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THE INTERSECTION OF QUADRICS AND
DEFINING EQUATIONS OF A PROJECTIVE CURVE

By

Katsumi AKAHORI

Abstract. Let $C$ be a complete nonsingular curve over an
algebrically closed field $K$ and $L$ a very ample invertible sheaf on $C$ .
We denote by $\phi_{L}$ : $C\rightarrow P(H^{0}(L))$ , the projective embedding of $C$ by
means of the vector space $H^{0}(C, L)$ . There are two purposes in this
paper. One is to the question: What is the intersection of quadrics
through $\phi_{L}(C)$ ? The other is to answer the question: What degrees
are the minimal generators of the associated homogeneous ideal?

0. Introduction

Let $C$ be a complete nonsingular curve over an algebrically closed field $K$ and
$L$ a very ample invertible sheaf on $C$ . We denote by $\phi_{L}$ : $C\rightarrow P(H^{0}(L))$ , the
projective embedding of $C$ by means of the vector space $H^{0}(C, L)$ .

Several authors have answered the questions of when $\phi_{L}(C)$ for a given
invertible sheaf $L$ is projectively normal and when the associated homogeneous
ideal $I(L)$ of the embedded curve $\phi_{L}(C)$ is generated by quadrics. (see [3], [4],

[8], [9]) Since it is well-known that if $\deg L\geqq 2g+2$ , then $I(L)$ is generated by
quadrics (see [2], [9], [10]), they have treated low degree invertible sheaves (i.e.

$\deg L\leqq 2g+])$ . For example, Green and Lazarsfeld proved that if $\deg L=2g$

and $C$ is a hyperelliptic curve, then $\phi_{L}(C)$ is not projectively normal ([3]). Of
course $I(L)$ is not generated by quadrics in this case. That is to say that $\phi_{L}(C)$ is
not cut out by only quadrics. So two related questions arise:

(I) What is the intersection of quadrics $Q(\phi_{L}(C))$ ?
(II)What degrees are the minimal generators of $I(L)$ ?
For the questions above the theorem of Noether-Enriques-Petri (cf. [11]) is

the answer for canonical sheaf $\omega$ of nonhyperelliptic curve. Serrano have
reported some results about the first question ([12]), and Homma have answered
for $L$ on a curve of genus 3 ([6], [7]). In this paper, our purpose is to answer for
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case of $g\geqq 4$ (mainly $g=4$ ).

First let $C$ be a hyperelliptic curve. Our result about $Q(\phi_{l}(C))$ is as follows.

THEOREM 0.1. Let $C$ be a nonsingular hyperelliptic curve of genus $g(\geqq 3)$

and $L$ a nonspecial very ample invertible sheaf of degree $d$ . If (1) $d\leqq 2g$ or (2)

$d=2g+1$ and $h=h^{0}(C, L\otimes\omega^{-1})\leqq 1$ , then $Q(\phi_{L}(C))$ is coincides with rational
ruled surface $F_{e}$ embedded by $|D=C_{0}+$ ] $/2(d-g-1+e)F|$ for some invariant
$e(<d-g-1)$ . (where $C_{0}$ is a minimal section, and $F$ is a fiber.)

Furthermore in case of (2) if $g=(3),$ $4,5$ , then $e=g-4+2h$ .

By (0.1), $I(L)$ is not generated by quadrics under the condition above. It is
known that if $L$ is normally generated and $H^{1}(C, L)=(O)$ , then $I(L)$ is generated
by $I_{2}$ and $I_{3}$ (cf. [6]) (where $I,,$, is $Ker[S^{\prime\prime t}\Gamma(L)\rightarrow\Gamma(L^{m})]$ ) If $\deg L\geqq 2g+$ ], then
$L$ is normally generated ([9]). Therefore if $\deg L=2g+$ ], then $I(L)$ is generated
strictly by $I_{2}$ and $I_{1}$ . (we say that the homogeneous ideal $1(L)$ is generated
strictly by its elements of degrees $v_{1},\cdots,v_{l}$ if $I(L)$ is generated by its elements of
degrees $v_{1},\cdots,v_{1}$ and $I(L)$ is not generated by its elements of degrees
$v_{1},\cdots,\hat{v}_{j},\cdots,v_{1}$ for any $v_{j}(1\leqq j\leqq n)$ , where $\hat{v}_{j}$ means that $v_{j}$ is omitted.) But if
$\deg L\leqq 2g$ and $C$ is a hyperelliptic curve, then $L$ is not normally generated.

