properties:
For every $k$, and any $l,p$ there exist constants $C_{k},{}_{l}C_{k},{}_{p}C_{k,l,p}$ such that the

inequalities

(2.10) $|(\frac{\partial}{\partial t})^{l}b_{1,k}(t, \varphi, \xi)|\leq C_{k,l}(\frac{\lambda(t)}{\Lambda(t)})^{l}\rho_{k}(t, \xi)$ ,

(2.11) $|(\frac{\partial}{\partial\xi})^{p}b_{1,k}(t, \varphi, \xi)|\leq C_{k,p}\langle\xi\rangle^{-p}(\rho_{k}(t, \xi)+(\ln\langle\xi\rangle)^{-k})$ ,

(2.12) $|(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial\xi})^{p}b_{1,k}(t, \varphi, \xi)|\leq C_{k,l,p}\langle\xi\rangle^{-p}(\frac{\lambda(t)}{\Lambda(t)})^{l}p_{k}(t, \xi)$ , $l\neq 0$ ,

hold for all $(t, \varphi, \xi)\in Z_{e,ext}(M,N,\delta)$ , where $\rho_{0}(t, \xi)=1$ and

$p_{k}(t, \xi)=\langle\xi\rangle^{-k}\{\frac{1}{\Lambda^{k}(t)}+\sum_{i=0}^{k-1}\int_{t^{l_{\xi}}}\frac{\lambda(s)}{\Lambda^{k+1-i}(s)}(\int_{t}^{s_{\xi}}\frac{\lambda(\tau)}{\Lambda^{2}(\tau)}d\tau)^{j}ds\}$ , when $k=1,2,$ $\ldots$ .

PROOF. This follows, immediately, by induction if we use (2.7) to (2.9).

COROLLARY 2.1. There are positive constants $M,$ $N,$ $C_{0},$ $\delta_{0}$ such that

(2.13) 1) the function $a_{1}(t, \varphi, \xi)\exp(\int_{t^{t_{\xi}}}K_{1}(s)ds)$ belongs to $S\{0,0\}_{M,N}$ ,

2) $|a_{1}(t, \varphi, \xi)|\geq C_{0}(1+\xi)^{-\delta_{0}}$ for all $(t, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ .
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LEMMA 2.2. 1) Let $P$ be a given positive integer number. Let us set
$y1(t, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t)}a_{1}(t, \varphi, \xi)$ . Then for a sufficiently large $L$ there exists an
amplitude function $h_{1,L}(t, \varphi, \xi)$ satisfying

$(\frac{d^{2}}{dt^{2}}-\lambda^{2}(t)e^{2i\varphi}\xi^{2}+b(t)e^{i\varphi}\xi)y1=e^{\xi e^{i\varphi}\Lambda(t)}h_{1,L}(t, \varphi, \xi)$ ,

where $h_{1,L}(t, \varphi, \xi)\exp(\int_{t^{t_{\xi}}}K_{1}(s)ds)$ belongs to $S\{0, -P\}_{M,N}$ .
2) Moreover, for every $k$ and $l$ and sufficiently large $L=L(k, l)$

$|(\frac{\partial}{\partial t})^{l}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t}^{t_{\xi}}K_{1}(s)ds))|\leq C_{k,l}\rho_{k}(t, \xi)$ for all $(t, \varphi,\xi)\in Z_{e,ext}(M,N,\delta)$ .

PROOF. With the operator

$Q(t,$ $\xi,\frac{\partial}{\partial t})=\frac{\partial}{\partial t}+K_{1}(t)+\frac{1}{2\xi e^{i\varphi}\lambda(t)}\frac{\partial^{2}}{\partial t^{2}}$

we have

$(\frac{d^{2}}{dt^{2}}-\lambda^{2}(t)e^{2i\varphi}\xi^{2}+b(t)e^{i\varphi}\xi)y1$

$=2\xi e^{i\varphi}\lambda(t)e^{\xi e^{\iota\varphi}\Lambda(t)}Q(t,$ $\xi,\frac{\partial}{\partial t})a_{1}(t, \varphi, \xi)$

$=2\xi e^{i\varphi}\lambda(t)e^{\xi e^{i\varphi}\Lambda(t)}\frac{1}{2\xi e^{i\varphi}\lambda(t)}(a_{1,L}(t, \varphi, \xi))_{tt}$

if we use $a_{1}(t, \varphi, \xi)=\sum_{l=0}^{L}a_{1,l}(t, \varphi, \xi)$ . Thus

$h_{1,L}(t, \varphi, \xi)=(a_{1,L}(t, \varphi, \xi))_{tt}=(b_{1,L}(t, \varphi, \xi)\exp(-\int_{t}^{t_{\xi}}K_{1}(s)ds))_{tt}$

On the other side

$h_{1,L}(t, \varphi, \xi)\exp(\int_{l}^{t_{\xi}}K_{1}(s)ds)=\{(b_{1,L}(t, \varphi, \xi))_{tt}-2K_{1}(t)(b_{1,L}(t, \varphi, \xi))_{t}$

$-((K_{1}(t))_{\iota}+K_{1}^{2}(t))b_{1,L}(t, \varphi, \xi)\}$ .
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Using Lemma 2.1 we conclude with a constant $C=C_{l,L}$

$|\partial_{t}^{l}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t^{t_{\xi}}}K_{1}(s)ds))|$

$\leq C_{l,L}(\frac{\lambda(t)}{\Lambda(t)})^{l+2}\rho_{L}(t, \xi)\leq C_{l,L}\langle\xi\rangle^{-L}(\frac{\lambda(t)}{\Lambda(t)})^{l+2}$

$\times\{\frac{1}{\Lambda^{L}(t)}+\sum_{i=0}^{L-1}\int_{t^{t_{\xi}}}\frac{\lambda(s)}{\Lambda^{L+1-i}(s)}(\int_{t}^{s_{\xi}}\frac{\lambda(\tau)}{\Lambda^{2}(\tau)}d\tau)^{i}ds\}$

$\leq C_{l,L}\langle\xi\rangle^{-L}(\frac{\lambda(\iota)}{\Lambda(t)})^{l+2}\{\frac{1}{\Lambda^{k}(\iota)\Lambda^{L-k}(t_{\xi})}$

$+\frac{1}{\Lambda^{L-k}(t_{\xi})}\sum_{i=0}^{k-1}\int_{t^{t_{\xi}}}\frac{\lambda(s)}{\Lambda^{k+1-i}(s)}(\int_{t}^{s_{\xi}}\frac{\lambda(\tau)}{\Lambda^{2}(\tau)}d\tau)^{i}ds$

$+\sum_{i=k}^{L-1}\frac{1}{\Lambda^{L-1-i}(t_{\xi})}(\int_{t}^{s_{\xi}}\frac{\lambda(\tau)}{\Lambda^{2}(\tau)}d\tau)^{i-k+1}\int_{t^{l_{\xi}}}\frac{\lambda(s)}{\Lambda^{2}(s)}(\int_{t}^{s_{\xi}}\frac{\lambda(\tau)}{\Lambda^{2}(\tau)}d\tau)^{k-1}ds\}$ .

Using $\int_{t}^{s_{\xi}}(\lambda(\tau)/\Lambda^{2}(\tau))d\tau\leq(1/\Lambda(t_{\xi}))$ it follows

$|\partial_{l}^{l}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t^{l_{\xi}}}K_{1}(s)ds))|\leq C_{k,l,L}(\{\xi\rangle\Lambda(\iota_{\xi}))^{-L+k}(\frac{\lambda(t)}{\Lambda(r)})^{l+2}p_{k}(t, \xi)$ .

Finally, the condition (1.4) and definition of $t_{\xi}$ from (1.7) imply

$|\partial_{t}^{l}(h_{1,L}(\iota, \varphi, \xi)\exp(\int_{t^{t_{\xi}}}K_{1}(s)ds))|\leq C_{k,l,L}(\ln\langle\xi\})^{(l+2)d-L+k}\rho_{k}(t, \xi)$ .

Then a sufficiently large $L=L(k, l)$ gives the second statement for $(t, \varphi, \xi)\in$

$Z_{e,ext}(M, N,\delta)$ .
To prove the first statement we have to show

$|\partial_{t}^{l}\partial_{\xi}^{\rho}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t^{t_{\xi}}}K_{1}(s)ds))|\leq C_{l,L,p}\langle\xi\rangle^{-p}(\frac{\lambda(t)}{\Lambda(t)})^{l}(\ln\langle\xi\rangle)^{-P}$ .

Using (2.11), (2.12) from Lemma 2.1 we conclude for $l\geq 1$

$|\partial_{t}^{l}\partial_{\xi}^{\rho}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t}^{t_{\xi}}K_{1}(s)ds))|\leq C_{l,L,p}\langle\xi\rangle^{-p}(\frac{\lambda(t)}{\Lambda(t)})^{l+2}p_{L}(t, \xi)$ ,

$|\partial_{\xi}^{\rho}(h_{1,L}(t, \varphi, \xi)\exp(\int_{t^{l_{\xi}}}K_{1}(s)ds))|\leq C_{L,p}\langle\xi\}^{-p}(\rho_{L}(t, \xi)+(\ln\{\xi\rangle)^{-L})\frac{\lambda^{2}(t)}{\Lambda^{2}(t)}$ .
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Together with condition (1.4) and $\rho_{L}(t, \xi)\leq(\ln\{\xi\rangle)^{-L}$ we arrive at the first
statement if $L$ is large.

Starting from the construction of $a_{2,k}$ one can prove corresponding results,

where we have to define

(2.14) $b_{2,k}(t, \varphi, \xi)=a_{2,k}(t, \varphi, \xi)e^{-\int_{l}^{T}K_{2}(s)ds}$ .

LEMMA 2.3. 1) The function $b_{2,k}(t, \varphi, \xi)$ belongs to symbol class
$S\{-k, -k,k\}_{M,N}$ for $k=0,1,$ $\ldots$ .

2) Setting

(2.15) $a_{2}(t, \varphi, \xi)=\sum_{l=0}^{L}b_{2,l}(t, \varphi, \xi)e^{\int_{l}^{T}K_{2}(s)ds}$

then there exist constants $M,$ $N,$ $C_{0},\delta_{0}$ such that

(2.16) $|a_{2}(t, \varphi, \xi)|\geq C_{0}(1+\xi)^{-\delta_{0}}$ for all $(t, \varphi, \xi)\in Z_{e,ext}(M,N,\delta)$ .

(3) There exists to a given $L$ a symbol $h_{2,L}(t, \varphi, \xi)$ satisfying

(2.17) $(\frac{d^{2}}{dt^{2}}-\lambda^{2}(t)e^{2i\varphi}\xi^{2}+b(t)e^{i\varphi}\xi)y2=e^{-\xi e^{i\varphi}\Lambda(t)}h_{2,L}(t, \varphi, \xi)$ ,

where $h_{2,L}(t, \varphi, \xi)\exp(-\int_{\iota^{T}}K_{2}(s)ds)$ belongs to $S\{-L, -L, L+2\}_{M,N}$ for
$(t, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ .

2.2. Construction of exact solution in $Z_{e,ext}(M,N,\delta)$

Let us look for exact solutions $u_{1}(t, \varphi, \xi),$ $u_{2}(t, \varphi, \xi)$ of (2.1) for
$(t, \varphi, \xi)\in Z_{e,exl}(M, N,\delta)$ in the following form

$u_{l}(t, \varphi, \xi)=y1(t, \varphi, \xi)v_{1}(t, \varphi, \xi)$ , $u_{2}(t, \varphi, \xi)=y2(t, \varphi, \xi)v_{2}(t, \varphi, \xi)$ .

Then we have

$(\frac{d^{2}}{dt^{2}}-\lambda^{2}(t)e^{2i\varphi}\xi^{2}+b(t)e^{i\varphi}\xi)u_{1}(t, \varphi, \xi)=y1(t, \varphi, \xi)\partial_{\iota}^{2}v_{1}(t, \varphi, \xi)$

$+2\partial_{t}y1(t, \varphi, \xi)\partial_{t}v_{1}(t, \varphi, \xi)+e^{\xi e^{i\varphi}\Lambda(t)}h_{1,L}(t, \varphi, \xi)v_{1}(t, \varphi, \xi)$ .

