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MICROLOCAL COMPLEX FOLIATION OF
R-LAGRANGIAN CR SUBMANIFOLDS

By

Giuseppe ZAMPIERI

Abstract. Let X be a complex manifold, M a real analytic sub-
manifold of XX T*X the cotangent bundle to X, Ty X the con-
ormal bundle to M in X. Assume that T;X is regular and CR in
T*X. We then show that Ty;X is locally defined as the zero-set of
the real and/or imaginary part of holomorphic symplectic coor-
dinates of T*X. It is well known that the similar description of M
in local complex coordinates of X is true only if M is Levi flat. As

an application we obtain a generalization of the celebrated edge of
the wedge Theorem.

§1. Let X be a complex manifold of dimension n, n:7T*X — X the
cotangent bundle to X, 7*X the bundle 7*X with the 0-section removed, « =
a® ++/—1al (resp. o(= do) = o® + v/—10') the canonical 1-form (resp. 2-form)
on T*X. Let X% (resp. (T*X )R ) be the real analytic manifold underlying to X
(resp. T*X); we have diagonal identifications:

(1.1) x% 2 X xy X, T(X%) A TX g TX ~ (Tx)®, 1 (x% & (T*x)%.
A complex analytic submanifold ¥ < T*X is C-involutive (resp. Lagrangian, resp.
isotropic) if at each p e V the tangent plane v(p) = T,V verifies v1(p) = v(p)
(resp. v (p) = v(p), resp. v (p) = v(p)). (The planes v(p) themselves will be called
in the corresponding manner.) V is called regular when o|, # 0. A real analytic
submanifold A = T*X?® is called R-Lagrangian when A(p) &L T,A is Lagrangian
for a®(p). A is called I-symplectic when o’(p) is non-degenerate on A(p). All
submanifolds of T*X (resp. T*X®) will be C*-conic (resp. R™-conic).

Let M be a real analytic submanifold of X® of codim /, and T} X the
conormal bundle to M in X identified, via the third of (1.1), to an R-Lagrangian
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submanifold of T*XR. We fix pe T} X,n(p) = z, and define
(1.2) im(p) = T,TyX, TEM =T,MNV—-1T,M.

We define the Levi form Ly(p) of M at p as the restriction to TCM of the

Hermitian form 0dr;(z), where r; is a function with r{|,, = 0 and dr|(z) = p. We

denote by s}ff’o(p) the numbers of respectively positive, negative, and null

eigenvalues of Ly (p).
We complete r; to a system of independent equations (r;),_; , =0 for M,
and give a parametric representation of T X:

J

(1.3) Y:M xR S TyX, (z()— (z; Z tjarj(z)) .

We take the composition o (j~! x id) where j is the map in (1.1). (This just
means, for coordinates z = x4+ v/ —1y € X, to consider ¥ as a function of (z, %)
rather than (x,y).) By the aid of Yo (j~! x id), we get the identifications:

(1.4) Im(p) = { (u; Z t;0r; + 00r:(z)u + 80r (z)ﬁ) () e R,

J
or1(z)u + o (z)ia = O},
A (D) NV —=14pr(p) = {(u;' 33r1(2)u + 00r\(2)u); 0r1(z)u = 0,90, (z)i e
TsX, +V—1T:X,} @ {(0;v);0 € Th X, NV-1T3 X.},
(z=mn(p)). It follows
(1.5) A (P) NV =120 (p) ~ Ker Ly(p) @ (T X NV —-1T}X,)
Put y,(z) = dimc (T} X, NvV—1T}, X,); we get from
rank Ly (p) = dim TS M — dim Ker Ly (p)
(1.6)
= (n— 1 — dimc(An(p) N V=14pm(p))) + 271 (2)-

Let M c X and pe T}, X.