Therefore the question (II) arises. Our main results about $I(L)$ are the answers
for the case of $\deg L=2g,$ $2g-1$ .

THEOREM 0.2. Let $C$ be a nonsingular hyperelliptic curve of genus $g$ and $L$ a
very ample invertible sheaf of degree $2g$ . Then $1(L)$ is generafed by $I_{\underline{7}},$ $I_{3}$ and
$I_{4}$ .

THEOREM 0.3. Let $C$ be a nonsingular hyperelliptic curve of genus $g$ and $L$ a
very ample invertible sheaf of degree $2g-1$ . Then $I(L)$ is generated by $I_{2},I_{3},$ $I_{4}$

and $I_{5}$ (Furthermore if $g=4$ , then $I(L)$ is generafed strictly by I, and I, . (see

(2.6))

Next let $C$ be a nonhyperelliptic curve. Our results in this case are as follows.

THEOREM 0.4. Let $C$ be a nonsingular nonhyperelliptic curve of genus 4 and
$L$ a very ample invertible sheaf. If $degL$ is 8, then $Q(\phi_{L}(C))$ is a surface of
degree 4 in $P^{4}$ . If $degL$ is 7, then $Q(\phi_{L}(C))$ coincides with $P^{\backslash }$ (see (3.1) and
(3.2))

The organization of the paper is as follows. In the first section
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(preliminaries), we summarize some facts about very ample invertible sheaves on
$C$ and rational scrolls. In the second section we prove theorems 0.1, 0.2 and 0.3.
In the third section we prove theorem 0.4.

Notation. We fix an algebrically closed field $K$ .
(1) For a finite dimensional vector space $V$ over $K,S^{m}(V)$ means the m-th

symmetric power of $V$ . Let $L$ be an invertible sheaf. The m-th tensor product of
$L$ (resp. $\Gamma(L)$ ) is denoted by $L^{m}(resp. \Gamma(L)^{m})$ . For the vector space of global

sections $\Gamma(L)$ we define $I_{n}(L)(orI_{m})$ and $I(L)$ , by

$I_{m}(L)=Ker[S^{m}\Gamma(L)\rightarrow\Gamma(L^{m})]$ and $I(L)=\oplus I_{n}(L)$ .

We denote by $\omega_{c}$ the canonical invertible sheaf on $C$ .
(2) If $L$ is an invertible sheaf on a variety $X$ which is generated by global

sections, we may define a morphism $\phi_{L}$ : $X\rightarrow P(H^{0}(L))$ by means of the vector

space $H^{0}(L)$ .
(3) We denote by $\pi:F_{e}\rightarrow P^{1}$ , the geometrically rational ruled surface with

invariant $e\geqq 0$ . A minimal section of $\pi$ is denoted by $C_{0}$ and a fiber of $\pi$ by $F$.
(4) Let $X$ be a closed subvariety of a projective space $P^{lI}$ We denote by

$Q(X)$ the intersection of quadrics through $X$ .

1. Preliminaries

First, we shall recall facts about very ample invertible sheaves on a curve,

especially, of genus 4.
Let $L$ be an invertible sheaf on a curve $C$ of genus $g$ . If $\deg L\geqq 2g+$ ] , then $L$

is very ample. If $\deg L=2g$ , then $L$ is not very ample if and only if $L$ is
isomorphic to $\omega$ $(P+Q)$ for some points $P,Q\in C$ (may be $P=Q$ ). (see, for

example, [1], I Exercises D-2) If $g\geqq 2$ , then $C$ has a very ample invertible sheaf
$L$ of degree $d$ with $h^{1}(L)=0$ if and only if $d\geqq g+3$ (Halphen’s Theorem) see,

for example, [5], IV Proposition 6.1)

LEMMA 1.1 Let $C$ be a curve of genus 4 and $L$ an invertible sheaf of degree
$d\leqq 6$ on C. Then $L$ is very ample if and only if $C$ is nonhyperelliptic and $ L\cong\omega$ .