This equation can be transformed to

$\frac{d^{2}v_{1}}{dt^{2}}+2(\frac{1}{y1}\frac{dy1}{dt})\frac{dv_{1}}{dt}=\frac{1}{y_{1}^{2}}\frac{d}{dt}(y_{1}^{2}\frac{dv_{1}}{dt})=-\frac{e^{\xi e^{i\varphi}\Lambda(t)}h_{1,L}v_{1}}{\mathcal{Y}1}$ ,
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respectively,

$ y_{1}^{2}\frac{dv_{1}}{dt}=-\int_{t}^{t_{\xi}}e^{\xi e^{\iota\varphi}\Lambda(\tau)}h_{1,L}(\tau, \varphi, \xi)v_{1}(\tau, \varphi, \xi)y1(\tau, \varphi, \xi)d\tau$ ,

where we use here the data $v_{1}(t_{\xi}, \varphi, \xi)=1,$ $\partial_{t}v_{1}(t_{\xi}, \varphi, \xi)=0$ . Using (2.13) of
Corollary 2.1 it is possible to divide by $y_{1}^{2}$ . Consequently,

(2.18) $v_{1}(t, \varphi, \xi)+\int_{t^{t_{\xi}}}a_{1}(s, \varphi, \xi)h_{1,L}(s, \varphi, \xi)(\int_{s^{t}}\frac{e^{2\xi e^{l\varphi}(\Lambda(s)-\Lambda(\tau))}}{a_{1}^{2}(\tau,\varphi,\xi)}d\tau)v_{1}(s, \varphi, \xi)ds=1$ .

In an analog way one can derive

$v_{2}(t, \varphi, \xi)+\int_{T}^{t}a_{2}(s, \varphi, \xi)h_{2,L}(s, \varphi, \xi)(\int_{s^{t}}\frac{e^{-2\xi e^{\iota\prime}(\Lambda(s)-\Lambda(\tau))}}{a_{2}^{2}(\tau,\varphi,\xi)}d\tau)v_{2}(s, \varphi, \xi)ds$

(2.19)

$=1-g(\varphi, \xi)\int_{\iota^{T}}y_{2}^{-2}(s, \varphi, \xi)ds$ .

Here we have chosen data $v_{2}(T, \varphi, \xi)=1,$ $\partial_{t}v_{2}(T, \varphi, \xi)=g(\varphi, \xi)$ .
Thus let us consider both Volterra integral equations. We prefer to study

instead of these equations the following ones:

(2.20) $w_{1}(t, \varphi, \xi)+\int_{t^{t_{\xi}}}P_{1}(t,s, \varphi, \xi)w_{1}(s, \varphi, \xi)ds=f_{1}(t, \varphi, \xi)$ ,

(2.21) $w_{2}(t, \varphi, \xi)+\int_{T}^{t}P_{2}(t,s, \varphi, \xi)w_{2}(s, \varphi, \xi)ds=f_{2}(t, \varphi, \xi)$

for the unknown functions $w_{i}=v_{i}-1$ and with right hand sides

$f_{1}(t, \varphi, \xi)=-\int_{t^{t_{\xi}}}P_{1}(t,s, \varphi, \xi)ds$ ,

$f_{2}(t, \varphi, \xi)=-\int_{t}^{T}(P_{2}(t,s, \varphi, \xi)-g(\varphi, \xi)_{\mathcal{Y}2}(s, \varphi, \xi)^{-2})ds$ .

Here we introduced the notations

$ P_{1}(t,s, \varphi, \xi)=a_{1}(s, \varphi, \xi)h_{1,L}(s, \varphi, \xi)\int_{s^{t}}\frac{e^{2\xi e^{\iota\varphi}(\Lambda(s)-\Lambda(\tau))}}{a_{1}^{2}(\tau,\varphi,\xi)}d\tau$ ,

$ P_{2}(t,s, \varphi, \xi)=a_{2}(s, \varphi, \xi)h_{2,L}(s, \varphi, \xi)\int_{s^{t}}\frac{e^{-2\xi e^{l|}(\Lambda(s)-\Lambda(\tau))}}{a_{2}^{2}(\tau,\varphi,\xi)}d\tau$ .
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LEMMA 2.4. For every non-negative integer $r$ there exists a constant $C_{r}$ such
that

(2.22) $|P_{i}(t, s, \varphi, \xi)|\leq C_{r}(\ln\xi)^{-r}$ , $i=1,2$ ,

for all admissible $s$ and $(t, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ .

PROOF. For $P_{1}$ we have due to (2.5) and (2.6)

$P_{1}(t,s, \varphi, \xi)=(\sum_{l=0}^{L}b_{1,L}(s, \varphi, \xi))(h_{1,L}(s, \varphi, \xi)e^{\int_{t_{\xi}}^{s}K_{1}(s_{1})ds_{1}})$

$\times\int_{s}^{t}(\sum_{l=0}^{L}b_{1,L}(\tau, \varphi, \xi))^{-2}e^{2\int_{s}^{\tau}K_{1}(s_{1})ds\iota+2\xi e^{i\varphi}(\Lambda(s)-\Lambda(\tau))}d\tau$ .

For $(t, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ we have

${\rm Re}(\int_{s}^{\tau}2K_{1}(s_{1})ds_{1}+2\xi e^{i\varphi}(\Lambda(s)-\Lambda(\tau)))$

$=-2{\rm Re}\int_{s}^{\tau}(\xi e^{i\varphi}\lambda(s_{1})-K_{1}(s_{1}))ds_{1}\leq-2{\rm Re}\int_{s}^{\tau}(\xi e^{i\varphi}\lambda(s_{1})-|K_{1}(s_{1})|)ds_{1}\leq 0$

for a corresponding $\delta$ .
Using Lemma 2.1 and 2.2 we obtain the desired estimate after a suitable

choice of $L=L(r)$ .
In the same way one gets the estimate for $P_{2}$ . The lemma is proved.
The right hand sides $f_{1}$ and $f_{2}$ of (2.20), (2.21) are continuous in their

arguments. Consequently, the solutions of (2.20), (2.21) can be written in the
form

$w_{1}(t, \varphi, \xi)=f_{1}(t, \varphi, \xi)+\int_{t}^{t_{\xi}}\omega_{1}(t,s, \varphi, \xi)f_{1}(s, \varphi, \xi)ds$ ,

$w_{2}(t, \varphi, \xi)=f_{2}(t, \varphi, \xi)+\int_{T}^{t}\omega_{2}(t,s, \varphi, \xi)f_{2}(s, \varphi, \xi)ds$

with kemels $\omega_{i}=\sum_{v=1}^{\infty}\omega_{v,i}$ , where

$\omega_{i,1}(t,s, \varphi, \xi)=-P_{j}(t,s, \varphi, \xi)$ , $\omega_{i,v+1}(t,s, \varphi, \xi)=\int_{s}^{t}\omega_{i,1}(t, \theta, \varphi, \xi)\omega_{i,v}(\theta,s, \varphi, \xi)d\theta$ .

But (2.22) implies $|w_{1}(t, \varphi, \xi)|\leq C\max_{s\in[t_{\xi},t]}|f_{1}(s, \varphi, \xi)|$ , $|w_{2}(t, \varphi, \xi)|\leq$

$C\max_{s\in[t,T]}|f_{2}(s, \varphi, \xi)|$ . If we use the function $g=g(\varphi, \xi)$ as a symbol of suitable
negative order, then $|f_{1}(s, \varphi, \xi)|\leq C_{r}(\ln\xi)^{-r}$ .
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To estimate derivatives of $v_{i}$ we have due to Lemma 2.1 and 2.2 for all
$(t, \varphi, \xi)\in Z_{e,exl}(M, N,\delta)$

$|\partial_{\iota}^{l}\partial_{\xi}^{\rho}v_{i}(t, \varphi, \xi)|\leq C_{l,p,r}\langle\xi\}^{-p}(\ln\xi)^{-r}$ , $l+p\geq 1$ .

Thus we have proved the following

LEMMA 2.5. There are solutions $u_{i}(t, \varphi, \xi),$ $i=1,2$ , of (2.1) having for
$(t, \varphi, \xi)\in Z_{e,ext}(M, N,\delta)$ the representations

$u_{1}(t, \varphi, \xi)=e^{\xi d^{\prime}\Lambda(t)}a_{1}(t, \varphi, \xi)$ , $u_{2}(t, \varphi, \xi)=e^{-\xi e^{l|}\Lambda(t)}a_{2}(t, \varphi, \xi)$ .

The amplitude functions are $sati\oint ying$ with suitable constants $m_{i}$

$|\partial_{t}^{l}\partial_{\xi}^{p}a_{i}(t, \varphi, \xi)|\leq C_{l,p,i}\langle\xi\rangle^{m_{j}-p}$

for all $l,$ $p\geq 0,$ $i=1,2$ .

2.3. Construction of exact solution into $Z_{\ell,int}(M,N,\delta)$

In the first two steps we have constructed exact solutions $u_{1},$ $u_{2}$ in
$Z_{e,ext}(M, N,\delta)$ . Using Lemma 2.5 and the definition of $Z_{e,ext}(M, N,\delta)$ we con-
clude that $u_{1}(t_{\xi}, \varphi, \xi),$ $u_{2}(t_{\xi}, \varphi, \xi),$ $\partial_{t}u_{1}(t_{\xi}, \varphi, \xi),$ $\partial_{t}u_{2}(t_{\xi}, \varphi, \xi)$ are symbols. For
continuation into $Z_{e,int}(M, N,\delta)$ we can use straightforward approach.

Let $\rho(t, \xi)$ be the positive root of the equation

$p^{2}-1-\langle\xi\rangle\lambda^{2}(t)\Lambda^{-1}(t)\ln\langle\xi\}=0$ .

Then one can prove by (1.4) that

(2.23) $|\rho(t, \xi)|\leq C_{\epsilon}\langle\xi\rangle^{\epsilon}$ , $|(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial\xi})^{p}\rho(t, \xi)|\leq C_{l,p,\epsilon}\langle\xi\rangle^{l\epsilon-p}\rho(t, \xi)$

for all $(t, \xi)\in Z_{inl}(M, N)$ and every positive $\epsilon$ . Moreover,

(2.24) $\int_{0^{\xi}}^{t}(p(t, \xi)+\frac{p_{t}(t,\xi)}{p(t,\xi)})dt\leq K\ln\langle\xi\rangle$ .

Furthermore, by means of matrix-valued functions

$H(t, \xi)=(^{\rho(t,\xi)}0$ $01$ , $H^{-1}(t, \xi)=(l_{0}$ $01$

and vector $\mathscr{U}:=^{\iota}(\mathscr{U}_{1}, \mathscr{U}_{2});=H(t)^{t}(u, d_{l}u)$ the equation (2.1) can be trans-
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formed to

(2.25) $\frac{d}{dt}\mathscr{U}=\mathscr{A}(t, \varphi, \xi)\mathscr{U}$ ,

where

(2.26) $\mathscr{A}=(_{\lambda^{2}(t)e^{2i\varphi}\xi^{2}p^{-1}(t,\xi)-b(t)e^{i\varphi}\xi p^{-1}(t,\xi)}p_{t}(t,\xi)/p(t,\xi)$
$\rho(\iota_{0}\xi)$

Every solution $\mathscr{U}(t, \varphi, \xi)$ of (2.25) can be represented by the following explicit
formula [6]:

$\mathscr{U}(t, \varphi,\xi)=\mathscr{U}(t_{\xi}, \xi)+(\sum_{l=1}^{\infty}\int_{t}^{t_{\xi}}ds_{1}\int_{t_{\xi}}^{s_{1}}ds_{2}\ldots$

(2.27)

. .. $\int_{t^{l- 1}}^{s_{\xi}}ds_{l}\mathscr{A}(s_{1})\cdots \mathscr{A}(s_{l})\mathscr{U}(t_{\xi},\xi)$ .

Using the operator $(Ir)(t)=\int_{t^{l_{\xi}}}r(s)ds$ one can write (2.27) in the form

$\mathscr{U}(t, \varphi, \xi)=\mathscr{U}(t_{\xi}, \xi)+\sum_{l=1}^{\infty}\frac{I\mathscr{A}I\mathscr{A}\cdots I\mathscr{A}I\mathscr{A}}{l}\mathscr{U}(t_{\xi}, \xi)$ .

LEMMA 2.6. There exist constants $m_{j}(i=1,2)$ such that for every $p$

(2.28) $|(\frac{\partial}{\partial\xi})^{p}\mathscr{U}_{i}(t_{\xi}, \varphi, \xi)|\leq C_{p}\langle\xi\}^{m_{i}-p}$

hold for all $(\varphi, \xi)\in Z_{e}(M, N,\delta)$ .

PROOF. The estimates follow immediately from Lemma 2.5, (1.9) and
(1.10).

LEMMA 2.7. Let $\gamma_{i}(t, \varphi, \xi)$ be solutions of (2.25) which are smooth con-
tinuations into $Z_{e,int}(M, N,\delta)$ of $H(t, \xi)^{t}(u_{i}(t, \varphi, \xi), \partial_{t}u_{j}(t, \varphi, \xi)),$ $i=1,2$ . Then
there exist positive constants $m_{i}$ such that

$(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial\xi})^{p}\gamma_{i}(t, \varphi, \xi)\leq C_{p,l}\langle\xi\}^{m_{i}-p}$

$holds$ for all $(t, \varphi, \xi)\in Z_{e,int}(M, N,\delta)$ and $p,$ $l\geq 0$ .
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PROOF. Let us consider the matrix-valued function

$\mathscr{E}(t, \varphi, \xi)$
$:=I+\sum_{l=1}^{\infty}\frac{I\mathscr{A}I\mathscr{A}\cdots I\mathscr{A}I\mathscr{A}}{l}$ .

