TSUKUBA J. MATH.
Vol. 20 No. 1 (1996), 213-218

ON HOMOGENEITY OF HYPERSPACE OF RATIONALS

By
HirosHi FUJITA and Suinyt TANIYAMA

Abstract. We show, assuming analytic determinacy, that the
hyperspace consisting of compact sets of rational numbers is
topologically homogeneous.

Introduction

For a metric space X with metric d, we consider the set .7 (X) of all non-

empty compact subsets of X. We metrize .#(X) by the Hausdorff metric as
follows: ‘

d,(A,B)= max{sup d(x,A),supd(x, B)} .
xeB x€A

The metric space (#(X),d,) thus obtained is called the hyperspace of
compact sets of X. Relationship between metric and topological properties of X
and #(X) has been studied. Here we study homogeneity of hyperspaces. A
topological space X is homogeneous if each point of X can be carried to any other
by a homeomorphism of X onto itself.

The hyperspaces .7 (X) are known to be homogeneous for many spaces X.
For example, it is known that if X is a Peano continuum, then #Z(X) is
homeomorphic to the Hilbert cube [0,1]° and hence homogeneous. For X =2¢
(the Cantor space) or ®“ (the Baire space), Z(X) is homeomorphic to X itself
and hence homogeneous. For X = Q, the space of rational numbers, the situation
was less trivial, since no simple topological characterization of Z(Q) has been
known. In fact, 7 (Q) is homogeneous under certain set theoretical assumption,
as our main theorem shows. Under the same assumption, .7 (Q) is characterized
as the unique subspace of 2“ which is meager in 2“ and everywhere property co-
analitic (for the terminology, see Section 1).

THEOREM. Assume analytic determinacy. The hyperspace 7% (Q) of
compact sets of rational number, with the Hausdorff metric, is homogeneous.
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Analytic determinacy is the statement that every two person infinite game on @ is
determined if its payoff set is analytic as a subset of w”. This assumption is
strictly weaker than the existence of a measurable cardinal. The reader may
consult [1] for details.

§1. Proof of The Theorem

For the sake of technical convenience, we regard Q as a countable dense
subset of the Cantor space 2“, not of the real line. This may cause no confusion
because every countable dense subset of perfect Polish space is in fact
homeomorphic to the space of rational numbers. The inclusion Q < 2® induces
another topological inclusion .7 (Q) < .#(2“) in an obvious way.

We need the notions of analytic and co-analytic sets. For general information
about analytic and co-analytic sets, we refer the reader to [2]. A subset of Polish
space X is analytic if it is the projection of a Borel subset of X xY where Y is
Polish. The class of analytic sets is closed under countable unions, countable
intersections, continuous images and continuous preimages, while it is not closed
under complements. The complement of an analytic set is called co-analytic. A
subset E of a Polish space X is everywhere properly co-analytic if ENU is co-
analytic but not analytic for every basic neighborhood U in X.

We will use a result of J. Steel [3] in descriptive set theory. This is the only
place we should mention analytic determinacy.

LEMMA 1.1. (Steel) Assume analytic determinacy. Suppose A,Bc2” are
everywhere properly co-analytic and meager. Then there is a homeomorphism
h:2% =2% such that h[A]=B.

LEMMA 1.2. The space % (Q) is meager as a subset of % (2%).

PROOF. Let % be the set of non-empty compact subsets of 2“ without
isolated points. Then . is a dense G; subset of .Z(2“). To see that & is Gy,

note
Ke 2 & (YN)KNN #0= KN is infinite]

(where N runs over basic clopen subsets of 2“). For each N, we have

{K: KNN is infinite} = 7 (2°)\ U {K : KN has at most n points}.

n<@

The sets under countable union on the right hand side are closed. So the condition
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“K(N is infinite” determines a G; set of K €.7(2%) for each fixed basic clopen
set N c2?. It now follows immediately that ./ is G,, since there are only
countably many basic clopen sets in 2.

Since every countable compact set has an isolated point, .%° is disjoint from
Z(Q) . Being disjoint from a dense G; set, .7 (Q) is meager. |

LEMMA 1.3. The space 7% (Q) is everywhere properly co-analytic as a subset
of #(2°).

The proof of this lemma is given in Section 2. Here we prove the main
theorem taking for granted.

PROOF OF THE MAIN THEOREM: We show that every two points H and K in
Z (Q) have arbitrarily small homeomorphic clopen neighborhoods. Let U and V
be any neighborhoods in 7 (Q) of H and K respectively. There are clopen
subsets U’ and V' of #Z(2%) such that HeUNZ(@)cU and
K e V'N#Z(Q)c V. As compact zero-dimensional metric spaces without isolated
points, all non-empty clopen subsets of .#(2“) are homeomorphic to the Cantor
space 2“.Let h:U’ =2 and k:V'=2°. By Lemmas and .3, A{U'NZ(Q)]
and k[V’(N.Z(Q)] are both everywhere properly co-analytic meager subsets of
2?. By Lemma 1.1, there is a homeomorphism of 2“ onto itself which maps
hU'NZ(Q)] onto k[V'.Z(Q)]. So the neighborhoods U’N.Z(Q) and
V'N.%(Q) are homeomorphic.