PROOF. Let $L$ be a very ample invertible sheaf of degree $d\leqq 6$ . By virtue of

Halphen’s Theorem, we have $h^{1}(L)>0$ . Hence we have that $h^{0}(L)\leqq g=4$ and

equality occures if and only if $ L\cong\omega$ . It is clear that $h^{0}(L)\geqq 3$ . In the case of
$h^{0}(L)=3,$ $C$ is a plane curve. It is a contradiction by the genus formula
$g=1/2(d-1)(d-2)$ . Therefore $L$ must be the canonical sheaf $\omega_{c}$ . On the other
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hand, $\omega_{(}$ is very ample if and only if $C$ is nonhyperelliptic. This completes the
proof.

Secondly, we shall state several facts about rational scrolls associating to a
hyperelliptic curve $C$ of genus $g\geqq 2$ .

Let $C$ be a hyperelliptic curve of genus $g\geqq 2$ with a unique linear system $g_{2^{1}}$

of degree 2 and of projective dimension 1. We denote by $M_{0}$ the invertible sheaf
corresponding to $g_{2^{1}}$ .

Let $L$ be a nonspecial and very ample invertible sheaf on $C$ . For every $y\in P^{1}$

the linear span of the divisor $\phi^{*}(y)$ of $C$ is a line $\ell_{\iota}\subseteq P^{d-g}=P(H^{0}(L))$ . (where
$\phi:C\rightarrow P^{1}$ is a hyperelliptic double covering.) The union of these lines, $ S=\cup\ell$ , ,

is a scroll in $P^{d-g}$ . $S$ contains the curve $C\subseteq P^{d- g}$ and, consequently, is
nondegenerate. We call the scroll associafed to the double covering $\phi:C\rightarrow P^{1}$

with respect to $L$ .

LEMMA 1.2. ([8]), Lemma 3.1) Let $\phi:C\rightarrow P^{1}$ be a hyperellip $tic$ double
covering of genus $g(g\geqq 2)$ and $L$ a nonspecial very ample line bundle of degree
$d$ on C. Then the scroll $S$ associated to $\phi$ with respect to $L$ is either a cone over a
$ra$tional normal curve in $P^{d- g- 1}$ or smooth of degree $d-g-1$ in $P^{d-g}$

REMARK 1.3. If $d\leqq 2g$ or $d\geqq 2g+3$ in Lemma 1.2, then $S$ is smooth.

PROOF. Suppose that $S$ is a cone F. Let $\tilde{F}\rightarrow F$ be the blowing up with a
center vertex. Then $\tilde{F}$ coincides with the rational ruled surface $F_{d- q-1}$ with
invariant $d-g-1$ . Let $H$ be a hyperplane section on $F$ and $\tilde{H}$ the strict transform
of $H$ on $\tilde{F}$ . Since $\tilde{H}\cdot F=1$ and $\tilde{H}\cdot C_{0}=0$ , we have $\tilde{H}-C_{0}+(d-g-1)F$ . Suppose
that the strict transform $\tilde{C}$ of $\phi_{L}(C)$ is linearly equivalent to $\alpha C_{0}+\beta F$ . Since
$d=\deg\phi_{L}(C)$ , we have

$ d=\tilde{C}\cdot\tilde{H}=\beta$ (1)

On the other hand, using the adjunction formula, we have

$2g-2=(\tilde{C}+K_{F})\cdot\tilde{C}$ (where $K_{F}$ is the canonical divisor on $F_{d- g-1}$ )

$=\alpha(\alpha-2)(-d+g+1)+\beta(\alpha-2)+\alpha(\beta-d+g-1)$ . (2)

Solving (1) and (2), we have that $\tilde{C}$ is linearly equivalent to $2C_{0}+dF$ . Therefore
we have $\tilde{C}\cdot C_{0}=2g+2-d$ . Since $d\leqq 2g$ or $d\geqq 2g+3$ , we have

$\tilde{C}\cdot C_{0}\geqq 2,\tilde{C}\cdot C_{0}\leqq-1$ . (3)

If the vertex of $F$ does not lie on $\phi_{L}(C)$ , then $\tilde{C}\cdot C_{0}=0$ . If not, then $\tilde{C}\cdot C_{0}=1$ .
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This contradicts with (3). Therefore $S$ is smooth in this condition.