Taking account of Lemma 2.6 and (2.27) it is enough to estimate $\mathscr{E}(t, \varphi, \xi)$ and
its derivatives with respect to $\xi$ only. As a consequence of (2.23) and (2.26) we
have

(2.29) $|(\frac{\partial}{\partial\xi})^{k}\mathscr{A}(t, \varphi, \xi)|\leq C_{k}\langle\xi\rangle^{-k}g(t, \xi)$ for all $(t, \varphi, \xi)\in Z_{e,int}(M, N,\delta)$ ,

$where(2.24)$

the notation $g(t, \xi)=p(t, \xi)+\frac{\rho_{t}(t,\xi)}{p(t,\xi)}$ is used. Then it is clear that by

$\Vert \mathscr{E}(t, \varphi, \xi)\Vert\leq\sum_{l=0}^{\infty}\frac{1}{l!}(C_{0}\int_{t^{l_{\xi}}}g(s, \xi)ds)^{l}$

$\leq\sum_{l=0}^{\infty}\frac{1}{l!}(C_{0}K\ln\langle\xi\})^{l}=\langle\xi\}^{C_{0}K}$ .

Further, for the derivative $(\partial/\partial\xi)\mathscr{E}(t, \varphi, \xi)$ we have

$+\sum_{l=1}^{\infty}$

$\leq C\langle\xi\rangle^{-1}\sum_{l=1}^{\infty}\frac{l}{l!}(C_{0}\int_{t^{\xi}}^{t}g(s, \xi)ds)^{l-1}(C_{1}\int_{t^{\xi}}^{t}g(s, \xi)ds)$

$+g(t_{\xi}, \xi)\frac{\partial t_{\xi}}{\partial\xi}C\sum_{l=0}^{\infty}\frac{1}{l!}(C_{0}\int_{t^{l_{\xi}}}g(s, \xi)ds)^{l}$ .

Then one has due to (1.9) from Lemma 1.1 and (2.23)

$g(t_{\xi}, \xi)|\frac{\partial t_{\xi}}{\partial\xi}|\leq C\langle\xi\rangle^{-1}$
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Consequently,

$\Vert\frac{\partial}{\partial\xi}\mathscr{E}(t, \varphi, \xi)\Vert\leq C(C_{1}(C_{1}\int_{t^{\xi}}^{t}g(s, \xi)ds)+1)\langle\xi\rangle^{-1}\sum_{l=0}^{\infty}\frac{1}{l!}(\int_{t^{\xi}}^{t}g(s, \xi)ds)^{l}$

$\leq C\{\xi\rangle^{C_{0}K-1}\ln\langle\xi\rangle$ .

All other derivatives can be estimated in a similar way. We obtain
$\Vert\partial_{\xi}^{p}\mathscr{E}(t, \varphi, \xi)\Vert\leq C_{p}\{\xi\}^{C_{0}K-p}(\ln\langle\xi\rangle)^{p}$ . Consequently, $\Vert\partial_{\xi}^{p}\mathscr{E}(t, \varphi, \xi)\Vert\leq C_{p}\langle\xi\rangle^{m-p}$ in
$Z_{e,int}(M, N,\delta)$ if $m>C_{0}K$ . Together with Lemma 2.6 we derive the estimates for
derivatives with respect to $\xi$ .

To obtain the estimates for derivatives with respect to $t$ one has to use (1.4),

(2.23) and (2.25). The lemma is proved.
Setting now $u_{i}(t, \varphi, \xi)=\prime r_{i}(t, \varphi, \xi)/\rho(t, \xi)$ then $u_{i}$ can be represented in the

form
$u_{1}(t, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t)}a_{1}(t, \varphi, \xi)$ , $u_{2}(t, \varphi, \xi)=e^{-\xi e^{i\varphi}\Lambda(t)}a_{2}(t, \varphi, \xi)$

in $Z_{e,inl}(M, N,\delta)$ .
Using the definition of $Z_{e,int}(M, N,\delta)$ and Lemma 2.7 then $a_{i}(t, \varphi, \xi)$ are

amplitude functions satisfying $|\partial_{\iota}^{l}\partial_{\xi}^{p}a_{i}(t, \varphi, \xi)|\leq C_{l,p,i}\langle\xi\rangle^{m_{i}-p}$ with suitable con-
stants $m_{i}$ . Thus, the statements (2.2), (2.3) and consequently the Theorem 2.1
are proved.

COROLLARY 2.2. 1) The constructed solution $u_{1}=u_{1}(t, \varphi, \xi)$ depends ana-
lytically on $\varphi$ in $Z_{e}(M, N,\delta)\times[0, T]$ .

2) If $g=g(\varphi, \xi)$ depends holomorphically on $\zeta=\xi e^{i\varphi}$ in $Z_{e}(M, N,\delta)$ , then the
constructed solution $u_{2,g}$ defined in $Z_{e}(M, N,\delta)\times[0, T]$ depends holomorphically
on $\zeta,$ too.

PROOF. To 1). We have on $t=t_{\xi}$

$u_{1}(t_{\xi}, \varphi, \xi)=yl(t_{\xi}, \varphi, \xi)v_{1}(t_{\xi}, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t_{\xi})}a_{1}(t_{\xi}, \varphi, \xi)v_{1}(t_{\xi}, \varphi, \xi)=e^{\xi e^{i\varphi}\Lambda(t_{\xi})}$ ,

$\partial_{t}u_{1}(t_{\xi}, \varphi, \xi)=y1(t_{\xi}, \varphi, \xi)\partial_{t}v_{1}(t_{\xi}, \varphi, \xi)+(\partial_{t\mathcal{Y}l}(t_{\xi}, \varphi, \xi)v_{1}(t_{\xi}, \varphi, \xi)$

$=e^{\xi e^{i\varphi}\Lambda(t_{\xi})}\lambda(t_{\xi})e^{i\varphi}\xi+e^{\xi e^{i\varphi}\Lambda(t_{\xi})}K_{1}(t_{\xi})\sum_{l=0}^{L}b_{1,l}(t_{\xi}, \varphi, \xi)$

$+e^{\xi e^{i\varphi}\Lambda(t_{\xi})}\sum_{l=0}^{L}\partial_{t}b_{1,l}(t_{\xi}, \varphi, \xi)$

$=e^{\xi e^{i\varphi}\Lambda(t_{\xi})}(\lambda(t_{\xi})e^{i\varphi}\xi+K_{1}(t_{\xi})+\sum_{l=0}^{L}\partial_{t}b_{1,l}(t_{\xi}, \varphi, \xi))$ .
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From constmction of $a_{1,k}(t, \varphi, \xi)$ we have analytic dependence on $\varphi$ . The same
holds for $b_{1,k}(t, \varphi, \xi)$ and derivatives with respect to $\varphi$ . Hence, the data $u_{1},$

$\partial_{t}u_{1}$

depend analytically on $\varphi$ on $t=\iota_{\xi}$ . But the coefficients of equations are analytic
in $\varphi$ . This proves the first statement.

To 2). The statement can be proved by the same reasoning.
The considerations in section 2.3 lead to an effective tool for further

studies, namely to energy estimates in $Z_{e,int}(M, N,\delta)$ .

COROLLARY 2.3. If $u$ is a solution of (2.1) in $Z_{e,int}(M, N,\delta)$ , then we have
the following energy estimate

(2.30) $E(u)(t_{1}, \varphi, \xi)\leq C\{\xi\}^{m}E(u)(t_{2}, \varphi, \xi)$

for all $(t_{1}, \varphi, \xi),$ $(t_{2}, \varphi, \xi)\in Z_{e,int}(M, N,\delta)$ . Here

$E(u)(t, \varphi, \xi)=|u(t, \varphi, \xi)|^{2}+|\partial_{t}u(t, \varphi, \xi)|^{2}$ .

PROOF. Setting $\mathscr{U}=^{t}(U_{1}, U_{2})=^{t}$ (pu, $\partial_{t}u$ ) then

$E(u)(t, \varphi, \xi)\leq E(\mathscr{U})(t, \varphi, \xi)=|U_{1}(t, \varphi, \xi)|^{2}+|U_{2}(t, \varphi, \xi)|^{2}$

$\leq p^{2}(t, \xi)E(u)(t, \varphi, \xi)\leq\langle\xi\rangle^{2}E(u)(t, \varphi, \xi)$ .

The explicit representation (2.27) for $\mathscr{U}=\mathscr{U}(t, \varphi, \xi)$ and estimates (2.28), (2.29)
imply

$E(\mathscr{U})(t_{1}, \varphi, \xi)\leq\langle\xi\}^{C_{0}K+1}E(\mathscr{U})(t_{2}, \varphi, \xi)$

for all $(t_{1}, \varphi, \xi),$ $(t_{2}, \varphi, \xi)\in Z_{e,int}(M, N,\delta)$ . With the above inequalities we have
(2.30), where $m=C_{0}K+3$ .

3. About the Wronskian $W(u_{1}, u_{2})$

In the previous section we have constmcted two solutions $u_{1}$ and $u_{2}$ . Up to
now we have no information about the linear independence of these solutions,
especially no information about the Wronskian. Following the constmction
scheme with $g(\varphi, \xi)=0$ then one concludes the next result.

LEMMA 3.1. The asymptotical behaviour of $u_{1}$ , $u_{2}$ , $\partial_{t}u_{1}$ , $\partial_{t}u_{2}$ is in
$Z_{e,ext}(M, N,\delta)$ the following:
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$u_{1}(t, \varphi, \xi)\sim e^{\xi e^{i\varphi}\Lambda(t)}e^{\int_{t_{\xi}}^{l}\frac{\lambda^{\prime}(s)+b(s)}{2\lambda(s)}ds}(1+O(\frac{1}{\ln\langle\xi\rangle}))$ ,

$u_{2}(t, \varphi, \xi)\sim e^{-\xi e^{l\varphi}\Lambda(\iota)_{e}\int^{T}\frac{\lambda^{\prime}(s)- b(s)}{2\lambda(s)}ds}(1+o(\frac{1}{\xi\Lambda(t)}))$ ,

$\partial_{t}u_{1}(t, \varphi, \xi)\sim(\xi e^{i\varphi}\lambda(t)+\frac{\lambda^{\prime}(t)+b(t)}{2\lambda(t)})e^{\xi e^{i\varphi}\Lambda(t)}e^{\int_{\iota_{\xi}}^{t}\frac{\lambda^{\prime}(s)+b(s)}{2\lambda(s)}ds}(1+o(\frac{1}{\ln\langle\xi\rangle}))$

$+e^{\xi e^{i\varphi}\Lambda(t)}e^{\int_{t_{\xi}}^{l}\frac{\lambda^{\prime}(s)+b(s)}{2\lambda(s)}ds_{O(\frac{1}{\ln\langle\xi\rangle})}}$ ,

$\partial_{t}u_{2}(t, \varphi, \xi)\sim-(\xi e^{i\varphi}\lambda(t)+\frac{\lambda^{\prime}(t)-b(t)}{2\lambda(t)})e^{-\xi e^{i\varphi}\Lambda(t)\int^{T}\frac{\lambda^{\prime}(s)- b(s)}{2\lambda(s)}ds}e(1+o(\frac{1}{\xi\Lambda(t)}))$

$+e^{-\xi e^{i\varphi}\Lambda(t)_{e}\int^{T}\frac{\lambda^{\prime}(s)- b(s)}{2\lambda(s)}ds_{O(\frac{1}{\xi\Lambda(t)})}}$ .

LEMMA 3.2. There exists a constant $m$ such that for all $(t, \varphi, \xi)\in$

$[0,1]\times Z_{e}(M, N,\delta)$ the Wronskian $W(u_{1}, u_{2})$ is an hypoelliptic symbol, that is

(3.1) $|W(u_{1}, u_{2})|\geq C\langle\xi\rangle^{m}$ .

PROOF. It holds

$W(u_{1}, u_{2})(t, \varphi, \xi)=W(u_{1}, u_{2})(T, \varphi, \xi)$

$=u_{1}(T, \varphi, \xi)\partial_{t}u_{2}(T, \varphi, \xi)-\partial_{t}u_{1}(T, \varphi, \xi)u_{2}(T, \varphi, \xi)$

and due to Lemma 3.1

$W(u_{1}, u_{2})(t, \varphi, \xi)\sim-e^{\int_{t_{\xi}}^{T}\frac{\lambda^{\prime}(s)+b(s)}{2\lambda(s)}ds}((2\xi e^{i\varphi}\lambda(T)+\frac{\lambda^{\prime}(T)}{\lambda(T)})(1+o(\frac{1}{\ln\langle\xi\rangle}))$

$\times(1+o(\frac{1}{\xi\Lambda(T)})))$ .