Thus we have proved that H and K have arbitrarily small homeomorphic
clopen neighborhoods. Then Bernstein type back-and-forth construction yields a
homeomorphism of 7 (Q) onto itself which maps H to K. [ ]

§2. The Cantor-Bendixson Number

For each K€ %7 (2%), let dK be the set of all accumulation points of K. Since
K is compact, JK is also compact, though it may be empty. By transfinite
induction on &, define ?*K as follows: J°K=K, 0°'K=0(3°K), and
'K = Mg, 9°K when 1 is a limit ordinal. If K is countable, there is a countable
ordinal & such that 9*K =0. The smallest such & must be a successor ordinal
because each 9"K is compact. The Cantor-Bendixson number, denoted by |K|.;,
of countable compact subset K of 2 is the unique countable ordinal & such that
J°K#0 and 'K =0.

We need the following “coding procedure” of countable well-ordering
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relations. Let {r.:i <} be a fixed one-to-one enumeration of Q. For each o €2”

let
Z(e) ={r,: a(i) = 0},

and then define WO to be the set of o €2” such that Z(ex) is well-ordered by
usual linear-ordering of Q. For each ae WO, let |a],, be the order type of
(Z(e),<).

LEMMA 2.1. (Folklore) The set WO is co-analytic set which is not analytic.

LEMMA 2.2. The Cantor-Bendixson number is unbounded on each non-empty
clopen subset of A Q).

PROOF. We show that each non-empty clopen subset of A Q) contains an
element whose Cantor-Bendixson number is &, where & is an arbitrary countable
non-zero ordinal.

Suppose that a clopen subset E of A Q) is given. Without loss of generality,
we may assume FE is of the form <N0,N,,---,Nk>ﬁﬁ/(Q) where N, N,,---,N, are
basic clopen set in 2° and (N,,N,,---,N,) is the Vietoris neighborhood:

<N0,N1,---,Nk)={1<ezf(2“’):Kc UN, & (Vi<k)[KNN, ;em}.
i<k
Now, since N, "Q is homeomorphic to @, there is a subset K, of N,nQ
homeomorphic to the ordinal space ®°+1 whose Cantor-Bendixson number is E.

Pick x; e N,nQ for i=1,...,k. Then
K =K,U{x,,....,x,}

is a compact set belonging to (N,,N,,...,N,)n.Z(Q) and its Cantor-Bendixson

number is exactly &. u

Deffne a relation S(F,a) as the conjunction of the following clauses:
(1) F is a function on @ into .7 (2%);

(2) r, is the smallest element of Z();

(3) if both 7, and r; is in Z(a) and if r,< r;,then F(j)c JF(i).

Then S is identified with a subset of (Z(2?))* x2°. In fact:
LEMMA 2.3. The relation S on (% (2°))® x2% is Borel.

PROOF. The only non-trivial part is the computation of the relation K, < dK,
for K,,K, € #(2%). This relation is in fact Borel as a subset of Z(2”)x.%7(2°)
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because
K, c 8K, < (VN)[K, AN+0= [K, (1N is infinite]

where N runs over basic clopen neighborhoods in 2“. n

LEMMA 2.4. The following relation R is co-analytic:
RK,a) = Ke % (Q)&[ag WO V(K| <|a|wol-

PROOF. We shall show the equivalence
R(K,a) = K e Z(Q)& Ry(K, )
where R, is defined, using S in Lemma 2.3, as follows:
R,(K,) & (VF)VPB)S(F,B) & F(0)= K = (Z(x),<) cannot be embedded into
any initial segment of (Z(B),<)].
Indeed, a pair (F,B) in the relation S represents, provided that e WO, a
sequence of non-empty compact sets (K g:6< |Blwo)  such  that

K, c JK, for £ <n <|B|, - Then by transfinite induction we have K, c d°K, for

every &<|Blwo. Thus the Cantor-Bendixson number |K|.; is the maximum
possible length of such sequences starting with K, = K. This means if e WO
and if S(F,B) holds for some F, then |B|y, <|K|cs should be the case. The
relation R, expresses the situation that as far as o€ WO, |a |y, is not less than
any of such |B|y. These observation proves the equivalence as required. Using

this equivalence, one can show that R is co-analytic by simple computation of
relations. |

LEMMA 2.5. If a set &/ < % (Q) is analytic as a subset of % (2%) then
sup{ K| :Ke F}<w,.

PROOF. By contradiction. Suppose there is an analytic subset % of Z(Q) on
which the Cantor-Bendixson number is unbounded: sup{ K| : K € %/} =®,. Then
the equivalence

e WO & 3AK)[K € & & (@ e WO &|at]yo <|K|cp]
< (AK)K € &/ & —=R(K, )]

shows that WO would be an analytic set. But in fact WO is not an analytic set as
shown in Cemma 2.1. This contradiction proves Lemma 2.5. u

PROOF OF LEMMA 1.3: Since % (Q) is co-analytic as subspace of
FZ(2°),UNF (Q) is also co-analytic for each basic clopen subset U of Z(2).
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By Lemmas 2.2 and 2.5, we know that U().7(Q) is not analytic. Hence .7 (Q) is
everywhere properly co-analytic. [ ]

In our proof of the main theorem we needed the assumption of analytic
determinacy only to obtain an autohomeomorphism of .7 (Q). Thus, the following
problem arises:

PROBLEM: Is .7 (Q) homogeneous in ZFC?
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