THEOREM 1.1. Assume that T;,X is regular at p and verifies

(1.7) dim(Ay(p) NV —=14p(p)) = const in a neighborhood of p.
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Then we may find local complex symplectic coordinates (z;{) = (z',2";{,{")
T*X, z=x+V—1y,{ =&+ V/—1y such that p= (0;idy,) and:

(1.8) TyX ={(z:0) e T"X;y' =& =0,{" =0},

PrOOF. (a) We put Ayy =T wX. Regularity of Ay at p means that A (p)
meets the complex plane spanned by the radial vector field at p along a real
line. In this situation it is well known that A, can be interchanged, by a
complex symplectic transformation y, with the conormal bundle to a hyper-
surface, and that s~ =0 at y(p) for such hypersurface. But we have indeed
s~ =0 in a neighborhood of yx(p) by (1.7), because the constancy of s* —y is a
symplectic invariant due to (1.6). Thus this hypersurface is in fact the boundary
of a pseudoconvex domain. By the same reason s = const. Thus it is not
restrictive to assume from the beginning M to be the boundary of a pseu-
doconvex domain with dim (Ker Ljs) = const (say d). By [F], [R] (and [S]) M is
locally foliated by the integral leaves of Ker L,s; these are complex manifolds of
dim d (since they have complex tangent planes of the corresponding dim). (For
a new proof with some improvements of the results on Levi foliations see also
[Z1) '

(b) There is a foliation of 7, X at p whose leaves are complex sections of
T3 X over the leaves of M. In fact let I be a complex leaf of M defined, in
complex coordinates z = (z1,2',z") e X, by z; =2/ =0, and let p = (0;i dy).
One has

(1.9) Lyu(pYw,)=0 VweC% Vp'eTyXNzn ' (T) close to p.

In fact if r|,, =0 with Or(z) = p, then clearly 0,20;»r =0 on I' and if by
absurd 0,/0;#r # 0 at some point of I' close to z, then the pseudoconvexity of M
should be violated.

We denote by g: M — M’ ~ R* -2 the foliation of M, and set R =
g ' (MNC,). We remark that R is a CR manifold (of CR dim d) due to dim
(TRNV—-1TR)=d. Let j: R— X, and let Y =p; oj¢(RC) where p;:Xx
X — X. Y is a complex manifold with dim(Y) =d + 1 by the above remark.
Moreover since Zg = 0V antiholomorphic tangent vector field Z € T%! R(= {0} x
T°R—TX xx TX]| M), then g extends to a holomorphic function g: Y — C;,.
In complex coordinates in which g : (z1,2") — z;, we have R = R,, x {0} x C%,.
Since S o R, then we may write » = y; + 0(|z’|)(0(|(z1,2")|) + O(|z’|). Thus for
I = C%, we have

(1.10) 0:(0.r|p)( = (070.r)|r) =0 (i.e. 0,r|p is holomorphic).



364 Giuseppe ZAMPIERI

In fact 0,r[r= — V-1 and 070,r|r=0Vi#1 by (1.9). Thus we have a
foliation of 7, X by the complex leaves I', = {(z;tdr(z));z e T}, t € R. This gives
a projection

(1.11) p:Ay— AN,

with complex fibers.

(c) We note that Z, =0V Z € T%' Ay, (due to Ker p/ = Ay N+v/—11,); thus
e extends to a holomorphic map 5 : ¥V — A’C where V is the partial complex-
ification of ¥ in T*X, and A’C a complexification of A’. Note here that such ¥
exists because Ay is CR in T*X by (1.7)

We claim that V is a regular involutive submanifold of T*X, and j is the
projection along the bicharacteristic leaves of V. In fact if v = TV and v is the
symplectic orthogonal, then v and Ker p’ are two complex bundles on V of
dim d which verify vt|,, = Ker 5’|, (= Ay NV —1Az). Thus v+ = Ker §’ which
proves the claim. Let V' = V/~, where ~ is the equivalence relation which
identifies all points of ¥ in the same bicharacteristic leaf; then ¥’ = A’C.