Consequently, using $|2\xi e^{i\varphi}\lambda(T)+(\lambda^{\prime}(T)/\lambda(T))|\geq|(\lambda^{\prime}(T)/\lambda(T))|$ and (1.7) we get

$|W(u_{1}, u_{2})(t, \varphi, \xi)|\geq C\langle\xi\rangle e^{-K\int_{t_{\xi}}^{T}d_{s}\ln\Lambda(s)ds}\geq C\langle\xi\rangle e^{K\ln\Lambda(t_{\xi})}\geq C\langle\xi\}^{m}$ .

This completes the proof.
Thus we have an estimate for $W(u_{1}, u_{2})$ under the assumption that we

suppose for the construction of $u_{2}(t, \varphi, \xi)$ the initial condition $\partial_{t}v_{2}(T, \varphi, \xi)=$
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$g(\varphi, \xi)=0$ in section 2.2. The statement of Lemma 3.2 is preserved if $g=g(\varphi, \xi)$

satisfies the estimate of the following corollary.

COROLLARY 3.1. Let us suppose that for all $(\varphi, \xi)\in Z_{e}(M, N,\delta)$

$|g(\varphi, \xi)|\leq C\langle\xi\rangle^{m-m_{1}-1}$ ,

where $m_{1}$ and $m$ are the constants from Theorem 2.1 and Lemma 3.2, respectively.
Then the estimate (3.1) remains valid.

PROOF. Let $u_{2,g}$ be the solution of (2.1) was constmcted in section 2 by the
aid of initial condition $\partial_{t}v_{2}(T, \varphi, \xi)=g(\varphi, \xi)$ for $v_{2}$ in section 2.2, in particular
$u_{2,0}=u_{2}$ . Then $W(u_{1}, u_{2,g})=u_{1}(T, \varphi, \xi)\partial_{t}u_{2,g}(T, \varphi, \xi)-\partial_{t}u_{1}(T, \varphi, \xi)u_{2,g}(T, \varphi, \xi)=$

$W(u_{1}, u_{2})+u_{1}(T, \varphi, \xi)y2(T, \varphi, \xi)\partial_{l}v_{2}(T, \varphi, \xi)=W(u_{1}, u_{2})+e^{\xi e^{i\varphi}\Lambda(T)}a_{1}(T, \varphi, \xi)$ .
$e^{-\xi i^{\varphi}\Lambda(T)}g(\varphi, \xi)$ . The assumption conceming $g$ and (2.3) from Theorem 2.1 imply

$|W(u_{1}, u_{2,g})|\geq C\langle\xi\rangle^{m}-C_{0,0,1}\langle\xi\rangle^{m_{1}}C\langle\xi\rangle^{m-m_{1}-1}\geq C\langle\xi\rangle^{m}$ .

4. About hypoelipticity and non-hypoellipticity

4.1. Sufficient condition for hypoellipticity
Let us define Green’s function $G(t, s, \varphi, \xi)$ of

(4.1) $(d/dt)^{2}u-\lambda^{2}(t)e^{2i\varphi}\xi^{2}u+b(t)e^{i\varphi}\xi u=0$

by the aid of two independent solutions $u(t, \varphi, \xi),$ $v(t, \varphi, \xi)$ of equation (4.1) as
follows:

(4.2) $G(t, s;\varphi, \xi)=\left\{\begin{array}{l}u(l,\varphi,\xi)v(s,\varphi,\xi)\\v(t,\varphi,\xi)u(s,\varphi,\xi)\end{array}\right.$ $whenwhen$ $t<st\geq s$

,

where $u(t, \varphi, \xi)$ and $v(s, \varphi, \xi)$ are satisfying

(4.3) $u(1, \varphi, \xi)=v(-1, \varphi, \xi)=0$ for all $\xi\in R$ .

Moreover, we suppose for the Wronskian

(4.4) $W(u, v)$ $:=\partial_{t}u(t, \varphi, \xi)v(t, \varphi, \xi)-u(t, \varphi, \xi)\partial_{t}v(t, \varphi, \xi)=1$

for all $t\in[-1,1],$ $\xi\in R$ . By $u_{1}^{+},$ $u_{2}^{+}$ we denote the solutions $u_{1}$ and $u_{2}$ of Theorem
2. 1, (1. 11). In the same way we find solutions $u_{\overline{1}},$ $u_{\overline{2}}$ for $t\leq 0,$ $(1.12)$ . Pay
attention that $\Lambda(t)$ and $t$ change their sign simultaneously. For this reason $u_{\overline{1}},$ $u_{\overline{2}}$

play the mle of $u_{2}^{+},$ $u_{1}^{+}$ , respectively. Using the linear independence of $(u_{1}^{+}, u_{2}^{+})$ ,
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$(u_{\overline{1}}, u_{\overline{2}})$ respectively, the solutions $u$ and $v$ can be represented in $[-1,1]\times$

$Z_{e}(M, N,\delta)$ by the following way

(4.5) $u(t, \varphi, \xi)=\left\{\begin{array}{l}c_{1,-}^{u}(\varphi,\xi)u_{\overline{1}}(t,\varphi,\xi)+c_{2,-}^{u}(\varphi,\xi)u_{\overline{2}}(t,\varphi,\xi) when t\leq 0,\\c_{1,+}^{u}(\varphi,\xi)u_{1}^{+}(t,\varphi,\xi)+c_{2,+}^{u}(\varphi,\xi)u_{2}^{+}(t,\varphi,\xi) when t\geq 0,\end{array}\right.$

(4.6) $v(t, \varphi, \xi)=\left\{\begin{array}{l}c_{l,-}^{v}(\varphi,\xi)u_{\overline{1}}(t,\varphi,\xi)+c_{2,-}^{v}(\varphi,\xi)u_{\overline{2}}(t,\varphi,\xi) when t\leq 0,\\c_{1,+}^{v}(\varphi,\xi)u_{1}^{+}(t,\varphi,\xi)+c_{2,+}^{v}(\varphi,\xi)u_{2}^{+}(t,\varphi,\xi) when t\geq 0.\end{array}\right.$

Moreover, the functions $u(t, \varphi, \xi)$ and $v(t, \varphi, \xi)$ have to be continuously

differentiable. Therefore,

$\partial_{t}u(+0, \varphi, \xi)v(-0, \varphi, \xi)-u(+0, \varphi, \xi)\partial_{t}v(-0, \varphi, \xi)=1$ .

Hence, we have seven conditions for the eight unknown coefficients. The con-
stmctions of section 2 guarantee that the one-sided limits of $u_{1}^{+},$ $u_{2}^{+},$

$u_{\overline{1}},$ $u_{\overline{2}}$ and

their derivatives with respect to $t$ exist in $t=0$ . The boundary conditions (4.3)

imply

$c_{1,+}^{u}(\varphi, \xi)a_{1}^{+}(1, \varphi, \xi)e^{2\xi e^{i\varphi}\Lambda(1)}=-c_{2,+}^{u}(\varphi, \xi)a_{2}^{+}(1, \varphi, \xi)$ ,

$c_{1,-}^{v}(\varphi, \xi)a_{1}^{-}(-1, \varphi, \xi)e^{2\xi e^{i\varphi}\Lambda(-1)}=-c_{2,-}^{v}(\varphi, \xi)a_{2}^{-}(-1, \varphi, \xi)$ .

Taking account of $a_{2}^{+}(1, \varphi, \xi)=a_{\overline{1}}(-1, \varphi, \xi)=1$ gives

$c_{2,+}^{u}(\varphi, \xi)=-e^{2\xi e^{i\varphi}\Lambda(1)}a_{1}^{+}(1, \varphi, \xi)c_{1,+}^{u}(\varphi, \xi)$ ,

$c_{1,-}^{v}(\varphi, \xi)=-e^{-2\xi e^{i\varphi}\Lambda(-1)}a_{2}^{-}(-1, \varphi, \xi)c_{2,-}^{v}(\varphi, \xi)$ .

Using this together with continuously differentiability of $u$ and $v$ in $t=0$ we can
express $c_{1,-}^{u}(\varphi, \xi),$ $c_{2,-}^{u}(\varphi, \xi)$ by the aid of $c_{1,+}^{u}(\varphi, \xi)$ , namely,

$c_{1,-}^{u}(\varphi, \xi)=\frac{1}{W(u_{\overline{1}},u_{2}^{-})}\{c_{1,+}^{u}(\varphi, \xi)(a_{1}^{+}(+0, \varphi, \xi)\partial_{t}a_{2}^{-}(-0, \varphi, \xi)$

$-a_{2}^{-}(-0, \varphi, \xi)\partial_{t}a_{1}^{+}(+0, \varphi, \xi))+c_{2,+}^{u}(\varphi, \xi)(a_{2}^{+}(+0, \varphi, \xi)\partial_{t}a_{2}^{-}(-0, \varphi, \xi)$

$-a_{2}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi))\}$ ,

$c_{2,-}^{u}(\varphi, \xi)=\frac{1}{W(u_{1}^{-},u_{2}^{-})}\{c_{1,+}^{u}(\varphi, \xi)(a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{1}^{+}(+0, \varphi, \xi)$

$-a_{1}^{+}(+0, \varphi, \xi)\partial_{l}a_{1}^{-}(-0, \varphi, \xi))+c_{2,+}^{u}(\varphi, \xi)(a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi)$

$-a_{2}^{+}(+0, \varphi, \xi)\partial_{t}a_{1}^{-}(-0, \varphi, \xi))\}$ .

In the same way one can express $c_{1,+}^{v}(\varphi, \xi),$ $c_{2,+}^{v}(\varphi, \xi)$ by $c_{2,-}^{v}(\varphi, \xi)$ , where
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the corresponding denominator is $W(u_{1}^{+}, u_{2}^{+})$ . In $[0,1]$ $\times Z_{e}(M, N,\delta),$ $[-1,0]\times$

$Z_{e}(M, N,\delta)$ , respectively, we have the estimate (3.1) for $|W(u_{\overline{1}}, u_{\overline{2}})|$ and
$|W(u_{1}^{+}, u_{2}^{+})|$ . Setting the above conditions into condition (4.4) for Wronskian
gives

(4.7)

$W(u, v)$

$=c_{1,+}^{u}(\varphi, \xi)c_{2,-}^{v}(\varphi, \xi)((a_{1}^{+}(+0, \varphi, \xi)\partial_{l}a_{2}^{-}(-0, \varphi, \xi)-a_{2}^{-}(-0, \varphi, \xi)\partial_{l}a_{1}^{+}(+0, \varphi, \xi))$

$+e^{2\xi i^{\varphi}\Lambda(1)}a_{1}^{+}(1, \varphi, \xi)(a_{2}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi)-a_{2}^{+}(+0, \varphi, \xi)\partial_{t}a_{2}^{-}(-0, \varphi, \xi))$

$+e^{-2\xi e^{l\varphi}\Lambda(-1)}a_{2}^{-}(-1, \varphi, \xi)(a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{1}^{+}(+0, \varphi, \xi)-a_{1}^{+}(+0, \varphi, \xi)\partial_{l}a_{1}^{-}(-0, \varphi, \xi))$

$+e^{2\xi e^{l|}(A(1)-\Lambda(-1))}a_{1}^{+}(1, \varphi, \xi)a_{2}^{-}(-1, \varphi, \xi)$

$\times(a_{2}^{+}(+0, \varphi, \xi)\partial_{l}a_{1}^{-}(-0, \varphi, \xi)-a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi)))=1$ .

In $Z_{e}(M, N,\delta)$ we have the estimates (2.13), (2.16) for $a_{1}^{+}(1, \varphi, \xi),$ $a_{\overline{2}}(-1, \varphi, \xi)$ .
Consequently, if

$|a_{2}^{+}(+0, \varphi, \xi)\partial_{\iota}a_{1}^{-}(-0, \varphi, \xi)-a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi)|\geq C\langle\xi\}^{N_{0}}$

in $Z_{e}(M, N,\delta),$ $N_{0}$ real, then the term

$u_{1}^{+}(1, \varphi, \xi)u_{1}^{-}(-1, \varphi, \xi)(a_{2}^{+}(+0, \varphi, \xi)\partial_{t}a_{1}^{-}(-0, \varphi, \xi)-a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi))$

in parenthesis of (4.7) dominates the others. It gives the asymptotic behaviour
for the product $c_{1,+}^{u}(\varphi, \xi)c_{2,-}^{v}(\varphi, \xi)\sim e^{-2\xi e^{l\varphi}(\Lambda(1)-\Lambda(-1))}$ in $Z_{e}(M, N,\delta)$ . Using the
construction of Stokes coefficients from section 1 we have

$a_{2}^{+}(+0, \varphi, \xi)\partial_{t}a_{1}^{-}(-0, \varphi, \xi)-a_{1}^{-}(-0, \varphi, \xi)\partial_{t}a_{2}^{+}(+0, \varphi, \xi)=T_{11}(b, \varphi, \xi)W(u_{1}^{+}, u_{2}^{+})$ .
But we can estimate $W(u_{1}^{+}, u_{2}^{+})$ by (3.1). Thus the above condition is satisfied if
and only if $|T_{11}(b, \varphi, \xi)|\geq C_{\varphi}\langle\xi\rangle^{m_{0}}$ in $Z_{e}(M, N,\delta)$ . Hence, we are able to prove
the following result.