REMARK 1.4. If $d=2g+1(g\geqq 3)$ and $h^{()}(L\otimes\omega_{c}^{-1})\leqq 1$ , then $S$ is smooth.

PROOF. This result is owing to ([7], Theorem 3.1).

The following lemma will be used to calculate the dimension of
$H^{0}(F_{e},nC_{0}+mF)$ in the second section.

LEMMA 1.5. (see, for example, [7], Lemma 2.1) Let $L$ be the invertible

sheaf $\theta_{F}(nC_{0}+mF)$ on $F_{e}$ and $n\geqq 0$ and $m\geqq ne-1$ , then $h^{1}(L)=h^{2}(L)=0$ and
$h^{0}(L)=(n+1)(m+1)-1/2n(n+1)e$ .

2. Hyperelliptic case

LEMMA 2.1. Let $M$ and $N$ be invertible sheaves on a curve C. If
$h^{1}(N)\leqq h^{0}(M)-1$ , then $h^{1}(N\otimes M)=0$ .

PROOF. Suppose that $h^{1}(N\otimes M)\geqq 1$ . Then $h^{0}(M)\leqq h^{0}(M)+h^{1}(N\otimes M)-1=$

$h^{0}(M)+h^{0}(\omega_{C}\otimes N^{-1}\otimes M^{-1})-1\leqq h^{0}(M\otimes\omega_{(}\otimes N^{-1}\otimes M^{-1})=h^{1}(N)$ . It is a con-
tradiction with the assumption.

THEOREM 2.2. Let $C$ be a nonsingular hyperelliptic curve of genus 4 and $L$ a
very ample invertible sheaf of degree 8. Then $\phi_{L}(C)$ lies on $F_{1}$ embedded by the
complete linear system $|C_{0}+2F|$ in $P^{4}$

In this case, $Q(\phi_{L}(C))$ coincides with $F_{1}$ .

PROOF. (Step 1) We shall claim that $h^{1}(L\otimes M_{()}^{-1})=0$ and $h^{1}(L\otimes M_{0}^{-2})=0$ .
In fact, since $h^{1}(L\otimes M_{0}^{-3})=1\leqq h^{0}(M_{()})-1$ , we get $h^{1}(L\otimes M_{()}^{-2})=0$ by using
Lemma 2.1. In the same way we have $h^{1}(L\otimes M_{()}^{-1})=0$ .

(Step 2) We will consider the natural map $\eta:H^{0}(L\otimes M_{()}^{-1})\otimes H^{0}(M_{0})$

$\rightarrow H^{0}(L)$ . By the “base point free pencil trick” [11], $\dim Ker\eta=h^{0}(L\otimes M_{0}^{-2})$

$=1$ . Hence we have an exact sequence
$0\rightarrow Ker\eta=H^{0}(L\otimes M_{0}^{-1})\otimes H^{0}(M_{()})\rightarrow H^{0}(L)\rightarrow 0$ .

Therefore we get the following commutative diagram.
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$P(H^{0}(L\otimes M_{()}^{-1}))\times P(H^{0}(M_{0}))$ $P(H^{()}(L\otimes M_{0}^{-1})\otimes H^{()}(M_{0}))$ ,

$|IS$ $f$ $||$ ;
$P^{2}\times P^{1}$ $P^{5}$

where $f$ is the Segre embedding.

Let $F$ be an irreducible component of $P^{2}\times P^{1}\cap P^{4}$ containing $\phi_{L}(C)$ . Since
the Segre embedding of $P^{2}\times P^{1}$ does not lie on any hyperplane in $P^{5}$ , we have
$\dim F=2$ . From the degree of th Segre embedding of $P^{2}\times P^{1}$ and $\deg F\geqq$ codim
$F+1=3$ we get $\deg F=3$ . Varieties of degree 3 in $P^{\prime t}$ can be classified. (see

[14])

By this fact, $F$ is either $F_{1}$ or the cone over the 3-uple embedding of $P^{1}$ in
$P^{\backslash }$ . The latter case does not occur by (1.3). So $F$ must coincide with $F_{1}$ .