Clearly v = v/v' and thus ¢ induces a non-degenerate form ¢’ on V’'. We
also have A’ = A;7/vt =/1M/(AM0\/——11M); thus A’ is R-Lagrangian and I-
symplectic in V.

(d) We take complex symplectic coordinates (z;¢) € T*X,z = (z/,2"),{ =
(.0, z=x+V=1p,{ =&+ V-1 st

V=T'X'"xC% V' =T*X', Ayuy=AN xC% X =C" p=(0;idy,).

We note that any R-Lagrangian I-symplectic submanifold of 7*C"“ can be
transformed, by a complex symplectic transformation, into 7%, ,C""%; thus after
this transformation A = T;,,_,,C"‘d x C?. Q.E.D.

§2. We suppose in this section that M is a real analytic generic submanifold
of XR (i.e. y;; =0) of codim /, and that T,’(,X verifies (1.7) over an open cone
UcT X (T wX is automatically regular because y;, = 0.) Let €y and By x
be the sheaves of resp. CR microfunctions and CR hyperfunctions along M.
These are concentrated in degree s,, and s,,,0 respectively (cf. [K-S]). We recall
that %y, (defined as RI'j(0Ox)[l] with Ox denoting the sheaf of holo-
morphic functions on X), turns out to coincide with the sheaf of the sj,-th
cohomology of the tangential 6-complex over (usual) hyperfunctions %;s. Let
sp : H(n~'(Bax)) — H(€myx) be the spectral morphism, and define

(2.1) WF(f) = supp(sp(f)), f € H*™(Bpyx).
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WF coincides, at least for s3, =0, with the usual analytic wave front set (cf.

[B-C-T]). According to [S-K-K], [K-S], the symplectic transformation which
gives can be quantized to an isomorphism:

(22) %M|X o~ (gR"_dXCle[—S;l]'

Thus % x is isomorphic, upto a shift —s3,, to the sheaf of usual microfunctions
with holomorphic parameters. In particular, according to [S-K-Kl;

H(€ymix)|y satisfies the principle of the analytic contination along the
integral leaves of AMﬂ\/—_lllM.

Let 6 be an open convex cone of Ty X := M xy TX/TM. We recall that a
domain W < X is said to be a wedge with profile § when Cy(X\W)Nd =9
(where Cps(-) denotes the Whitney normal cone along M). Let n be a closed
convex proper cone of T35 X with n > M. We have

. b .
w
where W ranges through the family of wedges with profile = int #°¢ the interior
of the antipodal of the polar to 7. (b is called the boundary values morphism.)
Fix ze M,zen(U), write z=(z,z"), M=M'xY (Y a polydisc with
center z”).

PROPOSITION 2.1. Let M be real analytic generic and satisfy (1.7) in U.
Let nj=M'xZ;,j=1,...,N, be closed convex proper cones of U', and let
Fje H»((W; x Y)NB,0x) where B (resp. W) ranges through the family of
neighborhoods of z (resp. of wedges of X' with profile 5]’. = M' x intZ??). Assume
> jb(F;) = 0. Then there exist Fj € Hu((Wj,y,) N\ B,0x) with Y, = Y and with

W/, wedges with profile and proper subcone of the convex hull d; of 9;,0;:

Fj=-F F=3) FV.
i

ProoF. Let fj=5b(F)|y. Then supp (fj) = (Uig;(m;iN7j)) x ¥ = (M x

U,‘ ;ej(ZiﬂZj)) x Y. »
Observe that H*w(Cpix)|, satisfies a kind of “transveral softness” with
respect to the complex foliation of T}, X; this follows easily from [2.2). Thus we
can decompose f; =Y, f; with WF(f;) < (fi; x Y1) = (7; N#};) x Y1 for #; > n
and over a (possibly smaller) neighborhood of z. If we observe that int(#; ﬂry]’.)"“
equals the convex hull of int#;%, int#n;°® and use (2.3), we get the conclusion.
Q.E.D.
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