THEOREM 4.1. Iffor a given $\varphi_{0}\in(-\pi/2, \pi/2)$ there exist constants $C_{\varphi_{0}}$ and
$m_{0}$ such that $|T_{11}(b, \varphi_{0}, \xi)|\geq C_{\varphi_{0}}\langle\xi\rangle^{m_{0}}$ is satisfied for all $\xi$ with $(\varphi_{0}, \xi)\in$

$Z_{e}(M, N,\delta)$ , then

(4.8) $\int_{-1}^{1}(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial s})^{k}(\frac{\partial}{\partial\xi})^{p}G(t, s, \varphi_{0}, \xi)ds\leq C_{l,k,p}\{\xi\rangle^{m_{\nu_{0}}-p}$
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for all $\xi$ with $(\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ and all $t\in[-1,1]$ , where $m_{\varphi_{0}}$ is a suitable real
constant.

PROOF. We can follow the reasoning from [17]. In order to estimate
$\int_{-1}^{1}|G(t,s, \varphi_{0}, \xi)|ds$ we have to consider a lot of integrals. But the asymp-
totic behaviour of $c_{1,+}^{u}(\varphi_{0}, \xi)c_{2,-}^{v}(\varphi_{0}, \xi)\sim e^{-2\xi e^{i\varphi_{0}}(\Lambda(1)-\Lambda(-1))}$ , the property that
$a_{1}^{+},$ $a_{2}^{+},$

$a_{\overline{1}},$ $a_{\overline{2}}$ and their one-sided derivatives with respect to $t$ are amplitude
functions satisfying the estimates (2.3) from Theorem 2.1 and the relations
between $c_{1,+}^{u}(\varphi_{0}, \xi)$ and $c_{2,+}^{u}(\varphi_{0}, \xi),$ $c_{1,-}^{u}(\varphi_{0}, \xi),$ $c_{2,-}^{u}(\varphi_{0}, \xi)$ , respectively, $c_{2,-}^{v}(\varphi_{0}, \xi)$

and $c_{1,-}^{v}(\varphi_{0}, \xi),$ $c_{1,+}^{v}(\varphi_{0}, \xi),$ $c_{2,+}^{v}(\varphi_{0}, \xi)$ imply that all the integrals $I_{1}-I_{24}$ from
[17] can be estimated by $C\{\xi\rangle^{m_{\varphi_{0}}}$ . Hence, the assertion for $\int_{-1}^{1}|G(t, s, \varphi_{0}, \xi)|ds$ is
proved.

The assertion for derivatives follows immediately if we use additionally to
the behaviour of $u_{1}^{+},$ $u_{2}^{+},$

$u_{\overline{1}},$ $u_{\overline{2}}$ that of their derivatives with respect to $t$ and $\xi$ ,

too. The theorem is proved.

For study of hypoellipticity we need an estimate of $\int_{-1}^{1}|G(t, s, \varphi_{0}, \xi)|ds$ for
large negative $\xi$ , too. Thus means, we have to formulate in (4.7) a condition for
the first term of parenthesis

$a_{1}^{+}(+0, \varphi, \xi)\partial_{\iota}a_{2}^{-}(-0, \varphi, \xi)-a_{2}^{-}(-0, \varphi, \xi)\partial_{\iota}a_{1}^{+}(+0, \varphi, \xi)=T_{22}(b, \varphi, \xi)W(u_{1}^{+}, u_{2}^{+})$ .

COROLLARY 4.1. Let $Z_{e}(M, N,\delta)$ be such a zone that the Stokes coefficient
$T_{11}$ satisfies for a given $\varphi_{0}\in(-\pi/2, \pi/2)$ the estimate $|T_{11}(\pm b, \varphi_{0}, \xi)|\geq C_{\varphi_{0}}\langle\xi\}^{m_{0}}$

for all $(\varphi_{0}, \xi)\in Z_{e}(M,N,\delta)$ . Then

(4.9) $\int_{-1}^{1}(\frac{\partial}{\partial t})^{l}(\frac{\partial}{\partial s})^{k}(\frac{\partial}{\partial\xi})^{p}G(t,s, \varphi_{0}, \xi)ds\leq C_{l,k,p}\langle\xi\rangle^{m_{\mathcal{P}0}-p}$

for all $\xi$ with $(\varphi_{0}, \xi)$ or $(\varphi_{0}, -\xi)\in Z_{e}(M, N,\delta)$ and all $t\in[-1,1]$ . Here $m_{\varphi_{0}}$ is a
suitable real constant.

Now we have all tools for proving our result about hypoellipticity.

THEOREM 4.2. Under the assumptions of Corollary 4.1 the operator

$L_{\varphi_{0}}=D_{t}^{2}+\lambda^{2}(t)e^{2i\varphi_{0}}D_{X}^{2}-b(t)e^{i\varphi_{0}}D_{X}$

is hypoelliptic at $(0,0)$ .
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PROOF. Let $\Omega\subset[-1,1]\times R$ be a neighbourhood of the point $(0,0)$ and let
the distribution $u\in \mathscr{D}^{\prime}(\Omega)$ be a solution of $L_{\varphi_{0}}u=f$, where $f$ belongs to $C^{\infty}(\Omega)$ .
We have to prove that there exists a neighbourhood $\Omega_{1}\subset\Omega$ such that $(0,0)\in$

$\Omega_{1},$ $u\in C^{\infty}(\Omega_{1})$ .
The ellipticity of $L_{\varphi_{0}}$ outside of $t=0$ implies $u\in C^{\infty}(t\neq 0)$ .
Further, let $\psi\in C^{\infty}(R)$ be such that $\psi(z)=1$ when $|z|\leq\epsilon$ while $\psi(z)=0$

for $|z|\geq 2\epsilon$ . Then the distribution $v=\psi(t)\psi(x)u$ solves $L_{\varphi_{0}}(v)=f_{1}$ , where $f_{1}$ is
the distribution $f_{1}=\psi(t)\psi(x)f(t, x)+[L_{\varphi_{0}}, \psi(r)\psi(x)]u$ and $[L_{\varphi_{0}}, \psi(t)\psi(x)]$ denotes
the commutator. The last term of $f_{1}$ has support in $[-2\epsilon, 2\epsilon]\times[-2\epsilon, 2\epsilon]$ and
vanishes outside of $[-\epsilon, \epsilon]\times[-\epsilon, \epsilon]$ , while the first one is a smooth function.

It is known [12] that the structure of the characteristic set of $L_{\varphi_{0}}$ implies
$WF(u)\subset\{(t, x;\tau, \xi)|t=0, \tau=0\}$ . Hence,

$WF(v),$ $WF(f_{1})\subset\{(t, x;\tau, \xi)|t=0, \tau=0\}$ .

Besides $v,f_{1}\in \mathscr{E}^{\prime}(\Omega)$ . Therefore, there is a cone $\Gamma_{\gamma}=\{(\tau, \xi)||\tau|\geq\gamma|\xi|\}$ and for
every $N$ there exists a constant $C_{N}$ such that

(4.10) $|\hat{v}(\tau, \xi)|\leq C_{N}(1+|\tau|+|\xi|)^{-N}$ ,

(4.11) $|\hat{f}_{1}(\tau, \xi)|\leq C_{N}(1+|\tau|+|\xi|)^{-N}$

for all $(\tau, \xi)\in\Gamma_{\gamma}$ . Now let us denote by $\Gamma^{c}$ the cone $\{(\tau, \xi)||\tau|\leq 2\gamma|\xi|\}$ . The
property of $v$ to be a distribution with compact support in $\Omega$ implies that there
exist constants $M_{v},$ $C_{v}$ such that

(4.12) $|\hat{v}(\tau, \xi)|\leq C_{v}(1+|\tau|+|\xi|)^{M_{v}}$ for all $(\tau, \xi)\in R^{2}$ .

According to (4.10) one has for $(\tau, \xi)\in\Gamma_{\gamma}$

$|\hat{v}(\tau, \xi)|\leq C_{k}(1+|\tau|)^{-k}$ ,

while according to (4.12) one has for $(\tau, \xi)\in\Gamma^{c}$ with an universal constant $C_{v}$

$|\hat{v}(\tau, \xi)|\leq C_{v}(1+|\tau|+|\xi|)^{M_{v}}\leq C_{v}\frac{1}{(1+|\tau|)^{k}}(1+|\tau|+|\xi|)^{M_{v}+k}$

$\leq C_{v}(1+|\tau|)^{-k}(1+|\xi|)^{M_{v}+k}$ .

Thus, we obtain

(4.13) $|\hat{v}(\tau, \xi)|\leq C_{v}(1+|\tau|)^{-k}(1+|\xi|)^{M_{v}+k}$ for all $(\tau, \xi)\in R^{2}$ .
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In the similar way one can prove for $f_{1}$ the estimate

(4.14) $|\hat{f}_{1}(\tau, \xi)|\leq C_{f_{1}}(1+|\tau|)^{-k}(1+|\xi|)^{M_{f_{1}}+k}$ for all $(\tau, \xi)\in R^{2}$ .

The estimates (4.13) and (4.14) imply that one can regard these distributions as
elements $v$ and $f_{1}$ of $C^{k}([-1,1];H_{(s_{v}-k)})$ and $C^{k}([-1,1];H_{(s_{f_{1}}-k)})$ , respectively,
defined as follows:

(4.15) $\langle v(t),$ $\varphi(x)$ } $=\int\int e^{i\tau t}\hat{v}(\tau, \xi)\hat{\varphi}(-\xi)d\tau d\xi$ , $\varphi\in C_{0}^{\infty}(R^{1})$ ,

(4.16) $\langle f_{1}(t), \varphi(x)\rangle=\int\int e^{i\tau t}\hat{f}_{1}(\tau, \xi)\hat{\varphi}(-\xi)d\tau d\xi$ , $\varphi\in C_{0}^{\infty}(R^{1})$ ,

Now let us set (with a cut-off function $\chi=\chi(\xi)$ vanishing when $(\varphi_{0}, \xi)$ and
$(\varphi_{0}, -\xi)\not\in Z_{e}(M, N,\delta)$ and equal to 1 outside of the ball $|\xi|\geq M(\varphi_{0}))$

(4.17) $(0pG)w(t, x)=\frac{1}{2\pi}\int\int\int_{-1}^{1}e^{i\xi(x-y)}\chi(\xi)G(t,s, \varphi_{0}, \xi)w(s,y)dyd\xi ds$ ,

$w\in C_{0}^{\infty}([-1,1]\times R)$ ,

with the Green’s function $G(t, s, \varphi_{0}, \xi)$ was constmcted before, (4.2). This operator

can be extended to a bounded operator from $C([-1,1];H_{(s)})$ into $C^{2}([-1,1]$ ;
$H_{(s-m_{\varphi_{0}})})$ , where $m_{\varphi_{0}}$ is the constant from the estimate (4.8).

It is easy to see, that

(4.18) $(0pG)L_{\varphi_{0}}w=w-Kw$ ,

where

$ Kw(t, x)=\frac{1}{2\pi}\int e^{ix\xi}W(u, v)(\varphi_{0}, \xi)(1-\chi(\xi))\hat{w}(t, \xi)d\xi$ , $w\in C_{0}^{\infty}([-1,1]\times R)$ ,

is a smoothing operator. Therefore

$Kv(t, x)=\frac{1}{2\pi}\int e^{ix\xi}W(u, v)(\varphi_{0}, \xi)(1-\chi(\xi))<v(t),$ $ e^{-ix\xi}>d\xi$

belongs to $C_{0}^{\infty}([-1,1]\times R)$ . If we set in (4.18) $w=v$ , then $v=(0pG)f_{1}+Kv$ . It
remains only to consider (Op $G$ )$f_{2}$ , where $f_{2}=[L_{\varphi_{0}}, \psi(\iota)\psi(x)]u$ . Using $f_{2}\in \mathscr{E}^{\prime}(\Omega)$

we have the existence of a continuous function $f_{3}$ with support in $[-3\epsilon, 3\epsilon]^{2}$ such
that $f_{2}=\partial_{X}^{\alpha_{1}}\partial_{t}^{\alpha_{2}}f_{3}$ . Moreover, $f_{3}$ vanishes on $B_{\epsilon/3}=\{(x, t)||x|^{2}+|t|^{2}\leq\epsilon^{2}/9\}$ .
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Hence, we have for every $k$ and for all $(t, x)\in B_{\epsilon/4}$

$(0pG)f_{2}=\frac{(-1)^{\alpha+k}}{2\pi}\int\int\int\frac{i^{\alpha_{1}}}{(x-y)^{k}}e^{i\xi(x-y)}f_{3}(s,y)(\frac{\partial}{\partial\xi})^{k}(\frac{\partial}{\partial s}I^{\alpha_{2}}$

$\times(\xi^{\alpha_{1}}\chi(\xi)G(t,s, \varphi_{0}, \xi))dydsd\xi$ .
Taking into consideration (4.9) $v$ is smooth in some neighbourhood of $(0,0)$ .
Finally, this gives the smoothness of $u$ in the same neighbourhood. The proof is
finished.