(Step3)Fina11ywewi11show that $I_{2}(L)=I_{2}(X)$ (where :Ee $=\theta_{F}(C_{0}+2F)$ ). If
$I_{2}(L)=I_{2}(X)$ , then $Q(\phi_{L}(C))$ coincides with $F_{1}$ .

Now we shall chase the following commutative diagram (for $n=2$ ).

$0$

$\downarrow$

$0$ $\rightarrow$ $I_{l}(X)$ $\rightarrow$ $S^{ll}\Gamma(X)$ $\rightarrow\Gamma(X^{\prime l})$ $\rightarrow$ $0$

(2.2.1) $\downarrow\gamma_{\mathfrak{l}}$ $||\{$ $\downarrow\phi_{l}$

$0$ $\rightarrow$ $I_{1}(L)$ $\rightarrow$ $S^{ll}\Gamma(L)$ $\rightarrow$ $\Gamma(L^{ll})$ $(n=2,3,4)$ .

(Since $\mathscr{L}$ is normally generated, $S^{2}\Gamma(X)\rightarrow\Gamma(X^{2})$ is surjective in this diagram.)

Let $\phi_{L}(C)$ be linearly equivalent to $\alpha C_{0}+\beta F$ on $F_{1}$ . By using adjunction
formula and $\phi_{L}(C)=8$ , we have $\alpha=2$ and $\beta=6$ . Then $Ker\phi_{\underline{\gamma}}=H^{0}(F_{1},X^{2}\otimes$

$\theta(-\phi_{L}(C)))=H^{()}(F_{1},-2F)=(0)$ . Therefore Coker $\gamma_{2}=(0)$ by snake’s lemma.
Hence we get the required assertion that $l_{\underline{7}}(L)=I_{2}(X)$ . This completes the proof.

PROOF OF THEOREM 0.1. First $\phi_{L}(C)$ lies on $F$, embedded by
$|C_{0}+]/2(d-g-1+e)F|$ by (1.3) and (1.4), where $e$ satisfies $d-g-1>e$ . By the
same argument in (Step 3) of (2.2) we have $\phi_{L}(C)\sim 2C_{0}+(g+]+e)F$ and
$Ker(\Gamma(X^{2})\rightarrow\Gamma(X^{2}))=H^{0}(F_{e},(d-2g-2)F)=(0)$ . Therefore we get similar
results.
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Next we shall apply the next lemmas to determining $e$ uniquely in some cases.

LEMMA 2.3. ([13]), Theorem 2.5) We define the number $d_{j}(i\geqq 0)$ :

$d_{j}=h^{0}(L(-iD))-h^{()}(L(-(i+])D))$ (where $D\in g_{-}^{1}$ ).

Then $e=\#\{j|d_{j}=1\}$ .

In (2.3) we claim that $d_{j}\geqq d_{j}$ for $i<j$ . Therefore we have $e=h^{0}(L(-\alpha D))$ ,

where $\alpha=\max\{i|h^{1}(L(-iD))=0\}$ .

LEMMA 2.4. $h^{1}(L(-iD))=0$ for $i\leqq d-2g+2-h$ (where $h=h^{0}(L\otimes\omega_{c}^{-1})$).

PROOF. First we claim that $h^{0}(kD)=k+1(0\leqq k\leqq g)$ . Hence
$h^{0}((g-1-i)D)-1=g-1-i\geqq h-d+3g-3=h^{1}(L\otimes\omega_{c}^{-1})$ . By using (2.1) we get

the above result.
If $d=2g+1$ and $h=0$ , then $h^{1}(L(-iD))=0(i\leqq 3)$ by (2.4). By using (2.3) we

have that $e=0$ (resp. 1) in the case of $g=4$ (resp. 5). By the same way, if

$d=2g+1$ and $h=1$ , then $e=2$ (resp. 3) in the case of $g=4$ (resp. 5). This
completes the proof.

Next we shall study $I(L)$ by using above results of $Q(\phi_{L}(C))$ .