COROLLARY 4.2. Let $Z_{e}(M,N,\delta)$ be such a zone that the Stokes coefficient
$T_{11}$ satisfies for a given $\varphi_{0}\in(-\pi/2, \pi/2)$ the estimate $|T_{11}(\pm\overline{b}, -\varphi_{0}, \xi)|\geq$

$C_{\varphi_{0}}\{\xi\rangle^{m_{0}}$ for all $(-\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ . Then $L_{\varphi_{0}}$ is locally solvable at $(0,0)$ .

PROOF. By Theorem 4.2 the adjoint operator $L_{\varphi_{0}}^{*}$ is hypoelliptic at $(0,0)$ .
But this means that $L_{\varphi_{0}}$ is locally solvable at $(0,0)$ .

4.2. Uniqueness property for a Stokes coefficient
In this section we want to discuss the following problem:
“The Stokes coefficient $T_{11}(b, \varphi, \xi)$ is defined in $Z_{e}(M, N,\delta)$ . If it vanishes

on some subset of $Z_{e}(M, N,\delta)$ , can we conclude that it vanishes everywhere on
$Z_{e}(M, N,\delta)$ .

THEOREM 4.3. If for a given $\varphi_{0}\in(-\pi/2, \pi/2)$ the Stokes coefficient
$T_{11}(b, \varphi_{0}, \xi)$ vanishes for all $\xi$ with $(\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ , then $T_{11}(b, \varphi, \xi)$ vanishes
everywhere on $Z_{e}(M, N,\delta)$ .

PROOF. By definition $T_{11}=(u_{\overline{1}}\partial_{t}u_{2}^{+}-u_{2}^{+}\partial_{t}u_{\overline{1}})/W(u_{1}^{+}, u_{2}^{+})$ . From (3.1) we
know that $W(u_{1}^{+}, u_{2}^{+})\neq 0$ on $Z_{e}(M, N,\delta)$ . Due to Corollary 2.2 the functions
$u_{2,g}^{+}$ and $u_{\overline{1,}g}$ depend holomorphically on $\zeta=\xi e^{i\varphi}$ in $Z_{e}(M, N,\delta)$ . In the interior
zone we define for $t\in[0, t_{\xi}]$ a new solution of (4.1) in the form

$w(t, \varphi, \xi)=C_{1}(\varphi, \xi)u_{1}^{+}(t, \varphi, \xi)+C_{2}(\varphi, \xi)u_{2}^{+}(t, \varphi, \xi)$ .

We want to assume that $w(+O, \varphi, \xi)=1$ or $0,$ $\partial_{t}w(+0, \varphi, \xi)=0$ or 1, respectively.
For the Wronskian $W(w, u_{2,g}^{+})$ we obtain

$W(w, u_{2,g}^{+})=(C_{1}(\varphi, \xi)u_{1}^{+}(t, \varphi, \xi)+C_{2}(\varphi, \xi)u_{2,g}^{+}(t, \varphi, \xi))\partial_{l}u_{2,g}^{+}(t, \varphi, \xi)$

$-u_{2,g}^{+}(t, \varphi, \xi)(C_{1}(\varphi, \xi)\partial_{t}u_{1}^{+}(t, \varphi, \xi)+C_{2}(\varphi, \xi)\partial_{t}u_{2,g}^{+}(t, \varphi, \xi))$

$=C_{1}(\varphi, \xi)W(u_{1}^{+}, u_{2,g}^{+})$ ,
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where

$C_{1}(\varphi, \xi)=\partial_{t}u_{2,g}^{+}(+0, \varphi, \xi)/W(u_{1}^{+}, u_{2}^{+})$ if $w(+O, \varphi, \xi)=1$ , or

$C_{1}(\varphi, \xi)=-u_{2,g}^{+}(+0, \varphi, \xi)/W(u_{1}^{+}, u_{2}^{+})$ if $w(+O, \varphi, \xi)=0$ .

From (1.13) and (1.14) we conclude that the new Stokes coefficient
$T_{w,11}(b, \varphi, \xi)=T_{11}(b, \varphi, \xi)/C_{1}(\varphi, \xi)$ . Using estimate (2.16) for $u_{2,g}^{+}(t_{\xi}, \varphi, \xi)$ we
have

$\mathscr{E}(u_{2,g}^{+})(t=t_{\xi})\geq C\{\xi\rangle^{m_{o}}$ .

By the energy estimate from Corollary 2.3

$\mathscr{E}(u_{2}^{+_{g}})(t=0)=|u_{2}^{+_{g}},(+0, \varphi, \xi)|^{2}+|\partial_{t}u_{2,g}^{+}(+0, \varphi, \xi)|^{2}\geq C\langle\xi\}^{m_{1}}\mathscr{E}(u_{2}^{+_{g}})(t=t_{\xi})$ .

Let us fix an inner point $\zeta_{0}=\xi_{0}e^{i\varphi_{0}}\in Z_{e}(M, N,\delta)$ . Using the last energy
estimate then there exists a neighbourhood $U(\zeta_{0})$ such that $|u_{2}^{+_{g}}(+0, \varphi, \xi)|\geq$

$C>0$ or $|\partial_{\iota}u_{2,g}^{+}(+0, \varphi, \xi)|\geq C>0$ for all $(\varphi, \xi)\in U(\zeta_{0})$ . In the first case we
choose $w(+O, \varphi, \xi)=0$ , in the second $w(+O, \varphi, \xi)=1$ . In $U(\zeta_{0})$ we have
$W(w, u_{2}^{+})\neq 0$ and

$T_{w,11}(b, \varphi, \xi)=(u_{1}^{-}\partial_{t}u_{2}^{+}-u_{2}^{+}\partial_{t}u_{1}^{-})/W(w, u_{2}^{+})$ .

But $W(w, u_{2}^{+})$ depends holomorphically on $\zeta\in U(\zeta_{0})$ . By Corollary 2.2 the Stokes
coefficient $T_{w,11}(b, \varphi, \xi)$ depends holomorphically on $\zeta\in U(\zeta_{0})$ , too. Moreover,
$T_{w,11}(b, \varphi_{0}, \xi)=0$ . This gives $T_{w,11}(b, \varphi, \xi)=0$ in $U(\zeta_{0})$ . Consequently,
$T_{11}(b, \varphi, \xi)=0$ in $U(\zeta_{0})$ . Especially $T_{11}(b, \varphi, \xi_{0})=0$ for all $\varphi\in U_{\epsilon}(\varphi_{0}),$ $\epsilon$ suffi-
ciently small. From Corollary 2.1 we conclude that $T_{11}(b, \varphi, \xi)$ depends real
analytically $w.r.t$ . $\varphi$ for $(\varphi, \xi_{0})\in Z_{e}(M, N,\delta)$ . Hence, $T_{11}(b, \varphi, \xi_{0})=0$ for the
same set of $\varphi$ . By the same reasoning $T_{11}(b, \varphi, \xi)=0$ in $Z_{e}(M, N,\delta)$ . This
completes the proof.

4.3. Sufficient condition for local non-solvability

THEOREM 4.4. Let $L_{\varphi_{0}},$ $\varphi_{0}\in(-\pi/2, \pi/2)$ , be the given $d_{lfferential}$ operator.
Let $Z_{e}(M, N,\delta)$ be such a zone that one of the Stokes coefficients
$T_{11}(\pm\overline{b}, -\varphi_{0}, \xi)=0$ for all $\xi$ satisfying $(-\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ . Then $L_{\varphi_{0}}$ is locally
non-solvable at $(0,0)$ .

PROOF. We restrict ourselves to the proof for $T_{11}(-\overline{b}, -\varphi_{0}, \xi)=0$ . If $L_{\varphi_{0}}$ is
locally solvable in $(0,0)$ , then $L_{\varphi_{0}}u=f$ has a solution $u\in \mathscr{D}^{\prime}(\Omega)$ for every
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$f\in C_{0^{\infty}}(\Omega)$ . Here $\Omega$ is a subset of [-1, 1] $\times R$ containing the origin. If $\omega$ is an
open set with compact closure contained in $\omega$ , then

(4.19) $|\int_{R^{1}}\int_{R^{1}}fvdxdt|\leq C\sup\sum_{\alpha+\beta\leq m}|D_{X}^{\alpha}D_{l}^{\beta}f|\sup\sum_{\alpha+\beta\leq m}|D_{X}^{\alpha}D_{l}^{\beta}L_{\varphi_{0}}^{*}v|$

for all $f,$ $v\in C_{0^{\infty}}(\omega)$ , see [11]. Functions which violate this inequality will be
constmcted.

For the constmction we need the following auxiliary functions $(i=1,2)$ :

1) $t_{i}=t_{i}(\tau)$ are defined by the following equations:
$N_{1}\ln\tau^{2}=\Lambda(t_{1})\tau^{2}$ , $(N_{1}+\tau^{-2})\ln\tau^{2}=\Lambda(t_{2})\tau^{2}$ , where $N<N_{1}$ and $N$ is used
for the definition of $Z_{e,ext}(M, N,\delta)$ . It is clear, that $0<t_{1}(\tau)<t_{2}(\tau)$ , and
$\lim_{\tau\rightarrow\infty}t_{2}(\tau)=0$ .

2) $F_{2,\tau}=F_{2,\tau}(t)$ are cut-off functions with $suppF_{2,\tau}\subset[\iota_{1}(\tau), t_{2}(\tau)]$ and
$\int_{-\infty}^{\infty}F_{2,\tau}(t)dt=1$ .

3) $g_{\tau}=g(\tau\rho)$ are cut-off functions with $suppg_{\tau}\subset\tau[1,2]$ and $\int_{-\infty}^{\infty}g(\tau\rho)dp=\tau$ .

Let us choose the function

$ v_{\tau}(x, t)=\chi(x, t)\int_{R^{1}}g(\tau\rho)e^{ixp\tau^{2}}\frac{\hat{u}(t,-\varphi_{0},p\tau^{2})}{T_{12}(-\overline{b},-\varphi_{0},p\tau^{2})}d\rho$ ,

where

$\hat{u}(t, -\varphi_{0},\rho\tau^{2})=\left\{\begin{array}{l}\chi_{+}(-\varphi_{0},\rho\tau^{2})u_{l}^{-c}(t,-\varphi_{0},\rho\tau^{2})=\\\chi_{+}(-\varphi_{0},p\tau^{2})T_{12}(-\overline{b},-\varphi_{0},\rho\tau^{2})e^{-\Lambda(t)\rho\tau^{2}e^{- i\prime}o}a_{2,\tau}^{+}(t,-\varphi_{0},p\tau^{2}),\\\chi_{+}(-\varphi_{0},\rho\tau^{2})u_{l}^{-}(t,-\varphi_{0},p\tau^{2})=\\\chi_{+}(-\varphi_{0},\rho\tau^{2})e^{\Lambda(t)\rho\tau^{2}e^{- i\eta}}a_{1,\tau}^{-}(t,-\varphi_{0},\rho\tau^{2}),\end{array}\right.$

$\iota\leq 0t\geq 0.$

’

The cut-off function $\chi\in C_{0}^{\infty}(\omega)$ satisfies $\chi=1$ in a neighbourhood of $(0,0)$ . Using
$T_{11}(-\overline{b}, -\varphi_{0}, \xi)=0$ , (1.13) and (1.14) we have $\partial_{t}^{1}u_{1}^{-c}=T_{12}\partial_{t}^{l}u_{2}^{+},$ $l=0,1$ . By
Lemma 2.6 and (2.30) we conclude that

$|T_{12}(-\overline{b}, -\varphi_{0},\rho\tau^{2})|^{2}=\frac{E(u_{1}^{-c})(+0,-\varphi_{0},p\tau^{2})}{E(u_{2}^{+})(+0,-\varphi_{0},p\tau^{2})}\geq C(\rho\tau^{2})^{m_{0}}$

with some real constant $m_{0}$ . The assumptions conceming $g$ and the fact that
$T_{12}(-\overline{b}, -\varphi_{0}, \xi)$ has polynomial growth in $Z_{e}(M, N,\delta)$ imply that $v_{\tau}\in C_{0^{\infty}}(\omega)$ ,
too. Moreover let us choose

$f_{\tau}(x, t)=F_{1,\tau}(\tau^{2}x)F_{2,\tau}(t)$ ,
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where $F_{1,\tau}=F_{1,\tau}(\tau^{2}x)$ are cut-off functions which support we shall fix later and
$\int_{-\infty}^{\infty}F_{1,\tau}(\tau^{2}x)dx=\tau^{2}$ . Then

$\int_{R^{1}}\int_{R^{1}}f_{\tau}v_{\tau}dxdt=\int_{R^{1}}\int_{R^{1}}\int_{R^{1}}g(\tau p)F_{1,\tau}(\tau^{2}x)F_{2,\tau}(t)\chi(x, t)e^{i(x+\Lambda(t)\sin\varphi_{0})\rho\tau^{2}}$

$\times e^{-\Lambda(\iota)\rho\tau^{2}\cos\varphi_{0}}a_{2,\tau}^{+}(t, -\varphi_{0},\rho\tau^{2})\chi_{+}(-\varphi_{0},\rho\tau^{2})dpdxdt$ .

From constmction in section 2.1 we have

$a_{2}^{+_{\tau,0}}(t, -\varphi_{0},\rho\tau^{2})=e^{\int^{T}\frac{\lambda^{\prime}(1)+{\rm Re}\overline{b(s)}}{2\lambda(s)}ds+i\int^{T}\frac{{\rm Im}\overline{b(s)}}{2\lambda(s)}ds}$ .

Using that

$\sum_{k=1}^{\infty}a_{2,\tau,k}^{+}(t, -\varphi_{0},\rho\tau^{2})\leq\frac{C}{\Lambda(t)\rho\tau^{2}}\leq\frac{C}{N_{1}\ln\tau^{2}}$

in the zone $N_{1}\ln\tau^{2}\leq\Lambda(t)\tau^{2}\leq(N_{1}+\tau^{-2})\ln\tau^{2}$ it is enough to consider
$a_{2,,0}^{+_{\tau}}(t, -\varphi_{0},\rho\tau^{2})$ . This term of formal asymptotic solution majorizes the others.
Consequently,

$|\int_{R^{1}}\int_{R^{1}}f_{\tau}v_{\tau}dxdt|\geq\frac{1}{2}|e^{i\int_{1}^{\tau_{(\tau)}}\frac{{\rm Im}\overline{b(s)}}{2\lambda(s)}ds}\int_{R^{1}}\int_{R^{1}}\int_{R^{1}}g(\tau\rho)F_{1,\tau}(\tau^{2}x)F_{2,\tau}(t)\chi(x, t)$

$\times e^{i(x+\Lambda(t)\sin\varphi_{0})\rho\tau^{2}}e^{i\int_{t}^{\iota_{1}(\tau)}\frac{{\rm Im}\overline{b(s)}}{2\lambda(s)}ds}$

$\times ee\chi_{+}(-\varphi_{0},p\tau^{2})d\rho dxdt|$ .

The new variable $z$ is defined by $z=\Lambda(t)\sin\varphi_{0}$ runs through an interval
$[z_{1}(\tau), z_{2}(\tau)]$ having length $o(\tau^{-3})$ . This follows from

$|(\Lambda(s_{1})-\Lambda(s_{2}))\sin\varphi_{0}|\leq\tau^{-4}\ln\tau^{2}$

for all $s_{1},$ $s_{2}\in[t_{1}(\tau), t_{2}(\tau)]$ . Now let us choose $x\in[x_{2}(\tau), x_{1}(\tau)]$ with $x_{l}(\tau)=-z_{i}(\tau)$ ,

$i=1,2$ , and suppose that the support of $F_{1,\tau}(\tau^{2}x)$ is contained in $\tau^{2}[x_{2}(\tau), x_{1}(\tau)]$ .
Using $\lim_{\tau\rightarrow\infty}z_{i}(\tau)=0$ for $i=1,2$ the same holds for $\lim_{\tau\rightarrow\infty}x_{j}(\tau)=0$ , too.
Consequently, $[r_{1}(\tau), t_{2}(\tau)]\times[x_{2}(\tau), x_{1}(\tau)]$ belongs to $\omega$ if $\tau$ is large. But this
guarantees that $\chi(x, t)=1$ on $[x_{2}(\tau), x_{1}(\tau)]\times[t_{1}(\tau), t_{2}(\tau)]$ and $\chi_{+}(-\varphi_{0},p\tau^{2})=1$ if
$\tau$ is large. The Levi condition (1.5) implies

$\int_{t}^{t_{1}(\tau)}\frac{{\rm Im}\overline{b(s)}}{2\lambda(s)}ds\leq C\ln\frac{\Lambda(t_{2}(\tau))}{\Lambda(t_{1}(\tau))}=C\ln(1+(\tau^{2}N_{1})^{-1})$
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for all $t\in[t_{1}(\tau), t_{2}(\tau)]$ . Hence,

$\lim_{\tau\rightarrow\infty}e^{i\int_{l}^{\iota_{1}(\tau)}\frac{{\rm Im}\overline{b(s)}}{2\lambda(s)}ds}=1$

for all $t\in[t_{1}(\tau), t_{2}(\tau)]$ . Using the substitution $y=x+\Lambda(t)\sin\varphi_{0}$ the new variable
$y$ mns through an interval $[y_{1}(\tau),y2(\tau)]$ around the origin with length $o(\tau^{-3})$ .
Hence,

$\lim_{\tau\rightarrow\infty}e^{i(x+\Lambda(t)\sin\varphi_{0})\rho\tau^{2}}=\lim_{\tau\rightarrow\infty}e^{iy\rho\tau^{2}}=1$

for all $y\in[y1(\tau),y2(\tau)]$ and $\rho\in[1,2]$ . It remains to estimate

$ee$ .

From definition of $t_{i}(\tau)$ and Levi condition (1.5) for $b=b(t)$ we conclude

$ee\geq C_{1}e^{-2(N_{1}+\tau^{- 2})\ln\tau^{2}\cos\varphi_{0}}e^{c\ln\Lambda(t_{1}(\tau))}$

$\geq C_{1}\tau^{-5N_{1}\cos\varphi_{0}}(\frac{N_{1}\ln\tau^{2}}{\tau^{2}})^{c}$

for all $t\in[t_{1}(\tau), t_{2}(\tau)]$ and $\rho\in[1,2]$ .
Using $\int_{-\infty}^{\infty}F_{2,\tau}(t)d\iota=1$ , $\int_{-\infty}^{\infty}g(\tau p)d\rho=\tau$ and $J_{-\infty}^{\infty}F_{1,\tau}(x\tau^{2})dx=$

$\int_{-\infty}^{\infty}F_{1,\tau}(\tau^{2}(y-\Lambda(t)\sin\varphi_{0}))dy=\tau^{2}$ then we obtain

(4.20) $|\int_{R^{1}}\int_{R^{1}}f_{\tau}v_{\tau}dxdt|\geq C\tau^{m_{0}}$

with a suitable real constant $m_{0}$ . Then it is easy to see that the function

$w_{\tau}(x, t)=\int_{R^{1}}g(\tau\rho)e^{ix\rho\tau^{2}}\hat{u}(t, -\varphi_{0},\rho\tau^{2})dp$

solves the equation $L_{\varphi_{0}}^{*}w_{\tau}(x, t)=0$ in a neighbourhood of the origin. Therefore,

$L_{\varphi_{0}}^{*}\chi w_{\tau}=[L_{\varphi_{0}}^{*},\chi]w_{\tau}+\chi L_{\varphi_{0}}^{*}w_{\tau}=\zeta(t, x)Q(t, x, D_{t}, D_{x})w_{\tau}(x, t)$ ,

where $\zeta(t, x)=0$ inside of some neighbourhood of $(0,0)$ of the form $[-\epsilon, \epsilon]^{2}$ . The
inequality

(4.21)
$\sup\sum_{\alpha+\beta\leq m}|D_{x}^{\alpha}D_{t}^{\beta}L_{\varphi_{0}}^{*}v_{\tau}|\leq C_{N}\tau^{-N}$

follows from
$|D_{X}^{\alpha}D_{t}^{\beta}w_{\tau}(x, t)|\leq C_{N}\tau^{-N}$
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for all $(x, t)$ belonging to $supp\zeta$ . If $ t\geq\epsilon$ , then for all $x$

$ D_{x}^{\alpha}D_{t}^{\beta}w_{\tau}(x, t)=(-i)^{\alpha}\int_{1}^{2}g(\tau\rho)(\tau^{2}p)^{\alpha}e^{ix\tau^{2}\rho}D_{t}^{\beta}(e^{-\Lambda(t)\rho\tau^{2}e^{- i\varphi_{0}}}a_{2}^{+_{\tau}}(t, -\varphi_{0},p\tau^{2}))d\rho$ .

It follows for $\alpha+\beta\leq m$

$|D_{x}^{\alpha}D_{t}^{\beta}w_{\tau}(x, t)|\leq C_{m}\int_{1}^{2}g(\tau\rho)(1+2\tau^{2})^{\alpha+\beta+m_{2}^{+}}e^{-\Lambda(\epsilon)2\tau^{2}\cos\varphi_{0}}d\rho\leq C_{N,m^{T^{-N}}}$

for every $N$ . Furthermore if $|x|\geq\epsilon$ and $ 0\leq t\leq\epsilon$ then for every $k$

$|\tau^{2}x|^{k}|D_{x}^{\alpha}D_{t}^{\beta}w_{\tau}(x, t)|$

$\leq|\int_{1}^{2}g(\tau\rho)(\tau^{2}\rho)^{\alpha}((\frac{\partial}{\partial p})^{k_{e^{ix\tau^{2}\rho}}}I^{D_{\iota}^{\beta}(e^{-\Lambda(t)\rho\tau^{2}e^{- i\varphi_{0}}}a_{2}^{+_{\tau}}(t,-\varphi_{0},p\tau^{2}))d\rho 1}$

$=\tau^{2\alpha}\int_{1}^{2}e^{ix\tau^{2}\rho}(\frac{\partial}{\partial\rho})^{k}(\rho^{\alpha}g(\tau\rho))D_{t}^{\beta}(e^{-\Lambda(t)\rho\tau^{2}e^{- i\varphi_{0}}}a_{2,\tau}^{+}(t, -\varphi_{0},\rho\tau^{2}))dp$

$\leq C_{k,m}\tau^{2\alpha+2\beta+2m_{2}^{+}+k}$ ,

respectively,

$|D_{X}^{\alpha}D_{t}^{\beta}w_{\tau}(x, t)|\leq C_{k,m}\tau^{2\alpha+2\beta+2m_{2}^{+}-k}\leq C_{k,m}\tau^{2m+2m_{2}^{+}-k}$

for all $\alpha,\beta\leq m$ and all $k$ . It follows the desired inequality (4.21). Comparing
(4.20) with (4.21) the inequality (4.19) does not hold for $f_{\tau}$ and $v_{\tau}$ . In the same
way we prove the statement for $T_{11}(\overline{b}, -\varphi_{0}, \xi)=0$ .

THEOREM 4.5. Iffor a given $\varphi_{0}\in(-\pi/2, \pi/2)$ one of the Stokes coefficients
$T_{11}(\pm\overline{b}, -\varphi_{0}, \xi)$ vanishes for all $\xi$ with $(-\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ , then all operators
$L_{\varphi},$ $\varphi\in(-\pi/2, \pi/2)$ , are locally non-solvable at $(0,0)$ .

PROOF. It follows immediately by Theorems 4.3 and 4.4.

4.4. Sufficient condition for non-hypoellipticity
In the previous section we have discussed local non-solvability of $L_{\varphi_{0}}$ if one

of the Stokes coefficients $T_{11}(\pm\overline{b}, -\varphi_{0}, \xi)=0$ for all $(-\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ . In
this section we shall prove a result of non-hypoellipticity under weaker con-
ditions conceming $T_{11}(\pm b, \varphi_{0}, \xi)$ .
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THEOREM 4.6. Let $Z_{e}(M, N,\delta)$ be such a zone that the Stokes coefficient $T_{11}$

satisfies

(4.22) $|T_{11}(b, \varphi_{0}, \xi)|\leq h(\varphi_{0}, \xi)e^{-2\Lambda(T)\xi}$ or $|T_{11}(-b, \varphi_{0}, \xi)|\leq h(\varphi_{0}, \xi)e^{-2\Lambda(T)\xi}$ ,

for all $\xi$ with $(\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ . Here $h(\varphi_{0}, \xi)$ is a $C^{\infty}$ -function having poly-
nomial growth together with all derivatives. Then $L_{\varphi_{0}}$ is non-hypoelliptic at $(0,0)$ .