LEMMA 2.5. ([6]), COROLLARY 3.6) Let $L$ be a very ample invertible sheaf
on an n-dimensional projective variety X. Assume that $H^{l}(X,L^{j})=(0)$ for any
integers $i,j>0$ . If $m={\rm Max}(n+3, n(L)+1)$ , then $I(L)$ is generated by $I_{2},\cdots,I_{n}$ ,

where $n(L)={\rm Min}$ { $n\in N|\Gamma(L)^{j}\rightarrow\Gamma(L^{i})$ is surjective for all $i\geqq n$ }.

PROOF OF THEOREM 0.2. First we shall show that $\beta_{n}:\Gamma(L)^{m}\rightarrow\Gamma(L^{\iota n})$ is

surjective for all $m\geqq 3$ by induction on $m$ . For a given $m\geqq 3$ , we consider the

following commutative diagram.

$\Gamma(L)^{\prime n+1}$
$\underline{\beta_{\iota},\otimes 1}\Gamma(L^{\prime l1})\otimes\Gamma(L)$

$\beta_{\mathfrak{l}\mathfrak{l}+1}$

$\Gamma(L^{\prime\prime\prime+1})$

By the induction hypothesis $\beta_{l}$ is surjective, and also $\beta_{n},\otimes$ ] is surjective. By

”generalized lemma of Castelnuovo” (see [9], Theorem 2) 7,. is surjective, and
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also $\beta_{l+1}$ is surjective. Therefore we have only to prove the surjectivity of $\beta_{3}$ .
We shall chase the commutative diagram (2.2.1) (for $n=3$ and
$X=\theta_{F}(C_{0}+1/2(g-1+e)F))$ .

Since we recall $\phi_{L}(C)\sim 2C_{0}+(g+1+e)F$ from the proof of (0.1), we have
$Ker\phi_{\tau}=H^{()}(F,,C_{0}+1/2(g-5+e)F)$ . By (2.4) we have $h^{1}(L(-2D))=0$ . Hence we
get that $e\leqq h^{0}(L(-2D))=g-3(i.e. 1/2(g-5+e)\geqq e-1)$ by (2.3). Now using
(1.5), we have dimKer $\phi_{\tau}=g-3$ . On the other hand, by the theorem of Riemann-
Roch and (1.5), we have $\dim\Gamma(L^{\backslash })=5g+1$ and $\dim\Gamma(X^{\tau})=6g-2$ . So we
conclude that $\phi_{\tau}$ and $\beta_{3}$ are surjective. Therefore we have $n(L)=3$ . By using
(2.5) $I(L)$ is generated by $I_{\underline{\urcorner}},$ $I_{3}$ and $I_{4}$ .

PROOF OF THEOREM 0.3. First we shall show that $\beta_{n},:\Gamma(L)^{m}\rightarrow\Gamma(L^{m})$ is
surjective for all $m\geqq 4$ by induction on $m$ . By an argument similar to the proof of
(0.2), we have only to prove the surjectivity of $\beta_{4}$ .

Secondly we claim that $h^{1}(L(-2D))=0$ . Suppose that $h^{1}(L(-2D))=h^{0}$

$(\omega_{(}\otimes L^{-1}(2D))>0$ . Then $\omega_{c}(2D)\cong L(P+Q+R)$ for some points $P,$ $Q,$ $R$ on $C$ .
Hence we have that $\omega_{c}(P^{\prime}+Q^{\prime})\cong L(R)$ for some points $P^{\prime},Q^{\prime}$ on $C$ . That is to say
$h^{1}(L(-P^{\prime},-Q^{\prime}))>0$ . Therefore $h^{0}(L)-h^{0}(L(-P^{\prime}-Q^{\prime}))\neq 2$ . This contradicts with
very ampleness of $L$ .

Lastly we shall consider the commutative diagram (2.2.1) (for $n=4$ and
$\mathscr{L}=\theta_{F}(C_{0}+1/2(g-2+e)F))$ .

In the way similar to the proof of (0.2) we have
$Ker\phi_{4}=H^{()}(F,2C_{0}+(g-5+e)F)$ . By (2.3) and $h^{1}(L(-2D))=0$ we get
$e\leqq h^{0}(L(-2D))=g-4(i.e.(g-5+e)\geqq 2e-1)$ . Hence, by using (1.5), we have $\dim$

$Ker\phi_{4}=3g-12$ . On the other hand we have $\dim\Gamma(L^{4})=7g-3$ and $\dim\Gamma(X^{4})$

$=10g-15$ . So we conclude that $\phi_{4}$ and $\beta_{4}$ are surjective. Hence we get $n(L)=4$ .
By (2.5) $I(L)$ is generated by $I_{2},I_{\urcorner},I_{4}$ and $I_{5}$ .