PROOF. We restrict ourselves to the proof for $T_{11}(b, \varphi_{0}, \xi)$ . Let us choose
the solution

(4.23) $\hat{u}(t, \varphi_{0}, \xi)=\left\{\begin{array}{l}\chi_{+}(\varphi_{0},\xi)u_{l}^{-c}(t,\varphi_{0},\xi)=\chi_{+}(\varphi_{0},\xi)(T_{ll}(b,\varphi_{0},\xi)e^{\xi e^{i|0}\Lambda(t)}a_{1}^{+},\\+T_{l2}(b,\varphi_{0},\xi)e^{-\xi e^{i\varphi 0}A(t)}a_{2}^{+}), t\geq 0,\\\chi_{+}(\varphi_{0},\xi)u_{1}^{-}(l,\varphi_{0},\xi)=\chi_{+}(\varphi_{0},\xi)e^{\xi e^{l|0}\Lambda(t)}a_{l}^{-}, t\leq 0.\end{array}\right.$

Here $\chi_{+}=\chi_{+}(\varphi_{0}, \xi)$ is a $C^{\infty}$ -function such that $\chi_{+}(\varphi_{0}, \xi)=0$ if $(\varphi_{0}, \xi)\not\in$

$Z_{e}(M, N,\delta)$ and $\chi_{+}(\varphi_{0}, \xi)=1$ for $\xi\geq M(\varphi_{0})$ .
The condition conceming $T_{11}$ and the fact that $T_{12}$ has polynomial growth

in $Z_{e}(M, N,\delta)$ imply

(4.24) $\hat{u}(t, \varphi_{0}, \xi)=\left\{\begin{array}{l}\chi_{+}(\varphi_{0},\xi)e^{-\xi e^{l\varphi_{0}}\Lambda(t)}h_{l}^{+}, t\geq 0,\\\chi_{+}(\varphi_{0},\xi)e^{\xi e^{l\varphi 0}\Lambda(t)}a_{l}^{-}, t\leq 0,\end{array}\right.$

where $h_{1}^{+}$ has polynomial growth together with all derivatives. We see that for all
$t\neq 0\hat{u}(t, \varphi_{0}, \xi)$ and $\partial_{t}\hat{u}(t, \varphi_{0}, \xi)$ belong to $S$ . Therefore its partial Fourier
transform $u$ is a solution of (0.3). Our goal is to show that under the conditions
of the theorem the point $(0,0)\in$ sing $suppu$ .

For this reason let us choose a function $\psi(x)\in C_{0^{\infty}}(R^{1})$ with $\psi=1$ in
a neighbourhood $(-\epsilon,\epsilon)$ of $x=0$ . Then $(\overline{\psi u})(t=0)=(\hat{\psi}*\hat{u})(t=0)=$

$\int_{R^{1}}\underline{\hat{\psi}}(\xi)\hat{u}(-0, \varphi_{0},\eta-\xi)d\xi=\int_{R^{1}}\hat{\psi}(\xi)\chi_{+}(\varphi_{0}, \xi)a_{\overline{1}}(-0, \varphi_{0}, \eta-\xi)d\xi$ . Analogously,
$\partial_{t}(\psi u)(t=0)=\int_{R^{1}}\hat{\psi}(\xi)\chi_{+}(\varphi_{0}, \xi)a_{\overline{1,}t}(-0, \varphi_{0}, \eta-\xi)d\xi$ . The integrands belong to
$C^{\infty}w.r.t$ . $\xi$ . Consequently,

$(\overline{\psi u})(t=0)=\int_{R^{1}}\hat{\psi}(\xi)\sum_{k=0}^{N-1}\frac{1}{k!}(\chi_{+}a_{1}^{-})^{(k)}(-0, \varphi_{0}, \eta)(-\xi)^{k}d\xi$

$+\frac{1}{N!}\int_{R^{1}}\hat{\psi}(\xi)\int_{0^{1}}(\chi_{+}a_{1}^{-})^{(N+1)}(-0, \varphi_{0}, \eta-\rho\xi)d\rho(-\xi)^{N+1}d\xi$ .
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Now we have $\psi(x)=\int_{R^{1}}e^{ix\xi}\hat{\psi}(\xi)d\xi=1$ and $\psi^{(k)}(x)=\int_{R^{1}}e^{ix\xi}(i\xi)^{k}\hat{\psi}(\xi)d\xi=0$

for all $x\in(-\epsilon, \epsilon)$ . Consequently, $\int_{R^{1}}\hat{\psi}(\xi)d\xi=1$ and $\int_{R^{1}}\xi^{k}\hat{\psi}(\xi)d\xi=0$ for all
$k\in N_{0}$ . With this property we conclude

$(\overline{\psi u})(t=0)=(\chi_{+}a_{1}^{-})(-0, \varphi_{0}, \eta)$

$+\frac{1}{N!}\int_{R^{1}}\hat{\psi}(\xi)(-\xi)^{N+1}\int_{0^{1}}(\chi_{+}a_{1}^{-})^{(N+1)}(-0, \varphi_{0},\eta-\rho\xi)d\rho d\xi$ .

Now let us estimate the inner integral of the second term. We have from
(2.3)

$|(\chi_{+}a_{1}^{-})^{(N+1)}(-0, \varphi_{0}, \eta-\rho\xi)|\leq C_{N+1}(1+|\eta-\rho\xi|^{2})^{1/2(m_{-}-N-1)}$

for all $\eta\geq M(\varphi_{0}),\rho\in(0,1)$ and $\xi\in R^{1}$ . Using Petree’s inequality [13], that is

$(1+|\eta-\rho\xi|^{2})^{1/2(m_{-}-N-1)}\leq(1+|\eta|^{2})^{1/2(m_{-}-N-1)}(1+|p\xi|^{2})^{|1/2(m_{-}-N-1)|}$ ,

we conclude that if $m_{\varphi_{0}}$ satisfies $m_{-}-N-1\leq m_{\varphi_{0}}-1$ , then

$\frac{1}{N!}\int_{R^{1}}\hat{\psi}(\xi)(-\xi)^{N+1}\int_{0^{1}}(\chi_{+}a_{1}^{-})^{(N+1)}(-0, \varphi_{0}, \eta-\rho\xi)dpd\xi$

$\leq C\langle\eta\}^{\frac{1}{2}(m_{\varphi_{0}}-1)}\int_{-\infty}^{\infty}|\hat{\psi}(\xi)|\{\xi\rangle^{N+|m_{\varphi_{0}}-1|}d\xi$

$\leq C\langle\eta\rangle^{\frac{1}{2}(m_{\varphi_{0}}-1)}$

for all $\eta\geq M(\varphi_{0})$ because of $\hat{\psi}(\xi)\in S$ . But this gives

$|(\overline{\psi u})(t=0)|\geq|a_{1}^{-}(-0, \varphi_{0}, \eta)|-C\langle\eta\rangle^{\frac{1}{2}(m_{\varphi_{0}}-1)}$ .

In the same way we derive

$|\partial_{t}(\overline{\psi u})(t=0)|\geq|\partial_{t}a_{1}^{-}(-0, \varphi_{0}, \eta)|-C\langle\eta\rangle^{1}(m_{\varphi 0}-1)$

for all $\eta\geq M(\varphi_{0})$ . Hence,

$|(\overline{\psi u})(t=0)|+|\partial_{\iota}(\overline{\psi u})(t=0)|\geq|a_{1}^{-}(-0, \varphi_{0}, \eta)|+|\partial_{l}a_{1}^{-}(-0, \varphi_{0}, \eta)|-C\langle\eta\rangle^{\frac{1}{2}(m_{0},-1)}$

for all $\eta\geq M(\varphi_{0})$ . Using, finally, the energy estimate (2.30) from Corollary 2.3
we have

$\mathscr{E}(u_{1}^{-})(t=0)=|a_{I}^{-}(-0, \varphi_{0}, \eta)|^{2}+|\partial_{\iota}a_{1}^{-}(-0, \varphi_{0}, \eta)|^{2}\geq C\{\eta\rangle^{m_{\varphi 0}}$
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for all $\eta\geq M(\varphi_{0})$ . Hence,

$|(\overline{\psi u})(t=0)|+|\partial_{t}(\hat{\psi}u)(t=0)|\geq C\langle\eta\}^{1}m_{\eta}$ .

This is a contradiction to $u,$
$\partial_{t}u\in C^{\infty}$ in $(0,0)$ . The theorem can be proved for

$T_{11}(-b, \varphi_{0}, \xi)$ in a similar way.

THEOREM 4.7. Iffor a given $\varphi_{0}\in(-\pi/2, \pi/2)$ one of the Stokes coefficients
$T_{11}(\pm b, \varphi_{0}, \xi)$ vanishes for all $\xi$ with $(\varphi_{0}, \xi)\in Z_{e}(M, N,\delta)$ , then all operators
$L_{\varphi},$ $\varphi\in(-\pi/2, \pi/2)$ , are non-hypoelliptic at $(0,0)$ .

PROOF. It follows immediately by Theorems 4.3 and 4.6.

4.5. On the Stokes matrix for our starting example
We have formulated by the aid of Stokes coefficients sufficient conditions

for hypoellipticity, local solvability, local non-solvability and non-hypoellipticity.
These conditions are basing on the representations (2.2) with suitable properties
of Theorem 2.1. These representations we have obtained by construction in
section 2.

Of course, all above results hold if one can propose another constmction
principle which leads to representations (2.2) with the same properties. For
example, for (0.1) a construction is given by theory of special functions in [17].
Indeed, the calculation of Stokes coefficients for (0.1) basing on the repre-
sentations

$u_{1}^{+}(t, \varphi, \xi)=e^{\xi\dot{d}^{\varphi}e^{- 1/|\iota|}}t\Psi(\alpha_{+}, 1;-2\xi e^{i\varphi}e^{-1/|t|})$ ,

$u_{2}^{+}(t, \varphi, \xi)=e^{-\xi e^{i|}e^{- 1/|l|}}t\Psi(1-\alpha_{+}, 1;2\xi e^{i\varphi}e^{-1/|t|})$ ,

$u_{1}^{-}(t, \varphi, \xi)=e^{-\xi e^{i\varphi}e^{- 1/|t|}}t\Psi(1-\alpha_{-}, 1;2\xi e^{i\varphi}e^{-1/|t|})$ ,

$u_{\overline{2}}(t, \varphi, \xi)=e^{\xi e^{l\varphi}e^{- 1/|\iota|}}t\Psi(\alpha_{-}, 1;-2\xi e^{i\varphi}e^{-1/|t|})$ ,

where $\alpha+=(1+b_{+})/2,$ $\alpha_{-}=(1+b_{-})/2$ and

$\Psi(\alpha, 1;z)=\frac{1}{2i\pi}e^{-i\pi\alpha}\Gamma(1-\alpha)\int_{\infty e^{l\varphi}}^{(0+)}e^{-zt}t^{\alpha-1}(1+t)^{-\alpha}dt$

( $-\pi/2<\varphi+\arg z<\pi/2,$ $\arg t=\varphi$ at the starting point, $\Gamma(\alpha)$ is Euler’s function
[3], $\Psi$ is a solution of the confluent hypergeometric equation), leads to the
following results:
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a) under the assumptions of (A1)

$|T_{11}(b, \varphi, \xi)|\geq C_{\varphi}\{\xi\rangle^{-1}, |T_{11}(-b, \varphi, \xi)|\geq C_{\varphi}\langle\xi\}^{-1}$ ,
$|T_{11}(\overline{b}, -\varphi, \xi)|\geq C_{\varphi}\langle\xi\rangle^{-1}$ , $|T_{11}(-\overline{b}, -\varphi, \xi)$ I $\geq C_{\varphi}\langle\xi\}^{-1}$ ,

b) if $b_{+}=2n+1,$ $b_{-}=2l+1$ , where $n$ and $l$ are non-negative integer, then
$T_{11}(b, \varphi, \xi)=0$ for all $(\varphi, \xi)\in(-\pi/2, \pi/2)\times(0, \infty)$ ,

c) if $b_{+}=-2n-1,$ $b_{-}=-2l-1$ , where $n$ and $l$ are non-negative integer,
then $T_{11}(-b, \varphi, \xi)=0$ for all $(\varphi, \xi)\in(-\pi/2, \pi/2)\times(0, \infty)$ .

Consequently, the application of Theorems 4.2, 4.4, 4.6 and Corollary 4.2
gives us:

1) under the assumptions of (A1) every operator $P_{\varphi}$ is hypoelliptic as well
as locally solvable at $(0,0)$ ,

2) under the assumptions of (A2) every operator $P_{\varphi}$ is locally non-solvable
as well as non-hypoelliptic at $(0,0)$ ,

3) the statement of Theorem 4.3 holds in the exceptional cases b) and
c) because of $T_{11}(b, \varphi, \xi)=0$ or $T_{11}(-b, \varphi, \xi)=0$ for all $(\varphi, \xi)\in$

$(-\pi/2, \pi/2)\times(0, \infty)$ .
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