COROLLARY 2.6. Let $C$ be a nonsingular hyperelliptic curve of genus 4 and $L$

a very ample invertible sheaf of degree 7. Then $I(L)$ is generafed strictly by $I_{2}$

and $I_{5}$ .

PROOF. From (0.3) $I(L)$ is generated by $I_{2},I,,I_{4}$ and $I_{5}$ . We recall
$I_{\underline{7}}(L)=I_{-},(X)$ in (0.1). Since $\phi_{L}(C)$ is of degree 7 and lies on a quadric surface, it
does not lie on any irreducible cubic surface. Hence we have $I_{3}(L)=I_{7}(X)$ .
Furthermore, we have $I_{4}(L)=I_{4}(X)$ because $\phi_{4}$ is an isomorphism in (0.3). By
the way, $J_{\underline{2}}$ don’t generate $I(L)$ . This completes the proof.
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3. Nonhyperelliptic case

THEOREM 3.1. Let $C$ be a nonsingular nonhyperelliptic curve of genus 4 and
$L$ a very ample invertible sheaf of degree 8. Then $Q(\phi_{L}(C))$ is a surface of
degree 4 in $P^{4}$

PROOF. By the projective normality of $\phi_{L}(C)$ (see [3], Corollary 1.4) we
have $\dim I_{2}(L)=2$ , and hence we have distinct quadric hypersurfaces $Q_{1}$ and $Q_{2}$

in $P^{4}$ Since $Q_{j}$ is irreducible, so $\dim Q_{1}\cap Q_{2}=2$ . Let $F$ be an irreducible
component of $Q_{1}\cap Q_{2}$ containing $\phi_{L}(C)$ . Then we have $\deg F=3$ or 4, since $\deg$

$F\leqq 4$ and since $F$ is nondegenerate. So we have only to show that $\deg F=4$ . If
$\deg F=3$ , then $F$ is the rational ruled surface $F_{1}$ embedded by $|C_{0}+2F|$ or the
cone over the rational normal curve in $P^{3}$ . But $F$ is not the cone over the rational
normal curve in $P^{3}$ by the argument of (1.3). Next if $F$ coincides with $F_{1}$ , we
have $\phi_{L}(C)\sim 2C_{0}+6F$ by the argument in (Step 3) of (2.2). Then $C$ is
hyperelliptic curve. It contradicts the assumption. Hence we have $\deg F=4$ in
$P^{4}$

THEOREM 3.2. Let $C$ be a nonsingular nonhyperelliptic curve of genus 4 and
$L$ a very ample invertible sheaf of degree 7. Then $Q(\phi_{L}(C))$ coincides with $P^{3}$

PROOF. we have to show that $\phi_{L}(C)$ does not lie on a quadric hypersurface:
including double plane. Indeed, obviously $\phi_{L}(C)$ does not lie on a union of planes;
if $\phi_{L}(C)$ lies on a quadric cone, then $g=6$ , contradiction; if $\phi_{L}(C)$ lies on
$P^{1}\times P^{1},$ $\phi_{L}(C)$ is of type $(a,b)=(2,5)$ in the Picard group of $P^{1}\times P^{1}$ by
considering degree and genus, i.e., $\deg L=a+b$ and $g=(a-1)(b-1)$ . This means
that $C$ is hyperelliptic, which is a contradiction.

The following is a summary of the case of genus 4.
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(where $h$ is the dimension of the vector $s\rho aceH^{()}(C,$ $L\otimes\omega^{-1})$ over $K$)

Statements (b), (e) are Homma’s results ([7]). Statement (k) is well-known.
Statement (f) is Green-Lazersfeld’s result ([4]).
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“strictly” in statements (2), (3), and (7) follow from (b), (c), (d), (e), and

(h).

Statements (4), (5) are Green-Lazersfeld’s results ([4]). Statement (10) is well-

known.
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